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In previous work, we have developed a relativistic, model-independent three-particle quantization
condition, but only under the assumption that no poles are present in the two-particle K matrices that appear
as scattering subprocesses [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen
and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015); R. A. Briceño et al., Phys. Rev. D 95, 074510 (2017).].
Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a
G-parity symmetry, in the case that the two-particle K matrix has a pole in the kinematic regime of interest.
As in earlier work, our result involves intermediate infinite-volume quantities with no direct physical
interpretation, and we show how these are related to the physical three-to-three scattering amplitude by
integral equations. This work opens the door to study processes such as a2 → ρπ → πππ, in which the ρ is
rigorously treated as a resonance state.
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I. INTRODUCTION

Studies of hadronic resonances using lattice QCD
(LQCD) have progressed rapidly in recent years.1 The
present frontier of this effort involves resonances that
have significant branching ratios into channels with three
(or more) particles. Here the results from lattice calcu-
lations are, in some cases, more advanced than the
theoretical developments needed to interpret them. In
particular, energy levels above three-particle thresholds
are already being calculated, using three-particle oper-
ators [4]. Thus a fully developed theoretical formalism to
interpret LQCD quantities in this sector is of great
importance. In recent years significant progress has been
made, using a variety of approaches [5–17]. In this work
we consider the relativistic model-independent frame-
work of Refs. [5–7], and remove the last major theo-
retical restriction on this formalism.

LQCD studies of resonances proceed in two basic steps.
First, one uses numerical LQCD to determine the energy
levels in a finite volume for a given range of total energy.
Second, these levels are related to infinite-volume scatter-
ing parameters by solving a quantization condition.2

In the case of a single channel of identical scalar
particles, the relation between finite-volume energies
and the scattering amplitude was first derived by
Lüscher [18,19]. This has since been extended to describe
all possible, multichannel two-particle systems [20–25]
and by now there is a large body of work extracting
energy levels above multiple open thresholds and relating
these to the different components of the coupled-channel
scattering amplitudes [26–31]. For resonances with three-
particle decay channels, a further step is required, in
which intermediate infinite-volume quantities are related
to the scattering amplitudes. This step also requires
knowledge of the scattering amplitudes in each of the
two-particle subsystems.
The approach we follow here was originally derived

in Refs. [5,6] under two major assumptions: first, that a
G-paritylike symmetry forbids 2 ↔ 3 transitions and,
second, that two-particle subsystems are nonresonant
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1For recent reviews, see Refs. [1–3].
2In practice, this requires truncation of the quantization

condition by assuming that higher partial waves are negligible.
Such truncation schemes for the three-particle case have been
discussed in Refs. [5,7,11,12,14–16]. We do not consider these
further in the present work.
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within the kinematic range of interest (or, more precisely,
that the two-particle K matrices have no poles).3

We removed the former restriction in Ref. [7], and it is
the purpose of the present paper to lift the second
restriction, i.e., to allow arbitrary interactions in the two-
particle subsystems. This removes the last major theoretical
obstacle to general implementation of the formalism.
Removing the restriction on subchannel K matrices is

necessary for the application of the formalism to many
interesting three-particle systems. Consider, for example,
the three-pion system in the isospin-symmetric limit. Only
for the maximal isospin channel, I ¼ 3, are all two-pion
subchannels nonresonant (since they all have Isub ¼ 2). For
Itot < 3, however, the subchannels can have Isub ¼ 1 or 0,
and thus contain either the ρ or σ resonance, respectively.
For example, the a2ð1320Þ (IG ¼ 1−, JPC ¼ 2þþ) decays
predominantly to three pions with the ρ and f2ð1270Þ
resonances in two-pion subchannels. Another example
where subchannel resonances must be included is the
Roper resonance, which has a significant branch to the
Δπ → pππ channel.
It is useful to recall the reason why the analysis in

Refs. [5,7] had to assume the absence of poles in the two-
particle K matrix, K2. These works study finite-volume
correlation functions and determine the spectrum from the
position of the poles in these functions. The correlation
functions are considered to all orders in perturbation theory
in an arbitrary effective field theory. The core step in the
analysis is the replacement of the 3-momentum sums that
appear in finite volume with the corresponding infinite-
volume integrals, together with a volume-dependent resi-
due. If the summand is smooth, this residue is exponentially
suppressed (i.e., suppressed by e−mL wherem is the particle
mass and L the box size), and such exponentially sup-
pressed corrections are assumed negligible. However, if the
summand is singular then the residue falls only like inverse
powers of L, and must be kept. Such singularities occur
either when intermediate states can go on shell or when
intermediate infinite-volume quantities are themselves
singular. In our approach the latter class of singularities
arises as K-matrix poles. In Refs. [5,7] we did not include
the finite-volume effects associated with these and thus the
formalism derived in those works only applies if they are
absent.
Poles in K2 do not correspond to physical particles. If

the theory has a narrow resonance in the two-particle
subsystem the two-body scattering amplitude, M2, will
have a complex-valued pole close to the real axis. For
this scenario, K2 will have a real-valued pole close to that

ofM2. Therefore, theK2 pole is approximately equal to the
mass of the resonance. Away from the very-narrow limit of
a resonance, however, K2 poles do not have a direct
physical interpretation. Nevertheless, at intermediate stages
of the analysis of Ref. [5], terms appear whose summands
contain such singularities. These lead to additional power-
law finite-volume dependence, and this must be accounted
for, as it ultimately impacts the form of the quantization
condition. The analysis presented here incorporates all such
contributions.
It is worth noting that one may envision taking a different

approach than that proposed in Refs. [5,7] in which two-
particle subprocesses are encoded via M2 instead of K2,
and thus the scattering amplitude appears inside of the
summand. The original reason for preferringK2 is thatM2

has a cusp at the two-particle threshold and one must then
include finite-volume effects associated with this singularity.
Furthermore, if the system contains a narrow resonance, of
width Γ, thenM2 varies rapidly as a function of energy and
this induces neglected e−ΓL volume effects, if the contribu-
tion is not explicitly incorporated. In addition, in QCDmany
resonances lie close to thresholds, leading to dynamically
enhanced cusp effects. In short, one would have to develop a
framework to address finite-volume effects associated with
all possible scenarios.With these considerations in mind, we
find it preferable to work withK2 and properly treat its poles
in the kinematic window of interest.
In order to keep track of these singularities, we find it

convenient to express the problem in terms of two effective
channels: one containing the physical three-particle state,
and a second built from a particle and a pseudoparticle
arising from the K2 pole, which we refer to as the “ρπ
channel.” The quantization condition turns out to take a
relatively simple form in this presentation, one that is
similar to that in the multichannel two-particle problem
[22–24]. An important consistency check is that our final
expression for the finite-volume correlator does not contain
ρπ poles, despite their appearance at intermediate stages.
The addition of an unphysical channel appears at first as

a negative feature of our approach. We have explored
various alternatives that do not require this artifact, but have
not yet been able to use them to derive a useful alternative
formalism. There is, however, one reason to view the
appearance of this channel as natural. To explain this, we
return to the example of the ρ resonance, and imagine
continuously increasing the quark masses, starting from
their physical values. As is well known, as this is done, the
ρ becomes narrower, eventually becoming a bound state
at threshold, and, beyond that, a physical particle lying
below the two-pion threshold. If the masses are chosen such
that the ρ is deeply bound, then the pole in K2 moves far
below threshold and becomes irrelevant to our formalism.
Thus, in this case, the unphysical channel is no longer
needed. However, the presence of the ρ particle implies that
one should use the 2þ 3 particle formalism of Ref. [7],

3In addition the particles were taken to be identical and
spinless. Based on experience with the two-particle case, we
expect the extensions to multiple channels of nonidentical and
nondegenerate particles, as well as particles with intrinsic spin,
will be relatively straightforward.
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including a physical ρπ channel. Given that the stable ρ can
be described in terms of a new open channel, it is natural that
this is continuously connected to the effective two-particle
channel for narrow resonances that arises in this work.
As was the case in Refs. [5–7], the derivation of the

quantization condition is rather lengthy, despite the fact that
we have found ways to shorten and simplify certain steps
compared to the earlier works. To make this paper more
accessible, we have focused in the main text on the logic
and key steps of the derivation, pushing most of the
details into Appendices. In addition, we have provided a
Mathematica notebook as Supplemental Material [32] in
which the package The NCAlgebra Suite is used to check
the key results by algebraically manipulating matrices of
unspecified size as generic noncommuting objects [33].
This article is organized as follows. We begin in Sec. II by

presenting the final result and defining all of the objects
appearing in it. This section ismeant to stand alone so that the
lattice practitioner does not need to look elsewhere in order to
make use of the result. In Sec. III we present the derivation of
the quantization condition, with technical details given in
AppendixB.Thequantization condition iswritten in termsof
the three-body K matrix, which we relate to the physical
scattering amplitude in Sec. IV. We summarize, compare to
previous work, and give an outlook in Sec. V.
The framework presented here relies heavily on two

facts: First, that the off-shell version of K2 has the same
poles as its on-shell limit and, second, that at the residues of
the poles of the off-shell K2 can be written as a product of
functions separately describing the incoming and outgoing
two-particle states. In Appendix A we demonstrate these
two results using constraints from unitarity and all-orders
perturbation theory.

II. SUMMARY OF THE FINAL RESULT

The main result of this article is a quantization condition
with solutions equal to the energies of finite-volume three-
particle states in a generic, relativistic quantum field theory.
In contrast to earlier work, this result also holds for systems
with a two-particle resonant subchannel. The particles are
assumed to be identical, of physical mass m, and to have a
G-paritylike symmetry that restricts interactions to those
involving an even number of fields.
We assume that K2 diverges only for a single angular

momentum, denoted J, in the energy range of interest,
specified below. We further assume that there is only one

pole in KðJÞ
2 in this energy range, occurring when the

two-particle center of mass (c.m.) energy equals M.4

These assumptions simplify the discussion and derivation.

The extension to completely general K matrices, achieved
by promoting certain quantities introduced here to matrices,
will be described in a future publication.
The result presented in this work holds for fields

restricted to a cubic spatial volume of side length L, with
periodic boundary conditions. Following the pattern that is
by now well established from previous work [5–7], we find
that for a given total momentum, P⃗ ¼ 2πn⃗P=L, the discrete
finite-volume spectrum is given by all solutions in E to the
condition

det½1þKdfðE�ÞF ðE; P⃗; LÞ� ¼ 0; ð1Þ

where E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P⃗2

p
is the total energy in the c.m. frame.

Here both KdfðE�Þ and F ðE; P⃗; LÞ are matrices on a two-
channel space

iKdf ≡
�
iKdf;2̃2̃ iKdf;2̃3

iKdf;32̃ iKdf;33

�
; ð2Þ

iF ≡
�
iF2̃2̃ iF2̃3

iF32̃ iF33

�
; ð3Þ

where the index 3 denotes the three-particle channel while
2̃ denotes an effective two-particle channel containing the
two-particle resonance with the third nonresonating par-
ticle. This result holds up to neglected corrections of the
form e−mL, with m being the physical mass of the stable
particle, and applies only in the region m < E� < 5m.
In the remainder of this section we provide the defi-

nitions of the quantities Kdf and F appearing in the
quantization condition. We only note here that Kdf is a
real, infinite-volume quantity that is related to the three-to-
three scattering amplitude, while F has volume depend-
ence but can be expressed in terms of known geometric
functions together with the two-particle scattering ampli-
tude, including parameters describing the K-matrix pole.
We discuss strategies for the practical implementation of

the quantization condition, the generalization to multiple
K-matrix poles, and the relation of this result to earlier
work, in Sec. V.

A. Kinematics

In this subsection we introduce the kinematic variables
used throughout the paper to describe two- and three-
particle states, and the index space implicit in the matrices
appearing in the quantization condition, Eq. (1). These
results are summarized in Table I, which we hope provides
a useful reference for the reader. Many of the results
are self-explanatory; for the others we provide further
explanation in the following.
Each entry in the two-by-two matricesKdf andF is itself

a matrix in a space that describes the on-shell degrees of

4In the following we refer to this energy as the “resonance
mass,” which is a convenient label despite the fact that the correct
definition of the resonance mass differs for all but a very narrow
resonance. As noted in the introduction, we also refer to the
resonance channel as the ρ.
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freedom, either for three particles or for the resonance
together with the spectator. In particular, 3, when used as an
index, is shorthand for 3; klm ¼ 3; kxkykzlm and 2̃ is
shorthand for 2̃;MJlm. We use 2̃ rather than 2 to
emphasize that the K-matrix pole does not correspond to
a physical particle, and so the 2̃ channel is not a physical
two-particle channel.
In the three-particle state, one of the three particles,

referred to as the spectator, carries the 3-momentum
⃗k ¼ ðkx; ky; kzÞ. In infinite volume this momentum can

take on a continuous range of values (within the range
allowed by total energy and momentum conservation), but
in our quantization condition it is restricted to discrete

values: ⃗k ¼ 2πn⃗=Lwhere n⃗ is a 3-vector of integers. Within
the three-particle state, lm describes the angular momen-
tum of the nonspectator pair.
In the 2̃ state, MJ labels the different azimuthal

components for a K-matrix pole with angular momen-
tum J. Roughly speaking, it plays the role of a channel
index, labeling different degrees of freedom rather than

TABLE I. Summary of kinematics used throughout the paper.

Quantity Definition/key relation Description

Basic kinematics used throughout
⃗k ðkx; ky; kzÞ ¼ 2πn⃗=L 3-momentum (often of the spectator particle)

ωk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⃗k2 þm2

p
On-shell time component of 4-vector kμ (with physical mass m)

lm Indices on Ylm Angular-momentum indices (e.g., of the nonspectator pair)
MJ MJ ¼ −J;−J þ 1;…; J Azimuthal component of total angular momentum J

Multiparticle energies and momenta
(E, P⃗) P⃗ ¼ 2πn⃗P=L Total energy and momentum of the three-particle state

P2;k (E − ωk, P⃗ − ⃗k) 4-momentum of the nonspectator pair or of the resonance

E�
2;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ωkÞ2 − ðP⃗ − ⃗kÞ2

q
Energy of the nonspectator pair (two-particle c.m. frame)

q�2;k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
2;k=4 −m2

q
On-shell momentum of a nonspectator (two-particle c.m. frame)

Individual particles within the three-particle state

a⃗, b⃗ka b⃗ka ≡ P⃗ − ⃗k − a⃗ Individual 3-momenta of the nonspectators (finite-volume frame)

(ωa, a⃗) 4-momentum of the a-momentum particle (finite-volume frame)
(ω�

a;2;k, a⃗
�
2;k) 4-momentum of the a-momentum particle (two-particle c.m. frame)

(E − ωk − ωa, b⃗ka) 4-momentum of the b-momentum particle (finite-volume frame)
(E�

2;k − ω�
a;2;k, b⃗

�
ka;2;k) b⃗�ka;2;k ¼ −a⃗�2;k 4-momentum of the b-momentum particle (two-particle c.m. frame)

ωPka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðP⃗ − ⃗k − a⃗Þ2

q
On-shell time component of the b-momentum particle

Individual particles within the 2̃-state
M limE�

2
→MK2ðE�

2Þ ¼ ∞ Position of the K2 pole

q�ρ defined via E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q�2ρ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q�2ρ

q
On-shell momentum of the 2̃ spectator (c.m. frame)

ωρ;k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðP⃗ − ⃗kÞ2

q
On-shell time component of the resonance

(ωk, ⃗k) 4-momentum of the 2̃ spectator (finite-volume frame)
(E − ωk, P⃗ − ⃗k) 4-momentum of the resonance (finite-volume frame)
(ω�

k, ⃗k
�) 4-momentum of the 2̃ spectator (c.m. frame)

(E� − ω�
k, −⃗k

�) 4-momentum of the resonance (c.m. frame)

On-shell conditions and index spaces
E − ωk − ωa ¼ ωPka ⇔ E�

2;k ¼ 2ω�
a;2;k ⇔ a�2;k ¼ q�2;k Equivalent on-shell conditions for the 3-particle state

E − ωk ¼ ωρ;k ⇔ E� − ω�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k�2

p
⇔ k� ¼ q�ρ Equivalent on-shell conditions for the 2̃-state

klm ¼ ⃗k;l; m ¼ kx; ky; kz;l; m where ki ¼ 2πni=L Index space for an on-shell 3-state (implicit with 3 subscript)

MJ, l, m Index space for an on-shell 2̃-state (implicit with 2̃ subscript)
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different momentum configurations. For a given value
of MJ, lm describes the angular momentum of the
spectator-resonance pair.5

The kinematics used for the on-shell three-particle state
are described in detail in Refs. [5,6]. For completeness, and
to introduce new notation, we summarize the discussion
here. For a given total energy and momentum, (E, P⃗),
we label one of the three particles (the spectator) with

on-shell 4-momentum (ωk, ⃗k), where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⃗k2 þm2

p
. The

4-momentum of the remaining two particles is then P2;k ≡
ðE − ωk; P⃗ − ⃗kÞ and their two-particle c.m. energy is

E�
2;k ¼

ffiffiffiffiffiffiffiffi
P2
2;k

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − ωkÞ2 − ðP⃗ − ⃗kÞ2

q
: ð4Þ

We denote the individual 3-momenta of these two particles
in the finite-volume frame by a⃗ and b⃗ka ¼ P⃗ − ⃗k − a⃗.
Often we must consider the case were the a⃗ particle is

on shell with 4-momentum (ωa, a⃗) whereas the b⃗ particle
is not necessarily on shell, and carries 4-momentum
(E − ωk − ωa, b⃗ka). Boosting the 4-vectors corresponding
to a⃗ and b⃗ to the two-particle c.m. frame then gives,
respectively,

ðω�
a;2;k; a⃗

�
2;kÞ;

ðE�
2;k − ω�

a;2;k; b⃗
�
ka;2;kÞ ¼ ðE�

2;k − ω�
a;2;k;−a⃗�2;kÞ: ð5Þ

Here the notation is somewhat involved as we must label
both the momenta and the frame. Finally, we need to know
the conditions on the kinematic variables such that the b⃗
particle is also on shell; these are given towards the bottom
of Table I. The upshot is that, for three on-shell particles
with total energy and momentum (E, P⃗), the remaining
degrees of freedom are the spectator momentum, ⃗k, and the
direction of the a⃗ particle in the nonspectator-pair c.m.
frame, â�2;k. Decomposing the latter in spherical harmonics

leads to the indices ⃗k, l, m, which we abbreviate to klm.6

We turn now to the 2̃ state, built from a particle of mass
m and the resonance of mass M. In the overall c.m. frame,
each of these has a 3-momentum with a magnitude that we
denote by q�ρ, given by solving

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q�2ρ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q�2ρ

q
: ð6Þ

In the finite-volume frame, if the particle has momentum ⃗k
and is on shell, then the resonance has 4-momentum

(E − ωk, P⃗ − ⃗k). Boosting these to the overall c.m. frame
gives (ω�

k, ⃗k
�) and (E� − ω�

k, −⃗k
�). The second particle is

then on-shell when any of the three equivalent conditions
listed in Table I are satisfied.
Thus, for fixed (E, P⃗), the two on-shell particles have

remaining degree of freedom k̂� and decomposing this in
spherical harmonics gives the indices l; m. Combining this
with the azimuthal angular momentum of the resonance
gives the full index set, MJlm.

B. K-matrix poles

The central aim of this paper is to include the finite-
volume effects from poles in K2. In order to complete the
definitions of the quantities entering the quantization
condition, we need to understand the properties of these
poles. This is nontrivial, because, unlike poles in the
scattering amplitude, poles in K2 do not correspond to
propagation of physical degrees of freedom. Nevertheless,
as we show in this subsection and the accompanying
Appendix A, two key results do carry over from poles
inM2: the off-shell K matrix has the same poles as the on-
shell version, and the residues of the poles factorize. Both
results play an important role in the subsequent derivation.
We begin by recalling that the lth angular-momentum

component of the two-to-two on-shell scattering amplitude
satisfies a unitarity constraint, relating it to the scattering
phase shift via

MðlÞ
2 ðP2

2;kÞ ¼
16πE�

2;k

q�2;k

1

cot δlðq�2;kÞ − i
; ð7Þ

or equivalently

MðlÞ
2 ðP2

2;kÞ−1 −
�

16πE�
2;k

q�2;k cot δlðq�2;kÞ
�
−1

¼ −i
q�2;k

16πE�
2;k

: ð8Þ

In anticipation of three-particle scattering, we have taken
the squared c.m. energy in the two-to-two amplitude as
P2
2;k ¼ E�2

2;k, where we recall that P2;k ≡ ðE − ωk; P⃗ − ⃗kÞ is
our notation for the 4-momentum of the nonspectator pair
(see Table I). Thus the spectator momentum ⃗k serves a
proxy for the two-particle c.m frame energy. We are
assuming in Eqs. (7) and (8) that the scattering is above
threshold and in the region where only two-particle states
can propagate, 2m ≤ E�

2;k < 4m.
The quantity appearing in square braces in Eq. (8)

defines the conventional K matrix when working above
threshold. It is a real function containing all dynamical
information about the two-particle scattering. We also need
the continuation below threshold, and here, following
Ref. [5], we use a nonstandard choice that is convenient
for the derivation of the quantization condition. Our K
matrix is given by

5We stress that the index pair lm plays a very different role in
the 3 and 2̃ states. This causes no problems, however, as these two
sets of indices are never contracted.

6As mentioned above, the quantization condition depends only
on the allowed finite-volume spectator momenta, ⃗k ¼ 2πn⃗=L
with n⃗ being a 3-vector of integers.
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MðlÞ
2 ðP2

2;kÞ−1 −KðlÞ
2 ðP2

2;kÞ−1 ≡Hð⃗kÞρ̃ðP2
2;kÞ; ð9Þ

where ρ̃ is the standard phase-space factor, including
below-threshold analytic continuation,

ρ̃ðP2
2;kÞ≡ 1

16π
ffiffiffiffiffiffiffiffi
P2
2;k

q ×

8>><>>:
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2;k=4−m2

q
; ð2mÞ2<P2

2;k;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2;k=4−m2

q
j; 0<P2

2;k≤ð2mÞ2;

ð10Þ

and Hð⃗kÞ is a smooth, real cutoff function that equals 1
when E�

2;k ≥ 2m (so that the particles in the nonspectator
pair can propagate on-shell) and then smoothly interpolates
to 0 in the subthreshold region. Our choice of K2 differs
from the analytic continuation of the above-threshold K
matrix once H differs from unity.
Although we do not need to make a choice of H for the

derivation, it is useful to have one in mind as an example.
The choice suggested in Ref. [5], and used in our recent
numerical investigation [16], is

Hð⃗kÞ≡ JðP2
2;k=½4m2�Þ; ð11Þ

with

JðxÞ≡

8>>><>>>:
0; x ≤ 0;

exp

�
−
1

x
exp

�
−

1

1 − x

��
; 0 < x ≤ 1;

1; 1 < x:

ð12Þ

With this definition, H vanishes for E�2
2;k ≤ 0.

Up to this point, we have considered only the on-shell
K matrix, including the analytic continuation to subthresh-
old momenta. However, in our derivation we also require
its off-shell extension, in which the individual particle
momenta take on values of p2 differing from m2. Although
not necessary for the implementation of the main result of
this work, namely Eq. (1), we find it informative to discuss
the off-shell extension of the K matrix. Off-shell extensions
are not uniquely defined, as they depend on the choice of
single-particle interpolator. In our all-orders diagrammatic
analysis, based in a generic effective field theory, we define
the fully off-shell scattering amplitude M2;off;off by ampu-
tating the corresponding four-point correlation function.
The presence of two “off ”s indicates that both initial and
final state particles are off shell. This corresponds to
choosing the interpolator to be the fundamental field in
the theory, renormalized so that it couples to an on-shell
particle with unit amplitude. This is a natural choice in
perturbation theory.
In the diagrammatic framework, this definition is natu-

rally extended to the K matrix. To go from the off-shell

M2 to the off-shell K2, one considers the same amputated
correlation function, but replaces the iϵ prescription for
integrals over poles with the principal value (PV) pre-
scription modified by multiplication by Hð⃗kÞ, as described
in Ref. [5]. For our kinematic range, 0 < E�

2;k < 4m, this
only impacts two-particle intermediate states, and the
difference between the prescriptions occurs only when
the intermediate state is on shell. This allows one to
write the fully off-shell K matrix in terms of the fully
on-shell K matrix,

iKðlÞ
2;off;off ¼ iMðlÞ

2;off;off

− iMðlÞ
2;off;oniHρ̃KðlÞ

2;on;onM
ðlÞ−1
2;on;oniM

ðlÞ
2;on;off ;

ð13Þ

where momentum arguments are suppressed for the sake of
brevity. We derive this result in Appendix A. As also
discussed in the Appendix, it follows from Eq. (13) that the
off- and on-shell K matrices have poles at the same positions,
the first of the key results mentioned in the introduction.
We now turn to the case of interest in whichKðlÞ

2;on;on has a
pole for l ¼ J. Above threshold, this happens when cot δJ
vanishes, i.e., when the phase shift passes through π=2þ
nπ for any integer n. If the phase shift is increasing this
corresponds to a nearby resonance, but we stress that we
must also consider the situation in which δJ decreases
through π=2þ nπ, which does not correspond to a reso-
nance but still leads to power-law finite-volume effects. K2

can also have a pole below threshold, when MðlÞ−1
2 ¼

−Hρ̃ [see Eq. (9)]. This is not directly associated with
anything physical, e.g., a bound state, but nevertheless also
contributes finite-volume effects. In all cases, near the pole
the on-shell K matrix has the form

KðJÞ
2;on;onðP2

2;kÞ ¼
R

P2
2;k −M2

þ nonpole; ð14Þ

with M being the pole position and R a real constant.
The pole must have a Lorentz-invariant form as K2 is
relativistically invariant. Inserting Eq. (14) into Eq. (13), it
follows from the structure of the second term on the right-
hand side of the latter equation that the off-shell momentum
dependence factorizes, as discussed in Appendix A. This
allows us to write

iKðJÞ
2;off;offðP2

2;k;p
2;b2;a02;b02Þ

¼ðp�
2;kÞJiΓJðM2;p2;b2Þ iηJ

P2
2;k−M2

iΓJðM2;a02;b02Þða0�2;kÞJ

þ iK̃ðJÞ
2;off;offðP2

2;k;p
2;b2;a02;b02Þ: ð15Þ

Here we have made the momentum arguments explicit: a0
and b0 are the incoming 4-momenta, while p and b are the
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outgoing. Factorization manifests itself as the dependence
on a02 and b02 being independent of that on p2 and b2.
These dependences arise, respectively, from the factors of
M2;on;off and M2;off;on, in Eq. (13). Since they are related
by time reversal, the residue functions ΓJ that carry the off-
shell dependence are the same for initial and final
momenta. These residue functions are real.
The remaining factors in Eq. (15) can be understood as

follows: ηJ ¼ �1 encodes the sign of the residue, with both
values allowed since this is not a physical pole. The K̃2

term is the nonpole residue and is a smooth function of its
arguments. Finally, the “barrier factors” ðp�

2;kÞJ and ða0�2;kÞJ
have been pulled out7 so that whenKðJÞ

2;off;off is multiplied by
spherical harmonics to reconstruct the full K2;off;off there
are no nonanalyticities when p�

2;k and a0�2;k vanish.8

We choose in Eq. (15) to set the first argument in ΓJ

(which, in general, is P�2
2;k) to its value at the pole,M

2. This
choice is convenient for the derivations. It is allowed as the
difference cancels the pole and leads to a term that can be
absorbed in K̃2. We stress, however, that we do not evaluate
the barrier factors at the pole, since this would reintroduce
the nonanalyticities that these factors remove.
Taking the on-shell limit, i.e., sending p2, b2, a02;

b02 ⟶ m2, we reach

iKðJÞ
2 ðP2

2;kÞ¼ ðq�2;kÞJiΓJ
iηJ

P2
2;k−M2

iΓJðq�2;kÞJþ iK̃ðJÞ
2 ðP2

2;kÞ;

ð16Þ

where we have introduced the following shorthand for the
fully on-shell residue function,

ΓJ ≡ ΓJðM2; m2; m2Þ; ð17Þ

together with analogous notation for KðJÞ
2 and K̃ðJÞ

2 . As is
shown explicitly in the following subsection, the quantities

KðlÞ
2 , ΓJ andM2 all enter the definition of the finite-volume

matrix F .

C. Definition of F

We now have the ingredients necessary to define the
entries in the matrix F , Eq. (3). We begin with the 33
component, F33 ¼ F33;k0l0m0;klm. This is defined by

iF33 ≡ 1

2ωL3

�
iF
3
þ iFiT LiF

�
; ð18Þ

where

iT L ≡ 1

1 − iK2ðiF þ iGÞ iK2; ð19Þ

and �
1

2ωL3

�
k0;l0;m0;k;l;m

≡ δk0;kδl0;lδm0;m
1

2ωkL3
; ð20Þ

iGp;l0;m0;k;l;m ≡ Y3;l0m0 ð⃗k�2;pÞiS0
3ðp⃗; ⃗kÞY�

3;lmðp⃗�
2;kÞ

1

2ωkL3
;

ð21Þ

iFk0;l0;m0;k;l;m ≡ δk0;kiFl0;m0;l;mð⃗kÞ; ð22Þ

iFl0;m0;l;mð⃗kÞ≡ iFiϵ
l0;m0;l;mð⃗kÞ þ iρl0;m0;l;mð⃗kÞ; ð23Þ

iFiϵ
l0;m0;l;mð⃗kÞ≡

1

2

�
1

L3

X
a⃗

−
Z
a⃗

�
×

1

2ωa
Y3;l0m0 ða⃗�2;kÞiSiϵ

3 ðp⃗; ⃗kÞY�
3;lmða⃗�2;kÞ;

ð24Þ

iK2;k0l0m0;klm ≡ δk0;kδl0;lδm0;miK
ðlÞ
2 ðP2

2;kÞ; ð25Þ

with
R
a⃗ ≡

R
d3a=ð2πÞ3 andPa⃗ ¼

P
n⃗∈Z3;a⃗¼2πn⃗=L. We have

introduced a compact notation for poles and harmonic
polynomials

Y3;lmð⃗k�2;pÞ≡
ffiffiffiffiffiffi
4π

p �
k�2;p
q�2;p

�
l

Ylmðk̂�2;pÞ;

iSiϵ
3 ðp⃗; ⃗kÞ≡ iH3ðp⃗; ⃗kÞ

b2pk −m2 þ iϵ
: ð26Þ

In Eq. (23), ρð⃗kÞ is a phase-space factor defined by

ρl0;m0;l;mð⃗kÞ≡ δl0;lδm0;mHð⃗kÞρ̃ðP2;kÞ; ð27Þ

where ρ̃ðP2
2;kÞ and Hð⃗kÞ are defined in Eqs. (10) and (11)

above. Finally, H3ðp⃗; ⃗kÞ is a symmetric product of the
smooth cutoff function, Hð⃗kÞ,

H3ðp⃗; ⃗kÞ ¼ Hð⃗kÞHðp⃗ÞHðb⃗pkÞ: ð28Þ

This definition is nearly the same as that used in
Refs. [5,6]. There are two differences. The first is that

7The quantities a0�2;k and p�
2;k are similar to the a�2;k defined in

Table I. They are obtained by boosting the 4-momenta a0 and p,
respectively, into the two-particle c.m. frame. They differ from
a�2;k slightly because a0 and p are not, in general, on shell
4-vectors, while, in Table I, a is on shell.

8The key point here is that alYlmðâÞ is a polynomial in the
components of a⃗, while YlmðâÞ is nonanalytic at a⃗ ¼ 0.
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F and G are expressed here in a manifestly Lorentz
covariant way—the pole term in S3 involves the square
of a 4-vector rather than the energies in the finite-volume
frame. This changes F only by exponentially suppressed
contributions, but for G the modification is significant. In
particular, using the definition above leads to Kdf being a
Lorentz scalar, as noted in Ref. [7]. The second change is
that, in Refs. [5,6], G is defined with H3 → Hð⃗kÞHðp⃗Þ
rather than the form with three H functions given in
Eq. (28). The present definition is that which appears in
the case of no Z2 symmetry, as shown in Ref. [16]. Thus,
although it is not mandatory here, this choice of H3 seems
more likely to lead to a formalism that smoothly goes over
to the result when the resonance becomes stable. In any
case, it is one possible choice.
The other three entries of F are new to this work, and are

all brought about by the presence of the pole in K2. They
are defined as

iF2̃2̃ ≡ iFρπ þ iGρiΓJ
1

2ωL3
ðiF þ iGÞ

×
1

1 − iK2ðiF þ iGÞ iΓJiG
†
ρ; ð29Þ

iF2̃3 ≡ iGρiΓJ
1

2ωL3

1

1 − ðiF þ iGÞiK2

iF; ð30Þ

iF32̃ ≡ 1

2ωL3
iF

1

1 − iK2ðiF þ iGÞ iΓJiG
†
ρ; ð31Þ

where ΓJ is the on-shell residue defined in Eq. (17), and we
have introduced two new kinematic functions, needed
to describe the finite-volume dependence arising from
the K-matrix pole,

iGρ;M0
Jl

0m0;klm ≡ Y2̃;l0m0 ð⃗k�ÞiS2̃ð⃗kÞδJ;lδM0
J;m

ðq�2;kÞJ; ð32Þ

iFρπ;M0
Jl

0m0;MJlm

≡ δM0
JMJ

1

L3

X
⃗k

1

2ωk
Y2̃;l0m0 ð⃗k�ÞiS2̃ð⃗kÞY�̃

2;lm
ð⃗k�Þ; ð33Þ

Y2̃;lmð⃗k�Þ≡
ffiffiffiffiffiffi
4π

p �
k�

q�ρ

�
l
Ylmðk̂�Þ; ð34Þ

iS2̃ð⃗kÞ≡ iηJHρð⃗kÞ
P2
2;k −M2

; ð35Þ

where ηJ ¼ �1 encodes the sign of the residue of the K2

pole and is defined in Eq. (15).
Here we require an additional cutoff function, Hρð⃗kÞ,

the role of which is to provide an ultraviolet cutoff for the

sum in Eq. (33).9 The range of possibleK2 pole masses that
we need to accommodate is 0 < M < 4m, with the lower
limit set by the value of P2

2;k for which Hð⃗kÞ vanishes, and
the upper limit set by the opening of the five-particle
threshold with respect to E�. For any choice of ⃗k such that
P2
2;k lies in this range, we need Hρð⃗kÞ ¼ 1, so as not to

distort the pole. However, as P2
2;k drops below 0, the cutoff

function should smoothly drop to 0. The detailed choice is
not important, but we display one example for illustration,

Hρð⃗kÞ ¼ J

�
P�2
2;k þ 4m2

4m2

�
: ð36Þ

This is chosen so that Hρ vanishes when P�2
2;k ≤ −4m2.

One of the important properties of F33, stressed in
Refs. [5,6], is that it is fully determined if one knows
K2 in the relevant kinematic range. Thus a separate study
using the two-particle quantization condition can, in
principle, determine the finite-volume function. We stress
here that the same is true for all four components of F . The
only difference is that we must pull out the pole contri-
bution from K2, and use this in the determination of F32̃,
F2̃3 and F2̃2̃. The added complexity when there is a pole in

KðJÞ
2 manifests only in the way that information about two-

particle interactions appears in the finite-volume functions.

D. Definition of Kdf

We close this section with some brief comments on Kdf ,
whose components are given by Eq. (2). These four entries
(Kdf;2̃2̃, Kdf;2̃3, Kdf;32̃ and Kdf;33) are each infinite-volume
quantities, characterizing scattering in the indicated chan-
nels. They are, themselves, matrices with indices matching
those of the corresponding components of F , Eq. (3).
When multiplied by the appropriate spherical harmonics,
and summed over angular momentum indices, they become
real, Lorentz-invariant functions of the on-shell kinematic
variables.
Another key property is that, in each of the four

components, all kinematic singularities and possible K2

poles have been removed from Kdf . Thus, these can be
viewed in position space as quasilocal vertices connecting
the various channels. This analogy is not perfect, however,
since the components of Kdf are not physical, as they
depend on the details of the cutoff functions described
above. It is also possible, just as for K2, that there are
dynamical singularities in Kdf .

9Hρð⃗kÞ also appears in Gρ through the pole factor, S2̃. In fact,
here the cutoff function has no effect because Gρ is always
accompanied by F or G and thus Hρð⃗kÞ is always multiplied by
Hð⃗kÞ. From the definitions of the cutoff function it trivially
follows that Hρð⃗kÞHð⃗kÞ ¼ Hð⃗kÞ. We nonetheless find it conven-
ient to keep the cutoff within Gρ as written.
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The derivation presented in the next section provides a
complicated and implicit definition of the components of
Kdf . This turns out to be sufficient, however, because what
really matters is how these components are related to the
physically measurable three-to-three scattering amplitude.
This relation can be derived based solely on howKdf enters
the final result. This is presented in Sec. IV, following the
approach of Ref. [6].

III. DERIVATION

We now derive the result described in the previous
section. Begin by defining a finite-volume correlation
function

CLðE; P⃗Þ≡ −
Z
L
d4xe−iEtþiP⃗·⃗xhΩjTOðxÞO†ð0ÞjΩi; ð37Þ

where O†ð0Þ is any operator with the quantum numbers of
the three-particle states that we are after.10 Inserting a
complete set of states, one can show that this object has
poles in E at the finite-volume energies. Our aim is thus to
derive an equation—the quantization condition—for the
locations of these poles.
In the following subsections we show that the correlator

can be written as

CLðE; P⃗Þ ¼ C∞ðE; P⃗Þ þ iA0iF
1

1 − iKdfiF
iA; ð38Þ

up to exponentially suppressed corrections. Here C∞ðE; P⃗Þ
and

iA0 ≡ ð iA0̃
2

iA0
3 Þ; iA≡

�
iA2̃

iA3

�
; ð39Þ

are infinite-volume quantities, defined in the course of the
following subsections. Note that the second term in
Eq. (38) is a product of a row vector, a matrix, and a
column vector, with all indices contracted. As the infinite-
volume quantities contain no finite-volume poles, the poles
in CLðE; P⃗Þ correspond to divergent eigenvalues in the
matrix between A0 and A. This is equivalent to the inverse
of the matrix having a vanishing determinant, and thus to
the quantization condition given in Eq. (1) above.

A. Compact notation for the derivation

In order to make the following derivation more readable,
in this section we introduce a compact notation for the
various quantities introduce above. Our aim is to minimize
explicit factors of i and of 2ωL3. We thus define

G≡ 1

2ωL3
iG; F≡ 1

2ωL3
iF; K2≡2ωkL3iK2; ð40Þ

Γ≡ iΓJ; Gρ≡ iGρ; Ḡρ≡ iG†
ρ; Fρπ≡ iFρπ: ð41Þ

One advantage of these definitions is thatG is now given by

Gp;l0;m0;k;l;m≡ 1

2ωL3
iGp;l0;m0;k;l;m

≡ 1

2ωpL3
Y3;l0m0 ðk⃗�2;pÞiS0

3ðp⃗; k⃗ÞY�
3;lmðp⃗�

2;kÞ

×
1

2ωkL3
; ð42Þ

and is therefore anti-Hermitian (due to the factor of i in the
definition). This avoids the need to define the separate
object ½2ωL3�−1G½2ωL3� that would otherwise appear in the
derivation.
In this new notation, the quantization condition becomes

det½1 −KdfðE�ÞF ðE; P⃗; LÞ� ¼ 0; ð43Þ
where

iKdf ≡Kdf ≡
�
Kdf;2̃2̃ Kdf;2̃3

Kdf;32̃ Kdf;33

�
;

iF ≡F ≡
�
F2̃2̃ F2̃3

F32̃ F33

�
; ð44Þ

and

F33 ¼
1

3
Fþ FTLF; with TL ≡ 1

1 −K2ðFþGÞK2;

ð45Þ

F2̃2̃ ¼ Fρπ þGρΓðFþGÞ 1

1 −K2ðFþGÞΓḠρ; ð46Þ

F2̃3 ¼ GρΓ
1

1 − ðFþGÞK2

F; ð47Þ

F32̃ ¼ F
1

1 −K2ðFþGÞΓḠρ: ð48Þ

B. Definition and decomposition of C½B2�
L

We begin by following the same steps as taken by
Ref. [5] in the derivation of the quantization condition in
the absence of K2 poles. This allows us to reuse a fair
amount of work from that reference. The derivation
begins with an all-orders skeleton expansion in which
CL is defined diagrammatically in terms of two- and
three-particle Bethe-Salpeter kernels, denoted iB2 and
iB3 respectively, as well as fully dressed propagators.
Examples are shown in Fig. 4 of Ref. [5]. The skeleton
expansion is designed to make all power-law finite-volume
effects explicit. Such effects arise fromon-shell intermediate
states in Feynman diagrams and, since we constrain the

10The overall minus sign included in this definition should be
understood as a factor of i2. We choose to accompany each
operator with a factor of i for reasons explained below.
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overall c.m. energy to the rangem < E� < 5m, this amounts
to keeping track of three-particle states. The restriction to a
finite, periodic spatial volume is effected by summing the
spatial components of all loop momenta over p⃗ ¼ ð2π=LÞn⃗
where n⃗ ∈ Z3 runs over all 3-vectors of integers.
As in Ref. [5], the challenging part of the derivation is

that involving the kernels B2. Thus it is useful to begin by

analyzing a reduced correlator, denoted C½B2�
L , defined by

the same skeleton expansion except that all three-particle
kernels are set to 0 (B3 → 0). Adding back in the effects of
B3 is relatively straightforward and will be done at a later

stage. To decompose C½B2�
L we can piggyback on Ref. [5] by

directly taking over Eq. (174) of that work, since this
equation was derived without assuming smoothness of K2

as a function of the two-particle center-of-mass energy.
Written in our present notation, the result is

C½B2�
L ¼ CL;0F −

2

3
σ�Fσ†�

þA0ðuÞ
L;3F

ð0Þ
33

X∞
n¼0

ðKðu;uÞ
L;33 F

ð0Þ
33 ÞnAðuÞ

L;3; ð49Þ

where the quantity called ½A� in Ref. [5] is here denoted

Fð0Þ
33 , and is given by

Fð0Þ
33 ≡ F

1

1 −K2F
: ð50Þ

The other quantities in Eq. (49) are explained shortly.
What has been achieved in Eq. (49) is to make explicit a

subset of the finite-volume effects due to three-particle
intermediate states. We recall from Eqs. (24) and (41) that F
is defined by a sum-integral difference of a quantity with a
three-particle pole. This object therefore has power-law
finite-volume dependence, and also sets the quantities
multiplying it on either side to be on shell. Thus Fð0Þ

33

collects such dependence from a sequence of three-particle
“cuts” separated by two-to-two interactions occurring
between the same pair. The subscript “33” is included
here to distinguish this object from similar quantities
involving K2 poles that arise below.
We now turn to the definitions of the remaining

quantities in Eq. (49). With the exception of σ� and σ†�,
these are finite-volume quantities, involving some loops in
which momenta are summed rather than integrated.11 This
is indicated by the subscripts L.
We begin with CL;0F. This is the contribution to C½B2�

L
containing no factors of F. It can be expanded according to
the number of factors of K2 that it contains,

CL;0F ¼
X∞
n¼0

CðnÞ
L;0F: ð51Þ

The objects on the right-hand side are identical to those
with the same names appearing in Ref. [5]. They are
defined in Eqs. (114), (154), (169), (173) and (176) of that
work, and shown diagrammatically there in Figs. 11(c),
15(b) and 17(c). We repeat the diagrammatic representation
in Fig. 1(a) below.
The quantity Kðu;uÞ

L;33 involves three-to-three transitions
that are built from K2 interactions alternating between
different pairs. It is closely related to Kðn;u;uÞ

3;L , defined in
Ref. [5],

Kðu;uÞ
L;33 ≡X∞

n¼2

Kðn;u;uÞ
L;33 ; Kðn;u;uÞ

L;33 ≡ iKðn;u;uÞ
3;L : ð52Þ

HereKðn;u;uÞ
L;33 is the contribution containing n factors of K2,

where n ≥ 2. As above, we have amended the subscripts to
facilitate the addition of the ρπ channel, and also absorbed a
factor of i. The definition of Kðn;u;uÞ

3;L is given in Ref. [5]
by Eqs. (155) and (171) and Figs. 11(a), 15(c) and 17(c).
We repeat the diagrammatic representation of Kðn;u;uÞ

L;33 in
Fig. 2(a) below.
The remaining quantities in Eq. (49) are end caps. A0ðuÞ

L;3

and AðuÞ
L;3 can be expanded as above according to the

number of factors of K2, with σ� and σ†� being the zeroth
order terms in these expansions,

A0ðuÞ
L;3 ¼

X∞
n¼0

A0ðn;uÞ
L;3 ; AðuÞ

L;3 ¼
X∞
n¼0

Aðn;uÞ
L;3 ;

σ� ≡A0ð0;uÞ
L;3 ; σ†� ≡Að0;uÞ

L;3 : ð53Þ

The relation to the corresponding quantities from Ref. [5]
simply involves a change of subscripts to allow for future
K2 pole contributions,

A0ðn;uÞ
L;3 ≡ iA0ðn;uÞ

L ; Aðn;uÞ
L;3 ≡ iAðn;uÞ

L ; ð54Þ

where the quantities on the right-hand side are those
appearing in Ref. [5].
The expressions for these quantities are given in Eqs. (60),

(84), (85), (113), (153) and (170) of Ref. [5], and illustrated
in Figs. 9(c), 11(b), and 17(a) of that work. We repeat the

diagrammatic representation of the left end cap A0ðn;uÞ
L;3 in

Fig. 1(c) below. Note that it can be obtained from that for

CðnÞ
L;0F by removing the σ†� at the right end. The representa-

tion of the corresponding right end cap,AðuÞ
L;3, is given simply

by a horizontal reflection of that forA0ðuÞ
L;3 , or equivalently by

removing σ� from the left end of CðnÞ
L;0F.

In the following subsections, our aim is to make

explicit the full volume dependence of CL;0F, A
0ðuÞ
L;3 , A

ðuÞ
L;3

and Kðu;uÞ
L;33 .

11Here and in the following a loop momentum being summed
is shorthand for a sum over spatial components and an integral
over the temporal component.
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C. Decomposition of CL;0F

We first consider the quantity CL;0F, and show in this
subsection that it can be decomposed as

CL;0F ¼ C½B2�
∞ þ ð2A0ðsÞ

3 FþA0̃
2
GρΓGÞðAðuÞ

L;3 − σ†�Þ
þA0̃

2
Fρπ =AL;2̃: ð55Þ

This is a partial decomposition, involving both finite-
and infinite-volume quantities (the latter having subscripts
including L) separated by cuts. In deriving this result,
we must, for the first time, account for the poles in
K2, as shown by the presence of factors of Gρ and Fρπ,
which set the ρπ states on either side on shell. If these two
quantities are set to 0 we reproduce the result in Eq. (189)
of Ref. [5].
As can be seen from Fig. 1(a), CL;0F is defined by the

sum over all pairwise scatterings in which the interaction
switches to a different pair with each new insertion of iK2.
By construction, this quantity has n summed loop momenta
plus two additional loops with integrated momenta. It is

convenient to extend this notation by defining Cðm;nÞ
L;0F to

be the same quantity as CðnÞ
L;0F but with the leftmost m

momentum sums converted to integrals (with the single-
particle poles integrated using the fPV prescription of
Ref. [5]), and with the integrated iK2 factors replaced by
their smooth parts, iK̃0

2 [see Fig. 1(b)].12 This requires 0 ≤
m ≤ n, with m ¼ 0 leading to Cð0;nÞ

L;0F ≡ CðnÞ
L;0F, andm ¼ n to

Cðn;nÞ
L;0F ≡CðnÞ

∞ , a fully integrated, infinite-volume quantity.
To decompose Cðm;nÞ

L;0F we consider the leftmost sum, i.e.,
that directly adjacent to the m integrated loops. Finite-
volume effects arise in this sum due to both the pole in
K2 and the intermediate on-shell three-particle state. In
Appendix B 1 we explain the procedure for converting a
given summed loop (with the full K2) to an integrated loop
(with the smooth part only). In other words we derive a

system for converting Cðm;nÞ
L;0F to Cðmþ1;nÞ

L;0F , plus finite-volume
correction terms. This leads to the following recursion
relation:

12As explained in Appendix B 1, several terms combine to give
the smooth part, with iK̃2 from Eq. (B4) being just one
contribution. This is illustrated in Fig. 7(f). It is for this reason
that we require the prime to denote, iK̃0

2, the quantity entering
integrated loops of Cðm;nÞ

L;0F .

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. Diagrammatic definitions of quantities entering the derivation of Eq. (55). Open circles on the left and right ends represent σ�

and σ†�, respectively. Open circles in the middle represent the full off-shell iK2, while the circles with an integral sign indicate that only
the smooth component, iK̃0

2, is included. Loops that are summed contain a “V,” while those that are integrated contain an “∞.” The
superscript n indicates the number of factors of K2 or its smooth counterpart. Thin lines are fully dressed propagators, with unit residue
at the one-particle pole. Thick lines [present in (e) and (f)] represent the resonance, corresponding to the subscript 2̃. Double thin lines
[present only in (f)] indicate that only the smooth part of the exchanged particle propagator is kept. In (c), the superscript “u” indicates
that the index k corresponds to the momentum carried by the spectator propagator at the right-hand end. In (d), the superscript “u=s”
indicates that the diagram serves to define the quantity with both superscripts. If the superscript is u, then the momentum k is assigned to
the spectator propagator, while if it is s, then k is assigned to the upper propagator. Further details are given in the text.
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Cðm;nÞ
L;0F ¼

8>>><>>>:
Cðmþ1;nÞ
L;0F þ ð2A0ðmþ1;sÞ

3 FþA0ðmþ1Þ
2 GρΓGÞAðn−m−1;uÞ

L;3 þA0ðmþ1Þ
2 Fρπ =A

ðn−mÞ
L;2̃

0 ≤ m < n − 1;

Cðn;nÞ
L;0F þA0ðnÞ

2 Fρπ =A
ð1Þ
L;2̃

0 ≤ m ¼ n − 1;

CðnÞ
∞ 0 ≤ m ¼ n:

ð56Þ

The pole in K2 leads to the terms involving Gρ and Fρπ.

These equations contain three new quantities, A0ðn;sÞ
3 , AðnÞ

2̃

and =AðnÞ
L;2̃

, in addition to the right end cap Aðn;uÞ
L;3 introduced

in the previous subsection.
The infinite-volume left end cap A0ðn;sÞ

3 is defined
diagrammatically in Fig. 1(d). It contains n factors of
iK̃0

2, with all loop momenta integrated. The superscript s
indicates the manner in which the on-shell external three-
particle state is projected into spherical harmonics, as
explained in Ref. [5].
The second new quantity is the infinite-volume left end

capA0ðnþ1Þ
2̃

, defined diagrammatically in Fig. 1(e). Here the
on-shell external state consists of the K-matrix pole plus the

spectator, which we refer to as the ρπ state.A0ðnþ1Þ
2̃

contains

n factors of K̃0
2, n loop integrals, and one factor of Γ in the

loop adjacent to the external state. We later need the

analogous right end cap, denoted Aðnþ1Þ
2̃

.

The final new quantity, =Aðnþ1Þ
L;2̃

, is defined diagram-

matically in Fig. 1(f). It is closely related to Aðnþ1Þ
L;2 , the

reflection of A0ðnþ1Þ
L;2 , which consists of n factors of iK2,

n summed loops, and one factor of Γ adjacent to
the external ρπ state. The slashed version differs in
that the leftmost three-particle intermediate state is
replaced by the smooth difference that remains when
the G singularity is subtracted. This subtraction in
indicated in the figure with a double line. The lowest
value of n, n ¼ 1, is a special case, for which there is no

summed loop and =Að1Þ
L;2̃

¼ Að1Þ
2̃
. For further discussion,

see Appendix B 1.
Iterating Eq. (56) leads to an expression for Cð0;nÞ

L;0F ¼
CðnÞ
L;0F in terms of CðnÞ

∞ . Summing over n then gives the
desired result, Eq. (55), where we define

C½B2�
∞ ¼

X∞
n¼0

CðnÞ
∞ ; A0ðsÞ

3 ¼
X∞
n¼1

A0ðn;sÞ
3 ;

A0̃
2
¼
X∞
n¼1

A0ðnÞ
2̃

; =AL;2̃ ¼
X∞
n¼1

=AðnÞ
L;2̃

: ð57Þ

Note that the last three sums begin at n ¼ 1, in contrast to

the sum for AðuÞ
L;3, Eq. (53), which begins at n ¼ 0. It is

because of this that σ†� must be subtracted from AðuÞ
L;3 in the

final result, Eq. (55).

D. Decompositions of A0(u)
L;3 , A

(u)
L;3 and =AL;2̃

In this subsection, we continue the decomposition of the

quantities entering C½B2�
L , Eq. (49), by considering the finite-

volume end capsA0ðuÞ
L;3 andAðuÞ

L;3. In addition, we decompose
the related quantity =AL;2̃ that appears in Eq. (55). The
results we obtain are

A0ðuÞ
L;3 ¼ A0ðuÞ

3 þ ð2A0ðsÞ
3 FþA0̃

2
GρΓGÞðKðu;uÞ

L;33 þK2Þ
þA0̃

2
ðFρπK

ðuÞ
L;2̃3

þGρΓÞ; ð58Þ

AðuÞ
L;3 ¼ AðuÞ

3 þ ðKðu;uÞ
L;33 þK2ÞðF2AðsÞ

3 þGΓḠρA2̃Þ
þ ðKðuÞ

L;32̃
Fρπ þ ΓḠρÞA2̃; ð59Þ

=AL;2̃ ¼ =A2̃ þKðuÞ
L;2̃3

ðF 2AðsÞ
3 þGΓḠρA2̃Þ þKL;2̃2̃FρπA2̃:

ð60Þ
Herewehave introduced three new finite-volumeKmatrices,

KL;2̃2̃ ¼
X∞
n¼2

KðnÞ
L;2̃2̃

; KðuÞ
L;2̃3

≡X∞
n¼2

Kðn;uÞ
L;2̃3

;

KðuÞ
L;32̃

≡X∞
n¼2

Kðn;uÞ
L;32̃

; ð61Þ

all closely related to Kðu;uÞ
L;33 . Specifically, K

ðnÞ
L;2̃2̃

is obtained

fromKðn;u;uÞ
L;33 by replacing theK2s on both ends with factors

of Γ, and connecting these Γs to the adjacent K2s with the
smooth (G-subtracted) part of the neighboring exchange

propagator. This is shown in Fig. 2(d).Kðn;uÞ
L;2̃3

andKðn;uÞ
L;32̃

are

obtained by performing these steps on only one side of

Kðn;u;uÞ
L;33 while leaving the other side unchanged, as shown in

Figs. 2(b) and 2(c), respectively. Also new in Eqs. (58)–(60)
are the infinite-volume end caps A0ðuÞ

3 , AðuÞ
3 , =A2̃. and A2̃.

These are defined below.
Intuitively, Eqs. (58)–(60) summarize the various ways

that finite-volume effects enter the end cap functions. For
example, Eq. (58) splits A0ðuÞ

L;3 into its infinite-volume

counterpart, A0ðuÞ
3 , plus six types of finite-volume correc-

tions (counted by multiplying out the products of binomials
in the middle term). Each term is characterized by a
different type of cut factor; e.g., F encodes the finite-
volume effects associated with two of the three particles
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propagating between adjacent pairwise rescatterings and G
describes the volume effects of an exchanged particle.
Similarly, Gρ and Fρπ correspond to different types of

volume effects associated with the K-matrix poles. AðuÞ
L;3, in

Eq. (59), is simply a mirror image of A0ðuÞ
L;3 , while =AL;2̃, in

Eq. (60), is given by replacing the rightmost state with a 2̃
and dropping terms that do not arise with this type of
external state.
To derive these results we use a similar method to that of

the previous subsection. We first consider A0ðuÞ
L;3 , and

introduce A0ðm;n;uÞ
L;3 , which contains n two-particle kernels,

m integrated loop momenta and n −m summed loop

momenta. As for Cðm;nÞ
L;0F , the integrated K matrices are

iK̃0
2s, while the summed ones are the full iK2s. We need

this quantity for n ≥ m ≥ 1 together with the special case
n ¼ m ¼ 0, giving A0ð0;0;uÞ

L;3 ¼ A0ð0;uÞ
L;3 ¼ σ�. A second spe-

cial case is A0ð1;n;uÞ
L;3 ¼ A0ðn;uÞ

L;3 (since there is always one
integrated loop for n ≥ 1). Finally, we note that
the fully integrated version is an infinite-volume quantity,

A0ðn;n;uÞ
L;3 ¼ A0ðn;uÞ

3 . This quantity is shown diagrammatically

in Fig. 1(d), and differs from the quantity A0ðn;sÞ encoun-
tered above only by the choice of spectator propagator.
The steps detailed in Appendix B 1 apply also here,

except that the right end caps σ†� are replaced with an on-
shell three-particle state. We find that the resulting recur-
sion equations are

A0ðmþ1;n;uÞ
L;3 ¼

8>>>><>>>>:
A0ðmþ2;n;uÞ

L;3 þ ð2A0ðmþ1;sÞ
3 FþA0ðmþ1Þ

2̃
GρΓGÞKðn−m−1;u;uÞ

L;33 þA0ðmþ1Þ
2̃

FρπK
ðn−m;uÞ
L;2̃3

0 ≤ m < n − 2;

A0ðn;n;uÞ
L;3 þ ð2A0ðn−1;sÞ

3 FþA0ðn−1Þ
2̃

GρΓGÞK2 þA0ðn−1Þ
2̃

FρπK
ð2;uÞ
L;2̃3

0 ≤ m ¼ n − 2;

A0ðn;uÞ
3 þA0ðnÞ

2̃
GρΓ 0 ≤ m ¼ n − 1:

ð62Þ

We stress that all quantities to the left of the cuts are, by
construction, identical to those appearing in Eq. (56). The
quantities appearing to the right, however, have changed:
Aðn;uÞ

L;3 has been replaced by Kðn;u;uÞ
L;33 and =AðnÞ

L;2̃
has been

replaced by Kðn;uÞ
L;2̃3

.

Solving the recursion relation for A0ðn;uÞ
L;3 and summing

over n using the definition

A0ðuÞ
3 ≡X∞

n¼0

A0ðn;uÞ
3 ð63Þ

yields Eq. (58). We observe that the combination Kðu;uÞ
L;33 þ

K2 appears. This arises because the sum over n for Kðu;uÞ
L;33

begins at n ¼ 2, since at least two factors of iK2 are needed
for a connected scattering of three particles. The n ¼ 1 term
then becomes simply K2. Similarly, the n ¼ 1 term is

absent in the definition of FρπK
ðuÞ
L;2̃3

and this leads to the

additional contribution containing GρΓ. Note that, if Gρ

and Fρπ are set to 0, then we recover the result given in
Eq. (186) of Ref. [5].

(a)

(b)

(c)

(d)

FIG. 2. Diagrammatic definitions of the elements of the finite-volume K matrices involving three-particle or ρπ external states.
The notation is as in Fig. 1.
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The horizontal reflection of Eq. (58) gives the decom-
position of the other end cap, Eq. (59).
Finally, we need to decompose =AL;2̃. We recall that this is

the finite-volume right end cap, defined diagrammatically in
Fig. 1(f). It thus differs from AL;3 only in its final state, in
which a factor of Γ combines with the smooth part of the
exchange propagator. Thismeans that we can adapt the result
from that for AL;3 by replacing the three-particle external
state with a two-particle one, and dropping the contribution
from the K2 factor on the end (since this is replaced by
smooth quantities). The result is given in Eq. (60).

E. Decomposition of KL;2̃2̃, K
(u)
L;2̃3

, K(u)
L;32̃

and K(u;u)
L;33

In this subsection we complete the decomposition of the
quantities entering C½B2�

L into infinite-volume objects and
finite-volume cuts, with some technical details relegated to
Appendix B 2.
What remains is to decompose the four finite-volume K

matrices whose components are shown in Fig. 2. They are
conveniently packaged into a two-by-two matrix

KðuÞ
L ≡

 
KL;2̃2̃ KðuÞ

L;2̃3

KðuÞ
L;32̃

Kðu;uÞ
L;33

!
: ð64Þ

The result we derive in the following can be written
compactly as

KðuÞ
L ¼

�
0 0

0 Kð0Þ
L;33

�
þ ELV̄K

ðuÞ
df

1

1 −XKðuÞ
df

VER; ð65Þ

where

Kð0Þ
L;33 ≡K2GKK2 ¼

1

1 −K2G
K2GK2; ð66Þ

X≡
�
Fρπ þGρΓGKΓḠρ GρΓGK

GKΓḠρ GK

�
; ð67Þ

V ≡
�
1 GρΓ
0 1

�
; V̄ ≡

�
1 0

ΓḠρ 1

�
; ð68Þ

EL ≡
�
1 0

0 1þ TG

�
; ER ≡

�
1 0

0 1þGT

�
; ð69Þ

GK ≡ 1

1 −GK2

G; T≡K2

1

1 −GK2

: ð70Þ

The final new quantity isKðuÞ
df . This is a two-by-two matrix

of infinite-volume, divergence-free K matrices, defined
below inEq. (80). Themotivation for all these newquantities
is described in more detail during the following derivation.
As above, our task is to replace all summed loop

momenta with integrals, separating out the divergences
due to both the three-particle on-shell intermediate states and

the poles in K2. It turns out that, at first, we do not need to
decompose those factors of K2 that lie directly adjacent to

KðuÞ
L components with a 3 index. This applies, for example,

to theK2s at both the left and right ends ofK
ðn;u;uÞ
L;33 in Fig. 2.

These can remain as the full K matrices, despite containing
poles, since they do not appear in sums. Leaving these
factors of K2 unseparated leads to shorter expressions at
intermediate stages, at the cost of requiring an additional
step to remove the final divergences.We denote byK33,K32̃

and K2̃3 these intermediate infinite-volume quantities that
still contain external divergences from the external K2.
The method we use here is simpler than the approach

adopted in Ref. [5], where the result for any number of K2

factors was deduced by working out the cases with 2, 3, and
4 factors of K2 and then determining the pattern. Here we
use matrix equations that take care of all orders at once. We
find it convenient to keep track of finite-volume contribu-
tions in two stages: first those fromG cuts and second those
from K-matrix poles, the latter leading to Gρ and Fρπ cuts.
We begin by considering Kðu;uÞ

L;33 . Moving from left to
right, we consider each three-particle intermediate state in
turn. At each stage this consists of two fully dressed
propagators, e.g., ΔðaÞΔðbÞ with a being the spectator
momentum. We replace this with the product 2πδða0 −
ωaÞð2ωÞGL6 together with the difference, which is a
smooth function of a⃗. By construction, the insertion of
G sets the nonspectator pairs on either side on shell. The
details of how this works are unchanged from Ref. [5] and
we do not repeat them here. After the substitution is made,
in the term containing the factor of G this first stage of

decomposition is complete and a factor ofKðu;uÞ
L;33 appears to

the right ofG. In the term containing the smooth residue we
proceed to the next intermediate state to the right and repeat
the decomposition. See Fig. 3 for a diagrammatic sketch of
the first steps in this procedure.
This procedure leads to the equation

Kðu;uÞ
L;33 ¼ K2GK2 þKL;33ð1þGK2Þ

þ ðKL;33 þK2ÞGKðu;uÞ
L;33 ; ð71Þ

whereKL;33 is the same asKL;33 except that all intermediate
states have propagators replaced by the smooth difference
described above. For brevity, we have dropped the “u”
superscripts onKL;33. We note also that the terms involving
K2 in this result arise from special cases where, after the
insertion ofG, there is only a singleK2 on one or both sides.
If there were no poles in K2 we could replace the

momentum sums in KL;33 with integrals and obtain the
divergence-free K matrix. This was the procedure followed
in Ref. [5]. However, here we need to extract the finite-
volume effects that arise from the K-matrix poles. To do so,
we work through KL;33 from left to right, replacing each
full K2 with the Fρπ cut and the difference, with the latter
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being a smooth function of the spectator momentum. In the
term with the Fρπ cut the procedure stops, leaving a factor
ofKL;2̃3 to the right. The remaining, Fρπ-independent terms
build up quantities in which all loop sums can be replaced
by integrals because the integrands are divergence free.
These are the quantities mentioned above that contain
divergences only in the external K matrices and are denoted
by K33, K32̃ etc. [Again we drop the superscripts (u) for
brevity.] The result is

KL;33 ¼ K33 þK32̃FρπKL;2̃3: ð72Þ
Proceeding in the same way for KðuÞ

L;2̃3
and KL;2̃3 we

obtain

KðuÞ
L;2̃3

¼ KL;2̃3ð1þGK2 þGKðu;uÞ
L;33 Þ; ð73Þ

KL;2̃3 ¼ K2̃3 þK2̃2̃FρπKL;2̃3: ð74Þ

We note here the appearance of K2̃2̃, which is the infinite-
volume version of KL;2̃2̃ once all divergences have been
removed. This quantity does not have factors of K2 at its
ends, so it is already divergence free. These matrix
equations can now be solved sequentially. The solution
to Eq. (74) is

KL;2̃3 ¼
1

1 −K2̃2̃Fρπ
K2̃3; ð75Þ

and inserting this in Eq. (72) yields

KL;33 ¼ K33 þK32̃Fρπ
1

1 −K2̃2̃Fρπ
K2̃3: ð76Þ

Taken together, Eqs. (71) and (76) give a complete
prescription for writing Kðu;uÞ

L;33 in terms of infinite-volume
quantities and finite-volume cuts. In Appendix B 2 we
outline the remaining steps in this decomposition explicitly.
In the Appendix we also work through the decompositions

for the remaining finite-volume K matrices, KðuÞ
L;32̃

and

KL;2̃2̃, and for the slashed objects, KL;32̃ and KL;2̃2̃.

The procedure in all cases is similar to that outlined above:
One works through the summed loops in a diagram from
left to right, substituting singular and smooth pieces for the
propagators to reach matrix equations for the various finite-
volume objects entering the correlator. We find that the
solutions to the resulting equations can be succinctly
displayed in two key relations,

KðuÞ
L ¼

�
0 0

0 Kð0Þ
L;33

�
þ EL

1

K−1
L − GK

ER; ð77Þ

K−1
L ¼ K−1 −F ρπ; ð78Þ

where we have introduced two-by-two matrix generaliza-
tions of the various quantities appearing above,

KL ≡
�KL;2̃2̃ KL;2̃3

KL;32̃ KL;33

�
; K≡

�
K2̃2̃ K2̃3

K32̃ K33

�
;

F ρπ ≡
�
Fρπ 0

0 0

�
; and GK ≡

�
0 0

0 GK

�
: ð79Þ

To complete the work of this section we need to remove
the K-matrix poles contained in K. This is necessary in
order to symmetrize over choices of spectator, as we see in
the next subsection. To do so we introduce appropriate
factors of Gρ corresponding to the poles in the external
factors of K2. This leads to the result

K ¼ V̄KðuÞ
df V; ð80Þ

where V̄ andV are defined in Eq. (67). This relation defines
a matrix of nonsingular infinite-volume K matrices already
displayed in the result given at the beginning of the
subsection,13

FIG. 3. Diagrammatic description of the procedure described in the text leading to Eq. (71). The notation is the same as in Fig. 1, with
the addition of a dashed line to indicate a propagator proportional to G (if internal) or an amputated propagator (if external).

13We note that Kdf;2̃ 2̃ ¼ K2̃ 2̃, so the df subscript is not needed
for this component. We include it anyway for uniformity of
notation.
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KðuÞ
df ≡

0@Kdf;2̃2̃ KðuÞ
df;2̃3

KðuÞ
df;32̃

Kðu;uÞ
df;33

1A: ð81Þ

Combining Eqs. (77), (78) and (80) we reach the main
result of this subsection given in Eq. (65) above. The
quantity X appears as

X≡ VðF ρπ þ GKÞV̄; ð82Þ
which can be rearranged into the form shown in Eq. (67).
At this stage we have decomposed all objects appearing

in C½B2�
L into matrix products of finite- and infinite-volume

quantities. In the following subsections we reshuffle these
decompositions into a compact form for this partial finite-
volume correlator. We then show how the three-particle
Bethe-Salpeter kernls, B3, can be reintroduced to derive the
main result of the section, Eq. (38).

F. ðKdfÞ0 contribution to C½B2�
L

We now have all the ingredients needed to determine the

volume dependence of the correlator C½B2�
L . The initial

decomposition of this object is given in Eq. (49). To derive
the final form we work order by order inKdf , and begin by
considering the contributions that are independent of this
local three-body interaction. In particular, in this subsection
we demonstrate

C½B2�
L − C½B2�

∞ − δC½B2�
∞ ¼ ðA0̃

2
A0

3 Þ
�
F2̃2̃ F2̃3

F32̃ F33

��
A2̃

A3

�
þOðKdfÞ; ð83Þ

where F33, F2̃2̃, F2̃3, and F32̃ are defined in Eqs. (45)–(48),
respectively, while δC½B2�

∞ is an additional volume-
independent term, defined at leading order in Kdf in
Eq. (94) below. As mentioned in the introduction, many
of the steps in the derivation of Eq. (83) presented here have
been checked using aMathematica notebook implementing
the package The NCAlgebra Suite [33]. Equations verified
in this way are preceded by the indicator “(✓NCA✓).”

If KðuÞ
df ¼ 0, the only nonzero component of KðuÞ

L is

Kðu;uÞ
L;33 , which becomesKð0Þ

L;33, defined in Eq. (66). Thus the
infinite sum in Eq. (49) becomes (✓NCA✓)

Fð0Þ
33

X∞
n¼0

ðKðu;uÞ
L;33 F

ð0Þ
33 Þn → Z≡ Fð0Þ

33

X∞
n¼0

ðKð0Þ
L;33F

ð0Þ
33 Þn

¼ F
1

1 − TF
; ð84Þ

where the arrow indicates KðuÞ
df → 0. Here we have used

Fð0Þ
33 and T, defined in Eqs. (50) and (70) respectively. In

this same limit the quantities A0ðuÞ
L;3 , A

ðuÞ
L;3 and =AL;2̃ simplify

to (✓NCA✓),

A0ðuÞ
L;3 →A0ðuÞ;f0g

L;3 ¼A0ðuÞ
3 þ2A0ðsÞ

3 FTþA0̃
2
GρΓð1þGTÞ;

ð85Þ

AðuÞ
L;3 → AðuÞ;f0g

L;3 ¼ AðuÞ
3 þ TF 2AðsÞ

3 þ ð1þ TGÞΓḠρA2̃;

ð86Þ

=AL;2̃ → =A2̃; ð87Þ

where the superscript fng indicates the contribution to the
indicated object with n factors of Kdf .
At this stage we can use the following result from

Ref. [5]: if 2A0ðsÞ
3 is adjacent to a factor of FK2 then it can

be replaced by A0ðsÞ þA0ðs̃Þ, with ðs̃Þ indicating the third
independent permutation of the external momenta. This is
the case in Eq. (85) because T always has a factorK2 on its

left-hand end. The same holds for the factor of 2A0ðsÞ
3 in

Eq. (55), because AðuÞ
L;3 and σ†� are symmetric under the

interchange of the nonspectator pair. Similarly, the factor of

2AðsÞ
3 in Eq. (86) can be replaced by AðsÞ

3 þAðs̃Þ
3 . These

substitutions are important because the fully symmetrized
end caps are given by

A0
3≡A0ðuÞ

3 þA0ðsÞ
3 þA0ðs̃Þ

3 ; and A3≡AðuÞ
3 þAðsÞ

3 þAðs̃Þ
3 :

ð88Þ
We expect the final result to depend only on symmetrized
quantities. In the following, for the sake of brevity, we use
2AðsÞ as an abbreviation for AðsÞ þAðs̃Þ and 2A0ðsÞ for
A0ðsÞ þA0ðs̃Þ. Using this simplification, we can rewrite
Eqs. (85) and (86) as

A0ðuÞ;f0g
L;3 ¼A0

3−2A0ðsÞ
3 ð1−FTÞþA0̃

2
GρΓð1þGTÞ; ð89Þ

AðuÞ;f0g
L;3 ¼A3− ð1−TFÞ2AðsÞ

3 þð1þTGÞΓḠρA2̃: ð90Þ

The final quantity we are missing is CL;0F, whose
decomposition is given in Eq. (55). Sending Kdf → 0 in
this result, and using Eq. (90), gives (✓NCA✓),

CL;0F → Cf0g
L;0F ¼ C½B2�;f0g

∞ þ ð2A0ðsÞ
3 FþA0̃

2
GρΓGÞ

× ðA3 − ð1 − TFÞ2AðsÞ
3

þ ð1þ TGÞΓḠρA2̃ − σ†�Þ þA0̃
2
Fρπ =A2̃:

ð91Þ

We have now gathered all the pieces to evaluate the full
correlation function, decomposed in Eq. (49), atOð½Kdf �0Þ.
This equation reduces to
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C½B2�;f0g
L ¼ Cf0g

L;0F −
2

3
σ�Fσ†� þA0ðuÞ;f0g

L;3 ZAðuÞ;f0g
L;3 : ð92Þ

Substituting Eqs. (84), (89) and (90) and significantly
rearranging, we find (✓NCA✓),

C½B2�;f0g
L ¼ C½B2�;f0g

∞ þ δC½B2�;f0g
∞

þ ðA0̃
2

A0
3 Þ
�
F2̃2̃ F2̃3

F32̃ F33

��
A2̃

A3

�
; ð93Þ

where

δC½B2�;f0g
∞ ≡ −

2

3
σ�Fσ†� − 2A0ðsÞ

3 Fσ†� −A0
3F2A

ðsÞ
3

þ 2

3
A0

3FA3 þA0̃
2
Fρπð=A2̃ −A2̃Þ

þA0̃
2
GρΓ½GðAðuÞ

3 − σ†�Þ − F2AðsÞ
3 �: ð94Þ

To obtain Eq. (93) we have made use of the following
identities (✓NCA✓):�

−
2

3
þ 1

1 − FT

�
F ¼ F

�
1

3
þ TLF

�
; ð95Þ

1

1 − TF
T ¼ 1

1 −K2ðFþGÞK2; ð96Þ

1

1 − TF
ð1þ TGÞ ¼ 1

1 −K2ðFþGÞ ; ð97Þ

ð1þGTÞ 1

1 − FT
¼ 1

1 − ðFþGÞK2

; ð98Þ
�
Gþ ð1þGTÞ 1

1 − FT
F

�
ð1þ TGÞ

¼ 1

1 − ðFþGÞK2

ðFþGÞ; ð99Þ

which follow from straightforward manipulations using the
definitions Eqs. (45) and (70).
Equation (93) is equivalent to Eq. (83), where δC½B2�;f0g

∞

is understood as the O½ðKdfÞ0� contribution to δC½B2�
∞ . At

this stage it remains only to show that δC½B2�;f0g
∞ only has

exponentially suppressed volume dependence. This is done
in Appendix B 3.

G. C½B2�
L to all orders in KðuÞ

df : Unsymmetrized

In this subsection we collect the terms contributing to

C½B2�
L , Eq. (49), that contain at least one factor of KðuÞ

df .
Throughout this subsection and the next, we use the
superscript ½Kdf � to denote the contribution to a quantity
with one or more factors of the unsymmetrized divergence-
free K matrix.
Beginning with CL;0F, decomposed in Eq. (55), we use

the results in Eqs. (59), (60), (65) and (67) and find that the
part containing at least one factor of Kdf can be written
as (✓NCA✓),

C½Kdf �
L;0F ¼ ð2A0ðsÞ

3 FþA0̃
2
GρΓGÞ½Kðu;uÞ

L;33 ðF2AðsÞ
3 þGΓḠρA2̃Þ þKðuÞ

L;32̃
FρπA2̃�

þA0̃
2
Fρπ½KðuÞ

L;2̃3
ðF2AðsÞ

3 þGΓḠρA2̃Þ þKL;2̃2̃FρπA2̃�; ð100Þ

¼ ðA0̃
2

2A0ðsÞ
3

Þ
�
Fρπ GρΓG
0 F

�
KðuÞ

L

� Fρπ 0

GΓḠρ F

�� A2̃

2AðsÞ
3

�
; ð101Þ

¼ ðA0̃
2

2A0ðsÞ
3

Þ
�
Fρπ GρΓG
0 F

�
ELV̄K

ðuÞ
df

1

1 −XKðuÞ
df

VER

� Fρπ 0

GΓḠρ F

�� A2̃

2AðsÞ
3

�
; ð102Þ

¼ ½A0̃
2
ð1 0ÞXþ2A0ðsÞ

3 Fð1þTGÞðΓḠρ 1Þ� ·KðuÞ
df

1

1−XKðuÞ
df

·

�
X

�
1

0

�
A2̃þ

�
GρΓ
1

�
ð1þGTÞF2AðsÞ

3

�
: ð103Þ

In Eq. (100) we have simply substituted Eqs. (59) and (60)
into Eq. (55) and dropped terms that have no factors of
KðuÞ

df . To obtain Eq. (101) we then rearrange terms into a
matrix form using the definition ofKðuÞ

L , Eq. (64). Next we
substitute the result Eq. (65) for KðuÞ

L , dropping terms with
no factors of KðuÞ

df , leading to Eq. (102). We then use the
definition of X, Eq. (67), to bring the result to the final
form, Eq. (103).

We next turn to the terms in Eq. (49) that contain at
least one factor of Fð0Þ

33 . These terms always include the

end cap factors A0ðuÞ
L;3 and AðuÞ

L;3 so that we first require the

full decomposition of these. Beginning with A0ðuÞ
L;3 ,

decomposed in Eq. (58), we insert the expressions for

the different components of KðuÞ
L [Eq. (65)] to find

(✓NCA✓),
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A0ðuÞ
L;3 ¼ A0ðuÞ

3 þ ð2A0ðsÞ
3 FþA0̃

2
GρΓGÞðKðu;uÞ

L;33 þK2Þ þA0̃
2
ðFρπK

ðuÞ
L;2̃3

þGρΓÞ; ð104Þ

¼A0
3−2A0ðsÞ

3 þð2A0ðsÞ
3 FþA0̃

2
GρΓGÞðKð0Þ

L;33þK2ÞþA0̃
2
GρΓþð2A0ðsÞ

3 FþA0̃
2
GρΓGÞð1þTGÞðΓḠρ 1Þ

·KðuÞ
df

1

1−XKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞþA0̃

2
Fρπð1 0Þ ·KðuÞ

df
1

1−XKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞ; ð105Þ

¼ A0
3 − 2A0ðsÞ

3 ð1 − FTÞ þA0̃
2
ð 1 0 Þ · 1

1 −XKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞ

þ 2A0ðsÞ
3 Fð1þ TGÞðΓḠρ 1 Þ ·KðuÞ

df
1

1 −XKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞ: ð106Þ

Here the first line is just a repeat of Eq. (58) and in the remaining lines we have substituted the expressions for Kðu;uÞ
L;33

and KðuÞ
L;2̃3

and simplified.

The expression for the mirror-imaged end cap is then given by (✓NCA✓),

AðuÞ
L;3 ¼ A3 − ð1 − TFÞ2AðsÞ

3 þ ð1þ TGÞðΓḠρ 1 Þ · 1

1 −KðuÞ
df X

·

�
1

0

�
A2̃

þ ð1þ TGÞðΓḠρ 1 Þ ·KðuÞ
df

1

1 −XKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞF2AðsÞ

3 : ð107Þ

In both cases we include the ðKðuÞ
df Þ0 part, since the factors of KðuÞ

df can come from the sum appearing between the finite-

volume end caps in the expression for C½B2�
L .

Finally, to derive an expression for the sum appearing between A0ðuÞ
L;3 and AðuÞ

L;3 in Eq. (49), we make use of the following
identity (✓NCA✓),

Kðu;uÞ
L;33 ¼ Kð0Þ

L;33 þ ð 0 1 Þ · ELV̄K
ðuÞ
df

1

1 −XKðuÞ
df

VER ·

�
0

1

�
; ð108Þ

¼ Kð0Þ
L;33 þ ð1þ TGÞðΓḠρ 1 Þ ·KðuÞ

df
1

1 −XKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞ; ð109Þ

≡Kð0Þ
L;33 þKðu;uÞ;½Kdf �

L;33 ; ð110Þ

where Kðu;uÞ;½Kdf �
L;33 is defined by comparing Eqs. (109) and (110).

Combining this with the expression for Z, defined in Eq. (84), we find (✓NCA✓)

Fð0Þ
33

1

1 −Kðu;uÞ
L;33 F

ð0Þ
33

¼ Z
1

1 −Kðu;uÞ;½Kdf �
L;33 Z

; ð111Þ

¼ Zþ ZKðu;uÞ;½Kdf �
L;33

X∞
n¼0

ðZKðu;uÞ;½Kdf �
L;33 ÞnZ; ð112Þ

¼ZþZð1þTGÞðΓḠρ 1Þ ·KðuÞ
df

1

1−XKðuÞ
df

X∞
n¼0

�
YKðuÞ

df
1

1−XKðuÞ
df

�
n
·

�
GρΓ
1

�
ð1þGTÞZ; ð113Þ

¼ Zþ Zð1þ TGÞðΓḠρ 1 Þ ·KðuÞ
df

1

1 − ðXþ YÞKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞZ; ð114Þ

where the new matrix Y is (✓NCA✓)

Y ≡
�
GρΓ
1

�
· ð1þGTÞZð1þ TGÞ · ðΓḠρ 1 Þ; ð115Þ
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¼
�
GρΓ
1

�
·

�
−GK þ 1

1 − ðFþGÞK2

ðFþGÞ
�
· ðΓḠρ 1 Þ: ð116Þ

From this, together with the expression for X [Eq. (67)] and F2̃2̃ [Eq. (29)], we find that the combined matrix appearing

between factors of KðuÞ
df is (✓NCA✓)

Xþ Y ¼

0B@ F2̃2̃ GρΓ 1
1−ðFþGÞK2

ðFþGÞ
ðFþGÞ 1

1−K2ðFþGÞΓḠρ
1

1−ðFþGÞK2
ðFþGÞ

1CA: ð117Þ

We observe that the off-diagonal elements are close to F2̃3

and F32̃, differing only by the presence of FþG rather
than F on the ends. Similarly, the 33 element is close to F33.
These differences are removed when we change from the

unsymmetrized KðuÞ
df to the symmetrized version.

With these preliminaries, we begin the determination of

C½B2�;½Kdf �
L by collecting the terms involving factors of A0̃

2

and A2̃ on the ends. All terms appearing in Eq. (103) as
well as the appropriate combinations of Eqs. (106), (107)
and (114) that contain these end caps have the form

C½B2�;½Kdf �
L ⊃ A0̃

2
ð 1 0 Þ ·W ·

�
1

0

�
A2̃; ð118Þ

and our task is to determine the matrixW. Collecting terms,
we find14 (✓NCA✓)

W ¼ XKðuÞ
df

1

1 −XKðuÞ
df

Xþ 1

1 −XKðuÞ
df

×

�
Y þ YKðuÞ

df
1

1 − ðXþ YÞKðuÞ
df

Y

�
1

1 −KðuÞ
df X

− Y;

ð119Þ

¼ ðXþ YÞKðuÞ
df

1

1 − ðXþ YÞKðuÞ
df

ðXþ YÞ: ð120Þ

Next we consider the cases with either A0ðsÞ
3 on the left-

hand side, or AðsÞ
3 on the right, or both. After some algebra,

we find that all such terms vanish identically.
The remaining, nonvanishing terms are those involving

the end caps A0
3 and A3. We find

C½B2�;½Kdf �
L ⊃A0

3Zð1þTGÞðΓḠρ 1Þ ·KðuÞ
df

1

1− ðXþYÞKðuÞ
df

ðXþYÞ ·
�
1

0

�
A2̃þA0̃

2
ð1 0Þ · ðXþYÞKðuÞ

df
1

1− ðXþYÞKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞZA3þA0

3Zð1þTGÞðΓḠρ 1Þ ·KðuÞ
df

1

1− ðXþYÞKðuÞ
df

·

�
GρΓ
1

�
ð1þGTÞZA3: ð121Þ

Finally, we can combine the results in Eqs. (118) and (121) into a compact matrix form,

C½B2�;½Kdf �
L ¼ ðA0̃

2
A0

3 Þ · FLK
ðuÞ
df

1

1 − ðXþ YÞKðuÞ
df

FR ·

�
A2̃

A3

�
; ð122Þ

where we have introduced

FL ≡
 
F2̃2̃ X2̃3 þ Y2̃3

F32̃ F 1
1−K2ðFþGÞ

!
and

FR ≡
 

F2̃2̃ F2̃3

X32̃ þ Y32̃
1

1−ðFþGÞK2
F

!
: ð123Þ

To obtain this form, we have used the identities (97) and
(98), as well as the definitions of F2̃3 and F32̃, given in
Eqs. (47) and (48), respectively.

H. Symmetrization of Kdf in C½B2�
L

A pleasing feature of the result of the previous section,
Eq. (122), is that it contains only symmetrized end caps,
despite the presence of unsymmetrized end caps at earlier
stages. It does, however, contain the unsymmetrized
quantity KðuÞ

df , and in this section we manipulate the result
so that all infinite-volume quantities have the desired
exchange symmetry. Here we build upon the work of

14On the right-hand side of the first equality, the final −Y term
is needed to remove the ðKðuÞ

df Þ0 contribution to the previous term.
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Ref. [5], but again need additional techniques to deal with
the poles in K2. We also have found ways to shorten the
argumentation given in Ref. [5]. Nevertheless, this section
is the most algebraically involved in this work.
A key observation for doing the symmetrization is that, if

Eq. (122) is expanded in powers of KðuÞ
df , then in all terms

with more than one factor of this unsymmetrized three-
particle quantity, it always lies next to a factor of FþG,
due to the structure of Xþ Y, Eq. (117). This allows us to
use a class of symmetrization results exemplified by

K2ðFþGÞKðu;uÞ
df;33 ¼ K2FS½Kðu;uÞ

df;33� þ ΓḠρI 2̃3 ⊗ Kðu;uÞ
df;33

þ I33 ⊗ Kðu;uÞ
df;33; ð124Þ

where S is the symmetrization operator that converts a (u)
quantity into the symmetric ðuþ sþ s̃Þ version,15 while
I 2̃3 and I33 are integral operators, to be explained below.

The result (124) holds with Kðu;uÞ
df;33 replaced by any three-

particle quantity with the (u) superscript, e.g.,KðuÞ
df;32̃

. It also

assumes that there is at least one factor of F orG on the left,

as is true in general because ðXþ YÞ, FL and FR contain
the geometric series 1=ð1 − ðFþGÞK2Þ.
To demonstrate Eq. (124) we derive the equivalent result

K2GKðu;uÞ
df;33 ¼ K2FK

ðsþs̃;uÞ
df;33 þ ΓḠρI 2̃3 ⊗ Kðu;uÞ

df;33

þ I33 ⊗ Kðu;uÞ
df;33; ð125Þ

in Fig. 4. As seen from the figure, the integral operator I 2̃3,

attaches a factor of Γ to Kðu;uÞ
df;33, leading to an infinite-

volume two-particle quantity, while I33 attaches iK̃0
2

to Kðu;uÞ
df;33, creating another infinite-volume three-particle

quantity with the (u) superscript.
The reflected equation is derived similarly and is

Kðu;uÞ
df;33ðFþGÞK2 ¼ ½Kðu;uÞ

df;33�SFK2 þKðu;uÞ
df;33

⊗ I32̃GρΓþKðu;uÞ
df;33 ⊗ I†

33; ð126Þ

where I32̃ and I†
33 are integral operators acting to the left

on three-particle unsymmetrized quantities. The direction
of action of the integral operators is indicated by the
position of the ⊗ symbol.

FIG. 4. Derivation of Eq. (125), using the notation of Figs. 1 and 7. On the left-hand side of the equality, the quantity to the right of the

G cut is Kðu;uÞ
df;33, with the u above the upper-right dashed line indicating that this is an unsymmetrized quantity. The left-hand cut in all

diagrams must be present, but can be either F orG. The box at the left-hand end of each diagram represents whatever lies to the left of the
F=G cut, which depends on the context, but for which the details are irrelevant. The first two equalities show howG is converted to F by
adding and subtracting an integral. This method is used extensively in Ref. [5] and is explained in Eqs. (163)–(165) of that work and the
accompanying text. It results in the u superscript on Kdf;33 changing to sþ s̃ in the F term. In the second step (indicated by the arrow
connecting the two boxed diagrams), K2 is replaced by the pole term, with on-shell projection onto the K-matrix pole, and the smooth

part. Since there is now an integral to the right of the G, rather than a sum, the infinite-volume quantityKðu;uÞ
df;33 is extended to the left by

the addition of either a Γ or K0
2, implicitly defining the integral operators I23 and I33, respectively.

15Here S acts to the right, but, in the following, it also acts to
the left. Which is the case is clear from the context.
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We can iterate Eq. (124), assuming implicitly that it acts
on an unsymmetrized three-particle quantity on the right,
and that there are additional implicit factors of F or G on
the left. We find

1

1 −K2ðFþGÞ ¼
X∞
n¼0

fK2ðFþGÞgn

¼ 1

1 −K2ðFþGÞ fK2FS þ ΓḠρI 2̃3 ⊗g

×
1

1 − I33⊗
þ 1

1 − I33⊗
: ð127Þ

The first term in curly braces on the right-hand side leads to
symmetrized quantities (since it contains the operator S),
while the second, Γ-dependent term does not require
symmetrization. The final term on the right-hand side of
this result is an unsymmetrized residue that is dealt with
subsequently.
We now apply this result to the quantity of interest,

C½B2�;½Kdf �
L in Eq. (122). We begin by considering the

contribution in which cuts appear between the end caps

A0
3 and A3 and the outermost KðuÞ

df insertions. Here the
analysis is simplified by having a symmetrized quantity on
one side. Focusing first on the right-side end cap, we find

A0
3½FL�33KðuÞ

df;32̃
¼ A0

3F
1

1 −K2ðFþGÞK
ðuÞ
df;32̃

; ð128Þ

¼ A0
3F

1

1 − I33⊗
KðuÞ

df;32̃
þA0

3F
1

1 −K2ðFþGÞ
× fK2FS þ ΓḠρI 2̃3 ⊗g 1

1 − I33⊗
KðuÞ

df;32̃
; ð129Þ

¼ 1

3
A0

3FKdf;32̃ þA0
3F

1

1 −K2ðFþGÞK2FKdf;32̃

þA0
3F32̃δKdf;2̃2̃ þ δ33A0̃

2
; ð130Þ

¼ A0
3F33Kdf;32̃ þA0

3F32̃δKdf;2̃2̃ þ δ33A0̃
2
: ð131Þ

The first line recalls the definition of FL, while the second
substitutes Eq. (127). To obtain the third line we use the
definition of F32̃ as well as the following new definitions:

Kdf;32̃ ≡ S
1

1 − I33⊗
KðuÞ

df;32̃
; ð132Þ

δKdf;2̃2̃ ≡ I 2̃3 ⊗
1

1 − I33⊗
KðuÞ

df;32̃
; ð133Þ

δ33A0̃
2
≡A0

3

iρ
3ω

�
1

1 − I33⊗
KðuÞ

df;32̃

�ðu−sÞ
: ð134Þ

In addition we use the result from Ref. [5] that a factor of F
sandwiched between a symmetric object (here A0

3) and a
(u − s) object can be replaced by iρ=ð2ωÞ, so that the
resulting matrix sum can be replaced by an integral. The
final line follows immediately using the definition of F33.
We see that the symmetrization has produced the desired
factors of F32̃ and F33, as well as an additional contribution
to Kdf;2̃2̃ and to the end cap A0̃

2
. An almost identical set of

results holds with KðuÞ
df;32̃

replaced with Kðu;uÞ
df;33, except that

the final index is changed from 2̃ to 3, and an additional (u)
superscript is added.
We next consider terms where the end cap is A0̃

2
or its

reflection. In this case we need a slightly different sym-
metrization result,

A0̃
2
GρΓðFþGÞKðuÞ

df;32̃

¼ A0̃
2
GρΓFS½KðuÞ

df;32̃
� þA0̃

2
FρπI 2̃3 ⊗ KðuÞ

df;32̃

þA0̃
2
⊗ ρ2̃3 ⊗ KðuÞ

df;32̃
: ð135Þ

This follows from

A0̃
2
GρΓGKðuÞ

df;32̃
¼A0̃

2
GρΓFK

ðsþs̃Þ
df;32̃

þA0̃
2
FρπI 2̃3⊗KðuÞ

df;32̃

þA0̃
2
⊗ ρ2̃3 ⊗KðuÞ

df;32̃
; ð136Þ

the derivation of which is described in Fig. 5. Here ρ2̃3 is a
second type of integral operator that acts both to the left and

right, and is defined in the figure. It joins A0̃
2
with KðuÞ

df;32̃

into an expanded end cap. We stress that the results in

Eqs. (135) and (136) hold when KðuÞ
df;32̃

is replaced by any

unsymmetrized three-particle quantity.
Using the definition of FL [Eq. (123)] and Eqs. (127) and

(135), we find

A0̃
2
½FL�2̃3KðuÞ

df;32̃
¼ A0̃

2
GρΓ

1

1 − ðFþGÞK2

ðFþGÞKðuÞ
df;32̃

;

ð137Þ

¼A0̃
2
GρΓðFþGÞ

�
1

1−K2ðFþGÞðK2FSþΓḠρI 2̃3⊗Þþ1

�
×

1

1−I33⊗
KðuÞ

df;32̃
; ð138Þ

¼ A0̃
2
F2̃3Kdf;32̃ þA0̃

2
F2̃2̃δKdf;2̃2̃ þ δ2̃3A

0̃
2
; ð139Þ

where

δ2̃3A
0̃
2
≡A0̃

2
⊗ ρ2̃3 ⊗

1

1 − I33⊗
KðuÞ

df;32̃
: ð140Þ
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As above, an almost identical equation holds with KðuÞ
df;32̃

replaced by Kðu;uÞ
df;33.

Combining Eqs. (131) and (139) and their analogs with
the right-hand index changed to 3, we find

A0FLK
ðuÞ
df ¼ A0FSL½KðuÞ

df � þ ð δA0̃
2

δA0ðuÞ
3

Þ; ð141Þ

where F is defined in Eq. (44),

A0≡ ðA0̃
2
A0

3 Þ; SL≡
0@1 I 2̃3⊗ 1

1−I33⊗

0 S 1
1−I33⊗

1A; ð142Þ

and we have introduced

δA0̃
2
¼ δ33A0̃

2
þ δ2̃3A

0̃
2

and

δA0ðuÞ
3 ¼ A0̃

2

iρ
3ω

�
1

1 − I33⊗
Kðu;uÞ

df;33

�ðu−s;uÞ

þA0̃
2
⊗ ρ2̃3 ⊗

1

1 − I33⊗
Kðu;uÞ

df;33: ð143Þ

Note that δA0ðuÞ
3 inherits a superscript (u) from the right-

hand superscript of Kðu;uÞ
df;33. In the following it is useful to

rewrite the shifts in A0 as

ð δA0̃
2

δA0ðuÞ
3

Þ ¼ A0 ⊗ IFL ⊗ KðuÞ
df ; ð144Þ

where IFL is a matrix of integral operators.
The result for the FR term is given by reflection and is

KðuÞ
df FRA ¼ ½KðuÞ

df �SRFAþ
� δA2̃

δAðuÞ
3

�
; ð145Þ

where

A¼
�
A2̃

A3

�
; SR ¼

 
1 0

1

1−⊗I†
33

⊗ I32̃
1

1−⊗I†
33

S

!
; ð146Þ

and δA2̃ and δA
ðuÞ
3 are reflections of the results in Eq. (143).

Again, we introduce the matrix of integral operators IFR
such that � δA2̃

δAðuÞ
3

�
¼ KðuÞ

df ⊗ IFR ⊗ A: ð147Þ

Finally, we turn to the symmetrization between two
factors of KðuÞ

df , i.e., to the analysis of

KðuÞ
df ðXþ YÞKðuÞ

df : ð148Þ

Only the 33 component of ðXþ YÞ requires new work.
This is because ½Xþ Y�2̃2̃ ¼ F2̃2̃ is already symmetrized,
while, since ½Xþ Y�2̃3 ¼ ½FL�2̃3, the analysis for the 2̃3

component is identical to that leading to Eq. (139), with the
32̃ component given by reflection.
The contribution of the 33 component is analyzed in

Appendix B 4. Combined with the results for the other
components, we find that

KðuÞ
df ðXþ YÞKðuÞ

df

¼ KðuÞ
df

� 1 0

1

1−⊗I†
33

⊗ I32̃
1

1−⊗I†
33

S

��
F2̃2̃ F2̃3

F32̃ F33

�

×

� 1 I 2̃3 ⊗ 1
1−I33⊗

0 S 1
1−I33⊗

�
KðuÞ

df þ δKðuÞ
df ; ð149Þ

¼ KðuÞ
df SRFSLK

ðuÞ
df þ δKðuÞ

df : ð150Þ

Many of the complications of the analysis are buried in the
final term, δKðuÞ

df . This arises when the two factors of KðuÞ
df

FIG. 5. Derivation of Eq. (136), using the notation of Figs. 1 and 7. The left-hand boxes represent A0̃
2
, aside from the loop that is

exposed explicitly to the left of the leftmost cut. The steps are similar to those in Fig. 4: replacing the sum adjacent to the Gwith a sum-
integral difference and an integral, the former giving rise to an F. The difference from Fig. 4 concerns the integral, in which the factor of
Gρ can be converted into an Fρπ cut by projecting the entire quantity to the right onto the K-matrix pole onto the 2̃mass shell, leading to
the I 2̃3 term. The residue (the δρ term) cancels the K-matrix pole, allowing the sum over the momentum k to be replaced by an integral,

so that the implicit A0̃
2
and the KðuÞ

df;32̃
are connected by an infinite-volume integral operator denoted ρ2̃3.
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are joined by an integral. There are several contributions to

this term—those analogous to δA0̃
2
, δA0ðuÞ

3 , δA2̃ and δAðuÞ
3 ,

as well as additional terms discussed in the Appendix. For

this derivation we do not require the detailed form of δKðuÞ
df .

We only require that it is composed of infinite-volume
quantities, and that the symmetrization structure of its

external indices is the same as that of KðuÞ
df . Again, it is

useful to write this term using a matrix of integral operators

δKðuÞ
df ≡KðuÞ

df ⊗ IXY ⊗ KðuÞ
df : ð151Þ

This emphasizes the fact that IXY is independent of the
detailed form of the quantities on either side.
We now have all the results to give a final form for the

correlator. Combining Eqs. (83), (122), (141), (145) and
(150), and performing straightforward but tedious algebra,
we find

C½B2�
L ¼ C½B2�;f0g

L þ C½B2�;Kdf
L ; ð152Þ

¼ C½B2�
∞ þ δC½B2�

∞ þA0½B2�F
1

1 −K½B2�
df F

A½B2�; ð153Þ

where

A0½B2�≡A0 þA0⊗ IFL⊗KðuÞ
df

1

1−⊗ IXY ⊗KðuÞ
df

SR;

ð154Þ

A½B2� ≡Aþ SLK
ðuÞ
df

1

1− ⊗ IXY ⊗ KðuÞ
df

⊗ IFR ⊗ A;

ð155Þ

K½B2�
df ≡ SLK

ðuÞ
df

1

1− ⊗ IXY ⊗ KðuÞ
df

SR: ð156Þ

δC½B2�
∞ ¼ δC½B2�;f0g

∞ þA0 ⊗ IFL ⊗ KðuÞ
df

1

1− ⊗ IXY ⊗ KðuÞ
df

⊗ IFR ⊗ A: ð157Þ

Equation (153) is the culmination of all the analysis
contained in Secs. III B–III H, together with the corre-
sponding Appendices, and is by far the most tedious result
to derive in all our work on three-particle scattering. Having
reached the very final form for all B2-only diagrams, note
that we introduce slightly more precise notation, labeling
all infinite-volume quantities with the ½B2� superscript to
emphasize the missing B3 kernels. In the next section we
show that these are simple to incorporate.

I. Including three-to-three kernels, B3

In order to complete the derivation of Eq. (38) we must
include the contributions of the three-to-three kernel, B3.
This can be done by a straightforward extension of the
method used in Sec. IV E of Ref. [5]. As in that work, the
essential point is that the analysis described above, which
takes place between end caps σ� and σ†�, applies equally
well if one or both of the end caps are replaced by factors of
iB3 ≡ B3. This is because, like σ� and σ†�, B3 is non-
singular in our kinematic regime. The net result is that we
can reuse all the work leading to Eq. (153).
To do so we rewrite the components of Eq. (153) as

C½B2�
∞ þ δC½B2�

∞ ≡ σ� ⊗ DC ⊗ σ†�; ð158Þ

A0½B2� ≡ σ� ⊗ DA0 ; ð159Þ

A½B2� ≡DA ⊗ σ†�; ð160Þ

Z ≡F
1

1 −K½B2�
df F

; ð161Þ

in terms of which

C½B2�
L ¼ σ� ⊗ fDC þDA0ZDAg ⊗ σ†�: ð162Þ

Here DC, DA0 and DA are infinite-volume decoration
operators that contain the complicated contributions worked
out above.16 Note that DA and DA0 are, respectively, 2 × 1
and 1 × 2 matrices. All we need to know in this section is
that the decoration operators are well defined, and apply just
as well when the end caps are replaced by factors of B3.
The full finite-volume correlator, including all possible

B2 and B3 insertions, can now be written

CL ¼ σ� ⊗ fDC þDA0ZDAg

⊗
X∞
n¼0

ðB3 ⊗ fDC þDA0ZDAg ⊗Þnσ†�: ð163Þ

Rearranging the series in powers of Z we find

CL ¼ C∞ þ
X∞
n¼0

A0ZðK½B3�
df ZÞnA; ð164Þ

where we have defined the infinite-volume quantities

C∞ ≡ σ� ⊗ DC ⊗
X∞
n¼0

ðB3 ⊗ DC ⊗Þnσ†�; ð165Þ

A0 ≡ σ� ⊗
X∞
n¼0

ðDC ⊗ B3 ⊗ÞnDA0 ; ð166Þ

16In Ref. [5] the corresponding decoration operators were
given superscripts, but here we drop these for the sake of brevity.
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A ¼ DA ⊗
X∞
n¼0

ðB3 ⊗ DC ⊗Þnσ�; ð167Þ

K½B3�
df ≡DA ⊗ B3 ⊗

X∞
n¼0

ðDC ⊗ B3 ⊗ÞnDA0 : ð168Þ

Inserting the definition of Z, Eq. (161), into the result for
CL, and rearranging, we reach the final form given in
Eq. (38) above. In terms of our boldface quantities it reads

CL ¼ C∞ þA0F
1

1 −KdfF
A; ð169Þ

where

Kdf ≡K½B2�
df þK½B3�

df : ð170Þ

IV. RELATING Kdf TO THE THREE-PARTICLE
SCATTERING AMPLITUDE

Having completed the derivation of the quantization
condition, i.e., the relation between the finite-volume
spectrum and Kdf , we now turn to relating the latter to
the physical three-to-three scattering amplitude, M3.
Following Ref. [6], we derive equations relating Kdf to
M3 in two steps. First, in Sec. IVA we give a modified
version of our main result, Eq. (38), in terms of a new finite-
volume correlator, denotedML;3. Second, in Sec. IV B, we
analytically study a carefully defined L → ∞ limit in which
ML;3 → M3. The result is a series of integral equations
relating the divergence-free K matrix to the scattering
amplitude. In this section we return to the notation of
Sec. II in which factors of i and 1=ð2ωL3Þ are displayed
explicitly.

A. Relating Kdf to ML;3

In order to relate the components of Kdf to physical
quantities, we need to determine the volume-dependence of
ML;3, first introduced in Ref. [6]. ML;3 differs from CL in
two ways. First, the diagrams have three on-shell, ampu-
tated propagators on each end, rather than the generic
operatorsOðxÞ andO†ðxÞ included in Eq. (37). Second, we
allow the momenta of these external particles to be
arbitrary, and not constrained to lie in the finite-volume
set. As discussed at length in Ref. [6], the latter property is
necessary in order to take the infinite-volume limit. Despite
these differences we argue here that we can obtain the result
for ML;3 from that for CL, Eq. (38).
We rely on several key observations from Ref. [6],

where, we recall, ML;3 was analyzed for systems without
poles in K2. The first is that CL contains all the diagrams
contributing to ML;3. The task is to separate these out. In
particular, we need contributions in which three particles
are on shell, rather than part of an unconstrained loop sum.

The second observation is that, in the final form for CL, on-
shell three-particle states occur whenever there is a factor of
F or G. In particular, if we take the expression for CL and
restrict attention to terms with at least two F or G cuts, then
the expression lying between the outermost such cuts will
contain all contributions to ML;3. It will turn out that the
outermost cuts are always factors of F rather than G. The
third observation is that amputation is effected by removing
the external factors of iF and multiplying by 2ωL3 on the
left and right. After doing so, the result is equal to ML;3

aside from two final adjustments. The first is to drop
disconnected contributions, and the second is to symme-
trize. We discuss these two relatively minor steps in more
detail below.
In fact, Ref. [6] did not apply these observations to the

final result for CL, but rather to an intermediate result.
Additional analysis was then required to obtain the final
expression for ML;3. It was noted that the result for ML;3

could have been obtained by applying the amputation
procedure directly to the decomposition of CL, but it
was argued that this was a mnemonic rather than a rigorous
procedure (see footnote 10 of Ref. [6]). We now think,
however, that inferring the form of ML;3 from CL, by
directly converting the final result is justified, and indeed
that the work of Ref. [6] supports this claim. We explain
additional justification for this new approach below, once
we have obtained the result for ML;3.
Due to the presence of poles in K2, the procedure

described above must be amended. To understand the
issue, we focus on the contribution to CL arising from a
single insertion of the 32̃ component of F , namely

iA0
3iF32̃iA2̃ ¼ iA0

3

1

2ωL3
iF

1

1 − iK2ðiF þ iGÞ iΓJiG
†
ρiA2̃;

ð171Þ

¼ iA0
3

1

2ωL3
iFiΓJiG

†
ρiA2̃

þ iA0
3

1

2ωL3
iFiK2ðiFþ iGÞiΓJiG

†
ρiA2̃

þ iA0
3

1

2ωL3
iFiK2ðiFþ iGÞiK2ðiFþ iGÞiΓJiG

†
ρiA2̃þ���:

ð172Þ

The first term in Eq. (172) can be dropped as it has only one
F or G cut. The second term has two such cuts, but only a
single K2 lies between them, so this corresponds to a
disconnected contribution to ML;3. Thus this term is also
dropped. The third term has two external cuts, and part of
the contribution between them is connected, namely the
iK2iGiK2 part. However, such a contribution is already
contained in the iA0

3iF33iA3 term, as is readily checked.
A signal for this double counting is that there is a ρπ cut,
G†

ρ, that is external relative to the right-hand F=G-cut in
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each of the terms in Eq. (172). Indeed, one can show that
the complete set of contributions to ML;3 is obtained by
taking only terms in which the outermost cut contains three
particles rather than the ρπ effective channel. This extra
criterion implies that none of the terms in Eq. (172) should
be kept.
The same conclusion holds for single insertions of F2̃3 or

F2̃2̃, which have, respectively, one and two external ρπ cuts.
Thus the only surviving contribution from a single insertion
of F is that from F33. This contribution is unaffected by the
presence of poles in K2, and so is unchanged from that
obtained in Ref. [6]. We recall briefly how this term is
obtained. Using the result for F33, Eq. (18), we find that the
term with at least two three-particle cuts is

CL ⊃ iA0
3iF33iA3 ⊃ iA0

3

1

2ωL3
iF

1

1− iK2ðiFþ iGÞ iK2iFiA3:

ð173Þ

Applying the recipe given above we obtain

iML;3 ⊃
�

1

1− iK2ðiFþ iGÞ iK2½2ωL3�
�				

connected;symmetrized
:

ð174Þ

The disconnected part is that obtained by setting G → 0. We
can remove this, and at the same time make contact with the
notation of Ref. [6], using the identity

1

1 − iK2ðiF þ iGÞ iK2½2ωL3� ¼ iML;2½2ωL3� þ iDðu;uÞ
L ;

ð175Þ

where

iML;2 ¼
1

1 − iK2iF
iK2; ð176Þ

iDðu;uÞ
L ¼ 1

1 − iM2;LiG
iML;2iGiML;2½2ωL3�: ð177Þ

The first term in Eq. (175) contains no switches and thus
leads to a disconnected contribution. The second term
contains at least one switch and thus is connected; it agrees
with the quantity of the same name given in Eq. (25) of
Ref. [6]. Thus we find

iML;3 ⊃ fiDðu;uÞ
L;2 g

			
symmetrized

≡ SiDðu;uÞ
L;2 S: ð178Þ

We can now explain the need for symmetrization. In the
original expression, iA0

3iF33iA3, the end caps A0
3 and A3 are

fully symmetrized, as described earlier in the derivation. By
this we mean that the quantities are invariant under

interchange of any of the three-particle momenta. The
adjacent factors of F that will be removed are not, however,
symmetric, since they single out one of the on-shell
particles as the spectator. Similarly, what lies between
the two amputated Fs is not symmetric. Within CL this
does not matter, because of the symmetry of the end caps.
But ML;3 is defined to be symmetric on the external lines,
and to reproduce this we must sum over all permutations of
the three incoming and three outgoing particle momenta.
However, it turns out that all quantities entering these
expressions are already invariant under interchange of the
two nonspectators, so that one need only sum over the
remaining three distinct permutations. The precise action of
the symmetrization operators is described by the paragraph
containing Eqs. (35)–(37) in Ref. [6].17

Now we apply the updated rules to the terms in Eq. (38)
having more than one factor of F , namely

CL ⊃ iA0iF
1

1 − iKdfiF
iKdfiF iA: ð179Þ

Since we are requiring an external three-particle cut rather
than a ρπ cut, only F33 and F32̃ contribute from the left-
hand F , and only F33 and F2̃3 contribute from the right-
hand F . Thus we find that the contribution to ML;3 is

iML;3 ⊃ SLðuÞ
L

1

1 − iKdfiF
iKdfR

ðuÞ
L S; ð180Þ

LðuÞ
L ¼

�
1

1−iK2ðiFþiGÞ iΓJiG
†
ρ

1
3
þ 1

1−iK2ðiFþiGÞ iK2iF
�
;

ð181Þ

RðuÞ
L ¼

0@ iGρiΓJ
1

1−ðiFþiG†ÞiK2

1
3
þ iFiK2

1
1−ðiFþiG†ÞiK2

1A: ð182Þ

Here G† ¼ ½2ωL3�−1G½2ωL3�, as follows from the defini-
tion of the matrix G, Eq. (21). Combining this result with
that from Eq. (178) leads to the full expression for ML;3,

ML;3 ¼ S
�
Dðu;uÞ

L þ LðuÞ
L Kdf

1

1þ FKdf
RðuÞ

L

�
S: ð183Þ

Here we have multiplied various factors of i together and
divided both sides of the equation by i. We stress again that
no factors of i or 2ωL3 have been absorbed here by
redefinitions.
A consistency check on this derivation is that the external

factors that are amputated to obtain ML;3 from CL are the

17Note that, in that work, the symmetrization operators acting
to the right and left are packaged into a single overall symmet-
rization operator.
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same for both Eqs. (178) and (180), namely iA0
3

1
2ωL3 iF on

the left and iF 1
2ωL3 iA3 on the right.18

Finally, we return to the issue of why we now think the
above procedure for obtaining ML;3 from CL is valid. We
raised two concerns in Ref. [6]. The first was essentially
that the infinite-volume quantities appearing in CL resulted
from a sequence of redefinitions, obscuring the relation to
the underlying diagrams. Here we have been able to give a
more explicit form for these redefinitions, i.e., those in
Eqs. (154)–(156), (166), (167) and (170). This gives us
confidence that there are no subtleties in picking out the
parts of the diagrams that contribute to ML;3. The second
concern was that the symmetrization procedure after
amputation was not justified. We have now convinced
ourselves, as described above, that it is correct.

B. Applying the formal L → ∞ limit to relate Kdf
to the three-to-three scattering amplitude

We are now ready to apply the L → ∞ limit to Eq. (183),
and thereby derive an integral equation relating Kdf to the
physical three-to-three scattering amplitude,M3. We begin
by recalling the expression for F [Eqs. (3), (18), (29), (30)
and (31)],

F ¼
�
F2̃2̃ F2̃3

F32̃ F33

�
; ð184Þ

F2̃2̃ ≡ Fρπ þ GρΓJ
1

2ωL3
ðF þ GÞ 1

1þK2ðF þGÞΓJG
†
ρ;

ð185Þ

F2̃3 ≡ −GρΓJ
1

2ωL3

1

1þ ðF þGÞK2

F; ð186Þ

F32̃ ≡ −
1

2ωL3
F

1

1þK2ðF þ GÞΓJG
†
ρ; ð187Þ

F33 ¼
1

2ωL3

�
F
3
− F

1

1þK2ðF þ GÞK2F

�
: ð188Þ

Here we have again combined various factors of i to
simplify the expressions.
The method we use is that developed in Ref. [6]. We

want to take L → ∞ in such a way that ML;3 goes over to
M3. This requires that we first regularize poles in inte-
grands with the iϵ prescription, and then take the L → ∞
limit with ϵ held fixed. As explained in Ref. [6], this
limit sends F → ρ (since Fiϵ → 0), and ML;2 → M2.
Matrix products, combined with factors of 1=L3, go over
to integrals. We also need to introduce G∞, defined by

G∞
l0m0;lmðp⃗; k⃗Þ¼Y3;l0m0 ðk⃗�2;pÞSiϵ

3 ðp⃗; k⃗ÞY�
3;lmðp⃗�

2;kÞ: ð189Þ

In Ref. [6], the only poles present were the three-particle
poles in S3. Here we also have the possibility of K-matrix
poles, which are present in Gρ and Fρπ as well as in K2

itself. However, we know that K-matrix poles cannot be
present in M3, because poles on the real axis of scattering
amplitudes would imply a violation of unitarity. In fact, we
show that they are absent also in ML;3, so that there is no
need to regularize them.
To see the absence of K-matrix poles we begin by

rewriting Eq. (182) as

RðuÞ
L ¼

 
−GρΓJ

1
1þFK2

1
3
− FML;2

1A 1

1þ G†ML;2
: ð190Þ

Here we recall that

ML;2 ¼
1

1þK2F
K2 ¼

1

K−1
2 þ F

; ð191Þ

which shows explicitly that poles inK2 do not lead to poles
in ML;2. The same cancellation occurs for the poles in Gρ,

−GρΓJ
1

1þ FK2

¼ −GρΓJK−1
2 ML;2: ð192Þ

Since ΓJ is a constant, GρΓJK−1
2 is smooth at the pole

position. It is also a known quantity, assuming that we
know K2 from the two-particle quantization condition, and
has a well-defined infinite-volume limit.
We can similarly rewrite the other quantities involving

Gρ (or its Hermitian conjugate) in such a way that they are
manifestly free of K-matrix poles,

LðuÞ
L ¼ 1

1þML;2G
ð−ML;2K−1

2 ΓJG
†
ρ

1
3
−ML;2F Þ;

ð193Þ

F2̃3 ¼ −GρΓJK−1
2 ML;2

1

1þG†ML;2

1

2ωL3
F

¼ −GρΓJK−1
2

1

2ωL3

1

1þML;2G
ML;2F; ð194Þ

F32̃ ¼ −
1

2ωL3
F

1

1þML;2G
ML;2K−1

2 ΓJG
†
ρ: ð195Þ

This leaves F2̃2̃, which contains Fρπ . This can be
rewritten as

18Note that the matrices 1
2ωL3 and F commute, though neither

commutes with G.

BRICEÑO, HANSEN, and SHARPE PHYS. REV. D 99, 014516 (2019)

014516-26



F2̃2̃ ¼ −GρΓJK−1
2

1

2ωL3

1

1þML;2G
ML;2K−1

2 ΓJG
†
ρ

þ
�
Fρπ þ GρΓJ

1

2ωL3
K−1

2 ΓJG
†
ρ

�
: ð196Þ

The first term is manifestly free of K-matrix poles. For the
term in curly braces, the poles also cancel. To see this we
note that Fρπ contains a sum over spectator momenta,
which is matched in the Gρ½� � ��G†

ρ part by the sum over
matrix indices. The infinite-volume limit of this term is
known given knowledge of K2.
The final quantity to be considered is F33. Here the

absence of K-matrix poles is manifest, but it is still useful to
rewrite it as

F33 ¼
1

2ωL3
F

�
1

3
−

1

1þML;2G
ML;2F

�
: ð197Þ

It is now a tedious but straightforward exercise to take
the infinite-volume limit of Eq. (183). We first introduce
useful infinite-volume quantities

GρΓJK−1
2 ⟶

L→∞
Ḡρ;M0

Jl
0m0;lmð⃗kÞ; ð198Þ

K−1
2 ΓJG

†
ρ ⟶
L→∞

Ḡ†
ρ;lm;MJl0m0 ð⃗kÞ; ð199Þ�

FρπþGρΓJ
1

2ωL3
K−1

2 ΓJG
†
ρ

�
⟶
L→∞

F̄ρπ;M0
Jl

0m0;MJlm: ð200Þ

We note that these quantities contain information about the
spin of the resonance; for example, Ḡρ contains a factor of
δJl. All three quantities are determined by K2.
The matrix ½1þM2;LG�−1 occurs repeatedly. In the

L → ∞ limit, multiplication by this matrix is replaced by
integration with the Uðp⃗; ⃗kÞl0m0;lm, which solves the inte-
gral equation

Uðp⃗; ⃗kÞ ¼ ð2πÞ3δ3ðp⃗ − ⃗kÞ

−
Z
s
M2ðp⃗ÞG∞ðp⃗; ⃗sÞ 1

2ωs
U ð⃗s; ⃗kÞ: ð201Þ

Here
R
s≡
R
d3s=ð2πÞ3, and we are keeping the angular-

momentum indices implicit.
We next construct the infinite-volume limits of the

elements of F . Pulling out overall factors of 1=L3 that
will turn sums into integrals, we find that these limits give

F̄2̃2̃ ¼ −
Z
s

Z
t
Ḡρð⃗sÞ

1

2ωs
U ð⃗s; ⃗t ÞM2ð ⃗tÞḠ†

ρð ⃗t Þ þ F̄ρπ;

ð202Þ

F̄2̃3ð⃗kÞ ¼ −
Z
s

1

2ωs
Ḡρð⃗sÞU ð⃗s; ⃗kÞM2ð⃗kÞρð⃗kÞ; ð203Þ

F̄32̃ðp⃗Þ ¼ −
ρðp⃗Þ
2ωp

Z
s
Uðp⃗; ⃗sÞM2ð⃗sÞḠ†

ρð⃗sÞ; ð204Þ

F̄33ðp⃗; k⃗Þ¼
ρðp⃗Þ
6ωp

ð2πÞ3δ3ðp⃗− k⃗Þ−ρðp⃗Þ
2ωp

Uðp⃗; k⃗ÞM2ðk⃗Þρðk⃗Þ:

ð205Þ

All these quantities can be determined given knowledge of
M2. We also recall that ρð⃗kÞ contains the cutoff function
Hð⃗kÞ, so that all integrals have finite range.
The next stage is to determine the limit of

Kdfð1þ FKdfÞ−1, which we call T . This leads to two
pairs of coupled matrix-integral equations for the compo-
nents of T . The first pair is

T 2̃2̃ ¼ Kdf;2̃2̃ −Kdf;2̃2̃F̄2̃2̃T 2̃2̃ −
Z
t
Kdf;2̃2̃F̄2̃3ð ⃗tÞT 32̃ð ⃗tÞ

−
Z
s
Kdf;2̃3ð⃗sÞF̄32̃ð⃗sÞT 2̃2̃

−
Z
s;t
Kdf;2̃3ð⃗sÞF̄33ð⃗s; ⃗tÞT 32̃ð ⃗tÞ; ð206Þ

T 32̃ðp⃗Þ ¼ Kdf;32̃ðp⃗Þ −Kdf;32̃ðp⃗ÞF̄2̃2̃T 2̃2̃

−
Z
t
Kdf;32̃ðp⃗ÞF̄2̃3ð ⃗tÞT 32̃ð ⃗tÞ

−
Z
s
Kdf;33ðp⃗; ⃗sÞF̄32̃ð⃗sÞT 2̃2̃

−
Z
s;t
Kdf;33ðp⃗; ⃗sÞF̄33ð⃗s; ⃗tÞT 32̃ð ⃗tÞ: ð207Þ

The second pair is a straightforward generalization given by
replacing all rightmost 2̃ indiceswith 3 indices and including
the appropriate additional momentum dependencies.
Finally, given T we can obtain M3 by doing integrals.

The contribution of Dðu;uÞ
L is unchanged from Ref. [6]. We

obtain it using

Dðu;uÞðp⃗; k⃗Þ¼−
Z
s
Uðp⃗; s⃗ÞM2ðs⃗ÞG∞ðs⃗; k⃗ÞM2ðk⃗Þ: ð208Þ

For the remaining term we multiply T on the left with

L̄ðuÞ
∞ ðp⃗; s⃗Þ
≡ ð−Uðp⃗; s⃗ÞM2ðs⃗ÞḠρðs⃗Þ; Uðp⃗; s⃗Þ½1

3
−M2ðs⃗Þρðs⃗Þ�Þ;

ð209Þ

and integrate the ⃗s coordinate. Similarly we multiply with

the conjugate, R̄ðuÞ
∞ ð ⃗t; ⃗kÞ, on the right and integrate again to

reach
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Mðu;uÞ
3 ðp⃗; k⃗Þ

¼Dðu;uÞðp⃗; k⃗Þþ
Z
s;t
L̄ðuÞ
∞ ðp⃗; s⃗ÞT ðs⃗; t⃗ ÞR̄ðuÞ

∞ ðt⃗; k⃗Þ: ð210Þ

This result can then be converted to a function of the
three incoming and three outgoing momenta via

Mðu;uÞ
3 ðp⃗; a⃗0; b⃗0; ⃗k; a⃗; b⃗Þ
≡ 4πYl0m0 ðâ0�2;pÞMðu;uÞ

3;l0m0;lmðp⃗; ⃗kÞY�
lmðâ�2;kÞ; ð211Þ

where b⃗0 ≡ P⃗ − p⃗ − a⃗0 and b⃗≡ P⃗ − ⃗k − a⃗, and we have

restored the angular-momentum indices on Mðu;uÞ
3 on the

right-hand side. Finally, the physical scattering amplitude is
reached by symmetrizing

M3ðp⃗; a⃗0; b⃗0; k⃗; a⃗; b⃗Þ
¼S½Mðu;uÞ

3 �S
≡ X

p⃗1;p⃗2;p⃗3∈Pp⃗

X
k⃗1;k⃗2;k⃗3∈Pk⃗

Mðu;uÞ
3 ðp⃗1; p⃗2; p⃗3; k⃗1; k⃗2; k⃗3Þ;

ð212Þ

where

Pp⃗ ≡ ffp⃗; a⃗0; b⃗0g; fb⃗0; p⃗; a⃗0g; fa⃗0; b⃗0; p⃗gg; and

P ⃗k ≡ ff⃗k; a⃗; b⃗g; fb⃗; ⃗k; a⃗g; fa⃗; b⃗; ⃗kgg: ð213Þ

V. CONCLUSION

In this work we have lifted the final major restriction on
our formalism relating finite-volume energies to relativistic
two- and three-particle scattering amplitudes. To summa-
rize, at this stage we have the building blocks to treat any
system of identical scalar particles. Our results fall into the
following three classes:
(1) 3 → 3 scattering assuming a Z2 symmetry and no

subchannel resonances (i.e., no poles in K2; see
Refs. [5,6]),

(2) f2; 3g → f2; 3g scattering in the case of no Z2

symmetry and, again, no subchannel resonances
(see Ref. [7]),

(3) 3 → 3 scattering for systems with a pole in K2

(this work).
To complete the formalism for all two- and three-particle

systems of identical scalars, it remains only to extend item 3
to any number of K2 poles in any angular-momentum
channels, and then to combine items 2 and 3 to describe
2 → 3 systems with resonant subprocesses. Beyond this,
the remaining extensions to general two- and three-particle
systems require incorporating nonidentical and nondegen-
erate particles, multiple two- and three-particle channels

and, finally, particles with spin. Based on the structure of
the results derived so far and on our experience with two-
particle quantization conditions, we expect that all of these
extensions will be significantly easier than the derivation
presented here.
The approach detailed in this article requires treating

the pole in K2 as a pseudoparticle and constructing an
effective two-particle state, labeled 2̃, built from the pole
together with the remaining spectator. From this setup
we have derived a quantization condition in the usual
form of a determinant involving a finite-volume matrix,
F , and a divergence-free K matrix, Kdf , both of which
carry matrix indices on the 2̃þ 3 effective channel space.
The final aspect of the result presented here is the
relation between Kdf and the physical scattering ampli-
tude, denoted M3. The latter has the usual degrees of
freedom and in particular carries no memory of the
unphysical 2̃ channel.
One of the central questions raised by this derivation, to

be further explored in future work, is whether it is really
necessary or natural to explicitly treat the K2 poles as we
have done. One motivation for this approach follows from
considering, e.g., isospin two πππ scattering for varying
quark masses. For physical-mass pions, in the allowed
energy range of 3Mπ <

ffiffiffi
s

p
< 5Mπ , the energy of the ππ

subsystem is well below the ρ mass and therefore well
below any poles inK2. Thus, for this system, the formalism
of item 1 above is appropriate. By contrast, for sufficiently
heavy pions the ρ is stable so that one requires the formalism
of item2 to describe the ρπ → πππ scattering amplitude. The
latter depends on a two-channel version of Kdf represented
by a two-by-twomatrixwith indices 2 and 3.19 Since one can,
at least in principle, vary the quark masses continuously
between these two scenarios, it is necessary to understand
how the quantization conditions transition between the two
different matrix spaces.
The result of this work provides a natural answer to

this question. As the quark mass increases from the
physical point, the ρ pole moves into the sampled energy
range and the corresponding pole in K2 is treated by
opening an effective 2̃ channel. If the quark mass is
further increased, this pole location moves closer to the
two-particle threshold until it drops below, leading to a
stable ρ. Note that, even for the case of Mρ < 2Mπ , if the
mass hierarchy is such that κ2 ≡M2

π −M2
ρ=4 ≪ M2

π , i.e.,
the state is shallow, then the quantization condition
derived here should be used to properly incorporate

19Strictly speaking the only available 2 → 3 formalism re-
quires that all particles in the two- and three-particle states are
identical. However based on the nature of the derivation, and the
corresponding results in the two-particle sector, it is quite clear
that the basic structure of the quantization conditions, in
particular the appearance of channel indices, will persist in the
case of nonidentical particles.
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potentially large volume effects of the form e−κL, arising
from the large size of the weakly bound state. If the
quark masses are instead chosen very large, such that
κ > Mπ , then the finite size of the ρ can be neglected and
the two-to-three formalism may be applied.
We further remark that the key difference between the

case of the unphysical 2̃ and the physical 2 channels is
that the off-diagonal elements of F vanish only in the
latter case. Future work is needed to understand exactly
how the result derived here can be used to recover to the
case of physical 2 → 3 scattering considered previously.
Conversely, we recall that the elimination of off-diagonal
elements in the 2 → 3 formalism of Ref. [7] required
construction of the cutoff function Hð⃗kÞ such that the
finite-volume cuts of one- and two-particle subspaces
(within the two- and three-particle states respectively)
did not overlap. The results of this work could also allow
one to explore more freedom in the definition of Hð⃗kÞ, at
the cost of allowing unsuppressed off-diagonal entries in
the finite-volume matrix.
Although these observations give some motivation for

the 2̃ effective channel, it is nonetheless possible that one
might reformulate the results without this unphysical
aspect. We are motivated to consider this in more detail
especially following the demonstration in Sec. IV B that all
entries of F do not contain K2 poles. We note, in addition,
that our result requires special treatment of K2 poles
regardless of the sign of the residue. Thus also poles with
no connection to a resonance state must be separated out. In
this case we can provide no physical motivation for this
mathematical necessity.
Having removed the largest limitation of our previous

formalism, we think it is now feasible to arrive at a
quantization condition for completely general two- and
three-particle systems. Even after this is achieved, several
open issues still remain to be addressed. First, we hope to
understand simplifications in both the derivation and
the final result that can be made without adding any
approximations. We have a sense that these can be
identified by better understanding the relation of this work
to Refs. [11,12,14], and by studying the pole structures of
the final quantities appearing in our results. Second, we
plan to understand systematic approximations and trunca-
tions. This will likely involve subducing the quantization
condition to irreducible representations of the finite-volume
symmetry groups and truncating the angular momentum
basis as is done in all two-particle studies. Third, we intend
to continue our numerical investigations of these results,
along the lines of Ref. [16]. Fourth, and finally, we aim to
implement this formalism in numerical LQCD calculations.
To do so, it is necessary to identify a set of possible
functional forms for the scattering amplitudes. Input from
the dispersive and amplitude analysis communities is likely
to play a key role in this next step. [See Refs. [34,35] for
significant progress on this front.]

ACKNOWLEDGMENTS

The work of S. R. S. was supported in part by the United
States Department of Energy Grant No. DE-SC0011637.
R. A. B. acknowledges support from U.S. Department of
Energy Contract No. DE-AC05-06OR23177, under which
Jefferson Science Associates, LLC, manages and operates
Jefferson Lab. The authors thankA. Szczepaniak, A. Pilloni,
J. Dudek and the late M. Pennington for useful discussions.

APPENDIX A: FACTORIZATION OF THE
OFF-SHELL TWO-PARTICLE K MATRIX

AT THE POLE

The aim of this Appendix is to present a derivation of
Eq. (13) and its consequences. We first consider K matrix
poles above threshold and turn at the end to the case of
subthreshold poles.
We begin by reviewing the constraints that unitarity places

on two-particle scattering amplitudes. The Smatrix is related
to the on-shell scattering amplitude in the standard way,

SðlÞ2 ¼ 1þ 2iρ̃2M
ðlÞ
2;on;on; ðA1Þ

wherewe have introduced ρ̃2 ¼ iρ̃with ρ̃ defined in Eq. (10).
For the purpose of this Appendix, ρ̃2 is more convenient, in
particular because it is real above threshold. On the physical
scattering axis, i.e., for real energies above threshold on the
physical sheet, the S matrix is unitary, implying

ImðMðlÞ
2;on;onÞ ¼ MðlÞ

2;on;onρ̃2M
ðlÞ†
2;on;on: ðA2Þ

Given that ρ̃2 is finite, this result prohibits MðlÞ
2;on;on from

having poles on the physical axis (since the left-hand side
would then have a single pole and the right-hand side a
double pole). Of course, poles below threshold for real s,
corresponding to bound states, are allowed, since this
constraint applies only for real energies above threshold.
Unitarity alone cannot put constraints on the analytic

structure of off-shell scattering amplitudes. Instead, as
described in the main text, we consider this system as a
generic effective field theory,with quantities calculated to all
orders in perturbation theory. In this context we can connect
the off- and on-shell scattering amplitudes, as we now show.
The ingredients we need are, first, the product of two

fully dressed propagators with the appropriate symmetry
factor,

Δ2 ≡ 1

2
ΔðP − kÞΔðkÞ; ðA3Þ

and, second, the fully off-shell Bethe-Salpeter kernel

BðlÞ
2;off;off . We recall that the latter is defined as the sum

of all amputated two-to-two diagrams that are two-particle
irreducible in the s channel.20 The pair of subscripts

20As noted in themain text,we are implicitlymaking a choice of
single-particle interpolating operator when defining this kernel.
None of the subsequent considerations depend on this choice.
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indicates that both initial and final states are off shell. The
on-shell versions have the same definitions except that
the 4-momenta in either one or both states are set to the
physical values, p2 → m2. In terms of these building
blocks, the off-shell amplitude can be written as an iteration
of s-channel two-particle loops,

iMðlÞ
2;off;off ¼ iBðlÞ

2;off;off þ
Z

iBðlÞ
2;off;offΔ2iB

ðlÞ
2;off;off

þ
ZZ

iBðlÞ
2;off;offΔ2iB

ðlÞ
2;off;offΔ2iB

ðlÞ
2;off;off þ � � � ;

ðA4Þ
where the integrals are over the loop momenta, e.g., over k
in Eq. (A3).
Fully or partially on-shell amplitudes are then given by

appropriate changes to the subscripts, e.g.,

iMðlÞ
2;on;on ¼ iBðlÞ

2;on;on þ
Z

iBðlÞ
2;on;offΔ2iB

ðlÞ
2;off;on

þ
ZZ

iBðlÞ
2;on;offΔ2iB

ðlÞ
2;off;offΔ2iB

ðlÞ
2;off;on þ � � � :

ðA5Þ
These results can be used to rewrite the on-shell amplitude
in three useful forms,

iMðlÞ
2;on;on ¼ iBðlÞ

2;on;on þ
Z

iBðlÞ
2;on;offΔ2iM

ðlÞ
2;off;on ðA6Þ

¼ iBðlÞ
2;on;on þ

Z
iMðlÞ

2;on;offΔ2iB
ðlÞ
2;off;on ðA7Þ

¼ iBðlÞ
2;on;on þ

Z
iBðlÞ

2;on;offΔ2iB
ðlÞ
2;off;on

þ
ZZ

iBðlÞ
2;on;offΔ2iM

ðlÞ
2;off;offΔ2iB

ðlÞ
2;off;on: ðA8Þ

To proceed, we assume that resonances in MðlÞ
2;on;on arise

by the iteration of the two-particle loops in Eq. (A5) and are

not present in the kernel BðlÞ
2 itself (whether on or off shell).

In other words, since BðlÞ
2 has no intermediate states that are

on shell in the kinematic range of interest, 4m2 < s <
16m2 (or 4m2 < s < 9m2 if there is no G-paritylike
symmetry), it can be treated as a nearly local two-particle
interaction, and it is the iteration of this interaction that

leads to resonances. Given this assumption, BðlÞ
2 has no

s-channel singularities on the physical axis. This is a key
input in the following arguments. We note that BðlÞ can
have t- and u-channel singularities (e.g., the left-hand cut)
but these occur for s ≤ 0 and are thus outside of the
kinematic range of interest.
Given the inputs that neitherMðlÞ

2;on;on nor B
ðlÞ
2 have poles

on the physical axis, it follow from Eqs. (A6), (A7) and

(A8), respectively, that MðlÞ
2;off;on, M

ðlÞ
2;on;off and MðlÞ

2;off;off

cannot have such poles either. Of course, all these quan-
tities can have poles in the complex plane corresponding to
resonances, but the key point here is that the off-shell

amplitudes inherit from MðlÞ
2;on;on the absence of poles on

the real axis above threshold.
With this in hand, we can finally turn our attention to the

K matrix. Again, unitarity alone places no constraints on
the K matrix, but we can use its all-orders effective field
theory definition to relate it to the scattering amplitude.
Indeed, whether on or off shell, the two quantities differ
only by the replacement of the iϵ prescription in two-
particle loops with the principal-value prescription. The
difference in these definitions is proportional to ρ̃2 and
a δ-function that places the states on shell. From this we
find that the fully off-shell K matrix can be written as [see
also Eq. (9)]

iKðlÞ
2;off;off ¼ iMðlÞ

2;off;off − iMðlÞ
2;off;onρ̃2iM

ðlÞ
2;on;off þ iMðlÞ

2;off;onρ̃2iM
ðlÞ
2;on;onρ̃2iM

ðlÞ
2;on;off þ � � �

¼ iMðlÞ
2;off;off − iMðlÞ

2;off;onρ̃2

�
1

1þ iMðlÞ
2;on;onρ̃2

�
iMðlÞ

2;on;off

¼ iMðlÞ
2;off;off − iMðlÞ

2;off;onρ̃2

�
1

MðlÞ−1
2;on;on þ iρ̃2

�
MðlÞ−1

2;on;oniM
ðlÞ
2;on;off

¼ iMðlÞ
2;off;off − iMðlÞ

2;off;onρ̃2K
ðlÞ
2;on;onM

ðlÞ−1
2;on;oniM

ðlÞ
2;on;off : ðA9Þ

In the last step, we have expressed the off-shell K2 in
terms of its on-shell form. This gives the desired result,
Eq. (13), when working above threshold so that H ¼ 1.
The key point is that, on the right-hand side of Eq. (A9),
the only quantity that has poles on the physical axis

is KðlÞ
2;on;on. Thus we conclude that KðlÞ

2;off;off must share

these poles with KðlÞ
2;on;on in order for the equality to

hold.
The second result we wish to show is the factorization of

the residues of poles in KðlÞ
2;off;off . To do this we note that the

on-shell scattering amplitude is purely imaginary at the

poles of KðlÞ
2;on;on,
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MðlÞ−1
2;on;on → −iρ̃2: ðA10Þ

Therefore, near the poles, the off- and on-shell K matrices
are related by

iKðlÞ
2;off;off ∼ ZðlÞ

2;off;oniK
ðlÞ
2;on;onZ

ðlÞ
2;on;off ; ðA11Þ

where ZðlÞ
2;off;on¼−iMðlÞ

2;off;onρ̃2 and Z
ðlÞ
2;on;off¼−iρ̃2M

ðlÞ
2;on;off .

These two quantities depend, respectively, only on the final
(initial) momenta, thus demonstrating the claimed factori-
zation of momentum dependence. Both quantities equal
unity when the corresponding external legs are placed on
shell. Comparing the definitions of the residues of poles in
on- and off-shell K matrices, given in Eqs. (16) and (15),
respectively, we see that

ΓJðM2; a02; b02Þða0�2;kÞJ ¼ ΓJðq�2;kÞJZðJÞ
2;on;off ; ðA12Þ

with a similar relation for ZðJÞ
2;off;on.

Before concluding this Appendix, we return to the
situation in which the K matrix has poles for real values
of the energy lying below threshold. In this case,
Eq. (A9) continues to hold—since it is based on a
diagrammatic analysis—except that ρ̃2 becomes iρ̃H, with
the factor ofH required by our definition ofK2 [see Eq. (9)].
Thus we obtain Eq. (13) also when working below thresh-
old, and consequently it remains true that poles in the on-
shell K matrix appear in its off-shell extension, in the same
locations.
There is, however, an additional issue that must be

considered. This arises because the scattering amplitude
itself can have poles for real, subthreshold energies,
corresponding to bound states. At such poles, the on-shell
K matrix becomes KðlÞ

2;on;on → −1=ðρ̃HÞ, which is real and
finite. The issue is whether the off-shell K matrix is also

finite. To see that this is in fact the case, we make use of the
factorization of M2 at the pole, allowing us to write

iMðlÞ
2;on;on ∼

iðigonÞ2
ðs − E2

bÞ
;

iMðlÞ
2;off;on ∼

iðigoffÞðigonÞ
ðs − E2

bÞ
; and

iMðlÞ
2;off;off ∼

iðigoffÞ2
ðs − E2

bÞ
; ðA13Þ

where Eb is the energy of the bound state pole and s ¼ P2
2;k

is the two-particle c.m. energy. Substituting these results

into Eq. (A9) and using the value of KðlÞ
2;on;on at the pole, we

find that KðlÞ
2;off;off is indeed finite at s ¼ E2

b.

APPENDIX B: DETAILS OF THE DERIVATION
OF RESULTS PRESENTED IN SEC. III

In this Appendix we present technical details of the
derivations outlined in Sec. III.

1. Derivation of the recursion formula
for Cðm;nÞ

L;0F [Eq. (56)]

Here we derive Eq. (56) and, in doing so, give complete
definitions of the quantities defined therein.

Cðm;nÞ
L;0F is shown diagrammatically in Fig. 1(b). Here we

focus on the next momentum to be converted from a sum to
an integral, labeled qmþ1 in Fig. 1(b). Thus it is convenient
to absorb the integrated loops to the left of qmþ1 into a new

end cap iBðmÞ
∞ , and similarly to absorb the summed loops to

the right into iBðn−m−2Þ
L , since these new end caps maintain

their forms throughout the derivation. This new notation
is shown in Fig. 6(a), with the diagrammatic definitions

of the end caps BðmÞ
∞ and BðmÞ

L sketched, respectively, in

(a)

(b)

(c)

FIG. 6. Diagrammatic definitions for the objects appearing in the initial decomposition of Cðm;nÞ
L;0F , Eq. (B1). The square

boxes with rounded corners represent the end caps iB, with the entries inside the box corresponding to the superscripts and
subscripts. The infinite-volume and finite-volume versions of these end caps are shown, respectively, in (b) and (c). Remaining notation
is as in Fig. 1.
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Figs. 6(b) and 6(c).21 The superscripts on the Bs denote the
number of factors of iK2 or its smooth counterpart that they
contain. Note that these end caps are closely related to

A0ðm;uÞ
3 and Aðm;uÞ

L;3 , respectively, quantities discussed in the
main text. The differences are that the B end caps are not
projected on shell, and also not decomposed into spherical
harmonics. The B end caps are shown in the figures as open
squares with rounded corners.
Using this notation, we can explicitly display the relevant

part of Cðm;nÞ
L;0F ,

Cðm;nÞ
L;0F ¼1

4

X
k;a;a00

Z
a0
iBðmÞ

∞ ðk;a0ÞΔða0ÞΔðb0ÞiK2;offða0;b0;−aÞ

×ΔðkÞΔðaÞΔðbÞiK2;offðk;b;−a00ÞΔða00Þ
×Δðb00ÞiBðn−m−2Þ

L ða;a00Þ: ðB1Þ

Here we have changed the labels to the more manageable
choices shown in Fig. 7(a), and used the definitions
b0 ≡ P − k − a0, b≡ P − a − k, b00 ≡ P − a − a00 andZ

a
≡ fPV Z d4a

ð2πÞ4 ;
X
k

≡
Z

dk0

2π

1

L3

X
⃗k

: ðB2Þ

The quantity K2;off is the fully off-shell two-particle K
matrix defined as in Ref. [5], with the first two labels
denoting the outgoing momenta, and the third one of the
incoming momenta. Note that in Appendix A we refer to
this K matrix as K2;off;off ; here the double subscript is not
necessary. The expression (B1) holds for n −m > 2 and
n > 2, which is the case shown in Fig. 7(a). For n −m ¼ 2
and n ≥ 2 the sum over a00 is replaced by an integral. Other
cases are simpler and are discussed at the end.
To derive Eq. (56), we begin by making the substitution

ΔðkÞ ¼ ð2πÞδðk0 − ωkÞ
1

2ωk
þRðkÞ; ðB3Þ

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. Summary of the various steps used to derive Eq. (56), the recursion relation for decomposing Cðm;nÞ
L;0F . (a) First the leftmost

spectator is split into its pole contribution and a second term that is smooth at the pole and thus contributes to Cðmþ1;nÞ
L;0F . (b) Next, in the

first term from (a) the leftmost K matrix is decomposed into a smooth and singular part and the latter is projected partially on shell, as
explained in the text. (c) The complete on-shell projection at the K-matrix pole is performed simultaneously with the projection of the
exchange propagator, leading to factors ofGρ andG. (d) This leads to a remainder term that is smooth everywhere except at the K-matrix

pole and can be separated into an on-shell term and another contribution to Cðmþ1;nÞ
L;0F . (e) The remaining piece to decompose, in which the

rightmost K matrix is smooth, leads to an F cut in the middle of the diagram and yet another contribution to Cðmþ1;nÞ
L;0F . (f) Finally we

summarize all terms entering Bðmþ1Þ
∞ , collected from (a), (d) and (e) above. The notation is as in Figs. 1 and 6, with the addition that

dashed lines represent on-shell propagators. See text for further discussion.

21The definition of BðmÞ
∞ is imprecise, since additional terms are

included for each extra factor of iK2 that is added. This is
explained in Fig. 7 and the accompanying text.
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thereby separating the particle-pole contribution to the
propagator (which is the only part that can lead to singu-
larities as a function of k) from the remainder,RðkÞ. This is
shown in Fig. 7(a) where, just as in Fig. 3, the pole is shown
by a dashed line and the remainder by double solid lines. In

the contribution of RðkÞ to Cðm;nÞ
L;0F , we can replace the sum

over kwith an integral, leading to a contribution toCðmþ1;nÞ
L;0F ,

shown as the second term on the right-hand side of Fig. 7(a).
Thus we focus only on the particle-pole contribution, the
first term on the right side of 7(a), in the following.
The next step is to insert a variant of Eq. (15) for the left-

hand K matrix

iK2;offða0;b0;−aÞ¼ 4πY�
JMJ

ðâ0�2;kÞða0�2;kÞJiΓJðM2;a02;b02Þ iηJHρðk⃗Þ
ðP2

2;k−M2ÞiΓJðM2;a2;b2Þða�2;kÞJYJMJ
ðâ�2;kÞþ iK̃2;offða0;b0;−aÞ:

ðB4Þ

Here we have added back in the spherical harmonics
needed to recreate the full K matrix. Note that, by
assumption, the pole appears only in the Jth partial wave,
while the second, smooth term includes contributions from
all partial waves. In the first term of Eq. (B4), J is fixed,
whileMJ is summed from −J to J. Note also, as compared
to Eq. (15), we have included the UV regulator Hρ in the

pole term. This can be added since, by construction, 1 −Hρ

cancels the K-matrix pole, and thus leads to a smooth
contribution that can be absorbed into K̃2;off .
The result of this insertion is shown in Fig. 7(b). We

first consider the K-matrix pole contribution, which is
represented by the second term on the right-hand side of
Fig. 7(b), and has the explicit expression

Cðm;nÞ
L;0F ⊃

1

2

1

L3

X
⃗k

X
a;a00

Z
a0
iA0ðmÞ

2̃;MJ
ð⃗kÞ iηJHρð⃗kÞ

ðP2
2;k −M2Þ iΓJðM2; a2; b2Þða�2;kÞJ

1

2ωk

ffiffiffiffiffiffi
4π

p
YJMJ

ðâ�2;kÞ

× ΔðaÞΔðbÞiK2;offðk; b;−a00ÞΔða00ÞΔðb00ÞiBðn−1Þ
L ða; a00Þ; ðB5Þ

where

iA0ðmÞ
2̃;MJ

ðk⃗Þ≡1

2

Z
a0
iBðm−1Þ

∞ ðk;a0ÞΔða0Þ

×Δðb0Þ
ffiffiffiffiffiffi
4π

p
Y�
JMJ

ðâ0�2;kÞða0�2;kÞJiΓJðM2;a02;b02Þ:
ðB6Þ

In both of these equations k is on shell, kμ ¼ ðωk; ⃗kÞ.
In the figures, we represent the factors of iΓJ by small
closed circles, and the K-matrix pole by a thick horizontal
line.

At this stage A0ðmÞ
2̃;MJ

ð⃗kÞ is not evaluated at the K pole, i.e.,

P2
k ≠ M2. We can pick out the on-shell part (where on shell

here refers to the 2̃ state consisting of a particle plus the
K-matrix pole) by hand, by introducing a δ operator
analogous to those used in Ref. [5],

A0ðmÞ
2̃;MJ

ð⃗kÞ≡ A0ðmÞ
2̃;MJl0m0Y2;l0m0 ð⃗k�Þ þ δρA

0ðmÞ
2̃;MJ

ð⃗kÞ; ðB7Þ

where the on-shell value of A0̃
2
is

A0ðmÞ
2̃;MJl0m0

ffiffiffiffiffiffi
4π

p
Yl0m0 ðk̂�Þ≡ A0ðmÞ

2̃;MJ
ðq�ρk̂�Þ: ðB8Þ

Here we are using the definitions of Y2 from Eq. (34) and of
q�ρ from Eq. (6). This step is represented by the second line
in Fig. 7(b), where in the second term we use the label “on”
to indicate those quantities for which the ρπ relative
momentum has been set to its on-shell value, ⃗k� → q�ρk̂

�.
If ⃗k is left at its original value, then we use the label “off.”
The δρ operator cancels the K-matrix pole, and thus
its contribution can be absorbed into that from K̃2 to

Cðm;nÞ
L;0F . This is indicated by the prime on the integrated

K-matrix symbol in the first term on the right-hand side of
Fig. 7(b). We return to this contribution later. Equation (B8)
completes the definition of the infinite-volume end

cap A0ðmÞ
2̃;MJlm

.

Substituting the on-shell term from Eq. (B7) into
Eq. (B5), we obtain the second term on the second line
of Fig. 7(b). The explicit expression is
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Cðm;nÞ
L;0F ⊃

1

2

X
⃗k

X
a;a00

Z
a0
iA0ðmÞ

2̃;MJl0m0Y2̃;l0m0 ð⃗k�Þ iηJHρð⃗kÞ
ðP2

2;k −M2Þ iΓJðM2; a2; b2Þða�2;kÞJ
1

2ωkL3

ffiffiffiffiffiffi
4π

p
YJMJ

ðâ�2;kÞ

× ΔðaÞΔðbÞiK2;offðk; b;−a00ÞΔða00ÞΔðb00ÞiBðn−1Þ
L ða; a00Þ: ðB9Þ

The final step for this term is to introduce a “G cut” through
the a, b and k propagators, following the approach of
Ref. [5]. This cut places all three particles on shell, but in a
different manner to the left and the right of the cut. In both
cases, the spectator momentum is unchanged (⃗k to the left,
and a⃗ to the right), while the interacting pair has its
momenta rescaled in their c.m. frame. The G-cut term
thus replaces ΓJðM2; a2; b2Þ with the fully on shell ΓJ, and
a�2;k with q�2;k. This is shown in Fig. 7(c). Using the
definitions given in Sec. II, we find that the G-cut con-
tribution [the first term on the right-hand side of Fig. 7(c)] is

Cðm;nÞ
L;0F ⊃ iA0ðmÞ

2̃;MJl0m0 iGρ;MJl0m0;kl00m00iΓJ

×
1

2ωkL3
iGkl00m00;al000m000iAðn−m;uÞ

L;3;al000m000

¼ A0ðmÞ
2̃

GρΓGAðn−m;uÞ
L;3 ; ðB10Þ

where all repeated indices are summed in the middle quality
and left implicit in the last. This is the third term on the right-
hand side of the first line of Eq. (56).
The cut we have just discussed is the most singular that

arises, having the K2 pole (Gρ) and the three-particle pole
(G) separated only by the constant Γ. It is possible for both
poles to go on shell simultaneously, for special values of ⃗k
and a⃗. We stress that these potential double poles appear
only in sums over the spectator momenta, and not in sum-
integral differences. Thus we do not need to introduce a
generalized zeta function to describe them, unlike, for
example, in the analysis of finite-volume effects in two-
particle matrix elements [36].
The difference between Eqs. (B9) and (B10), represented

by the last term of Fig. 7(c), has no three-particle singu-
larity, but still retains the K-matrix pole. The absence of this
singularity is shown in Fig. 7(c) by the double line for the b
propagator in the last term. We now project the quantity to
the right of this pole on shell using the δρ operator
introduced above in Eq. (B7), but now acting to the right.
This is shown in Fig. 7(d), leading to the final term on the
first line of Eq. (56),

A0ðmþ1Þ
2 Fρπ =A

ðn−mÞ
L;2̃

; ðB11Þ

in which Fρπ acts like a cut, and provides an implicit
definition of =AL;2̃. The term involving δρ removes the

K-matrix pole, and is thus free of singularities. For this term
the sum over k can be replaced by an integral, providing an

additional contribution to Cðmþ1;nÞ
L;0F .

Finally we consider the part involving the smooth part of
the left-hand K2, i.e., the first term in the second line of
Fig. 7(b), whose explicit expression is

Cðm;nÞ
L;0F ⊃

1

4

1

L3

X
⃗k

X
a;a00

Z
a0
iBðmÞ

∞ ðk; a0ÞΔða0Þ

× Δðb0ÞiK̃0
2;offða0; b0;−aÞ

1

2ωk

× ΔðaÞΔðbÞiK2;offðk; b;−a00ÞΔða00Þ
× Δðb00ÞiBðn−m−2Þ

L ða; a00Þ: ðB12Þ

As noted above, another term with the same pole structure
has been implicitly absorbed into this expression. We
represent this by adding a prime to K̃0

2;off . The situation
is now just as in Ref. [5], since the K-matrix pole is absent.
Thus we can replace the sum over ⃗k with an integral plus
the difference, the latter giving rise to an F cut. We do not
present the details as they have been presented in Ref. [5].
This step is shown in Fig. 7(e). The F cut gives the second
term on the right-hand side of the first line of Eq. (56),
which has the form

2A0ðmþ1;sÞ
3 FAðn−m−1;uÞ

L;3 ; ðB13Þ

while the integral leads to the final contribution to Cðmþ1;nÞ
L;0F .

As we have progressed through this derivation, we have
picked up three contributions that can be absorbed into

Cðmþ1;nÞ
L;0F . In fact, given our definition CL;0F in terms of the

B end caps, Eq. (B1), the contributions are specifically

absorbed into Bðmþ1Þ
∞ . This is shown in Fig. 7(f). In this way

B∞ and the meaning of the smooth K2 symbol, K̃0
2, are

defined recursively, and this feeds into the definitions of the
other infinite-volume end caps.
The above discussion holds for n −m ≥ 2, so that the

two K2 factors can be pulled out and dealt with explicitly.
The case n −m ¼ 1 is special, since there is only a single
summed loop and the only singularity arises from the pole
in K2. The analysis is simpler for this case and leads to the
second line in Eq. (56).
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2. Details on decomposition of KðuÞ
L

described in Sec. III E

In this Appendix we provide various details in the
derivation of Eq. (65) described in Sec. III E. As in the
main text, many of these results have been checked using a
Mathematica notebook together with the package The
NCAlgebra Suite [33]. Equations verified in this way are
preceded by the indicator (✓NCA✓).
We begin by solving Eq. (71). By isolating Kðu;uÞ

L;33 in the
matrix equation one finds

Kðu;uÞ
L;33 ¼ 1

1 −KL;33G −K2G
½K2GK2 þKL;33ð1þGK2Þ�;

ðB14Þ

which can be rearranged into a compact, symmetric
expression (✓NCA✓),

Kðu;uÞ
L;33 ¼ Kð0Þ

L;33 þ ð1þ TGÞKL;33
1

1 −GKKL;33

ð1þGTÞ;

ðB15Þ

whereKð0Þ
L;33 is defined in Eq. (66). This is identically the 33

component of Eq. (77). To see this, we rewrite the latter
equation as

KðuÞ
L ¼

�
0 0

0 Kð0Þ
L;33

�
þ ELKL

1

1 − GKKL

ER; ðB16Þ

¼
�
0 0

0 Kð0Þ
L;33

�
þ
�
1 0

0 1þTG

��KL;2̃2̃ KL;2̃3

KL;32̃ KL;33

�

×

�
1−
�
0 0

0 GK

��KL;2̃2̃ KL;2̃3

KL;32̃ KL;33

��−1�
1 0

0 1þGT

�
:

ðB17Þ

As the two-by-two matrix containing GK, as well as
matrices EL and ER, project onto the 3 component of
their neighbors, it is straightforward to determine the
33 component of this relation and see that it indeed matches
Eq. (B15).
We now turn to KðuÞ

L;2̃3
. Substituting the result for Kðu;uÞ

L;33
into Eq. (73), and simplifying yields (✓NCA✓)

KðuÞ
L;2̃3

¼ KL;2̃3
1

1 −GKKL;33

ð1þGTÞ: ðB18Þ

The expression forKðuÞ
L;32̃

can be obtained similarly, with the

result being essentially the left-right reflection of Eq. (B18)
(✓NCA✓),

KðuÞ
L;32̃

¼ ð1þ TGÞ 1

1 −KL;33GK

KL;32̃: ðB19Þ

Together these results give the 2̃3 and 32̃ components of
Eq. (77) [equivalently Eq. (B17)].
The final quantity we need is KL;2̃2̃. Using the method

detailed in the main text for Kðu;uÞ
L;33 , we find

KL;2̃2̃ ¼ KðuÞ
L;2̃3

GKðuÞ
L;32̃

þKL;2̃2̃: ðB20Þ

Substituting (B19) and rearranging leads to (✓NCA✓)

KL;2̃2̃ ¼ KL;2̃2̃ þKL;2̃3GK
1

1 −KL;33GK

KL;32̃: ðB21Þ

This gives the 2̃2̃ component of Eqs. (77) and (B17) and
completes the demonstration of this result.
It remains to verify Eq. (78), the relation between slashed

objects and the infinite-volume matrix, K. In the main text
we derived the relations forKL;2̃3 andKL;33, Eqs. (75) and

(76), respectively. We find the result forKL;32̃ is essentially

the reflection of that for KL;2̃3,

KL;32̃ ¼ K32̃

1

1 − FρπK2̃2̃

: ðB22Þ

To complete the discussion we must address KL;2̃2̃.
Following the same decomposition strategy one last time
we reach

KL;2̃2̃ ¼ K2̃2̃FρπKL;2̃2̃ þK2̃2̃; ðB23Þ
whose solution is

KL;2̃2̃ ¼
1

1 −K2̃2̃Fρπ
K2̃2̃: ðB24Þ

Our claim is that the four results (75), (76), (B22) and
(B24) are equivalent to the matrix result, Eq. (78). To show
this, we rearrange the latter, and insert the definitions forK
and F ρπ , yielding

KL ¼
��

1 0

0 1

�
−
�
K2̃2̃ K2̃3

K32̃ K33

��
Fρπ 0

0 0

��−1
×

�
K2̃2̃ K2̃3

K32̃ K33

�
: ðB25Þ

It is then straightforward to pick out various components of
the equation by expanding the squarebracketed quantity,
identifying a given component and then resumming. The
manipulations are simplified by the fact that the matrix
containing Fρπ is a projector. The most complicated
example is the 33 component, for which we find
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KL;33 ¼ K33 þK32̃

X∞
n¼0

FρπðK2̃2̃FρπÞnK2̃3; ðB26Þ

which sums into Eq. (76). Similarly one can show that the
2̃3 component of the matrix relation matches Eq. (75), the
32̃ component yields Eq. (B22), and the 2̃2̃ component
gives Eq. (B24).
At this stage we have derived all relations summarized in

Eqs. (77) and (78) of Sec. III E. From this point the
discussion in the main text completes the derivation,
yielding a decomposition of all entries the matrix KðuÞ

L
in terms of infinite-volume divergence-free K matrices.

3. Volume independence of δC½B2�;f0g
∞

In this Appendix we explain why δC½B2�;f0g
∞ , defined in

Eq. (94) of the main text, has only exponentially suppressed
volume dependence and can thus be taken as an infinite-
volume quantity.
To show this we begin by focusing on the first four terms,

and noting that these can be rewritten as

−
2

3
σ�Fσ†� − 2A0ðsÞ

3 Fσ†� −A0
3F 2AðsÞ

3 þ 2

3
A0

3FA3

¼ −
2

3
A0ðs−uÞ

3 Fσ� −
2

3
A0

3FA
ðs−uÞ
3 ; ðB27Þ

where22

A0ðs−uÞ
3 ≡A0ðsÞ

3 −A0ðuÞ
3 þ σ�; and

Aðs−uÞ
3 ≡AðsÞ

3 −AðuÞ
3 þ σ†�: ðB28Þ

As explained in Ref. [5] [see Eqs. (196)–(198) of that work,
and the surrounding discussion], the s − u differences in
Eq. (B27) can be written as

−
2

3
A0ðs−uÞ

3 Fσ� −
2

3
A0

3FA
ðs−uÞ
3

¼ −A0ðs−uÞ
3

iρ
3ω

σ� −A0
3

iρ
3ω

Aðs−uÞ
3 þOðe−mLÞ: ðB29Þ

The phase-space factor ρ [defined in Eq. (27)] is smooth,
allowing the implicit sums in our matrix notation to be
replaced by integrals, up to exponentially suppressed
corrections. Thus, within the framework of dropping
exponentially suppressed volume dependence, the right-
hand side is an infinite-volume quantity.
The remaining two terms in Eq. (94) are

A0̃
2
Fρπð=A2̃−A2̃ÞþA0̃

2
GρΓ½GðAðuÞ

3 −σ†�Þ−F2AðsÞ
3 �:

ðB30Þ

To show that this is also an infinite-volume quantity, we
need a new argument, since this quantity involves K-matrix
poles and thus was not encountered in Ref. [5]. We make
the argument diagrammatically in Fig. 8, based in part on
the derivation illustrated in Fig. 7. We do not give the
corresponding analytic expressions, as our earlier discus-
sion explains the precise relation between diagrams and
equations.
We begin by substituting Fig. 7(d) into the final term in

Fig. 7(c) and rearranging so that the terms involving Fρπ

and Gρ are on the left-hand side. We also make several
changes to the parts of the diagrams away from the cuts in
order to apply the result to the present quantities of interest.
These changes do not impact the derivation. They are
(a) the box on the left end now represents A0̃

2
, with the

final loop explicitly exposed; (b) the loops to the right of

(a)

(b)

(c)

FIG. 8. Derivation of Eq. (B31), using the notation of Fig. 7.

22The factors of σ� and σ†� appear here because A0ðuÞ
3 and AðuÞ

3

are defined to include the n ¼ 0 terms [see Eq. (53)] while A0ðsÞ
3

and AðsÞ
3 do not [see Eq. (57)].
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the cut are changed from sums to integrals; (c) the kernel on
the right is changed from K2 to K̃0

2; and, finally, (d), the
box on the right end represents the remainder of a full
infinite-volume end cap. These steps lead to the equality in
Fig. 8(a). At this stage, the first term on the left-hand side
representsA0̃

2
Fρπ =A2̃, the second term on the right-hand side

is manifestly an infinite-volume quantity, while the other
two terms need further manipulations to bring them to a
useful form.
The first term on the right-hand side of Fig. 8(a) is

rewritten in Fig. 8(b). The approach here is to expand the
off-shell A2̃ factor lying to the right of the cut about the
position of the K-matrix pole, using the δρ operator
introduced above. The leading term gives A0̃

2
FρπA2̃, while

the δρ-dependent term is smooth at the K-matrix pole
allowing the sum over the spectator momentum to be
replaced by an integral (up to exponentially suppressed
corrections). This is shown in the second term on the
right-hand side by the “∞” symbol within the vertical
dashed line. This term is manifestly an infinite-volume
quantity.
The final step is shown in Fig. 8(c), where we derive

an equality for the second term on the right-hand side of
Fig. 8(a). On the left-hand side we have a G cut with the
momentum a⃗ integrated. To obtain the right-hand side we
replace this integral with a sum minus a sum-integral

difference. The sum gives A0̃
2
GρΓGAðuÞ

3 , shown by the
first term on the right-hand side of Fig. 8(c). The sum-
integral difference gives rise to a factor of F, and, following

the arguments of Ref. [5], switches AðuÞ
3 − σ†� to AðsÞ

3 ,

leading to −A0̃
2
GρΓF2A

ðsÞ
3 .

The overall result of these steps is23

A0̃
2
Fρπ =A2̃ þA0̃

2
GρΓ½GðAðuÞ

3 − σ†�Þ − F 2AðsÞ
3 �

¼ A0̃
2
FρπA2̃ þ δ0C½B2�;f0g

∞ þOðe−mLÞ; ðB31Þ

where δ0C½B2�;f0g
∞ is a particular infinite-volume contribu-

tion, to be absorbed into δC½B2�;f0g
∞ and ultimately into

C½B2�
∞ . After rearrangement, this demonstrates the desired

result.

4. Symmetrization of factors adjacent to (X+Y)33
In this final Appendix, we demonstrate that the con-

tribution of the 33 component ofXþY toKðuÞ
df ðXþYÞKðuÞ

df
is consistent with the claimed general result, Eq. (149).
For definiteness, we consider the term containing the

23 component of KðuÞ
df and the 32 component of KðuÞ

df ,
although the derivation works for any (u)-type three-
particle quantities on the ends. To match with Eq. (149)
we need to show that

χ ≡KðuÞ
df;2̃3

ðXþ YÞ33KðuÞ
df;32̃

ðB32Þ

¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

�
⊗ I32̃ S

�
·

�
F2̃2̃ F2̃3

F32̃ F33

�
·

�
I 2̃3 ⊗
S

�
1

1 − I33⊗
KðuÞ

df;32̃
þ δ0KðuÞ

df;2̃2̃
; ðB33Þ

where δ0KðuÞ
df;2̃2̃

is an infinite-volume quantity that can be

absorbed into the quantity δKðuÞ
df;2̃2̃

defined in Eq. (149). Its

explicit expression is determined below.
Using the definition of Xþ Y in Eq. (117) we find

χ ¼ KðuÞ
df;2̃3

ðFþGÞ 1

1 −K2ðFþGÞK
ðuÞ
df;32̃

; ðB34Þ

which can be divided into two contributions using
Eq. (127),

χ ¼ χa þ χb; ðB35Þ

χa ¼ KðuÞ
df;2̃3

ðFþGÞ 1

1 −K2ðFþGÞ fK2FS þ ΓḠρI 2̃3 ⊗g 1

1 − I33⊗
KðuÞ

df;32̃
; ðB36Þ

χb ¼ KðuÞ
df;2̃3

ðFþGÞ 1

1 − I33⊗
KðuÞ

df;32̃
: ðB37Þ

χa can be rewritten using the reflected form of Eq. (127),

χa ¼ χa1 þ χa2 þ χa3; ðB38Þ

χa1 ¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

f⊗ I32̃GρΓþ SFK2g
1

1 − ðFþGÞK2

ðFþGÞfK2FS þ ΓḠρI 2̃3 ⊗g 1

1 − I33⊗
KðuÞ

df;32̃
; ðB39Þ
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χa2 ¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

ðFþGÞK2FS
1

1 − I33⊗
KðuÞ

df;32̃
; ðB40Þ

χa3 ¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

ðFþGÞΓḠρI 2̃3 ⊗
1

1 − I33⊗
KðuÞ

df;32̃
: ðB41Þ

χa1 includes only symmetrized quantities, but χa2 and χa3 need further work. Noting the presence of FþG, we can apply
Eq. (126) to both quantities. For χa this leads to

χa2 ¼ χa2A þ χa2B; ðB42Þ

χa2A ¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

SFK2FS
1

1 − I33⊗
KðuÞ

df;32̃
þKðuÞ

df;2̃3

1

1− ⊗ I†
33

⊗ I32̃GρΓFS
1

1 − I33⊗
KðuÞ

df;32̃
; ðB43Þ

χa2B ¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

⊗ I†
33FS

1

1 − I33⊗
KðuÞ

df;32̃
: ðB44Þ

Only χa2B contains an unsymmetrized quantity. It can be rewritten as

χa2B ¼ 1

3
KðuÞ

df;2̃3

1

1− ⊗ I†
33

⊗ I†
33SFS

1

1 − I33⊗
KðuÞ

df;32̃
þ
�
KðuÞ

df;2̃3

1

1− ⊗ I†
33

⊗ I†
33

�ðu−sÞ iρ
3ω

S
1

1 − I33⊗
KðuÞ

df;32̃
; ðB45Þ

where the first term is symmetrized, while in the second the two factors ofKðuÞ
df are bound together by an integral operator,

giving a contribution to δ0KðuÞ
df;2̃2̃

.

Returning to χa3, we can apply the reflected form of Eq. (135), yielding

χa3 ¼ KðuÞ
df;2̃3

1

1− ⊗ I†
33

SFΓḠρI 2̃3 ⊗
1

1 − I33⊗
KðuÞ

df;32̃
þKðuÞ

df;2̃3

1

1− ⊗ I†
33

⊗ I32̃FρπI 2̃3 ⊗
1

1 − I33⊗
KðuÞ

df;32̃

þKðuÞ
df;2̃3

1

1− ⊗ I†
33

⊗ ρ32̃ ⊗ I 2̃3 ⊗
1

1 − I33⊗
KðuÞ

df;32̃
: ðB46Þ

The final term in this expression gives an additional contribution to δ0KðuÞ
df;2̃2̃

.

The final step is to analyze χb. This requires the result

KðuÞ
df;2̃3

GKðuÞ
df;32̃

¼ KðuÞ
df;2̃3

FKðsþs̃Þ
df;32̃

þKðuÞ
df;2̃3

⊗ ρ33 ⊗ KðuÞ
df;32̃

; ðB47Þ

which implies

KðuÞ
df;2̃3

ðFþGÞKðuÞ
df;32̃

¼ KðuÞ
df;2̃3

FSKðuÞ
df;32̃

þKðuÞ
df;2̃3

⊗ ρ33 ⊗ KðuÞ
df;32̃

; ðB48Þ

¼ 1

3
KðuÞ

df;2̃3
SFSKðuÞ

df;32̃
þKðuÞ

df;2̃3
⊗ ρ33 ⊗ KðuÞ

df;32̃
þKðu−sÞ

df;2̃3

iρ
3ω

KðuÞ
df;32̃

: ðB49Þ

The derivation of Eq. (B47) is shown diagrammatically in Fig. 9. The result holds, as usual, for any choice of
unsymmetrized (u)-like three-particle quantities on the ends, and thus can be applied to χb, yielding

χb ¼
1

3
KðuÞ

df;2̃3
SFS

1

1 − I33⊗
KðuÞ

df;32̃
þKðuÞ

df;2̃3
⊗ ρ33 ⊗

1

1 − I33⊗
KðuÞ

df;32̃
þKðu−sÞ

df;2̃3

iρ
3ω

1

1 − I33⊗
KðuÞ

df;32̃
: ðB50Þ

The last two terms give additional contributions to δ0KðuÞ
df;2̃2̃

.
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Combining all these results we find the desired result, Eq. (B33), with

δ0KðuÞ
df;2̃2̃

¼
�
KðuÞ

df;2̃3

1

1− ⊗ I†
33

⊗ I†
33

�ðu−sÞ iρ
3ω

S
1

1 − I33⊗
KðuÞ

df;32̃
þKðuÞ

df;2̃3

1

1− ⊗ I†
33

⊗ ρ32̃ ⊗ I 2̃3 ⊗
1

1 − I33⊗
KðuÞ

df;32̃

þKðuÞ
df;2̃3

⊗ ρ33K
ðuÞ
df;32̃

þKðu−sÞ
df;2̃3

iρ
3ω

KðuÞ
df;32̃

: ðB51Þ
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