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Transition generalized parton distributions have emerged as a novel tool for studying the quantum
chromodynamics (QCD) structure of resonances. They provide an integrated picture of the transition form
factors and the transition parton distribution functions. In this study, we delve into the angular momentum
(AM) properties for the N → Δ transition and its decomposition into the orbital angular momentum and the
intrinsic spin in the context of the quark distribution functions. First, we explore the spin-flavor structures
within the framework of both the overlap representations of the three-quark light-cone wave functions and
the large Nc limit of QCD. We then estimate the AM quark distribution functions for the N → Δ transition.
Our analysis reveals a substantial flavor asymmetry present in both the orbital angular momentum and
intrinsic spin components.
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I. INTRODUCTION

The study of nucleon tomography through generalized
parton distributions (GPDs) has been a prominent topic
in hadron physics for several decades, offering valuable
insights into the internal structure of hadrons; see
Refs. [1–3] for a review. The GPDs are defined as functions
of the skewness ξ, the longitudinal momentum fraction of
the nucleon carried by the partons x, and the squared
momentum transfer t between initial and final states. The
GPDs parametrize the matrix element of the nonlocal
quark and gluon operators on the light cone and provide
an integrated picture of the parton distribution functions
(PDFs) and the elastic form factors. In the forward limit, at
zero ξ and t, the GPDs are reduced to the nucleon PDFs.
Furthermore, the Mellin moments of the GPDs are related
to the elastic form factors.
Similar to nucleon GPDs, transition GPDs can be

introduced as the nondiagonal matrix elements of nonlocal
quantum chromodynamics (QCD) operators. These tran-
sition matrix elements can involve the nucleon and excited
states, such as N → N� or even N� → N�. The study of
transition GPDs offers a new avenue to explore the QCD
structure and the dynamic properties of resonances.
Recently, the analysis of the polarized cross section from
the hard exclusive π−Δþþ electroproduction off an

unpolarized hydrogen target has been performed by the
CLAS Collaboration [4] and will reveal the N → Δ
transition GPDs. Theoretical studies have also been per-
formed on the exclusive electroproduction of the π − Δ
final states [5] and the deeply virtual Compton process
e−N → e−γπN [6].
The first Mellin moments of the transition vector and

axial vector GPDs at zero momentum transfer t ¼ 0
correspond to the isovector components of the anomalous
magnetic moments κu−dp→Δþ and axial charge gu−dA;p→Δþ ,
respectively. In addition, the second Mellin moments,
known as the “transition angular momentum (AM)”
Ju−dp→Δþ in N → Δ transitions, have recently been studied
and related to the transition vector GPDs in the large Nc
limit of QCD in Ref. [7]. In addition, the relation between
the quadrupole GPDs HE and HC and the isovector
quadrupole energy-momentum tensor (EMT) form factors
has been established, together with mechanical interpreta-
tions of the transition EMT form factors [8]. The Lorentz
structure of the transition matrix element of the EMT
current has been studied in Ref. [9], and the corresponding
Lorentz invariant functions have been estimated using the
light-cone QCD sum rule [10]. However, the forward limits
of the GPDs are still unknown. The study of the transition
PDFs is a crucial aspect of the understanding of the N → Δ
transitions by nucleon tomography.
Reference [7] discusses the definition of the transition

AM on the light cone, which provides a clear and un-
ambiguous two-dimensional mechanical interpretation as
opposed to a three-dimensional distribution. This approach
was exemplified by the interpretation of the nondiagonal
matrix element of the þ-component of the electromagnetic
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current as a light-cone charge distribution [11,12].
However, the price to pay is that the longitudinal informa-
tion of the distribution is lost and taken over by the quark
distribution functions. Numerous studies have addressed
this problem for the nucleon [2,13–18]. Therefore, the
tomography of theN → Δ transition must include the study
of its quark distribution function.
In this study, we aim to investigate the quark distribution

functions using the three-quark (3Q) light-cone wave func-
tion (LCWF). The unique properties of the relativistic 3Q
LCWF for the nucleon and its partial wave structure have
been extensively studied [19–21]. Building on this unique-
ness, we explore the spin-flavor structure of the AM in
terms of the overlap representation of the 3Q LCWFs.
Furthermore, we address a dynamic aspect concerning the
decomposition of the total AM into the intrinsic spin and the
orbital angular momentum (OAM). The specific dynamical
properties of the LCWFs are derived from the light-cone
chiral quark-soliton model (LCχQSM). In this model, the
baryon is viewed as Nc valence quarks bound by the pion
mean field, and the corresponding system is boosted to
the infinite momentum frame and described by the
LCWFs. It was first developed by Diakonov, Petrov and
Polyakov [22,23] and then elaborated by Lorcé [24–27].
More recently, the normalization fN of the LCWF was
determined in Ref. [28].
An alternative method to study the quark distribution

functions in the N → Δ transition is to use the traditional
formulation of the chiral quark-soliton model (χQSM) for
slowly moving baryons [29,30]. This model embodies the
spin-flavor symmetry in the largeNc limit of QCD [31–35].
Using this spin-flavor symmetry and having the quark
distribution functions for the nucleon as input, one can
estimate the corresponding distributions for the N → Δ
transition and the Δ baryon. Moreover, a notable advantage
of this approach is its explicit inclusion of all contributions
from quark-antiquark pairs to the quark distribution func-
tions, which are neglected in the overlap representation of
the 3Q LCWFs; see Ref. [36] for more details. This model
has been successful in describing the light quark flavor
asymmetry [37,38], the Gottfried sum rule [39,40], the
transversity distributions [41,42], and the strangeness in
scalar [43] and vector [44] and axial-vector [45,46] charges.
More recently, the quasiparton distributions [47,48] have
been studied. Therefore, to obtain more realistic results for
the quark distribution functions in theN → Δ transition, we
take data from the χQSM on the nucleon quark distribution
functions [37,38].
The structure of this paper is as follows. In Sec. II, we

begin by introducing the formal definitions of the longi-
tudinally polarized and OAM quark distribution functions
for a nondiagonal matrix element, starting from the EMT
current. In Sec. III, we study the spin-flavor structures of
these quark distribution functions in the context of the
overlap of the 3Q LCWFs. We evaluate the contributions

of the OAM and the intrinsic spin to the total AM in the
N → Δ transition. In Sec. IV we establish the relations
between the quark distribution functions for the nucleon,
the Δ baryon, and the N → Δ transition in the context
of the large Nc limit. We also establish a connection
between the transition quark distribution functions and
the axial vector GPDs. To obtain more realistic results
for the quark distribution functions, we have taken data
from the χQSM on the quark distribution functions of the
nucleon. From this we derive the corresponding distribu-
tions for the Δ baryon and the N → Δ transition. Finally,
we summarize our results in the concluding section.

II. QUARK DISTRIBUTION FUNCTIONS

In Ref. [7], the QCD AM and its form factor in the
N → Δ transition were newly introduced. In this work, we
provide the separation of the AM into the OAM and the
intrinsic spin, and the x-dependent distributions (quark
distribution functions).
Before discussing the definition of the quark distribution

functions, we start with the QCD EMT current. The
þi-components of the energy-momentum tensor are related
to the normalizations of the longitudinally polarized Δq
and OAM lqkin quark distribution functions [49], where q
denotes the quark flavor. According to Ji’s decomposition
[50], the quark part of the EMT current is expressed as

T̂μν
kin;q ¼

i
2
ψ̄q

�
γμD

↔ν�
ψq; ð1Þ

where D
↔μ ¼ ∂

↔μ
− 2igAμ with ∂

↔μ ¼ ∂
!μ − ∂

 μ
. The sym-

metric and antisymmetric parts of the kinetic EMT current
can be represented by the divergence of the spin density and
the Belinfante-Rosenfeld EMT current, respectively. These
expressions are described in Refs. [49,51]:

T̂ ½μν�kin;q ¼ −∂αŜαμνq ; T̂fμνgkin;q ¼ 2T̂μν
q ; ð2Þ

where T̂μν
q is the Belinfante-Rosenfeld EMT current and

fabg¼ abþba, ½ab� ¼ ab − ba. It is important to note that
while the isoscalar EMT current is conserved, the isovector
component of the EMT current is not conserved. In the
symmetric frame on the light cone, known as the generalized
Drell-Yan-West (DYW) frame [7] with P⊥ ¼ 0 andΔþ ¼ 0,
the EMT distributions are defined by the Fourier transform of
the baryonic matrix element of the EMT current [7]

Tþiq ðbjB0BÞ ¼
Z

d2Δ
ð2πÞ2 e

−iΔ·bhB0ðPþ;Δ=2; S03ÞjT̂þiq j

× BðPþ;−Δ=2; S3Þi; ð3Þ
where the initial and final baryons are denoted by B and B0,
respectively. The light-cone vectors are defined by v� ¼
ðv0 � v3Þ ffiffiffi2p . The average and the difference between the
incoming (p) andoutgoing ðp0Þbaryonmomenta aregivenby
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P ¼ ðp0 þ pÞ=2 and Δ ¼ p0 − p, respectively. The impact
parameter and the momentum transfer lie in the transverse
plane, i.e., b ¼ fbx; byg andΔ ¼ fΔx;Δyg.While S3 and S03
denote the spin projections of the initial and final baryons,
respectively, the baryon spin states in Eq. (3) are chosen as
light-front helicity states.
The QCDAM can be separated into two components: the

OAM denoted by lqkin, which is associated with the kinetic
EMT current Tþikin;q, and the intrinsic spin represented byΔq,
which corresponds to the antisymmetric part of the kinetic

EMT current T ½þi�kin;q. The QCD AM is then defined by

2SzðS03; S3ÞJqB0→B ¼ 2SzðS03; S3Þ½lqkin þ Δq�B0→B

¼ 1

2Pþ

Z
d2b½b × TþTq ðbjB0BÞ�z; ð4Þ

with the matrix element of the generalized spin vector

SzðS03; S3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ 1

2S0 þ 1

r
C
S0S0

3

SS310
; ð5Þ

where S and S0 represent the spins of the initial and final

states, respectively, and C
S0S0

3

SS310
corresponds to the SU(2)

Clebsch-Gordan coefficient. Equation (5) holds not only
for the diagonal matrix element jS0 − Sj ¼ 0 but also for
the nondiagonal transition jS0 − Sj ¼ 1. The standard spin
vector is recovered by setting S0 ¼ S. By inserting the
different initial and final spin quantum numbers, one can
define the transition angular momentum [7].
Similarly, we can introduce and interpret the longitudi-

nally polarized andOAMquark distribution functions for the
N → Δ transition as the forward limits of the transition
GPDs. While the forward limit of the twist-2 nucleon
axial-vector GPDs [1–3] is related to the longitudinally
polarized quark distribution, the OAM quark distribution
is related to the twist-3 nucleon GPDs [52–54]. Similar
relations can be found for the N → Δ transition, which will
be discussed in Sec. IV.
Equation (4) defines the total AM. Regarding its sepa-

ration into OAM and spin, different versions have been
proposed and discussed in the literature [49]. In this work,
we will adopt the quark canonical (or Jaffe-Manohar) OAM
lqB0→BðxÞ, where the quark OAM operator can be unambig-
uously defined. The longitudinally polarized ΔqB→B0 ðxÞ
and OAM lqB0→BðxÞ quark distributions are formally given
by (see Refs. [13,49] for a review)

2SzðS03; S3ÞΔqB→B0 ðxÞ ¼
1

2

Z
dz−

2π
eixP

þz−
�
B0ðPþ; 0; S03Þjψ̄q

�
−
z
2

�
γþγ5ψq

�
z
2

�
jBðPþ; 0; S3Þ

�				
zþ¼z⊥¼0

;

2SzðS03; S3ÞlqB0→BðxÞ ¼
Z

d2k⊥iðk⊥ × ∇ΔÞz
1

2

Z
dz−d2z⊥
ð2πÞ3 eiðxPþz−−k⊥·z⊥Þ

×

�
B0ðPþ;Δ=2; S03Þjψ̄q

�
−
z
2

�
γþψq

�
z
2

�
jBðPþ;−Δ=2; S3Þ

�				
zþ¼0;Δ¼0

; ð6Þ

where the light-front gauge is taken so that the Wilson line
can be taken to be unity, and where x is the longitudinal
momentum fraction of a baryon carried by quarks. Thus,
the total AM quark distribution function is given by

JqB→B0 ðxÞ ≔ lqB→B0 ðxÞ þ ΔqB→B0 ðxÞ: ð7Þ

III. LIGHT-CONE CHIRAL QUARK-SOLITON
MODEL

The chiral quark-soliton model (χQSM) is a pion mean-
field theory, motivated by the large Nc limit of QCD [55].
The pion field is created by the presence of valence quarks,
and the valence quarks are in turn influenced by the pion
field. This self-consistent interaction leads to the formation
of a baryon; see Refs. [29,30] for a review. The LCχQSM
is a version of the χQSM that is formulated on the light
cone [22,23]. This allows for simpler treatment of the
relativistic dynamics of the model; see also Ref. [36] for a
study of the LCWFs at large Nc.

A. Light-cone wave functions

In this model, the baryon wave function appears as the
sum of the discrete-level wave function1 Fjσ and the infinite
tower of quark-antiquark pair wave functions. While higher
Fock states, such as 5Q and 7Q, can be generated by the
effective quark-pion dynamics, we limit our investigation
to the 3Q configuration. This choice is motivated by the
observation that the inclusion of higher Fock states would
introduce corrections to the observables that are typically no
larger than 20% in many theoretical approaches. Therefore,
we will consider only the discrete-level wave function

Fjσðx;k⊥Þ¼
�kLf⊥ðx; jk⊥jÞ fkðx; jk⊥jÞ

−fkðx; jk⊥jÞ kRf⊥ðx; jk⊥jÞ
�jσ				

kz¼xMN−Elev

;

ð8Þ

1In fact, the configuration of the discrete-level wave function is
slightly distorted by the vacuum polarization effects. Since these
contributions are negligible, we omit them in this work. Detailed
estimates of such contributions can be found in Ref. [27].
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where j is the quark isospin and σ is the light-cone helicity
with kR;L ¼ kx � iky and the nucleon mass MN . Here, the
longitudinal momentum fraction of the baryon carried by
the quark is denoted by x, and the transverse momentum of
the quark is given by k⊥. The two independent functions
fkðx; jk⊥jÞ and f⊥ðx; jk⊥jÞ are written as

fkðx; jk⊥jÞ ¼
ffiffiffiffiffiffiffiffi
MN

2π

r �
hðkÞ þ kzjðkÞ

jkj
�
;

f⊥ðx; jk⊥jÞ ¼
ffiffiffiffiffiffiffiffi
MN

2π

r
jðkÞ
jkj : ð9Þ

h and j are the upper and lower components of the Dirac
spinor in the presence of the chiral fields.Elev is the discrete-
level quark eigenenergy bounded by the pion mean field.
Note that in the nonrelativistic (NR) limit the diagonal part of
Fjσ is dropped, i.e.,

fNRk ðx; jk⊥jÞ ¼
ffiffiffiffiffiffiffiffi
MN

2π

r
hðkÞ; fNR⊥ ðx; jk⊥jÞ ¼ 0: ð10Þ

After summing over the discrete-level energy Elev ∼
0.2 GeV and the Dirac continuum spectra, one finds the
classical nucleon mass MN ∼ 1.207 GeV.
In the limit of large Nc, the baryon wave function can be

completely factorized in color space, so that the LCWFs are
given by the product of the Nc discrete-level wave
functions (see Refs. [22,23,56] for the details):

jBðP; S3Þi ¼ TðBÞf1f2f3j1j2j3;k
c0ffiffiffiffiffi
Pz
p

Z
½dk�

Z
½dx�Fj1σ1ðk1Þ

× Fj2σ2ðk2ÞFj3σ3ðk3Þ
ϵα1α2α3ffiffiffiffiffiffiffiffi
Nc!
p a†α1f1σ1ðp1Þ

× a†α2f2σ2ðp2Þa
†
α3f3σ3

ðp3Þj0i; ð11Þ

with the longitudinal and transverse relative momenta of
the quarks ki ¼ ðxi; ki⊥Þ and the physical transverse
momenta pi ¼ ðxi; ki⊥ þ xiP⊥Þ. The index αi denotes
the color index, and the light-cone wave function is
antisymmetric in the color space. The indices fi and σi
stand for the quark flavors and the light-cone helicity,
respectively. P ¼ ðP⊥; PzÞ and c0 designate the baryon
momentum and the normalization constant of the light-
cone wave function, respectively. The quark creation
operator, denoted as a†, follows the anticommutation
relations

fa†aðp⊥Þ; aa0 ðp0Þg ¼ δa0aδðx− x0Þð2πÞ2δð2Þðp0⊥ − p⊥Þ: ð12Þ

with a ¼ fα; f; σg and a0 ¼ fα0; f0; σ0g. To ensure a well-
defined momentum for the baryon state, we take into
account the translational zero mode. This leads to the

conservation of momentum in the baryon state.
Consequently, the integration measure for the 3Q state
can be expressed as follows:

Z
½dx� ¼

Z
dx1dx2dx3δ

 X3
l¼1

xl − 1

!
;

Z
½dk� ¼

Z  Y3
i¼1

d2ki⊥
ð2πÞ2

!
ð2πÞ2δð2Þ

 X3
l¼1

kl⊥

!
: ð13Þ

To include the spin and isospin quantum numbers of the
baryon, we also consider the rotational zero mode. Each of
the discrete-level quarks undergoes a rotation given by the
matrix Rf

j and is projected onto the spin-flavor baryon state
B�ðRÞ by integrating over R. We denote this group integral
by the following shorthand:

TðBÞf1f2f3j1j2j3;k
≔
Z

dRB�kðRÞRf1
j1
Rf2
j2
Rf3
j3
; ð14Þ

where the spin-flavor baryon states are given by

p�↑ ¼
ffiffiffi
8
p

R†2
1 R3

3;

Δþ�↑ ¼
ffiffiffiffiffi
10
p
ðR†2

1 R†2
1 R†1

2 þ R†2
2 R†2

1 R†1
1 Þ: ð15Þ

The spin polarization of the baryon is denoted by
k ¼ ↑;↓ ¼ 1, 2. The prefactors of the spin-flavor baryon
states are determined through the following normalization:

Z
dRB�kðRÞBkðRÞ ¼ 1: ð16Þ

We refer to Refs. [24,26,56,57] for the details of the group
integrals.
Note that in the large Nc limit we set the masses of the

nucleon and the Δ baryon to be equal, i.e., MN ¼
MΔ ∼OðNcÞ. To include higher-order corrections beyond
the leading Nc approximation, the integration measure
must be adjusted. This modification accounts for the
kinematical subleading corrections in Nc and has been
discussed in Ref. [58].

B. Normalization of the LCWFs

In this section, we focus on the parametrization of the
overlap integrals of the LCWFs. This parametrization
allows us to determine the normalization of the LCWFs.

Specifically, the normalization factor c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ=N ð3Þ

q
of

the baryon LCWF can be obtained by evaluating the
contraction of the creation and annihilation operators,
which is written as
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N ð3ÞðBÞ ¼ 6TðBÞf1f2f3j1j2j3;k
TðBÞj01j02j03;kf1f2f3

Z
½dk�Fj1σ1ðk1Þ

× Fj2σ2ðk2ÞFj3σ3ðk3ÞF†
j0
1
σ1
ðk1Þ

× F†
j0
2
σ2
ðk2ÞF†

j0
3
σ3
ðk3Þ: ð17Þ

By performing the group integrals for both the proton and
the Δ baryon, we determine their respective normalizations

N ð3Þðp↑Þ ¼
3

2
αV; N ð3ÞðΔþ↑ Þ ¼

3

5
αV; ð18Þ

where it is convenient to define the αV in terms of the quark
distributions ΦVðxÞ

αI¼V ≔
Z

dxΦI¼VðxÞ ¼
Z
½dx�

Z
½dk�DI¼Vðx; k1; k2; k3Þ;

ð19Þ

with

DI¼V ¼ δðx − x1Þ
h
f2kðk1Þ þ k1Rk1Lf2⊥ðk1Þ

i
×
h
f2kðk2Þ þ k2Rk2Lf2⊥ðk2Þ

i
×
h
f2kðk3Þ þ k3Rk3Lf2⊥ðk3Þ

i
: ð20Þ

Note that the normalizations of the discrete-level wave
functions f⊥ and fk are arbitrary. For convenience,
we choose them to have a normalization parameter αV

equal to 1.

C. Overlap integrals

We are now in a position to evaluate the quark distri-
bution functions of the AM using the LCWFs. The overlap
representations for the AM operators are parametrized
by the five quark distributions, and they are labeled by
I ¼ A;L; L1; L2; L3. DI¼A;L;L1;L2;L3ðx; k1; k2; k3Þ is then
defined as

DA ¼ δðx − x1Þ
h
f2kðk1Þ − k1Rk1Lf2⊥ðk1Þ

ih
f2kðk2Þ þ k2Rk2Lf2⊥ðk2Þ

ih
f2kðk3Þ þ k3Rk3Lf2⊥ðk3Þ

i
;

DL ¼ δðx − x1Þ
h
x1k1Rk1Lf2⊥ðk1Þ

ih
f2kðk2Þ þ k2Rk2Lf2⊥ðk2Þ

ih
f2kðk3Þ þ k3Rk3Lf2⊥ðk3Þ

i
;

DL1 ¼ δðx − x1Þ
h
ð1 − x1Þk1Rk1Lf2⊥ðk1Þ

ih
f2kðk2Þ þ k2Rk2Lf2⊥ðk2Þ

ih
f2kðk3Þ þ k3Rk3Lf2⊥ðk3Þ

i
;

DL2 ¼ δðx − x2Þ
h1
2
ðk1Rk2L þ k1Lk2RÞx1f2⊥ðk1Þ

ih
f2kðk2Þ þ k2Rk2Lf2⊥ðk2Þ

ih
f2kðk3Þ þ k3Rk3Lf2⊥ðk3Þ

i
;

DL3 ¼ δðx − x3Þ
h1
2
ðk1Rk3L þ k1Lk3RÞx1f2⊥ðk1Þ

ih
f2kðk2Þ þ k2Rk2Lf2⊥ðk2Þ

ih
f2kðk3Þ þ k3Rk3Lf2⊥ðk3Þ

i
: ð21Þ

Using the quark distributions given in Eq. (21), we obtained the AM quark distribution functions:
(i) For the proton [for the neutron (u ↔ d)]

lupðxÞ ¼
4

3
ΦL1ðxÞ − 1

3
ΦL2ðxÞ − 1

3
ΦL3ðxÞ; ldpðxÞ ¼ −

1

3
ΦL1ðxÞ − 2

3
ΦL2ðxÞ − 2

3
ΦL3ðxÞ;

luþdp ðxÞ ¼ ΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞ; lu−dp ðxÞ ¼
5

3
ΦL1ðxÞ þ 1

3
ΦL2ðxÞ þ 1

3
ΦL3ðxÞ;

ΔupðxÞ ¼
2

3
ΦAðxÞ; ΔdpðxÞ ¼ −

1

6
ΦAðxÞ;

½ΔuðxÞ þ ΔdðxÞ�p ¼
1

2
ΦAðxÞ; ½ΔuðxÞ − ΔdðxÞ�p ¼

5

6
ΦAðxÞ: ð22Þ

(ii) For the Δþ baryon

luΔþðxÞ ¼
2

3
ðΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞÞ; ldΔþðxÞ ¼

1

3
ðΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞÞ;

luþdΔþ ðxÞ ¼ ΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞ; lu−dΔþ ðxÞ ¼
1

3
ðΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞÞ;

ΔuΔþðxÞ ¼
1

3
ΦAðxÞ; ΔdΔþðxÞ ¼

1

6
ΦAðxÞ;

½ΔuðxÞ þ ΔdðxÞ�Δþ ¼
1

2
ΦAðxÞ; ½ΔuðxÞ − ΔdðxÞ�Δþ ¼

1

6
ΦAðxÞ: ð23Þ
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(iii) For the p → Δþ transition

lup→ΔþðxÞ ¼ −
ffiffiffi
2
p

3
ð2ΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞÞ; ldp→ΔþðxÞ ¼

ffiffiffi
2
p

3
ð2ΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞÞ;

luþdp→ΔþðxÞ ¼ 0; lu−dp→ΔþðxÞ ¼ −
2
ffiffiffi
2
p

3
ð2ΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞÞ;

Δup→ΔþðxÞ ¼ −
ffiffiffi
2
p

3
ΦAðxÞ; Δdp→ΔþðxÞ ¼

ffiffiffi
2
p

3
ΦAðxÞ;

½ΔuðxÞ þ ΔdðxÞ�p→Δþ ¼ 0; ½ΔuðxÞ − ΔdðxÞ�p→Δþ ¼ −
2
ffiffiffi
2
p

3
ΦAðxÞ: ð24Þ

Based on the spin-flavor structures of the proton (p), the
neutron (n), the Δþ baryon, and the p → Δþ transition, we
obtain intriguing relations for the OAM quark distribution
functions

lup→ΔþðxÞ ¼ −
ffiffiffi
2
p

3

�
luΔþðxÞ þ lupðxÞ

�

¼ −
ffiffiffi
2
p

9

�
2lunðxÞ þ 5lupðxÞ

�
;

ldp→ΔþðxÞ ¼
ffiffiffi
2
p

3

�
5ldΔþðxÞ − ldpðxÞ

�

¼
ffiffiffi
2
p

9

�
5ldnðxÞ þ 2ldpðxÞ

�
; ð25Þ

and for the longitudinally polarized quark distribution
functions

Δup→ΔþðxÞ ¼ −
1ffiffiffi
2
p ΔupðxÞ ¼ −

ffiffiffi
2
p

ΔuΔþðxÞ;

Δdp→ΔþðxÞ ¼ −2
ffiffiffi
2
p

ΔdpðxÞ ¼ 2
ffiffiffi
2
p

ΔdΔþðxÞ: ð26Þ

By integrating the quark distribution functions over the
variable x, we have obtained the values for the intrinsic spin
(also known as the axial charge ΔqB0→B ¼ gqA;B0→B=2) and
the OAMZ

dxΔqB→B0 ðxÞ ¼ ΔqB→B0 ;
Z

dxlqB→B0 ðxÞ ¼ lqB→B0 :

ð27Þ

From Eq. (21), one can easily see that the integral of the
total AM quark distribution functions Juþdp;ΔþðxÞ for both the
nucleon and the Δ baryon over x is properly normalized to
the baryon spin

Z
dxJuþdp;ΔþðxÞ

¼
Z

dx



1

2
ΦAðxÞþΦL1ðxÞ−ΦL2ðxÞ−ΦL3ðxÞ

�
¼1

2
: ð28Þ

Here we used the relation k1⊥ þ k2⊥ þ k3⊥ ¼ 0. It is
obvious that the isoscalar transition AM Juþdp→ΔþðxÞ is equal
to zero. It is worth noting that in the nonrelativistic limit,
all OAM quark distribution functions become zero, while
the longitudinally polarized quark distribution functions
become equivalent to the total AM quark distribution
functions:

ΔqB→B0;NRðxÞ ¼ JqB→B0;NRðxÞ; lqB→B0;NRðxÞ ¼ 0: ð29Þ

D. Numerical results

To estimate the AM quark distribution functions and their
normalizations, we use the explicit quark wave functions f⊥
and fk, where the values of the dynamical parameters are
taken from Refs. [22–24,56]. We will provide not only the
quark distribution functions for the N → Δ transition but
also what fractions of the intrinsic spin and the OAM
contribute to the N → Δ transition AM.
In Fig. 1 we first examined the longitudinally polarized

quark distribution functions for the proton, the Δ baryon,
and the N → Δ transition. These distribution functions are
parametrized with respect to the single quark distribution
ΦA, which is normalized as follows:Z

dxΦAðxÞ ¼ αA ¼ 0.861;
Z

dxΦA
NRðxÞ ¼ αANR ¼ 1;

ð30Þ
where we have reproduced the numerical values given in
Ref. [26]. It is observed that the Δu and Δd values for
the proton have opposite signs, with Δu being positive and
Δd being negative. However, for the Δþ baryon, both Δu
and Δd have positive signs. Interestingly, in the case of
the proton, the isovector component of the axial charge
is significantly larger than the isoscalar component.
Conversely, for the Δ baryon, this relation is reversed.
Turning to the quark distribution functions for the p → Δþ
transition, they are naturally induced by the spin-flavor
relation. While the isoscalar quark distribution functions
in the p → Δþ transition are zero, a substantial asymmetry
between the light valence quarks is obtained. The
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normalizations of these distribution functions are summa-
rized in Table I. Consistent with the large Nc analysis [7], it
is noteworthy that the flavor asymmetries in the intrinsic
spin ½Δu − Δd�p→Δþ ¼ −0.812 and in the total AM
Ju−dp→Δþ ¼ −0.887 are estimated to be substantial. Note that

the sign difference for Ju−dp→Δþ compared to Ref. [7] might
depend on the choice of the phases of the baryon states.
Figure 2 illustrates the OAM quark distribution func-

tions. We observe that the OAM contribution lq to the
baryon spin is relatively small compared to Δq. This
suggests that the nonrelativistic approximation is a

reasonable approximation for describing the total AM.
The OAM is parametrized in terms of the three-quark
distributionsΦL1;L2;L3ðxÞ, and their normalizations αL1;L2;L3

are estimated as follows:

Z
dxΦL1ðxÞ ¼ αL1 ¼ 0.050;Z

dxΦL2;L3ðxÞ ¼ αL2;L3 ¼ −0.010; with

ΦL2ðxÞ ¼ ΦL3ðxÞ: ð31Þ

FIG. 1. Longitudinally polarized quark distribution functions for the proton (upper left panel), Δ baryon (upper right panel), and
p → Δþ transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent the Δuþ Δd,
Δu − Δd, Δu, and Δd contributions, respectively.

TABLE I. Intrinsic spin, OAM, and total angular momentum of the nucleon, the Δþ baryon, and the p → Δ transition are listed for
both the nonrelativistic (NR) and relativistic (Rel.) cases.

Contents lq Δq Jq

q u d u − d uþ d u d u − d uþ d u d u − d uþ d

NR p → p 0 0 0 0 2=3 −1=6 5=6 1=2 2=3 −1=6 5=6 1=2
Δþ → Δþ 0 0 0 0 1=3 1=6 1=6 1=2 1=3 1=6 1=6 1=2
p → Δþ 0 0 0 0 −

ffiffiffi
2
p

=3
ffiffiffi
2
p

=3 −2
ffiffiffi
2
p

=3 0 −
ffiffiffi
2
p

=3
ffiffiffi
2
p

=3 −2
ffiffiffi
2
p

=3 0

Rel. p → p 0.073 −0.003 0.076 0.070 0.574 −0.144 0.718 0.431 0.647 −0.147 0.794 0.5
Δþ → Δþ 0.046 0.023 0.023 0.070 0.287 0.144 0.144 0.431 0.333 0.167 0.167 0.5
p → Δþ −0.037 0.037 −0.074 0 −0.406 0.406 −0.812 0 −0.443 0.443 −0.887 0
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We then arrive at the value of the isoscalar OAM for both
the nucleon and the Δ baryon

luþdp;Δþ ¼
Z

dx½ΦL1ðxÞ −ΦL2ðxÞ −ΦL3ðxÞ�

¼
Z

dxΦLðxÞ ¼ αL ¼ 0.070: ð32Þ

This result is in agreement with the numerical estimate
made in Ref. [21]. In the nonrelativistic limit, the OAM
quark distributions apparently become null:

ΦL1;L2;L3

NR ðxÞ ¼ 0: ð33Þ

Since the quark has no relativistic motion in this limit, all
observables relevant to the OAM should be zero.
In the case of the proton, the OAM luþd is similar in

magnitude to lu−d, indicating that ld is close to zero. This
smallness of the d-quark contribution arises from the fully
dynamical reason, which is the cancellation between the
two dynamical parameters − 1

3
αL1 ∼ −0.017 and − 4

3
αL2 ∼

0.013. However, in the Δþ baryon, luΔþ is twice as large as
ldΔþ . This relation holds exactly for the intrinsic spin Δq,
specifically ΔuΔþ ¼ 2ΔdΔþ. In addition, it is noteworthy

that there is a significant flavor asymmetry of the OAM in
the p → Δ transition. The normalizations of these quantities
can be found in Table I. The equal but opposite contributions
of the u and d quarks to the OAM result in luþdp→Δþ ¼ 0. When
the OAM and the intrinsic spin are combined, they give the
total AM. As shown in Eq. (28), numerically the total AM is
indeed normalized to the baryon spin.

IV. LARGE Nc ANALYSIS OF THE QUARK
DISTRIBUTION FUNCTIONS

Another way to estimate the value of the quark distribu-
tion function is to use the spin-flavor structure in the largeNc
limit of QCD. In practice, this structure can be obtained
within the chiral soliton approach. One of the most realistic
and representative models of this approach is the χQSM. In
this model the various quark distribution functions have been
evaluated [37,38,40,42,59]. From the given quark distribu-
tion functions of the nucleon, one can easily map those of the
N → Δ transitions by using the spin-flavor symmetry. In
fact, the results of this approach are more reliable than those
of the LCχQSM.While in the LCχQSM the infinite tower of
higher-Fock states is truncated, all sea-quark contributions
(quark-antiquark pairs) are explicitly taken into account in
the estimation of the χQSM [36].

FIG. 2. OAM quark distribution functions for the proton (upper left panel), Δþ baryon (upper right panel), and p → Δþ transition
(lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent the luþd, lu−d, lu, and ld

contributions, respectively.

JUNE-YOUNG KIM PHYS. REV. D 108, 034024 (2023)

034024-8



Thus, this section is devoted to the extraction of the
quark distribution functions for the N → Δ transitions
from those for the nucleon using the large Nc relations.
While the numerical data for the longitudinally polarized
quark distribution functions for the nucleon in the
χQSM are given in Refs. [37,38], those for the OAM
quark distribution are missing. Thus, we will discuss
only the longitudinally polarized quark distribution
functions.

First, we want to mention the Nc scalings of the
kinematical variables. The baryon masses are of orderMN ∼
MΔ ∼OðNcÞ and their mass splitting is MN −MΔ∼
OðN−1

c Þ. The 3-momenta are jpj; jp0j ∼OðN0
cÞ and the

3-momentum transfer is jΔj ∼OðN0
cÞ. In addition, the Nc

scalings of the GPDs arguments are x; ξ ∼OðN−1
c Þ and

t ∼OðN0
cÞ.

In the large Nc limit, the longitudinally polarized quark
distribution functions scale as follows [37,38,60,61]:

2SzðS03; S3Þ½ΔuðxÞ þ ΔdðxÞ�B→B0 ¼ hS3iB0B½ΔuðxÞ þ ΔdðxÞ�sol ∼ Nc × functionðNcxÞ;
2SzðS03; S3Þ½ΔuðxÞ − ΔdðxÞ�B→B0 ¼ hD33iB0B½ΔuðxÞ − ΔdðxÞ�sol ∼ N2

c × functionðNcxÞ: ð34Þ

where h� � �iB0B stands for the matrix element of the spin-
flavor operator between the initial (B ¼ fS; S3; I; I3g) and
final (B0 ¼ fS0; S03; I0; I03g) baryon states:

hS3iB0B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
C
S0S0

3

SS310
δS0SδI0

3
I3δI0I;

hD33iB0B ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ 1

2S0 þ 1

r
C
S0S0

3

SS310
C
I0I0

3

II310
: ð35Þ

Note that SðS3Þ and IðI3Þ stand for the spin (spin
projection) and isospin (isospin projection) quantum num-
bers, respectively. The explicit expressions of the quark
distributions ½Δuþ Δd�sol and ½Δu − Δd�sol in the chiral
soliton approach are given in Refs. [37,38]. For the
isoscalar, the proton and Δþ baryon quark distribution
functions are equivalent to each other,

½ΔuðxÞ þ ΔdðxÞ�N→N ¼ ½ΔuðxÞ þ ΔdðxÞ�Δ→Δ;

½ΔuðxÞ þ ΔdðxÞ�N→Δ ¼ 0; ð36Þ

and the isoscalar transition is obviously not allowed
because the isospins of the N and Δ baryons differ by
jI0 − Ij ¼ 1, so the operator must be jI0 − Ij ≥ 1. As for the
isovector component, the longitudinally polarized quark
distribution for p → p is related to those for p → Δþ and
Δþ → Δþ,

½ΔuðxÞ − ΔdðxÞ�p→p ¼
1ffiffiffi
2
p ½ΔuðxÞ − ΔdðxÞ�p→Δþ

¼ 5½ΔuðxÞ − ΔdðxÞ�Δþ→Δþ : ð37Þ

Integrating these quark distribution functions over x, one
obtains the axial-charge relation

gu−dA;p→p ¼
1ffiffiffi
2
p gu−dA;p→Δþ ¼ 5gu−dA;Δþ→Δþ ; ð38Þ

which is exactly the same as the total AM [7]. In that
paper [7] it was emphasized that the spin-flavor symmetry

in the large Nc limit is blind to the decomposition between
the intrinsic spin and the OAM. This is the reason why the
spin-flavor relation for the total AM also holds for the
isovector axial charge.
In addition, we want to mention the relation of the

transition GPDs to the quark distribution functions. The
N → Δ GPDs [60] are defined as

Z
dλ
2π

eiλxhΔþðp0; S03Þjψ̄ð−z=2Þ=nγ5τ3ψðz=2Þjpðp0; S03Þi

¼ ūβðp0; S03Þ
h
C1ðx; ξ; tÞnβ þ � � �

i
uðp; S3Þ; ð39Þ

where � � � denotes the GPDs suppressed in the large Nc

limit and dropped in the forward limit Δ; ξ ¼ 0, and ūβ and
u are Rarita-Schwinger and Dirac spinors, respectively.
Here n denotes the light-cone vector, and the spacetime
4-vector zμ in Eq. (6) is rewritten as zμ ¼ nμλ. The first
Mellin moment of the transition GPD is related to the axial-
vector form factor

Z
dxC1ðx; ξ; tÞ ¼ 2C5ðtÞ; ð40Þ

where the matrix element of the local axial vector current
is parametrized in terms of the Adler-type form factors
[62,63] as

hΔþðp0; S03Þjψ̄ð0Þγμγ5
τ3

2
ψð0Þjpðp0; S03Þi

¼ ūβðp0; S03Þ
h
C5ðtÞgμβ þ � � �

i
uðp; S3Þ: ð41Þ

In the forward limit Δ; ξ ¼ 0, the transition GPDs are
reduced to quark distribution functions in the N → Δ
transition

½ΔuðxÞ − ΔdðxÞ�p→Δþ ¼
ffiffiffi
2

3

r
C1ðx; 0; 0Þ: ð42Þ
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Integrating the quark distribution functions over x, one
arrives at the axial charge

gu−dA;p→Δþ ¼
ffiffiffi
2
p

gu−dA;p→p ¼ 2

ffiffiffi
2

3

r
C5ð0Þ ∼OðNcÞ: ð43Þ

They coincide with the large Nc relations between the
nucleon and the N → Δ transition GPDs and their Nc
scalings

C1ðx; ξ; tÞ ¼
ffiffiffi
3
p

H̃u−dðx; ξ; tÞ ∼ N2
c × fðNcx;Ncξ; tÞ: ð44Þ

It is easy to find these large Nc relations among the GPDs,
the PDFs, and the charge for the Δ baryon [64,65].
Finally, it is worth noting that the same spin-flavor

structure holds for the OAM quark distributions

lu−dp→pðxÞ ¼
1ffiffiffi
2
p lu−dp→ΔþðxÞ ¼ 5lu−dΔþ→ΔþðxÞ; ð45Þ

because the spin-flavor structures of the intrinsic spin,
OAM, and total AM are shared.
Figure 3 shows the longitudinally polarized quark

distributions for the p → Δþ and Δþ baryons, based on
their spin-flavor structures. The upper left panel shows
that the quark and antiquark distribution functions for the
N → Δ transition are about 1.4 times larger than those of

the nucleon. Note that in the large Nc limit, the scaling
behavior of Δuþ Δd and Δu − Δd is of the order of
OðN0

cÞ and OðN1
cÞ, respectively. Therefore, a mere con-

sideration of the leading contributions is not sufficient for
the flavor decomposition, since the subleading contribution
to the isovector quark distribution functions ½Δu − Δdjsub∼
OðN0

cÞ must also be taken into account. In contrast, for the
N → Δ transition, the isoscalar quark distribution functions
must be zero, eliminating the Nc scaling admixture.
Consequently, the flavor-decomposed quark distributions
are shown in the right panel of Fig. 3. Additionally, for
completeness, we include the quark distribution functions
for the Δ baryon. Similar to the LCχQSM, these distribu-
tions are relatively small compared to the nucleon results
due to the kinematical factors.
Table II shows the separate contributions of the OAM

and the intrinsic spin to the total AM, using data from
lattice QCD at μ2 ¼ 4 GeV2 and the χQSM at μ2 ∼
0.36 GeV2. Instead of relying on the normalization values
of the quark distribution functions in Fig. 3, we use values
obtained from calculations of the EMT form factors [66,67]
and the axial-vector form factors [29]. In particular, the
lattice QCD predicts a substantial flavor asymmetry in both
OAM and intrinsic spin. These contributions have opposite
signs, leading to a partial cancellation and resulting in a
relatively small value of the total angular momentum Ju−d.

FIG. 3. Longitudinally polarized quark distribution functions for the p → Δþ (upper panels) and Δþ baryon (lower panel).
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Here we do not present the isoscalar and isovector OAMs
obtained in the χQSM. This is due to two ambiguities. First,
the effective action in the χQSM can be split into a real part
and an imaginary part. The real part of the effective action
exhibits ultraviolet (UV) divergences, while the imaginary
part is free of such divergences; see Ref. [29] for details.
In this context, the total isovector AM needs no regulari-
zation. This is easily demonstrated by the gradient expan-
sion (i.e., expansion of the quark propagator in terms of the
derivatives of the pion field), where the leading order is
free of UV divergences. However, the individual contribu-
tions of the intrinsic spin and the OAM suffer from UV
divergences. Remarkably, the UV divergent parts of OAM
and intrinsic spin exactly cancel each other out, resulting
in a total AM that is free of UV divergences [69].
Consequently, the separation of OAM and intrinsic spin
at the level of the EMT would be inappropriate. Only the
total AM Ju−d can be considered as a reliable observable
when starting from the EMT. On the other hand, since Juþd
requires regularization, it would be safer to study the
separate contributions of OAM and intrinsic spin. This
can easily be demonstrated again using the gradient expan-
sion. This analysis states that at the leading order of the
gradient expansion [69] all OAM carry the nucleon spin;
see also Ref. [70] in the context of chiral effective field
theory. Second, in a chiral theory, the decomposition of the
isovector part of Ji’s AM into the spin and OAM is spoiled
due to an interacting term; see Refs. [71,72]. In addition,
the QCD relation for the second moment of the chiral-odd
twist-3 quark distribution is also violated [73,74]. This may
be due to the ambiguity of the identification of the twist-3
QCD operator with the effective operators.
In our predictions in the large Nc limit, we determine

the separate contributions of intrinsic spin and OAM for
both the Δ baryon and the N → Δ transition. Remarkably,
the results show significant magnitudes for the isovector
components of both OAM and intrinsic spin. However,
in the case of the Δ baryon, the magnitudes of the iso-
vector components for OAM and intrinsic spin are com-
paratively smaller, in agreement with the expectations of
the LCχQSM.

V. SUMMARY AND CONCLUSIONS

The purpose of this study is to investigate the quark
distribution functions associated with the N → Δ transition
and to address a dynamical aspect regarding the decom-
position of the contributions from orbital angular momen-
tum and intrinsic spin.
Starting from the energy-momentum tensor current,

we establish the definition of angular-momentum quark
distribution functions applicable to all initial and final
baryon states, including the specific case of the N → Δ
transition. These quark distribution functions include the
longitudinally polarized quark distribution and the orbital
angular-momentum quark distribution. They can be related
to the twist-2 and twist-3 generalized parton distributions,
respectively.
To estimate the angular-momentum quark distribution

functions, we use two different approaches. The first
approach involves the use of overlap representations of
the 3Q light-cone wave function derived from the chiral
quark-soliton model. The second approach relies on the
standard spin-flavor symmetry in the framework of the
large Nc limit of QCD.
First, the determination of the orbital angular momentum

quark distribution function involves two independent dis-
tributions, ΦL1ðxÞ and ΦL2ðxÞ, derived from the overlap
representation of the 3Q light-cone wave function. It turns
out that a linear combination of the proton and neutron
orbital angular momentum quark distributions allows the
extraction of those associated with the N → Δ transition
and the Δ baryon. On the other hand, the longitudinally
polarized quark distribution relies solely on the single
distribution ΦAðxÞ. Thus, access to the quark distributions
of the proton allows the determination of those for the
N → Δ transition and the Δ baryon.
We found that a significant fraction of the QCD angular

momentum comes from the intrinsic spin, while the
remaining fraction is due to the relativistic motion of the
quarks, known as orbital angular momentum. As a result,
the nonrelativistic approximation holds reasonably well for
the 3Q light-cone wave function. Nevertheless, both the
intrinsic spin and the orbital angular momentum show a

TABLE II. The intrinsic spin, OAM and total angular momentum of the nucleon, the Δþ baryon, and the p → Δ transition are listed
using the input data from the QCD lattice [68] and the χQSM [29,66,67]. Input values are marked with an asterisk �.
Contents lq Δq Jq

q u − d uþ d u − d uþ d u − d uþ d

Lattice QCD [68] μ2 ¼ 4 GeV2 p → p −0.38� 0.03� 0.61� 0.21� 0.23� 0.24�

Δþ → Δþ −0.08 0.03 0.12 0.21 0.05 0.24
p → Δþ −0.54 0 0.86 0 0.33 0

χQSM [29,66,67] μ2 ∼ 0.36 GeV2 p → p � � � � � � 0.61� 0.19� 0.56� 0.50�

Δþ → Δþ � � � � � � 0.12 0.19 0.11 0.50
p → Δþ � � � � � � 0.86 0 0.79 0
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significant flavor asymmetry. This suggests that the iso-
vector component of the total angular momentum is
substantial. The substantial flavor asymmetry in the angular
momentum holds for both the p → p and the p → Δþ
processes. For the Δþ baryon, however, the isovector
component is suppressed due to the associated kinematical
factor.
Second, we use the spin-flavor symmetry in the large Nc

limit of QCD to derive the longitudinally polarized quark
distribution functions for the Δþ baryon and the p → Δþ
transition. Using the dynamical information obtained in
the nucleon sector, we can easily extend the quark
distribution functions to different baryon quantum num-
bers. To achieve this, we use data from the chiral quark-
soliton model, which provides reliable quark distribution
functions for the nucleon. A notable advantage of this
approach is that it explicitly includes an infinite number of
quark-antiquark pair contributions, in contrast to a trun-
cated 3Q light-cone wave function. Furthermore, we
establish the relation between the generalized quark dis-
tributions and the quark distribution functions for the
N → Δ transition. It is important to emphasize that the
spin-flavor relation observed in the longitudinally polarized
quark distribution functions is also applicable to functions
associated with orbital angular momentum and total angu-
lar momentum. This is because the spin-flavor symmetry
does not distinguish among spin, orbital angular momen-
tum, and total spin.
Using data from lattice QCD and the chiral quark-soliton

model for the nucleon, we make predictions about the
orbital angular momentum, intrinsic spin, and total angular
momentum of the Δþ baryon and the p → Δþ transition.
While the isoscalar orbital angular momentum, intrinsic
spin, and total angular momentum for the p → Δþ tran-
sition become zero due to the isospin properties, substantial

flavor asymmetries are observed. Interestingly, most of
these asymmetries cancel out due to the opposite signs of
the orbital angular momentum and the intrinsic spin.
Consequently, the total angular momentum is relatively
small compared to the individual contributions of orbital
and intrinsic spin. Nevertheless, we find a significant
flavor asymmetry in the isovector component of the total
angular momentum, which is consistent with the expected
size in the large Nc limit of QCD. Moreover, our results
for Δþ baryon are consistent with those obtained from
the overlap representation of the 3Q light-cone wave
function, indicating that the overall smallness of the
intrinsic spin, orbital angular momentum, and total angular
momentum for the Δ baryon can be attributed to the
kinematical factor.
It would be interesting to study the orbital angular

momentum quark distribution functions for the nucleon
in the framework of the chiral quark-soliton model. In
addition, it would be interesting to study the parity-odd
partner of the energy-momentum tensor. It contains rich
information about the partonic structure of the nucleon,
such as the spin-orbit correlation and the second moments
of the quark helicity distribution [75].
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