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Abstract

We generalize local operators of the leading twist-2 of N = 4 SYM theory to the case of complex Lorentz 
spin j using principal series representation of sl(2, R). We give the direct computation of correlation func-
tion of two such non-local operators in the BFKL regime when j → 1. The correlator appears to have the 
expected conformal coordinate dependence governed by the anomalous dimension of twist-2 operator in 
NLO BFKL approximation predicted by Kotikov and Lipatov.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The idea of analytical continuation in spin has a long history in theoretical physics going back 
to the early Regge’s works on non relativistic quantum mechanics [1]. In the context of gauge 
theories these ideas turned into the what is now known as Regge theory. The BFKL approxima-
tion [2–4] was originally proposed for the study of the Regge (collinear) limit of hadron deep 
inelastic scattering amplitudes in QCD, when g2

YMN → 0, the Mandelstam variable s → ∞
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with g2
YMN log s

M2 - fixed. Kotikov and Lipatov [5] applied a similar approximation to the 

study of anomalous dimensions of twist-2 operators tr [F+μ
⊥ g⊥

μνD
j−2Fν+

⊥ + ...] in the BFKL 
limit, when the Lorentz spin is analytically continued to j − 1 = ω → 0, the ’t Hooft coupling 

g2 = g2
YM

N

16π2 → 0 and g2

j−1 = const . The anomalous dimension as a function of spin is understood 
as analytic continuation of the anomalous dimension of local operators. This immediately raises 
the question about the nature of such generalized object. What is the definition of operator with 
complex spin in terms of elementary fields? Is it possible to rederive the result of [5] directly cal-
culating the correlation function between two such generalized operators? The goal of this paper 
is to construct an explicit form of twist-2 operators for arbitrary complex Lorentz spin and to 
perform the direct calculation of their two-point correlation function in the Leading Logarithmic 
Approximation (LLA) BFKL with Leading Order (LO) accuracy for the impact factors and NLO 
for the anomalous dimension.

We will achieve it defining certain light-ray operators with complex spin and conformal 
weight, which naturally generalize local twist-2 operators, namely, at integer values of the spin 
it turns into the integral of local operator along the light-ray. This allows us to resolve a subtle 
question about analytic continuation from local operators. The last has been extensively used in 
comparing of results [5] with integrability based calculations in N = 4 SYM [6–8]. To make 
such continuation, one usually uses the principle of maximal transcendentality within each order 
of the perturbation theory, however, this prescription was never been proven.1

At the same time, one can think about these light-ray operators as one-dimensional defects 
in superconformal N = 4 SYM and this paper as a first step in the direction of conformal boot-
strap of nonlocal operators in BFKL limit. The Conformal Bootstrap Programme initiated in 
the classical works [10–14], received the substantial developing during the last years after the 
seminal paper [15]. Many impressive results was obtained from the bootstrap of the correlation 
functions of local operators (see [16] for review) and more recently CFT with boundaries and 
defects attracted a lot of attention particularly in N = 4 SYM [17–19] where one can also use 
Integrability. Nonlocal operators impose new symmetry restrictions on the CFT data and can 
let a further insight into the dynamics of conformal theories. Actually nonlocal light-ray opera-
tors already appear on the level of 4-point correlation function of local operators in Regge limit 
[20,21] efficiently resumming the intermediate local operators in OPE channel. Recently it was 
connected [21] with the Lorentzian inverse formula [22]. However, the explicit definition of non-
local operators through the elementary fields is available in a very few cases and consideration 
mainly based on the symmetry analysis. At the same time, with our explicit definition of light-
ray operators we can go beyond kinematics and get a deeper look into the dynamics of nonlocal 
operators in the gauge theories. Particularly we calculate the correlation function of three such 
light-ray operators in the partner papers [23,24].

Let us now describe the logic of our approach. We start with construction of a non-local 
light-ray twist-2 operator which transforms according to the principal series representation of 
sl(2, R) with conformal spin J = 1

2 + iν, ν ∈ R and even parity. This operator diagonalizes the 
renormalization group Hamiltonian. It is constructed from two local fields, with the coordinates 
x1− and x2− on the same light-ray, connected by the adjoint Wilson line factor. The operator is 
then integrated over the positions of both local operators along the light-ray.

1 In the [9] a certain analyticity condition for the Baxter Q-function of sl(2) Heisenberg spin chain were proposed 
reproducing the analytic continuations of harmonic sums w.r.t. the spin, at one and two loops.
2
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Fig. 1. The “frame” configuration for the regularized light ray operator: long sides are stretched along the light ray with 
the direction n+ , short sides oriented in an orthogonal direction.

Fig. 2. Two Wilson frames, at a distance |x − y|⊥ from each other, stretched in two different light-cone directions n+
and n− and a typical gluon exchange between them.

Constructed in this way, the light-ray operator is a singular, not well defined object in the 
BFKL regime. To avoid the singularity, we regularize it by placing the local operators on two 
different, but very close parallel light rays separated by a small distance δx⊥ = |x1⊥ − x3⊥|
from each other, in a direction orthogonal to the light rays (see Fig. 1). We close it into a rect-
angular Wilson loop, with two fields inserted at the diagonally opposite corners of the loop, as 
depicted in Fig. 1. We will call this loop the Wilson frame.2 Note that under a generic conformal 
transformation the frame will look almost the same: the distance between two light-lines will 
be slightly changed and the short lines connecting the ends of light ray intervals will be only 
slightly deformed. One can show that this deformation does not change the final results in our 
approximation: one can neglect the gluons emitted by infinitesimally short sides of the frame.

We will calculate in this paper the correlation function of two such objects separated by a 
certain distance in orthogonal space and stretched along two different light-like directions given 
by vectors n+ and n−, as shown in Fig. 2. We will use for that the OPE3 decomposition over 
“color dipoles” in the limit when (x1 − x3)

2 → 0, proposed by one of the authors [31] (see also 
the review [32]). The “color dipole” is a pair of parallel infinite light-like Wilson lines, with a 
cut-off σ on the momenta of gauge field in the light-cone direction. After such decomposition, 
symbolically depicted in Fig. 4, we calculate the correlator between two color dipoles. This cal-
culation is done in two steps: first, for each dipole we compute the correlator for small values of 
the cutoff σ̃ , such that g2 log σ̃

σ0
� 1, where σ0 < σ̃ � σ , when the lowest order of perturbation 

theory dominates in the LLA approximation, and then we evolve the result w.r.t. σ̃ to its final 

2 we hope the reader will avoid the confusion between this Wilson frame and the coordinate frame.
3 For the recent development of these ideas see [25]. Another type of OPE for Wilson Loops with null edges was 

elaborated in [26–30].
3
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value σ . It is important to stress that the evolution with respect to the scale σ± for each color
dipole is governed by the BFKL equation [31]. The ratio of cut-offs σ+σ−

σ0+σ0− , due to the conformal 
invariance, appears to be related to certain anharmonic ratios defined by the shapes of our con-
figuration of frames. The last step is the integration over the coordinates of Wilson frame along 
each of the light-rays. In what follows, we are going to precise each step of this calculation.

2. Generalization of twist-2 operators to the case of principal series sl(2, R)

The twist-2 supermultiplet of local operators was explicitly constructed in [33]. For example, 
one of the components at zero order in g

YM
reads as follows (j is even):

Sj

loc(x) = 6Oj
gg(x) + j − 1

2
Oj

qq(x) + j (j − 1)

4
Oj

ss(x), (1)

where

Oj
gg(x) = tr G

5
2
j−2,x1,x2

F
μ

+⊥(x1)g
⊥
μνF

ν+⊥(x2)|x=x1=x2 , (2)

Oj
qq(x) = tr G

3
2
j−1,x1,x2

λ̄α̇Aσ+α̇β(x1)λ
A
β (x2)|x=x1=x2 , (3)

Oj
ss(x) = tr G

1
2
j,x1,x2

φ̄AB(x1)φ
AB(x2)|x=x1=x2 . (4)

We introduced here the differential operator Gα
n,x1,x2

= in(∇x2 + ∇x1)
nCα

n (
∇x2 −∇x1∇x2+∇x1

), where 

Cα
n (x) is the Gegenbauer polynomial of order n with index α. ∇x are covariant derivatives in 

the light-like direction n+: ∇x = n
μ
+(∂μ − ig

YM
Aμ) = ∂+ − ig

YM
A+. The fields entering the op-

erators belong to the set X = {F μ
+⊥, λA+α, ̄λα̇+A, φAB} which contains the field components with 

maximal spin (see appendix A).
Let us note that all components of twist-2 supermultiplet are constructed from so called pri-

mary conformal operators, in the sense that they realize the highest-weight representation of 
sl(2, R). For example, in the case of Sj

loc the operators Oj
gg, Oj

qq, Oj
ss are primaries, with con-

formal spin J = j + 1. Due to supersymmetry we should work with superconformal operators 
transforming under an irreducible representation of sl(2|4). It leads to the superprimary opera-
tors which are a linear combination of conformal operators as in (1). It is important to stress that 
the coefficients in this combination do not depend on the Yang-Mills coupling constant g2

YM
and 

the renormalization takes place for each conformal operator separately.4 These superconformal 
operators diagonalize the one-loop dilatation operator given by the Hamiltonian:

H = g2[H12 + H21], (5)

Hi,i+1φ(zi, zi+1) = 2
[
ψ(JG

i,i+1) − ψ(1)
]
, (6)

where JG
i,i+1 is defined through the Casimir operator J 2

i,i+1 = JG
i,i+1(J

G
i,i+1 − 1) of the full G =

PSU(2, 2|4) group [34].
We start with generalization of local conformal operators. Our logic will be close to the logic 

of [35]. Local conformal operators correspond to the discrete unitary irreps of sl(2, R). Let us 
construct a nonlocal light-ray operator5 which realizes the principal series irrep of sl(2, R) with 

4 It is so, because the supercharges don’t depend on g
YM

.
5 An interesting dual conformal symmetry on the light-cone was discovered in [36].
4
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the conformal spin J = 1
2 + iν, ν ∈ R and even parity. A general light-ray operator with local 

fields χs of the same conformal spin s looks as follows:

Ss
φ(x1⊥) =

∞̂

−∞
dx1−

∞̂

x1−

dx2−φ(x1−, x2−)χs(x1)[x1, x2]Adjχ
s(x2), (7)

where

[x1, x2]Adj = P exp[ig
YM

1ˆ

0

du(x2 − x1)μA
μ
Adj (x1(1 − u) + x2u)], (8)

and the function φ(x1, x2) is an arbitrary function of two variables. We are looking for the oper-
ators Ss

φ which are the eigenfunctions of sl(2, R) Casimir operator defined in the following way: 
Take the generators of sl(2, R) satisfying standard relations:[

J3, J±
]= ±J±,[

J+, J−
]= −2J3. (9)

and realize them on the fields with conformal spin s:

J+ = i√
2
P+ = 1√

2

d

dx
,

J− = i√
2
K+ = √

2(2sx + x2 d

dx
), (10)

J3 = i

2
(D + M−+) = s + x

d

dx
.

Here x is a coordinate along the light ray. The equation on the eigenvalues and eigenfunctions 
φ(x1−, x2−) of the Casimir operator


J 2Ss
φ = J (J − 1)Ss

φ = (j + 1)jSs
φ (11)

can thus be rewritten as a partial differential equation[
β2
(

∂2

∂β2 − ∂2

∂α2

)
− 2sβ

∂

∂β
+ s(s + 1)

]
φ(α,β) = J (J − 1)φ(α,β), (12)

where α = x1− + x2−, β = x2− − x1−. Separating the variables φ(α, β) = f (α)g(β) we get:⎧⎪⎪⎨
⎪⎪⎩

∂2

∂α2 f (α) = −k2f (α),(
β2 ∂

∂β2 − 2sβ
∂

∂β
+ s(s + 1) + k2β2

)
g(β) = J (J − 1)g(β).

(13)

The general solution for the eigenfunctions reads as follows:

φ(x1−, x2−)

(x2− − x1−)2s− 3
2

=

=
ˆ

dk
[
η1(k)eik(x1−+x2−)(C11J− 1

2 +J
(k(x2− − x1−)) + C12J 1

2 −J
(k(x2− − x1−))) +

+ η2(k)e−ik(x1−+x2−)(C21J− 1
2 +J

(k(x1− − x2−)) + C22J 1
2 −J

(k(x2− − x1−))
]
, (14)
5
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where Jν(x) - is a Bessel function and η1(k), η2(k) are arbitrary functions of k. In addition, we 
should impose a set of constraints on the operator Ss

φ . First of all, it should be an entire function 
of J , to allow for an unambiguous analytic continuation of the light-ray operator in J , and the 
dimension of this operator should coincide with the standard local twist-2 operator for any integer 
J . Both of these conditions are satisfied if we choose a linear combination of Bessel functions as 
the Hankel function of the second order:

Ci1J− 1
2 +J

(k(x2− − x1−)) + Ci2J 1
2 −J

(k(x2− − x1−)) → H2
J− 1

2
(k(x2− − x1−)), i ∈ {1,2}

(15)

In this way we obtain an operator which is an entire function of spin: It is well defined for 
J = 1

2 + iν and thus it can be uniquely continued to the whole complex plane of J . It is natural to 

choose the so far arbitrary coefficient functions as η1(k) = η2(k) = 1
2δ(k)( k

2 )J− 1
2 which naturally 

sets to zero the center-of-mass momentum k and cancels the singularity at k → 0.6

Now, using the asymptotics of Hankel function at k → 0:

H2
J− 1

2
(k(x2− − x1−)) → −(

k(x2− − x1−)

2
)−J+ 1

2
�(J − 1

2 )

π
, (16)

we get the following form of the light-ray operators (denoted by S̆) for scalars, fermions and 
gluons:

S̆J
sc(x1⊥) =

∞̂

−∞
dx1−

∞̂

x1−

dx2−(x2− − x1−)−J tr φ̄AB(x1)[x1, x2]Adjφ
AB(x2), (17)

S̆J
f (x1⊥) =

∞̂

−∞
dx1−

∞̂

x1−

dx2−(x2− − x1−)−J+1 tr λ̄α̇A(x1)σ
+α̇β [x1, x2]Adjλ

A
β (x2), (18)

S̆J
gl(x1⊥) =

∞̂

−∞
dx1−

∞̂

x1−

dx2−(x2− − x1−)−J+2 tr F
μ

+⊥(x1)g
⊥
μν[x1, x2]AdjF

ν+⊥(x2). (19)

Let us clarify the correspondence of nonlocal operators (17)-(19) to the local operators, using 
gluons as an example. We take an odd integer J in (19) and define the integral over x2 − x1, with 
the prescription analogous to the eq.(3.19) of [35]. This gives, e.g. for the gluons:

S̆J
gl(x1⊥) = 23−J 2πi

�(J − 2)

∞̂

−∞
dx− tr

[
(
←−∇ − −→∇ )J−3F i+ (x)F+i (x)

]
, (20)

where 
−→∇ and 

←−∇ are covariant derivatives which act on the left and right scalars, correspondingly. 
On the other hand, the local gluon operator (for odd J ) has the following form:

Oj
gl(x) = OJ−1

gl (x) = tr

[
iJ−3(

−→∇ + ←−∇ )J−3C
5
2
J−3

(−→∇ − ←−∇
−→∇ + ←−∇

)
F i+ (x)F+i (x)

]
. (21)

6 such choice of η1(k), η2(k) also leads to the light-ray operator transforming as a primary w.r.t. SO(4,2), see the 
related discussion in [44].
6
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Integrating it over the coordinate, we get:

∞̂

−∞
dx−OJ−1

gl (x) = iJ−3 �(J − 1
2 )2J−3

�( 5
2 )�(J − 2)

∞̂

−∞
dx−tr

[
(
−→∇ − ←−∇ )J−3F i+ (x)F+i (x)

]
. (22)

All terms in OJ−1
gl (x) with nonzero power 

−→∇ + ←−∇ disappear because they are full derivatives. 
Now we want to construct a nonlocal superconformal operator. Nonlocal operator which cor-
responds to 

´
dx Sj

loc(x) is a sum SJ
nloc = cscS

J
sc + cf SJ

f + cglS
J
gl with some so far unknown 

coefficients. They can be fixed by comparing the local and nonlocal operators in the case of 
integer J . For example for gluons, using (20), (22) we conclude that

cgl = iJ 22J−4�(J − 1
2 )

π�( 1
2 )

. (23)

And similarly we get the other coefficients:

cf = i
J − 2

2

iJ 22J−4�(J − 1
2 )

π�( 1
2 )

, (24)

csc = −(J − 2)(J − 1)
iJ 22J−4�(J − 1

2 )

π�( 1
2 )

. (25)

Finally, the superconformal operator with conformal spin J reads as follows:

S̆J (x1⊥) = iJ 22J−4�(J − 1
2 )

π�( 1
2 )

(
−(J−1)(J−2)S̆J

sc(x1⊥) + i
J − 2

2
S̆J

f (x1⊥) + S̆J
gl(x1⊥)

)
.

(26)

Now let us omit the common factor and redefine the operator as follows:

S̆J (x1⊥) = −(J − 1)(J − 2)S̆J
sc(x1⊥) + i

J − 2

2
S̆J

f (x1⊥) + S̆J
gl(x1⊥). (27)

In what follows, we will be interested in the BFKL limit when the Lorentz spin j goes to one: 
j = J − 1 = 1 + ω → 1. In this limit, the operator takes the following form:

S̆2+ω(x1⊥) = −ωS̆2+ω
sc (x1⊥) + i

ω

2
S̆2+ω

f (x1⊥) + S̆2+ω
gl (x1⊥), (28)

where we kept in the coefficients only the leading order in ω.
These light ray operators, regularized by counterterms in MS scheme, are well defined objects 

and one can calculate their anomalous dimensions order-by-order in perturbation theory. How-
ever, if one wants to calculate j → 1 asymptotics of anomalous dimensions in all orders by BFKL 
approximation, the light-ray operators regularized with counterterms are not convenient since 
direct application of BFKL analysis gives divergent result. The way out is to introduce point-
splitting regularization of UV-divergencies of light-ray operators. Namely we will introduce the 
following regularization mentioned in the introduction: we replace the light-ray operator (27)
by a non-local rectangular Wilson loop with two opposite sides stretched along the light-cone 
direction and two other sides (whose length tends to zero) being orthogonal to the light-cone. 
The fields are placed in two opposite corners of the Wilson frame. The configurations of Wilson 
frame and the positions of operators resulting from these operations are shown in Fig. 1. For 
example, for the gluons we get:
7
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Fig. 3. A generic conformal transformation φ : x → x′ acting on infinitesimally narrow Wilson frame almost conserves 
its shape.

S̆J
gl(x1⊥) = lim

(x1⊥−x3⊥)2→0
SJ

gl(x1⊥, x3⊥) =

= lim
(x1⊥−x3⊥)2→0

∞̂

−∞
dx1−

∞̂

x1−

dx3−(x3− − x1−)−J+2 tr F i+ (x1)[x1, x3]�F+i (x3), (29)

x1 = (x1−,0, x1⊥), x3 = (x3−,0, x3⊥)

and the full regularized operator reads as follows:

SJ (x1⊥, x3⊥) = −(J − 1)(J − 2)SJ
sc(x1⊥, x3⊥) + i

J − 2

2
SJ

f (x1⊥, x3⊥) + SJ
gl(x1⊥, x3⊥),

(30)

where [x1, x3]� - Wilson frame with the local fields placed at the corners x1, x3 on a diagonal 
of the frame and the short sides x23, x41 directed into the orthogonal space. The operation “lim” 
is understood in the following sense: at first we should carry out all calculation with the fixed 
length of short sides |x1⊥ − x3⊥|2 
= 0, and only after that we take the limit. In this sense we can 
treat our infinitesimally narrow Wilson frame as a conformal object. Namely if we carry out any 
conformal transformation this infinitesimally narrow Wilson frame almost conserves its shape 
(see Fig. 3).

3. OPE over color dipoles for nonlocal operators SJ
nloc

Let us introduce two nonlocal super-primary operators defined above: the first one, S2+ω1+ , 
is placed along n+ and the second, S2+ω2− , along n−. Our goal is to calculate their correlation 

function in the BFKL limit ω1, ω2 → 0, g2

ω1
, g2

ω2
→ fixed. The main contribution in this case 

comes from large distances L+(L−) along n+(n−). The integral over L+(L−) entering into the 
definition of the regularized light-ray operator leads to the Regge pole 1

ω1,2
. This pole is analogous 

to the large log s
M2 in the Regge approximation for high energy scattering amplitudes.7 Summing 

all contributions in g2

ω1,2
in our setup corresponds to summing the powers g2 log s

M2 in the LLA 
in high energy scattering - the key feature of the BFKL approximation.

In this case we can apply the OPE over color dipoles, which was elaborated for the scattering 
amplitudes in [31]. Let us remind the logic of this approach within the scattering theory and then 
relate it to our calculation.

7 In high energy scattering M is a reference scale such that m2 � M2 � s, where m is a characteristic hadron mass.
8
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Fig. 4. Color dipole decomposition for the correlator of two frames. Due to the separation of scales w.r.t. the rapidity Y
in BFKL approximation, the correlator factorizes into the “probe impact factors”, the dipole-dipole interaction and the 
“target impact factor”. The analogue of rapidity Y in the current paper is log σ – the logarithm of cutoff for the momenta 
of the gauge fields in the light cone direction. As an example, the probe is represented by an NLO graph where as the 
target – by an LO graph.

The high-energy behavior of the amplitudes can be studied in the framework of the rapidity 
evolution of Wilson-line operators forming color dipoles. The main idea is the factorization in 
rapidity: we separate a typical functional integral describing scattering of two particles into (i) 
the integral over the gluon (and gluino) fields with rapidity close to the rapidity of the “probe” 
YA, (ii) the integral over the gluons with rapidity close to the rapidity of the target YB , and (iii) 
the integral over the intermediate region of rapidities YA > Y > YB , see Fig. 4. The result of the 
first integration is a certain coefficient function (impact factor) times color dipole (ordered in 
the direction of the probe velocity) with rapidities up to YA. Similarly, the result of the second 
integration is again the impact factor times the color dipole ordered in the direction of target’ ve-
locity with rapidities greater than YB . The result of the last integration is the correlation function 
of two dipoles which can be calculated using the evolution equation for color dipoles, known in 
the leading and next-to-leading order [31].

To factorize in rapidity, it is convenient to use the background field formalism: we integrate 
over gluons with Y > YA and leave the gluons with Y < YA as a background field, to be integrated 
over later. Since the rapidities of background gluons are very different from the rapidities of 
gluons in our Feynman diagrams, the background field is seen by the probe in the form of a 
shock wave (pancake) due to the Lorentz contraction. To derive the expression of a quark or 
gluon propagator in this shock-wave background we represent the propagator as a path integral 
over various trajectories, each of them weighed with the gauge factor Pexp(ig

´
dxμAμ) ordered 

along the propagation path. Now, since the shock wave is very thin, quarks or gluons emitted 
by the probe do not have time to deviate in transverse direction so their trajectory inside the 
shock wave can be approximated by a segment of the straight line. Moreover, since there is 
no external field outside the shock wave, the integral over the segment of straight line can be 
formally extended to ±∞ limits yielding the Wilson-line gauge factor
9
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U
σ+
x⊥ = P exp[ig

YM

∞̂

−∞
dx+A

σ+− (x)], (31)

where we have used the gauge field with a cutoff σ = eY w.r.t. the longitudinal momenta k+

A
σ+
μ (x) =

ˆ
d4kθ(σ+ − |k+|)eikxAμ(k). (32)

Now let us adopt this scheme of calculation to our correlator. In our case, the Wilson frames 
play the role of the probe and the target, respectively. The gluons emitted and absorbed within 
each frame contribute to their “impact factors”. The correlator factorizes into these two impact 
factors and the BFKL evolution of color dipoles appearing in the OPE of the frames. The BFKL 
evolution corresponds to the evolution of the cutoff from some minimal8 σ0+ to the final value 
σ+ for the frame oriented in the n− direction. Similarly, for the second dipole, the evolution goes 
from σ0− to σ−. As we will see later, the ratio σ+σ−

σ0+σ0− will be identified with a certain anharmonic 
ratio of characteristic sizes of the configuration. The rest of the calculation is very similar to the 
case of scattering in Regge kinematics and is based on computations of graphs in the pancake 
background.

The propagators of gluons, scalars and fermions get modified by the presence of this pan-
cake background. Denoting the corresponding average as 〈. . . 〉 we represent these propagators 
as follows9:

〈Aa
μ(x)Ab

ν(y)〉 = 1

4π3

ˆ
d2z⊥U

σ+ab
z [x+g⊥

μξ − n−μ(x − z)⊥ξ ][y+δ⊥ξ
ν − n−ν(y − z)

ξ
⊥]·

· x+|y+|
[−2(x − y)−x+|y+| + x+(y − z)2⊥ + |y+|(x − z)2⊥ + iε] , (33)

〈�̂a
I (x)�̂b

J (y)〉 = δIJ

4π3

ˆ
d2z⊥·

· x+|y+|Uab
z[−2(x − y)−x+|y+| + (x − z)2⊥|y+| + (y − z)2⊥x+ + iε

]2 , (34)

〈λaI
α (x) λ̄bJ

α̇ (y)〉 = i

2π3

ˆ
d2z⊥Uab

z

[
x+n̄− + (x̄ − z̄)

]
n+
[|y+|n̄− − (ȳ − z̄)

] ·
· x+|y+|
[−2(x − y)−x+|y+| + (x − z)2⊥|y+| + (y − z)2⊥x+ + iε]3

, (35)

where n̄αα̇ ≡ nμσ̄
μ
αα̇ and nα̇α ≡ nμσ α̇α

μ , and Uab
z = 2tr(taUzt

bU
†
z ).

The effective propagator for any field χ has a form of decomposition over Wilson lines 
〈χa(x)χb(y)〉 = ´

d2z⊥U
σ+ab
z⊥ f (z, x, y), where f (z, x, y) is a function which depends only on 

the coordinates and doesn’t carry the color indices. Then any conformal nonlocal operator SJ
sc, 

SJ
f , SJ

gl can be decomposed over the color dipoles:

8 The initial point σ0 is an analog of the low normalization point μ2 ∼ Q2
0 ∼ 1 GeV for usual DGLAP evolution. It 

should be chosen in such way that σ0 � M but g2 ln σ0
M

� 1 where M is of order of the mass of colliding particles (in 
our case of M is of order of inverse transverse separations of Wilson frames).

9 pancake is placed along n+ direction.
10
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tr(χ(x)[x, y]
�
χ(y)) →

ˆ
d2z⊥f (z, x, y)U

σ+ab
z⊥ tr(taUσ+

x⊥tbU
σ+
y⊥) −−−−→

N→∞ˆ
d2z⊥f (z, x, y)

N2

2
(1 − 1

N
tr(1 − U

σ+
x⊥U

σ+†
z⊥ ) − 1

N
tr(1 − U

σ+
z⊥U

σ+†
y⊥ ) + O(g2)), (36)

where we have used the following sequence of equalities:

U
σ+ab
z tr(taUσ+

x tbU
σ+
y ) = 2tr(taUσ+

z tbU
σ+†
z ) tr(taUσ+

x tbU
σ+
y )

= tr(taUσ+
x U

σ+†
z taU

σ+
z U

σ+†
y ) =

= 1

2
tr(Uσ+

x U
σ+†
z ) tr(Uσ+

z U
σ+†
y ) − 1

2N
tr(Uσ+

x U
σ+†
y ) −−−−→

N→∞
N2

2

[
1 − Uσ+(x, z) − Uσ+(z, y) + Uσ+(x, z)Uσ+(z, y)

]=
= N2

2

[
1 − Uσ+(x, z) − Uσ+(z, y)

](
1 + O(g2,

1

N2 )

)
, (37)

where we have introduced the color dipole operator in fundamental representation:

Uσ+(x1⊥, z⊥) = 1 − 1

N
tr(Uσ+

x1⊥U
σ+†
z⊥ ) (38)

with Uσ+
x⊥ defined in (31).

The first two lines of (37) hold at any N . In the last line we dropped the term non-linear 
in color dipoles. This is valid since in the BFKL approximation we take into account only lin-
ear evolution of Wilson-line operators corresponding to the processes containing two reggeized 
gluons in t-channel.10

Let us now proceed with calculation of the gluonic part. Calculation for scalars and fermions 
can be done in the same way and it turns out that the main contribution for the “impact factor” 
in LO comes just from gluons. Naively, it can be explained from the fact that in the limit ω =
J − 2 → 0 the scalar and fermionic terms enter with subleading coefficients into the eq. (28). 
The explicit computation of correlators confirms it.

Using the propagator (33) and the decomposition (36) the OPE for the gluon operator 
stretched in n+ direction reads as follows11

tr F+i (x1)[x1, x3]F i+ (x3) →
N2

2π3

ˆ
d2z

(
2

(x3−(x1 − z)2⊥ − x1−(x3 − z)2⊥)2

+x1−x3−(9(x1 − z)2⊥(x3 − z)2⊥ + 6(x1 − z, x3 − z)2)

(x3−(x1 − z)2⊥ − x1−(x3 − z)2⊥)4
·

(1 − Uσ−(x1⊥, z⊥) − Uσ−(z⊥, x3⊥))

)
, (39)

10 The nonlinear terms are relevant for the high-energy in dense QCD regime like pA scattering on LHC.
11 The representation for the impact factor as an integral of 4-point correlator of the external currents and the gluonic 
current was constructed in [37,38].
11
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where we use in Uσ− the gauge field with a cut-off σ− for the light-cone momenta. Now we can 
collect the full expression for the correlator of operators S2+ω1

gl and S2+ω2
gl stretched along n+

and n− directions using (29) and (39):

〈S2+ω1
gl (x1⊥, x3⊥)S

2+ω2
gl (y1⊥, y3⊥)〉 =

= (
N2

2π3 )2

∞̂

−∞
dx1−

∞̂

x1−

dx3−(x3− − x1−)−ω1

∞̂

−∞
dy1+

∞̂

y1+

dy3+(y3+ − y1+)−ω2 ·

·
ˆ

d2z

(
2

((x3−(x1 − z)⊥)2 − x1−(x3 − z)2⊥)2

+ x1−x3−(9(x1 − z)2⊥(x3 − z)2⊥ + 6(x1 − z, x3 − z)2)

(x3−(x1 − z)2⊥ − x1−(x3 − z)2⊥)4

)

·
ˆ

d2w

(
2

((y3+(y1 − w)⊥)2 − y1+(y3 − w)2⊥)2

+ y1+y3+(9(y1 − w)2⊥(y3 − w)2⊥ + 6(y1 − w,y3 − w)2)

(y3+(y1 − w)2⊥ − y1+(y3 − w)2⊥)4

)

(〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥,w⊥)〉 + 〈Uσ−(x1⊥, z⊥)Vσ+(w⊥, y3⊥)〉+
〈Uσ−(z⊥, x3⊥)Vσ+(y1⊥,w⊥)〉 + 〈Uσ−(z⊥, x3⊥)Vσ+(w⊥, y3⊥)〉), (40)

where Vσ+(y1⊥, w⊥) is the operator similar to (38) but for the second frame operator stretched 
along n−.

All terms in the last brackets are similar and give the same contribution. We proceed with the 
first one. As was demonstrated in [31], the problem of calculation of correlator for two dipoles 
splits into two parts: we compute the correlator for relatively small values of the cutoff σ̃ such 
that g2 log σ̃

σ0
� 1, where σ0 < σ̃ � σ for each dipole, when the lowest order of perturbation 

theory dominates in the LLA BFKL approximation, and then we evolve the result w.r.t. σ̃ to its 
final value σ . Let us elaborate it in detail.

3.1. BFKL evolution

As was demonstrated in [39] evolution w.r.t. the cutoff can be written in the form of BFKL 
equation12:

σ
d

dσ
Uσ (z1, z2) = KBFKL ∗ Uσ (z1, z2), (41)

where KBFKL is the integral operator having the following form in LO BFKL approximation:

KLO BFKL ∗ U(z1, z2) = 2g2

π

ˆ
d2z3

z2
12

z2
13z

2
23

[U(z1, z3) + U(z3, z2) − U(z1, z2)] . (42)

In principle, we will use in what follows the NLO generalization of this kernel, or rather of its 
eigenvalues, to fix the NLO scaling of the correlator. To fix the right NLO normalization of the 

12 we dropped index ⊥ for sake of brevity. Also we will omit index ⊥ in all formulas where it doesn’t lead to confusion.
12
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correlator, we should also correct the operators U, V, but we will restrict ourselves to the LO in 
the normalization.

The BFKL kernel has G = SL(2, C) symmetry and its eigenfunctions and the spectrum 
should be classified w.r.t. the irreps of this group. The SL(2, C) group has three sets of uni-
tary irreps. The color dipole operator can be expanded w.r.t. only one of them, the principal 
series, characterized by conformal weights h = 1+n

2 + iν, h̄ = 1−n
2 + iν, where ν ∈R, n ∈Z and 

a two-dimensional coordinate z0. Explicitly, the eigenfunction reads as follows13:

Eh,h̄(z10, z20) =
[

z12

z10z20

]h [
z̄12

z̄10z̄20

]h̄

. (43)

Let us introduce the projection of dipole on the E-function:

Uν,n(z0) = 1

π2

ˆ
d2z1d

2z2

z4
12

E∗
ν,n(z10, z20)U(z1, z2) (44)

and the inverse transformation is

U(z1, z2) =
∞∑

n=−∞

ˆ
dν

ˆ
d2z0

ν2 + n2/4

π2 Eν,n(z10, z20)Uν,n(z0). (45)

The solutions of BFKL equation (41) in terms of this projection can be explicitly written in the 
following form:

Uσ
ν,n(z0) =

(
σ

σ0

)ℵ(ν,n)

Uσ0
ν,n(z0), (46)

where ℵ(n, ν) are the eigenvalues of KBFKL. Let us give their expression already in the NLO 
approximation [5]

ℵ(ν, n = 0) = 4g2(χ(ν) + g2δ(ν)),

χ(ν) = 2�(1) − �(
1

2
+ iν) − �(

1

2
− iν),

δ(ν) = χ ′′(ν) + 6ζ(3) − 2ζ(2)χ(ν) − 2�(
1

2
+ iν) − 2�(

1

2
− iν), (47)

where �(x) = �′(x)
�(x)

and function �(x) has the following representation:

�(x) = 1

2

∞∑
k=0

�′( k+2
2 ) − �′( k+1

2 )

k + x
. (48)

The transformation (44) can be expressed graphically as in Fig. 5.

13 where we pass to the complex coordinates for 2-dimensional space: z = (x, y) → x + iy. Complex conjugation of z
is denoted by z̄.
13
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Fig. 5. Graphical representation of the projection (44) of color dipole on the E-eigenfunction. Dotted lines represent the 
Wilson lines and all the coordinates correspond to the transverse 2-dimensional space.

〈Uσ− (x1⊥, z⊥)Vσ+ (y1⊥,w⊥)〉 ∼

Fig. 6. The logic of our calculation of the dipole-dipole correlation function: the projection of the color dipoles onto 
the E-functions at each end-point, the BFKL evolution from relatively small cutoffs (green arrows) and, finally, the 
calculation of the dipole-dipole correlation function at small cutoffs, in the middle.

3.2. Correlator of dipoles with a small cutoff

Now let us introduce projections of Uσ−(x1⊥, z⊥) and Vσ+(y1⊥, w⊥) to the eigenfunctions:

Uσ−
ν+,n+(z0) = 1

π2

ˆ
d2x1⊥d2z⊥

(|x1⊥ − z⊥|2)2 E∗
ν+,n+(x1⊥ − z0, z⊥ − z0)Uσ−(x1⊥, z⊥), (49)

Vσ+
ν−,n−(w0) = 1

π2

ˆ
d2y1⊥d2w⊥

(|y1⊥ − w⊥|2)2 E∗
ν−,n−(y1⊥ − w0,w⊥ − w0)Vσ+(y1⊥,w⊥). (50)

It is important to stress that the contribution corresponding to the lowest twist-2 comes from the 
projections with n = 0. Using BFKL evolution (46) we can reduce the correlator with arbitrary 
cut-off to the case of small14 cutoffs σ±0:

〈Uσ−
ν+ (z0),Vσ+

ν− (w0)〉 =
(

σ−
σ−0

)ℵ(ν+)(
σ+
σ+0

)ℵ(ν−)

〈Uσ0−
ν+ (z0),Vσ0+

ν− (w0)〉. (51)

Graphically the logic of our calculation can be represented as in Fig. 6.
The correlation function between two dipoles with relatively small cutoffs σ± � σ±0 can be 

calculated perturbatively. In one loop it reads as follows [39]

〈Uσ−
ν+ (z0),Vσ+

ν− (w0)〉 = −4π4g4

N2ν2−(ν2− + 1
4 )2

×
(

δ(z0 − w0)δ(ν+ + ν−) + 21−4iν−δ(ν+ − ν−)

π |z0 − w0|2−4iν−
�( 1

2 + iν−)�(1 − iν−)

�(iν−)�( 1
2 − iν−)

)
×

14 But large enough to use LLA and only two-region contribution to ℵ(n, ν).
14
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Fig. 7. The scheme of calculation of the dipole-dipole correlator for small cutoffs and the BFKL evolution (shown by 
green arrows). In the r.h.s. we use the orthogonality condition for the E-functions.

(1 + O

(
g2 log

(
σ−σ+

σ0−σ0+

))
. (52)

Graphically, the last calculation, together with the BFKL evolution, looks as depicted in the 
Fig. 7.

4. Calculation of correlation function

Now using the inversion formula (45) and the eq. (51) we obtain the correlator of two color 
dipoles with the original finite cut-offs σ±:

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥,w⊥)〉 =

= −4π2g4

N2

ˆ
dν+

ˆ
d2z0

ν2+
π2

(
(x1 − z)2⊥

(x1 − z0)
2⊥(z − z0)

2⊥

) 1
2 +iν+

·

·
ˆ

dν−
ˆ

d2w0
ν2−
π2

(
(y1 − w)2⊥

(y1 − w0)
2⊥(w − w0)

2⊥

) 1
2 +iν− (

σ−
σ0−

)ℵ(ν+)(
σ+
σ0+

)ℵ(ν−)

·

· π2

ν2−(ν2− + 1
4 )2

(
δ(z0 − w0)δ(ν+ + ν−) + 21−4iν−δ(ν+ − ν−)

π |z0 − w0|2−4iν−
�( 1

2 + iν−)�(1 − iν−)

�(iν−)�( 1
2 − iν−)

)
.

(53)

Integrating over ν− and15 over w0 we get:

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥,w⊥)〉 =

= −8g4

N2

¨
dν ν2 d2z0

( 1
4 + ν2)2

(
(x1 − z)2⊥

(x1 − z0)
2⊥(z − z0)

2⊥

) 1
2 +iν (

(y1 − w)2⊥
(y1 − z0)

2⊥(w − z0)
2⊥

) 1
2 −iν

·

·
(

σ+σ−
σ+0σ−0

)ℵ(ν)

. (54)

Now we come to the subtlest point in our calculations: we should fix the physical value of the 
ratio of our cutoffs σ+σ−

σ−0σ+0
. In general, they are some functions of our configuration of the frames 

and should depend on conformal ratios of 8 points characterizing the shapes and positions of two 
frames. But we expect that in the limit of very narrow frames which we will need, the cutoffs 
depend only on the distances between the positions of local fields x1, x3, y1, y3. Indeed, if we 
make a conformal transformation with generic parameters, which are not related to the shape of 

15 using the “star-triangle” relation, see e.g. the Appendix A of [40].
15
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the frames, the frames remain rectangular (up to an insignificant, in our limit, deformation of 
their short sides, as shown in Fig. 2) and are still characterized by 4 points x′

1, x′
3, y′

1, y′
3 - new 

position of the local fields inserted into the frames. That means that the cutoffs can depend only 

on two conformally invariant ratios: r1 = (x1−y3)
2(x3−y1)

2

x2
13y

2
13

and r2 = (x1−y1)
2(x3−y3)

2

x2
13y

2
13

and we have 

to calculate this dependence explicitly. A natural assumption would be then to put σ+σ−
σ−0σ+0

� r2

or σ+σ−
σ−0σ+0

� r1. Both choices give the same result in the limit when the distance between the 
frames is much less than their lengths. It is demonstrated in the appendix B that precisely this 
cut-off occurs in the NLO graphs in this limit. But before this limit the result appears to be a bit 
subtler. Instead of doing explicit calculations, we will appeal to a similar calculation done in [41]
for the 4-point correlator of local scalar fields 〈tr Z2(x1)Z̄

2(x3)Z
2(y1)Z̄

2(y3)〉. Its form is fixed 
by conformal symmetry so that it depends on the same conformal ratios as our configuration. 
Comparing the result of BFKL computation of this correlator, which also uses the OPE for the 
regularized color dipoles, with the Regge limit of the same quantity found in the papers [42,20], 
the following prescription was found for the cutoff dependence on x1, x3, y1, y3

16:(
σ+σ−

σ+0σ−0

)ℵ(ν)

→

→ i

sinπℵ(ν)

(
((x1 − y3)

2)
ℵ(ν)

2 ((x3 − y1)
2)

ℵ(ν)
2

(x2
13)

ℵ(ν)
2 (y2

13)
ℵ(ν)

2

− ((x1 − y1)
2)

ℵ(ν)
2 ((x3 − y3)

2)
ℵ(ν)

2

(x2
13)

ℵ(ν)
2 (y2

13)
ℵ(ν)

2

)
.

(55)

Since we are in a very similar kinematic situation we will assume here that our cutoff dependence 
on the coordinates of the frames is also governed by (55).

A motivation stemming from the Feynman graphs of NLO impact factor is given in Ap-
pendix B.

We denote the coordinates of the vertices of a frame as follows:

x1 = (−uL−,0, x1⊥),

x3 = (ūL−,0, x3⊥),

y1 = (0,−vL+, y1⊥),

y3 = (0, v̄L+, y3⊥), (56)

where ū = 1 − u, v̄ = 1 − v. These parameters can be restricted to u, v ∈ (0, 1) since each 
frame should intersect the shock wave in order to give a non-zero contribution. If there is no 
intersection, we can make a scale transformation which sends the frame to an infinite distance 
from the shock wave, thus suppressing their interaction.

Using (55) we can rewrite the correlator of two dipoles (54) in the explicit way:

〈Uσ−(x1⊥, z⊥)Vσ+(y1⊥,w⊥)〉 =

= −8g4

N2

ˆ
dν

ˆ
d2z0

ν2

( 1
4 + ν2)2

(
(x1 − z)2⊥

(x1 − z0)
2⊥(z − z0)

2⊥

) 1
2 +iν

·

16 By keeping each factor in the anharmonic ratio in a separate power ℵ(ν)
2 we choose the right analytic branch giving 

the right signature factor. It could be explicited by an i0 prescription.
16
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·
(

(y1 − w)2⊥
(y1 − z0)

2⊥(w − z0)
2⊥

) 1
2 −iν

i

sinπℵ(ν)
·

·
⎛
⎝( (2uL−v̄L+ + �2⊥)(2ūL−vL+ + �2⊥)

x2
13⊥y2

13⊥

) ℵ(ν)
2

−
(

(−2uL−vL+ + �2⊥)(−2ūL−v̄L+ + �2⊥)

x2
13⊥y2

13⊥

) ℵ(ν)
2
⎞
⎠ , (57)

where �⊥ = (x − y)⊥ is the distance between the frames in the orthogonal direction. Then we 
plug it into (40) and thus obtain a closed expression for the correlator. Now we should carry out 
the remaining integrations. Let us start with the integrations over L− and L+. We can factor out 
the L-dependence in each of the two terms in (55) leading to the following two terms in (40):

∞̂

0

dL−L
−2−ω1−

0ˆ

−L−

dx1+
∞̂

0

dL+L
−2−ω2+

0ˆ

−L+

dy1−×

×
(
(2uL−v̄L+ + �2⊥)(2ūL−vL+ + �2⊥)

) ℵ(ν)
2 =

= 2πδ(ω1 − ω2)

1ˆ

0

1ˆ

0

dudv(4uūvv̄)
ℵ(ν)

2 (
�2

2uv̄
)

ℵ(ν)
2 (

�2

2ūv
)−ω+ ℵ(ν)

2 ×

×B(−ω,ω − ℵ(ν))2F1(−ℵ(ν)

2
,−ω;−ℵ(ν);1 − uv̄

ūv
) (58)

and
∞̂

0

dL−L
−2−ω1−

0ˆ

−L−

dx+
∞̂

0

dL+L
−2−ω2+

0ˆ

−L+

dy−×

×
(
(−2uL−vL+ + �2⊥

) ℵ(ν)
2
(
−2ūL−v̄L+ + �2⊥)

) ℵ(ν)
2 =

= 2πeiπℵ(ν)(−1)ℵ(ν)−ωδ(ω1 − ω2)

1ˆ

0

1ˆ

0

dudv(4uūvv̄)
ℵ(ν)

2 (
�2

2uv
)

ℵ(ν)
2 (

�2

2ūv̄
)−ω+ ℵ(ν)

2 ×

×B(−ω,ω − ℵ(ν))2F1(−ℵ(ν)

2
,−ω;−ℵ(ν);1 − uv

ūv̄
). (59)

The best way to do these integrals is to change the integration variables to L+L− and L+
L− . The 

integral over L+
L− renders δ(ω1 − ω2). Here B(−ω, ω − ℵ(ν)) = �(−ω)�(ω−ℵ(ν))

�(−ℵ(ν))
, and thus it has a 

pole in ν, namely 1
ω−ℵ(ν)

. We postpone the ν-integration because we close the contour integration 
(in the upper or lower half-plane) depending on whether the modulo of the ratio∣∣∣∣∣

(
(x1 − z)2

(x1 − z0)2(z − z0)2

)(
(y1 − w)2

(y1 − z0)2(w − z0)2

)−1
∣∣∣∣∣ (60)
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is greater or smaller than one. Hence we first carry out the coordinate integrations. First let us 
perform the u- and v-integrations. We can factor out all functions depending on u and do the 
u-integration:

1ˆ

0

du(u(1 − u))
ℵ(ν)

2
1

u
ℵ(ν)

2

1

(1 − u)
ℵ(ν)

2 −ω
2F1(−ℵ(ν)

2
,−ω;−ℵ(ν);1 − uv̄

ūv
)·

·
(

2

(((1 − u)(x1 − z)⊥)2 + u(x3 − z)2⊥)2

− u(1 − u)(9(x1 − z)2⊥(x3 − z)2⊥ + 6(x1 − z, x3 − z)2⊥)

((1 − u)(x1 − z)2⊥ + u(x2 − z)2⊥)4

)
=

= 1

2

(
1

|x3 − z|2⊥|x1 − z|2⊥
− 2[(x3 − z)⊥ · (x1 − z)⊥]2

(|x3 − z|2⊥|x1 − z|2⊥)2

)
(1 + O(g2,ω)), (61)

where by · we denote the scalar product of 2-dimensional vectors. The first line of the integrand 
is equal to 1 + O(g2, ω) and the terms of the order O(g2, ω) contribute only to the NLO impact 
factor. We will drop such terms since we limit ourselves to the LO to the impact factor only. 
Finally we obtain our correlator of the regularized light ray operators in the form:

〈S2+ω1
gl+ (x1⊥, x3⊥)S

2+ω2
gl− (y1⊥, y3⊥)〉 =

= −i
4N2g4

π5
δ(ω1 − ω2)·

·
ˆ

dν
(�2⊥)ℵ(ν)−ω

(x2
13⊥y2

13⊥)
ℵ(ν)

2

B(−ω,ω − ℵ(ν))
1 − eiπ(2ℵ(ν)−ω)

sinπℵ(ν)

ν2

( 1
4 + ν2)2

·

·
ˆ

d2z

(
1

2|x1 − z|2⊥|x3 − z|2⊥
− (x1 − z, x3 − z)2⊥

(|x1 − z|2⊥|x3 − z|2⊥)2

)
·

·
ˆ

d2w

(
1

2|y1 − w|2⊥|y3 − w|2⊥
− (y1 − w,y3 − w)2⊥

(|y1 − w|2⊥|y3 − w|2⊥)2

)
·

·
ˆ

d2z0

(
|x1 − z|2⊥

|x1 − z0|2⊥|z − z0|2⊥

) 1
2 +iν ( |y1 − w|2⊥

|y1 − z0|2⊥|w − z0|2⊥

) 1
2 −iν

. (62)

To be able to calculate these integrals over z and w we derived, using the dimensional regular-
ization and Feynman parameterization, the following formula:

2
ˆ

d2z

π

(
1

(x − z)2(y − z)2 − 2〈x − z, y − z〉2

((x − z)2(y − z)2)2

)
(x − z)2β

z2β
=

= − β

1 − β

2〈x, y〉2 − x2y2

x2(y2)1+β((x − y)2)1−β
. (63)

It leads to the following expression for our correlator:

〈S2+ω1(x1⊥, x3⊥)S
2+ω2(y1⊥, y3⊥)〉 =
gl+ gl−
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= −i
N2g4

4π3 δ(ω1 − ω2)

ˆ
dν(�2⊥)ℵ(ν)−ωB(−ω,ω − ℵ(ν))

1 − eiπ(2ℵ(ν)−ω)

sinπℵ(ν)

ν2

( 1
4 + ν2)2

·

1

(|x13|2⊥|y13|2⊥)
1
2 + ℵ(ν)

2

ˆ
d2z0

(|x13|2⊥)
1
2 +iν(2 cos2(φx) − 1)

(|x1 − z0|2⊥)
1
2 +iν |x3 − z0|2⊥)

1
2 +iν

(|y13|2⊥)
1
2 −iν(2 cos2(φy) − 1)

(|y1 − z0|2⊥)
1
2 −iν |y3 − z0|2⊥)

1
2 −iν

, (64)

where φx is the angle between the vectors z0 − x1⊥ and z0 − x3⊥, φy is the angle between the 
vectors z0 − y1⊥ and z0 − y3⊥.

The last integration can be done directly in the limit x13, y13 → 0. The calculations are given 
in Appendix C. Finally we get:

〈S2+ω1
gl+ (x1⊥, x3⊥)S

2+ω2
gl− (y1⊥, y3⊥)〉 −−−−−−−−→

x13⊥ , y13⊥→0

→ −i
N2g4

4π3 δ(ω1 − ω2)

ˆ
dν(�2⊥)ℵ(ν)−ωB(−ω,ω − ℵ(ν))

1 − eiπ(2ℵ(ν)−ω)

sinπℵ(ν)

ν2

( 1
4 + ν2)2

·

1

(|x13|2⊥|y13|2⊥)1+ ℵ(ν)
2

(
(|x13|2⊥)

1
2 +iν(|y13|2⊥)

1
2 +iν

(|x − y|2⊥)1+2iν
G(ν) + (ν → −ν)

)
, (65)

where

G(ν) = −i
4−1−2iνπ3(i − 2ν)2

�2( 3
2 − iν)�2(1 + iν) sinh(2πν)

.

Now we can carry out the last integration over ν as the pole contribution at ω = ℵ(ν). We pick 
here the first pole �-functions in (47) which corresponds to the operator with the lowest possi-
ble twist = 2. Note that we omitted from our contour of integration the singularity at ν = − i

2 .17

Finally, we arrive at the final result of our paper - the correlator of two light ray operators rep-
resenting the analytic continuation of twist two operators to the Lorentz spin j = 1 + ω, in the 

BFKL limit ω → 0 and g
2

ω
- fixed:

〈S2+ω1+ (x1⊥, x3⊥)S
2+ω2− (y1⊥, y3⊥)〉 −−−−−−−−→

x13⊥ , y13⊥→0
δ(ω1−ω2)ϒ(γ̃ )

(x2
13⊥)

γ̃
2 − ω

2 (y2
13⊥)

γ̃
2 − ω

2

((x − y)2⊥)2+γ̃
,

(66)

where ϒ is given by

ϒ(γ̃ ) = −N2g4 2−1−2γ̃ π

γ̃ 2�2(1 − γ̃
2 )�2( 1

2 + γ̃
2 ) sin(πγ̃ )ℵ̂′(γ̃ )

(67)

and γ̃ = −1 + 2iν is the solution of ω = ℵ̂(γ̃ ), where ℵ̂(γ̃ ) = ℵ(−i
γ̃+1

2 ) and ℵ(ν) is given by 
(47). Finally let us introduce the new quantity γ = γ̃ − ω which is the anomalous dimension in 
NLO BFKL. It satisfies the following equation:

17 As demonstrated in [43], the contribution of this pole cancels with the contribution of two lowest-order diagrams 
which are absent in Fig. 4.
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ω = ℵ̂(γ + ω) = ℵ̂(γ ) + ℵ̂′(γ )ℵ̂(γ ) + o(g4) . (68)

This anomalous dimension γ is in the full correspondence with [5]. The correlator in terms of γ
reads as follows:

〈S2+ω1+ (x1⊥, x3⊥)S
2+ω2− (y1⊥, y3⊥)〉 −−−−−−−−→

x13⊥ , y13⊥→0
δ(ω1−ω2)ϒ(γ + ω)

(x2
13⊥)

γ
2 (y2

13⊥)
γ
2

((x − y)2⊥)2+γ+ω
.

(69)

Note that this formula correctly reproduces the tensor structure of the correlator corresponding to 
local twist-2 operators (1) integrated along light-rays and analytically continued to j → 1 + ω. 
Indeed, the regularized operators enter with a multiplier �γ where � is a scheme-dependent 
cutoff. We use the point-splitting regularization in the orthogonal direction for our light-ray op-
erators and hence the cutoffs are defined as �x = 1

|x13⊥| and �y = 1
|y13⊥| . Now if we redefine light 

ray operators as �γ
x S̆

2+ω1+ (x1⊥) → S̆
2+ω1+ (x1⊥), �γ

y S̆
2+ω1+ (y1⊥) → S̆

2+ω2+ (y1⊥) the correlation 
function acquires a standard form:

〈S̆2+ω1+ (x⊥)S̆
2+ω2− (y⊥)〉 = δ(ω1 − ω2)

ϒ(γ + ω)

((x − y)2⊥)2+γ+ω
, (70)

in agreement with analytical continuation of the integrated two-point correlator of local opera-
tors. Indeed, as was mentioned in section 2, at even values of the spin j the light-ray operator 
S̆j+1(x⊥) can be written as a local operator Sj

loc(x) with dimension �(j) integrated along the 
light ray direction n+ (see (20)):

S̆j+1(x⊥) ∼
∞̂

−∞
dx−Sj

loc(x) (71)

and the correlator of two light-ray operators stretched along n+ and n− vectors is just the double 
integral of two-point correlator of local operators w.r.t. light-ray directions n±18:

〈S̆j1+1(x⊥)S̆j2+1(y⊥)〉 = δ(j1 − j2)bj1(|x − y|2⊥
)�(j1)−1

(72)

with the same coordinate dependence as (70).

In the leading order of perturbation theory, when g2

ω
→ 0, the coefficient ϒ(γ + ω) reads as 

follows:

ϒ(−8g2/ω) = ωN2

π27 (73)

and our BFKL result (69) reduces to

〈S̆2+ω1+ (x⊥)S̆
2+ω2− (y⊥)〉 = δ(ω1 − ω2)

ωN2

π27

1

((x − y)2⊥)2+ω
. (74)

18 This formula also can be seen as a two point correlation function of two primaries with dimension � − 1 wrt to the 
conformal group SO(3, 1) of the 2d orthogonal plane, see the related discussion in [44].
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5. Conclusion

In this paper we have generalized the twist-2 operator for the case of principal series rep-
resentation in terms of a nonlocal light ray operator. Then we have calculated the correlation 
function between two such operators in the BFKL limit. The correlator takes the form expected 
from conformal invariance, with the same anomalous dimension as predicted in [5].

As was already mentioned in the introduction, the method of [5] is rather indirect and is based 
on the comparison with the Bjorken scaling for the scattering amplitudes. It was suggested there 
that an analytic continuation of anomalous dimensions of local twist-2 operators gives the anoma-
lous dimension of some non-local gluon operator F−i∇ω−1F i− . This method, however, does not 
tell us the explicit form of this operator and in this paper we demonstrated that F−i∇ω−1F i− is 
actually a light-ray operator (j ≡ ω + 1):

Fj (x⊥) =
∞̂

0

dL+ L
1−j
+

·
ˆ

dx+ tr F i− (x+n− + x⊥)[x, x + L+n−]F−i ((L+ + x+)n− + x⊥) (75)

with the anomalous dimension of this operator γ (j ; g2) being an analytic continuation of the 
anomalous dimension (68) of local twist two operators. The correlator we calculate is a physical 
quantity well adopted to the study of CFT. Recently a nonperturbative light-ray operators in 
general CFT were introduced in [21], however their definition is quite implicit, involves the 
smearing of two another local operators and assumes that the pole structure comes from the 
light-ray kinematics. Particularly it is not clear why so defined light-ray operator will not depend 
on the choice of smearing local operators. In contrast, our definition is very explicit and defines 
the light-ray operator in terms of elementary fields. It would be interesting to understand better 
the relation of our light-rays to the construction of [21].

Secondly, as we already discussed in the introduction, our work can be considered as a first 
step in the realization of conformal bootstrap program for nonlocal operators in gauge theories in 
BFKL limit. Particularly in companion papers [23,24] we calculate the correlation functions of 
three light-ray operators in BFKL limit. It can be treated as OPE coefficient in the OPE expansion 
of two light-ray operators19 in BFKL limit. As an auxiliary step, we used the OPE over dipoles 
with cutoff which is not a conformal object, so would be very tempting to understand better 
the relation between OPE over dipoles and conformal light-ray operators, ideally finding an 
conformal invariant analog for dipoles.

Another promising direction would be to embed light-ray operators further into the integrable 
structure of N = 4 SYM what can lead to the further cross-fertilization of Integrability and 
Conformal Bootstrap. The recently introduced approach to (super)conformal blocks based on 
the relation to the integrable Calogero-Sutherland models [45–48] can be easily adapted to light-
ray operators and potentially play an important role in such development.

And finally, let us stress again that our generalization of twist-2 operators based on principal 
series representation with continuous spin j allows us to circumvent a subtle question of analytic 
continuation in j . The well-known principle of maximal transcendentality, which often serves 
as a mnemonic prescription for such analytic continuation, notably in the perturbative expansion 

19 for OPE expansion of two ANEC operators see [44].
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based on integrability [6,7], might naturally emerge in the framework of the extension of N=4 
SYM physical space to the principal series of PSU(2, 2|4) or its subgroups. It is tempting to 
suggest that the principal series representation, in terms of nonlocal objects generalizing local 
operators, might fix at once the analytic continuation for all such observables.
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Appendix A. Notations

In this section we set our notations. The lagrangian of N=4 SYM with the SU(Nc) gauge 
group has the following form:

L = Tr

{
−1

2
FμνF

μν + 1

2
(DμφAB)(Dμφ̄AB) + 1

8
g2[φAB,φCD][φ̄AB, φ̄CD]+

+2iλ̄α̇Aσ α̇β
μ DμλA

β − √
2gλαA[φ̄AB,λB

α ] + √
2gλ̄α̇A[φAB, λ̄α̇

B ]
}

, (A.1)

where field strength Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν] and covariant derivative Dμ = ∂μ −
ig[Aμ, ...]. Notice that we work with Minkowski signature (+, −, −, −) and all fields are taken 
in the adjoint representation of SU(Nc). SO(6)-multiplet with scalars φa, a ∈ {1 ÷ 6} can be 
grouped into the antisymmetric tensor φAB , A, B ∈ {1 ÷ 4}:

φAB = 1√ �aABφa, φ̄AB = 1√ �̄a
ABφa = (φAB)∗, (A.2)
2 2
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using Dirac matrices in 6-d Euclidian space:

�aAB = (η1AB,η2AB,η3AB, iη̄1AB, iη̄2AB, iη̄3AB),

�̄a
AB = (η1AB,η2AB,η3AB,−iη̄1AB,−iη̄2AB,−iη̄3AB),

and ’t Hooft symbols:

ηiAB = εiAB + δiAδ4B − δiBδ4A,

η̄iAB = εiAB − δiAδ4B + δiBδ4A,

η1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ , η2 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , η3 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , (A.3)

iη̄1 =

⎛
⎜⎜⎝

0 0 0 −i

0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ , iη̄2 =

⎛
⎜⎜⎝

0 0 −i 0
0 0 1 −i

i 0 0 0
0 i 0 0

⎞
⎟⎟⎠ , iη̄3 =

⎛
⎜⎜⎝

0 i 0 0
−i 0 0 0
0 0 0 −i

0 0 i 0

⎞
⎟⎟⎠ .

(A.4)

Explicit formula for scalars reads as follows

[φAB ] = 1√
2
(φ1η1AB + φ2η2AB + φ3η3AB + φ4iη̄1AB + φ5iη̄2AB + φ6iη̄3AB) =

= 1√
2

⎛
⎜⎜⎝

0 φ3 + iφ6 −φ2 − iφ5 φ1 − iφ4

−φ3 − iφ6 0 φ1 + iφ4 φ2 − iφ5

φ2 + iφ5 −φ1 − iφ4 0 φ3 − iφ6

−φ1 + iφ4 −φ2 + iφ5 −φ3 + iφ6 0

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0 Z −Y X̄

−Z 0 X Ȳ

Y −X 0 Z̄

−X̄ −Ȳ −Z̄ 0

⎞
⎟⎟⎠ .

Fermions are realized as a two-component Weyl spinors λA
α with conjugated λ̄α̇A. Spinor index 

α ∈ {1, 2} and A ∈ {1 ÷4} is a SU(4) index. Due to supersymmetry one can fix just the propagator 
of scalars and get the normalization for fermions and gauge fields acting by supercharges. In this 
article we set the normalization for free propagators as follows:

〈Z(x)abZ̄(y)cd〉0 = N (δa
d δc

b − 1

Nc

δa
bδc

d)
1

(x − y)2 , and the same for Xand Y, (A.5)

〈λA
α (x)abλ̄β̇B(y)cd〉0 = iN δA

B(δa
d δc

b − 1

Nc

δa
bδc

d)σ̄
μ

αβ̇

∂

∂xμ

1

(x − y)2 , (A.6)

〈Aμ(x)abAν(y)cd〉0 = −N (δa
d δc

b − 1

Nc

δa
bδc

d)
gμν

(x − y)2 , (A.7)

where N = − 1
8π2 , {σμ} = {1, σ } and {σ̄ μ} = {1, −σ } with ordinary Pauli matrices σ . 

Throughout the text we use the basis {n+, n−, e1⊥, e2⊥} with two light-like vectors nμ
+ =

{ 1√
2
, 0, 0, 1√

2
}, n

μ
− = { 1√

2
, 0, 0, − 1√

2
} normalized as (n−n+) = 1 and two orthogonal vectors 

e1⊥, e2⊥, which span 2-d plane {⊥} orthogonal to {n+, n−}. The vector x reads in this basis as 
x = x−n+ + x+n− + x⊥, with its square equal to x2 = 2x+x− − x2 .
⊥
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Fig. B.8. ImpactFactorLO.

Fig. B.9. ImpactFactorNLO.

Field content of twist-2 operators All twist-2 operators, which were discussed in this paper, are 
constructed from the set of elementary fields X = {F μ

+⊥, λA+α, ̄λα̇+A, φAB}. Twist 2 is the minimal 
possible twist (defined as bare dimension minus spin). Gluon field F μ

+⊥ is obtained by projection 
of one of the indices of the field strength tensor Fμν on n+ direction where as the second index is 
automatically restricted to the transverse plane with the metric g⊥

μν = gμν − n+μn−ν − n+νn−μ. 
Weyl spinors λ+α and λ̄α̇+ correspond to the states with definite helicity 1, −1, respectively and 
they are parameterized as λ+α = 1

2 σ̄−
αβ̇

σ+β̇γ λγ and λ̄α̇+ = 1
2σ−α̇β σ̄+

βγ̇ λ̄γ̇ .

Appendix B. Explanation of the coordinate dependence of the cut-off ratio (55) using 
NLO impact factor

In principle, in the context of high energy scattering, the cutoffs σ in (55) should be obtained 
from the NLO impact factor for Wilson frame. In accordance with general logic of high-energy 
OPE we factorize any correlation function into a product of the “probe” impact factor, the “target” 
impact factor, and the amplitude of scattering of two (conformal) dipoles. The “rapidity divide” 
between the impact factor and the dipole-dipole scattering is determined from two conditions: 
(i) the properly defined impact factor should not scale with the energy, so that all the energy 
dependence is contained in the dipole-dipole scattering, and (ii) the impact factor should be 
Möbius invariant. The calculation of the NLO impact factor for frames is beyond the scope of 
present paper where we limit ourselves only to the LO impact factor, with a typical Feynman 
graph given in Fig. B.8 (but take into account the NLO dimension!); however, it is instructive 
to consider a typical Feynman graph in NLO to read off the cutoff dependence on the shape of 
the configuration of frames. A typical Feynman diagram for the NLO impact factor is shown in 
Fig. B.9 and the result is proportional to [49]
24



I. Balitsky, V. Kazakov and E. Sobko Nuclear Physics B 993 (2023) 116267
g2
ˆ

d2z1d
2z2

∞̂

0

dp1−ei
p1−

2 Z1

∞̂

0

dp2−
p2−

ei
p2−

2 Z2 + (z1 ↔ z2), (B.1)

where Zi ≡ (x1−zi )
2⊥

x1− − (x3−zi )
2⊥

x2− . The integral over α2 in the Eq. (B.1) diverges. This divergence 
reflects the fact that the eq. (B.1) is not exactly the NLO impact factor since we must subtract 
from it the matrix element of the leading-order contribution, the graph in Fig. B.8, which is 
proportional to

g2
ˆ

d2z1

∞̂

0

dp1− ei
p1−

2 Z1

σ−ˆ

0

dp2−
p2−

, (B.2)

where the integral over p2− is restricted by the “rigid cutoff” (55). The difference of these two 
expressions gives the typical logarithmic term in the NLO impact factor in the form

g2
ˆ

d2z1d
2z2

∞̂

0

dp1− ei
p1−

2 Z1
( ∞̂

0

dp2−
p2−

ei
p1−

2 Z2 −
σ−ˆ

0

dp2−
p2−

)
+ (z1 ↔ z2) =

= 1

Z2
1

lnσZ2 + (z1 ↔ z2). (B.3)

The logarithmic contribution is obviously not conformally invariant. As explained in [49] the 
reason is that while formally light-like Wilson lines are Möbius invariant, the rigid cutoff (55)
violates the invariance. Since the conformally invariant cutoff for rapidity divergence of Wilson 
lines is not known (it may even not exist) we proceed with the rigid cutoff (55) but pay the price 
of correcting the “rigid-cutoff” dipoles by counterterms restoring the conformal invariance order-
by-order in perturbation theory. In the NLO approximation such “composite conformal dipole” 
has the form

U(z1, z2)
conf = U(z1, z2)+

+g2

π

ˆ
d2z3

z2
12

z2
13z

2
23

[U(z1, z3) + U(z3, z2) − U(z1, z2)] ln
az2

12

z2
13z

2
23

(B.4)

is the “composite dipole” with the conformal longitudinal cutoff in the next-to-leading order and 
a is an arbitrary dimensional constant. The arbitrary dimensional constant a should be chosen in 
such a way that the impact factor (B.1) does not change with length of the frame. It is convenient 
to choose the rapidity-dependent constant a → ae−2η so that the [Tr{Ûσ

z1
Û

†σ
z2 }]conf

a
does not 

depend on η = lnσ− and all the rapidity dependence is encoded into a-dependence:

U(z1, z2)
conf = U(z1, z2)+

+g2

π

ˆ
d2z3

z2
12

z2
13z

2
23

[U(z1, z3) + U(z3, z2) − U(z1, z2)] ln
2az2

12

σ 2+z2
13z

2
23

+ O(α2
s ). (B.5)

We need to choose the new “rapidity cutoff” a in such a way that all the energy dependence is 
included into the matrix element(s) of Wilson-line operators so that the impact factor does not 
depend on energy (i.e. it should not scale with the length of frame.
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Also, the NLO impact factor should be Möbius invariant. These two requirements fix the 
cutoff in the form a0 = 2x1−x3−

(x−y)2 and we obtain that the typical logarithmic term in the NLO 
impact factor is proportional to

1

Z2
1

[
ln

−x1−x3−z2
12

x2
13⊥(x1⊥ − z2)2z2

12

Z2
2 + 2C

]
+ (x1 ↔ x3) + (z1 ↔ z2). (B.6)

Thus, the “new rapidity cutoff” for the upper Wilson frame is σ− = 2x1−x3−
x2

13⊥
(for simplicity, 

we use the same notation σ since the meaning of a0 is essentially the rapidity cutoff for the 
conformal dipole (B.4)). Similarly, for the lower Wilson frame the cutoff is σ− = 2y1+y3+

y2
13⊥

so we 

get σ+σ− = r1 = r2 at large longitudinal x, y.

Appendix C. Calculation of the integral in (64)

To carry out the integration over z0 in the integral

AR2 =
ˆ

R2

d2z0
(|x13|2) 1

2 +iν(2 cos2(φx) − 1)

(|x1 − z0|2) 1
2 +iν |x3 − z0|2) 1

2 +iν

(|y13|2) 1
2 −iν(2 cos2(φy) − 1)

(|y1 − z0|2) 1
2 −iν |y3 − z0|2) 1

2 −iν
(C.1)

let us define two functions

A� =
ˆ

�

d2z0
(|x13|2) 1

2 +iν(2 cos2(φx) − 1)

(|x1 − z0|2) 1
2 +iν |x3 − z0|2) 1

2 +iν

(|y13|2) 1
2 −iν(2 cos2(φy) − 1)

(|y1 − z0|2) 1
2 −iν |y3 − z0|2) 1

2 −iν
, (C.2)

B� =
ˆ

�

d2z0
(|x13|2) 1

2 +iν

(|x1 − z0|2) 1
2 +iν |x3 − z0|2) 1

2 +iν

(|y13|2) 1
2 −iν

(|y1 − z0|2) 1
2 −iν |y3 − z0|2) 1

2 −iν
(C.3)

and divide the full R2 space into three domains

(1) �0 = |x1 − z0|, |x3 − z0| > qx ∧ |y1 − z0|, |y3 − z0| > qy

(2) �x = |x1 − z0|, |x3 − z0| < qx

(3) �y = |y1 − z0|, |y3 − z0| < qy

where

qx =√|x13||x − y|, qy =√|y13||x − y|
and calculate the difference A� − B� for each of them.

In the case (1) we can expand cos2 ≈ 1 + o(|x13|, |y13|), then 2cos2 − 1 → 1. The difference 
A�0 −B�0 disappears in this domain. Now let us elaborate the case (2) (the case (3) is absolutely 
similar). In this case we integrate over z inside the circle centered at x1 ∼ x3, with the radius qx :

A�x − B�x = (|x13|2) 1
2 +iν(|y13|2) 1

2 −iν

(|x − y|2)1−2iν

ˆ

|z−x|<qx

d2z0
2 cos2(φx) − 1 − 1

(|x1 − z0|2) 1
2 +iν(|x3 − z0|2) 1

2 +iν
·

·(1 + o(
qx

)) =
|x − y|
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= −2
(|x13|2) 1

2 +iν(|y13|2) 1
2 −iν

(|x − y|2)1−2iν

ˆ

R2

d2z0
sin2(φx)

(|x1 − z0|2) 1
2 +iν(|x3 − z0|2) 1

2 +iν
(1 + o(

x13

qx

)).

(C.4)

The last integral can be calculated in elliptic coordinates

|x1 − z0| = |x13|
2

(σ + τ),

|x3 − z0| = |x13|
2

(σ − τ), (C.5)

which gives:
ˆ

R2

d2z
sin2(φx)

(|x1 − z0|2) 1
2 +iν(|x3 − z0|2) 1

2 +iν
=

= 23+4iν(|x13|2)−2iν

∞̂

1

dσ

1ˆ

−1

dτ

√
(σ 2 − 1)(1 − τ 2)

(σ 2 − τ 2)2+2iν
=

= −π2−1+4iν(|x13|2)−2iν
�(− 1

2 − iν)�(1 + iν)

�(1 − iν)�( 3
2 + iν)

, (C.6)

where we have used the formula:

∞̂

1

dσ

1ˆ

−1

dτ

√
(σ 2 − 1)(1 − τ 2)

(σ 2 − τ 2)2+2iν
=

=
∞̂

1

dσ
√

−1 + σ 2 1

2
π
(
σ 2
)−2−2iν

2F1

(
1

2
,2 + 2iν,2,

1

σ 2

)
=

= −π�
(− 1

2 − iν
)
�(1 + iν)

16�(1 − iν)�
( 3

2 + iν
) . (C.7)

Finally we get:

δx = A�x − B�x = (|x13|2) 1
2 −iν(|y12|2) 1

2 −iν

(|x − y|2)1−2iν
π24iν

�(− 1
2 − iν)�(1 + iν)

�(1 − iν)�( 3
2 + iν)

. (C.8)

And similar expression for A�y − B�y :

δy = A�y − B�y = (x13|2) 1
2 +iν(|y13|2) 1

2 +iν

(|x − y|2)1+2iν
π2−4iν

�(− 1
2 + iν)�(1 − iν)

�(1 + iν)�( 3
2 − iν)

. (C.9)

Expression for BR2 (when � =R2) in the limit x13, y13 → 0 reads as follows:

BR2 =
ˆ

2

d2z0
(|x13|2) 1

2 +iν

(|x1 − z0|2) 1
2 +iν(|x3 − z0|2) 1

2 +iν

(|y13|2) 1
2 −iν

(|y1 − z0|2) 1
2 −iν(|y3 − z0|2) 1

2 −iν
=

R
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= (|x13|2) 1
2 +iν(|y13|2) 1

2 +iν

(|x − y|2)1+2iν
F (ν) + (ν → −ν), (C.10)

where F(ν) = π2−4iν

2iν

�( 1
2 +iν)�(−iν)

�( 1
2 −iν)�(iν)

. Finally, collecting the individual terms we obtain

AR2 = (|x13|2) 1
2 +iν(|y13|2) 1

2 +iν

(|x − y|2)1+2iν
G(ν) + (ν → −ν),

where

G(ν) = −i
4−1−2iνπ3(i − 2ν)2

�2( 3
2 − iν)�2(1 + iν) sinh(2πν)

.

Appendix D. Two-point correlator of Wilson frames

As was noticed before, the method of OPE over color dipoles is quite general and can be 
applied to many different operators. In this section we give the expression for the case of pure 
Wilson frames (with no field insertion). Namely, such an operator for a frame stretched along n+
reads as follows:

Sω
W.F.+(x1⊥, x3⊥) =

∞̂

−∞
dx1−

∞̂

x1−

dx3−(x3− − x1−)−2−ω tr [x1, x2]� . (D.1)

The operator constructed from a pure Wilson rectangle collapses to one when it is reduced to 
light-ray, but it has a nontrivial correlation function when its transverse size is slightly different 
from zero. The OPE expansion of frames over color dipoles consists of simply replacement of a 
finite frame by an infinite dipole with a certain cutoff σ+:

tr [x1, x3]� → N(1 − Uσ+(x1⊥, x3⊥)). (D.2)

This formula is an analogue of (39). The rest of calculation almost directly repeats the calcula-
tions for the regularized light ray operators of the main text and the result reads as follows:

〈Sω1
W.F.+(x1⊥, x3⊥)S

ω2
W.F.−(y1⊥, y3⊥)〉 ∼ g4

ω

(x2
13⊥)2+ γ

2 (y2
13⊥)2+ γ

2

((x − y)2⊥)2+γ+ω
, (D.3)

where γ is the anomalous dimension in the NLO BFKL given by the solution of (68). Let us 
stress that this result is in correspondence with (69). Namely let us check the weak coupling 

regime g
2

ω
→ 0. In this case we have:

∂x1⊥∂x3⊥

¨
(x3− − x1−)−2−ω[x1, x3]� � g2

YM

ω

¨
(x3− − x1−)−ωF(x1)[x1, x3]�F(x3).

(D.4)

So it leads to the following correlator of two frames

〈S2+ω1+ S
2+ω2− 〉 ∼ (

ω

g2
YM

)2∂x1⊥∂x3⊥∂y1⊥∂y3⊥〈Sω1
W.F.+(x1⊥, x3⊥)S

ω2
W.F.−(y1⊥, y3⊥)〉, (D.5)

which coincides with (74) and (D.3).
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