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Abstract We explore the structure of the spin-1/2 flavor-octet baryons (hy-
perons) through their electromagnetic transverse densities. The transverse
densities describe the distribution of charge and magnetization at fixed light-
front time and enable a spatial representation of the baryons as relativistic
systems. At peripheral distances b ∼ 1/Mπ the transverse densities are com-
puted using a new method that combines chiral effective field theory (χEFT)
and dispersion analysis. The peripheral isovector densities arise from two-
pion exchange, which includes the ρ resonance through elastic unitarity. The
isoscalar densities are estimated from vector meson exchange (ω, φ). We find
that the “pion cloud” in the charged Σ hyperons is comparable to the nucleon,
while in the Ξ it is suppressed. The Λ–Σ0 transition density is pure isovector
and represents a clear manifestiation of peripheral two-pion dynamics.
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1 Introduction

Understanding the structure of strange baryons is an important goal of hadronic
physics. The SU(3) octet baryons (hyperons) are stable under strong interac-
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tions and possess an electromagnetic and weak structure similar to that of the
nucleon, in terms of vector and axial current matrix elements, which can be
measured in radiative transitions and weak decays [1,2]. It is thus possible to
characterize the hyperons by charge and current densities and compare these
to those in the nucleon. Interesting questions are whether the hyperons are
more “compact” or more “extended” than the nucleon, and how they couple
to the chiral degrees of freedom responsible for long-range structure (“pion
cloud”). The answers to these questions have implications also for the under-
standing of hyperon-hyperon interactions and the role of strangeness in strong
interaction dynamics at low energies; see Ref. [3] for a review.

For relativistic systems such as hadrons the electromagnetic structure can
be expressed in terms of transverse densities. They are defined as the 2-
dimensional Fourier transforms of the hadron form factors and describe the
spatial distribution of charge and current in the system at fixed light-front
time x+ = x0 +x3 = const [4–7]. As such they are boost-invariant and provide
an objective representation of the hadron as an extended system. They are
closely related to the partonic description of hadron structure in QCD and
correspond to a projection of the generalized parton distributions (GPDs).
Transverse densities have been used extensively in studies of nucleon struc-
ture; see Ref. [8] for a review of results. They can equally well be used to
explore hyperon structure and answer the above questions.

At peripheral distances b ∼ 1/Mπ the transverse densities can be computed
model-independently using a new method that combines chiral effective field
theory (χEFT) and dispersion analysis [9]. The densities are represented as
dispersive integrals over the imaginary parts of the baryon form factors on the
cut in the timelike region, ImFB(t) at t > tthr. The spectral functions on the
two-pion cut (tthr = 4M2

π) are constructed using the elastic unitarity condition
and the N/D method, with dynamical input from χEFT and the timelike pion
form factor measured in e+e− annihilation experiments [9,10]. The method ef-
fectively includes the ρ meson resonance in the ππ channel, which plays an
essential role in electromagnetic structure. It permits calculation of the isovec-
tor peripheral densities down to distances b & 1 fm with controled accuracy. In
this article we review the results of the method for the hyperon densities and
their impact on the understanding of peripheral hyperon structure. Further
applications of the method are described in Refs. [11,12].

2 Formalism

The matrix element of the electromagnetic current between spin-1/2 baryon
states with 4-momenta p and p′ is described by two form factors, FB1 (t) and
FB2 (t) (Dirac and Pauli form factors). They are functions of the invariant
momentum transfer t = ∆2 = (p′ − p)2 and can be measured and interpreted
without specifying a particular form of relativistic dynamics or reference frame.
In the light-front form of relativistic dynamics one follows the evolution of
strong interactions in light-front time x+ ≡ x0 + x3 [13–15]. In this context



Exploring hyperon structure with electromagnetic transverse densities 3

it is natural to consider the form factors in a frame where the 4-momentum
transfer has only transverse components ∆T = (∆x, ∆y), |∆T |2 = −t, and to
represent them as Fourier transforms of two-dimensional spatial densities

FBi (t = −|∆T |2) =

∫
d2b ei∆T ·b ρBi (b) (i = 1, 2), (1)

where b ≡ (bx, by) is a transverse coordinate variable and b ≡ |b|. The functions
ρB1 (b) and ρB2 (b) describe the transverse spatial distribution of charge and
magnetization in the baryon at fixed x+ = 0 and are invariant under boosts in
the z-direction. Their interpretation as spatial densities and other properties
have been discussed extensively in the literature [5,6,8,16]. Alternative to the
magnetization density ρB2 (b) one also considers the function

ρ̃B2 (b) ≡ ∂

∂b

[
ρB2 (b)

2mB

]
, (2)

which has a simple partonic interpretation. Together, ρB1 (b) and ρ̃B2 (b) contain
the full information about the current matrix element and provide a concise
spatial representation of the baryons’ electromagentic structure.

The baryon form factors are analytic functions of t and have a dispersive
representation of the form

FBi (t) =

∫ ∞
tthr

dt′

t′ − t− i0
ImFBi (t′)

π
(i = 1, 2), (3)

in which they are expressed as integrals over the imaginary parts (spectral
functions) on the cut at t > tthr. The spectral functions arise from processes
in which the current produces a hadronic state that couples to the baryon-
antibaryon system, current→ hadronic state→ BB̄. Using this representation
in Eq. (1), one obtains a dispersive representation of the densities [17,18]

ρB1 (b) =

∫ ∞
tthr

dt
K0(
√
tb)

2π

ImFB1 (t)

π
, (4)

ρ̃B2 (b) = −
∫ ∞
tthr

dt

√
tK1(

√
tb)

4πmB

ImFB2 (t)

π
. (5)

Here Kn (n = 0, 1) are the modified Bessel functions, which decay exponen-

tially at large arguments, Kn(
√
tb) ∼ (

√
tb)−1/2 e−

√
tb for

√
tb� 1. The inte-

grals for the densities therefore converge exponentially at large t. The distance
b determines at what values of t the spectral function is effectively sampled in
the integral (“exponential filter”). In particular, the densities at large distances
are governed by the lowest-mass hadronic states in the spectral function. In
the isovector densities this is the two-pion state (threshold tthr = 4M2

π), which
includes the ρ resonance at t ∼ 30M2

π ; in the isoscalar densities these are effec-
tively the ω and φ resonances in the 3π and KK̄ channels. The densities thus
enable a parametric definition of “peripheral” baryon structure and relate it
to the spectral decomposition of the form factors.
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Fig. 1 Unitarity relation for the isovector spectral function on the two-pion cut.

The isovector spectral functions on the two-pion cut can be computed in
a new approach based on elastic unitarity, the N/D method, and dynamical
input from χEFT and timelike pion form factor measurements [9]. The elastic
unitarity condition in the two-pion channel allows one to express the spectral
functions as [19–21]

ImFBi (t) =
k3cm√
t
ΓBi (t) F ∗π (t) (i = 1, 2), (6)

where kcm =
√
t/4−M2

π is the center-of-mass momentum of the ππ system in
the t-channel, ΓBi (t) is the I = J = 1 ππ → BB̄ partial wave amplitude, and
Fπ(t) is the pion timelike form factor (see Fig. 1). The complex amplitudes
ΓBi (t) and Fπ(t) have the same phase on the two-pion cut; the phase arises
from ππ rescattering in the t-channel, which affects both amplitudes in the
same way (Watson theorem) [22]. The unitarity condition Eq. (6) can thus be
written in manifestly real form as

ImFBi (t) =
k3cm√
t

ΓBi (t)

Fπ(t)
|Fπ(t)|2 (i = 1, 2). (7)

The ratio ΓBi (t)/Fπ(t) is real and free of ππ rescattering effects. This function
can be computed in χEFT with relativistic baryons with controled accuracy.
The factor |Fπ(t)|2 contains the ππ rescattering effects and the ρ resonance,
and is taken as the empirical form factor measured in e+e− annihilation exper-
iments. The approach allows us to construct the two-pion spectral functions
of baryons in the region 4M2

π < t . 1 GeV2, which includes the ρ meson
resonance. Further aspects of the method are discussed in Refs. [9,12,11].

The isovector spectral functions of the SU(3) octet baryons have been cal-
culated with the above method, using relativistic χEFT with spin-1/2 octet
and spin-3/2 decuplet baryons in LO accuracy [9]. The chiral processes con-
tributing to partial-wave amplitudes ΓBi (t) at this accuracy are shown in
Fig. 2. [Calculations in the SU(2) sector have meanwhile been extended to
NLO and partial N2LO accuracy and show good convergence in higher orders
[12].] The isoscalar spectral functions have been modeled by vector meson ex-
change (ω, φ), with couplings constrained by SU(3) symmetry and dispersive
fits to the nucleon form factor data [9].1 With these spectral functions we

1 The contribution of KK̄ states to the hyperon isovector and isoscalar spectral functions
in χEFT was computed in Ref. [23] without rescattering effects. The contributions of these
states to the peripheral densities considered here turns out to be negligible.
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Fig. 2 LO χEFT diagrams contributing to the ππ → NN̄ partial-wave amplitudes ΓB
i in

the I = J = 1 channel. (a) Born term with intermediate octet baryon B. (b) Weinberg-
Tomozawa contact term. (c) Born term with intermediate decuplet baryon T .

have evaluated the peripheral transverse densities of the hyperons through the
dispersive representation Eqs. (4) and (5).

3 Results and discussion

The results for the hyperon charge densities ρB1 (b) and magnetization densities
ρ̃B2 (b) are summarized in Figs. 3 and 4. The baryons in the octet representation
of SU(3) form four isospin multiplets

multiplet baryons isospin
N p, n I = 1

2
Λ Λ I = 0
Σ Σ+, Σ−, Σ0 I = 1
Ξ Ξ0, Ξ− I = 1

2 .

 (8)

Within each multiplet we write the densities as the sum/difference of an
isoscalar and isovector component,

{ρp, ρn} = ρN,S ± ρN,V ,
ρΛ = ρΛ,S ,

{ρΣ+

, ρΣ
−} = ρΣ,S ± ρΣ,V ,
ρΣ

0

= ρΣ,S ,
ρΛ−Σ = ρΛ−Σ,V ,

{ρΞ0

, ρΞ
−} = ρΞ,S ± ρΞ,V .


(9)

The Λ and Σ0 densities are pure isoscalar, while the Λ-Σ0 transition form
factors are pure isovector. For each hyperon B we show the total densities as
well as their isovector and isoscalar components.

The peripheral densities decay exponentially in b, as expected from the
analytic properties of Eqs. (4) and (5). The decay rate is determined by the
effective t-values in the spectral integral. The isovector densities decay approx-
imately as ∼ exp(−Mρb) at b ∼ 1 fm, and with a smaller effective mass at
b > 2 fm, because at larger b the spectral integral shifts to smaller t-values
closer to the two-pion threshold. The isoscalar densities always decay with the
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Fig. 3 Peripheral transverse charge densities of the octet baryons [9]. Red: Isovector compo-
nent calculated with the spectral functions obtained from Eq. (7), χEFT, and the empirical
pion form factor. Blue: Isoscalar component estimated from vector meson poles. Green: To-
tal density (sum or difference of isoscalar and isovector components). For the densities with
fixed sign we plot ρ1(b) on a logarithmic scale (the signs are indicated in the legends of the
plots); for those with changing sign we plot the radial densities 2πbρ1(b) on a linear scale.

ω mass. As a consequence, the overall densities are dominated by the isovec-
tor component at distances b > 3 fm. Since this component can be calculated
model-independently, we are able to predict the overall densities in this region
within our approach [9]. Isoscalar and isovector densities become comparable
only at distances b < 2 fm. In this region the uncertainties of our isovector cal-
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Fig. 4 Peripheral transverse magnetization densities of the octet baryons. For color coding
and explanations see Fig. 3.

culation become larger, and the model dependence of the isoscalar component
is significant.

The charge densities of the Σ+ and Σ− show very similar behavior to those
in the proton and neutron. In both cases isovector and isoscalar components
are present. In the p and Σ+ the isovector and isoscalar contribute with the
same sign, while in the n and Σ− they contribute with different sign. This
gives rise to a uniform charge density in the p and Σ+, and to a more complex
behavior in the n and Σ−. A sign change in the neutron charge density, from
negative at large b to positive at b ∼ 1 fm, was observed in the empirical
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densities [7,18]. Our results are consistent with this finding, but the present
accuracy does not allow us to predict the sign at b < 2 fm. A similar sign
change might be present in the Σ− density.

Our calculation shows that the peripheral isovector charge density in the
charged Σ multiplet is very close to that in the nucleon multiplet. This comes
about due to two circumstances: (a) the isospin factors in the πBB′ couplings
entering in the Born graphs of Fig. 2; (b) the relative contribution of interme-
diate octet and decuplet states; see Ref. [9] for a detailed discussion. Similar
behavior is observed in the Σ magnetization densities [9]. Overall this shows
that the “pion cloud” in the charged Σ hyperons is of comparable size as in
the nucleon.

In the Ξ hyperons the peripheral isovector charge density is substantially
smaller than in the nucleon and charged Σ states. The reason is that the
intermediate octet contribution to the Ξ Born graphs is small and comparable
to the decuplet one. The isoscalar density in the Ξ is of normal size. This
has interesting implications for the charge density in the Ξ−, which is the
difference of the isoscalar and isovector components. It suggests a sign change
from a negative charge density at large b to a positive one at intermediate b,
similar to the neutron and Σ−, but with the transition occuring at larger b
than in the neutron or Σ− (we cannot confirm this behavior with the present
uncertainties). Similar behavior is observed in the Ξ magnetization densities
[9]. Overall this means that the “pion cloud” in the Ξ is substantially smaller
than in the nucleon and charged Σ.

In the Λ and Σ0 densities the isovector component is absent in both the
charge and the magnetization densities, see Eq. (9). In the χEFT calculation
this comes about through the cancellation of the π+ and π− contributions
in the Born graphs with intermediate octet and decuplet states. The Λ and
Σ0 densities are thus pure isoscalar, and dominated by ω and φ exchange
in the whole range considered. This has as consequence that the peripheral
densities are overall an order of magnitude smaller than for the other hyperons
at b > 2 fm. The Λ and Σ0 are therefore more compact objects than the
other hyperons as far as electromagnetic structure is concerned. (We note that
isospin symmetry breaking would resulting in a small long-range component
of the Λ and Σ0 densities and qualitatively change their asymptotic behavior
[9].) The charge densities have the same sign for both Λ and Σ0, while the
magnetization densities have opposite sign.

The Λ-Σ0 transition densities are of particular interest because of their
pure isovector nature. They receive sizable peripheral contributions from the
chiral processes with octet and decuplet intermediate states. These densiti-
ties can be computed model-independently down to distances b ∼ 1 fm and
represent genuine predictions of our approach. It would therefore be interest-
ing to compare our results to those of other approaches that describe baryon
structure in the central region b < 1 fm, such as quark models. The elec-
tromagnetic form factors of the hyperons are being studied also in Lattice
QCD [24–26]. If such calculations could determine the transverse densities in
a region where both our and their approach are reliable, the results could be
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matched directly. Note also that the Λ-Σ0 transition form factor is accessible
experimentally through the Dalitz decay Σ0 → Λe+e− at timelike momentum
transfers 4m2

e < t < (mΣ0−mΛ)2 = 0.006 GeV2 [27]. Such measurements may
be able to determine a combination of the slopes of the magnetic and electric
transition form factors at t = 0 (magnetic and electric radii), which could be
compared with dispersive calculations using the spectral functions computed
in our approach [9] and Ref. [10].

Using similar methods one can determine also the quark flavor decomposi-
tion of the transverse densities in the hyperon states [9]. This analysis requires
additional assumptions about the quark composition of the isoscalar ω and
φ exchanges (ideal mixing) and is more model-dependent. The ratios of the
flavor densities show the transition from the “pion cloud” at b > 3 fm to a
“mean-field picture” of valence quarks at b ∼ 1 fm, as observed earlier in the
nucleon densities [18]. These results can be used to further quantify the “pion
cloud” in hyperons; see Ref. [9] for details.

4 Summary

Transverse densities enable a model-independent definition of peripheral baryon
structure and its dynamical content. Using a new method combining χEFT
and dispersion analysis, we have computed the peripheral isovector charge and
magnetization densities in hyperons resulting from the two-pion cut of the form
factors. The method includes ππ rescattering and the ρ resonance and allows
us to construct the isovector densities with controled accuracy down to b ∼ 1
fm.

Our results show that the “pion cloud” in the charged Σ hyperons is gener-
ally as large as that in the nucleon, while that in the Ξ hyperons is substantially
smaller. The pattern is caused by the isospin factors in the πBB′ couplings
and the relative contribution of intermediate octet and decuplet states in the
Born graphs. Detailed tests of the dynamics can be performed by studying
different b-regions and comparing charge and magnetization densities. The Λ–
Σ0 transition density is pure isovector and represents a clean expression of
peripheral two-pion dynamics.

The results reported here were obtained using LO χEFT. Calculations in
the SU(2) sector at NLO and partial N2LO accuracy and show good con-
vergence in higher orders [12]. This will allow us to substantially reduce the
theoretical uncertainty in the predicted transverse densities. The method can
also be extended to other baryon form factors, such as the scalar form factor
[11].
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