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The MUSE experiment at Paul Scherrer Institute will perform the first measurement of low-energy
muon-proton elastic scattering (muon lab momenta 115–210 MeV) with the aim of determining the proton
charge radius. We study the prospects for the proton radius extraction using the theoretical framework of
dispersively improved chiral effective field theory (DIχEFT). It connects the proton radii with the finite-Q2

behavior of the form factors through complex analyticity and enables the use of data up to Q2 ∼ 0.1 GeV2

for radius extraction. We quantify the sensitivity of the μp cross section to the proton charge radius, the
theoretical uncertainty of the cross section predictions, and the size of two-photon exchange corrections.
We find that the optimal kinematics for radius extraction at MUSE is at momenta 210 MeV and
Q2 ∼ 0.05–0.08 GeV2. We compare the performance of electron and muon scattering in the same
kinematics. As a by-product, we obtain explicit predictions for the μp and ep cross sections at MUSE as
functions of the assumed value of the proton radius.
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I. INTRODUCTION

The electromagnetic size is a fundamental characteristic
of the proton observed in nuclear and atomic physics. It is
quantified by the root-mean-squared radii rE ≡ ffiffiffiffiffiffiffiffiffiffiffi

hr2iE
p

and rM ≡ ffiffiffiffiffiffiffiffiffiffiffi
hr2iM

p
, defined by the derivatives of the electric

and magnetic form factors (FFs), GE and GM, at momen-
tum transferQ2 ¼ 0, see Ref. [1] for a review. The radii can
be determined experimentally either from elastic electron-
proton (ep) or muon-proton (μp) scattering or from the
nuclear corrections to the energy levels of electronic or
muonic hydrogen atoms.
The proton charge radius has been the object of extensive

studies in the last decade. The extraction from muonic
hydrogen measurements in 2010, rE ¼ 0.84184ð67Þ fm
[2], differed by 5σ from the CODATA value accepted at
the time, rE ¼ 0.8768ð69Þ fm [3], obtained from elec-
tronic hydrogen and electron scattering data (“proton

radius puzzle”). The discrepancy motivated experimental
and theoretical efforts aiming to improve the extraction
methods, quantify the uncertainties, and reconcile the
results; see Refs. [4,5] for reviews. The questions
raised include the performance of various methods for
extraction of the radius from scattering data, the com-
parison of scattering and atomic results, and potential
differences between electron and muon interactions. The
cumulative results from these studies tend to favor the
“smaller” charge radius. However, one essential piece is
still missing—the extraction of the radius from low-
energy μp elastic scattering.
The MUSE experiment at Paul Scherrer Institute aims

to perform the first precise determination of the proton
charge radius from μp elastic scattering at muon lab
momenta 115–210 MeV [6]. Good understanding of the
theoretical uncertainties is needed in order to optimize
the extraction procedure and assess the final error in the
radius. Important questions are the sensitivity of the
experimental observables to the proton radius, the theo-
retical uncertainty in the relation between the proton
radius and the finite-Q2 FFs, the size and uncertainty
of two-photon exchange (TPE) corrections, and the
optimal muon energy and Q2 range for constraining
the radius.
The analytic properties of the proton FF play an

essential role in the radius extraction from scattering
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data. As a function of complex Q2, the form factor has
singularities at Q2 < 0, resulting from the t-channel
exchange of hadronic states (pions, resonances) between
the electromagnetic current and the proton. These singu-
larities govern the behavior of the FF atQ2 > 0, where it is
measured in scattering experiments. This structure implies
a correlation between the derivative of the FF at Q2 ¼ 0

and its values at finite Q2, which is essential for the radius
extraction and must be implemented in the theoretical
analysis.
The recently developed method of dispersively improved

chiral effective field theory (DIχEFT) [7,8] combines
dispersion relations with dynamical input from chiral
EFT to describe the nucleon FFs at low Q2 from first
principles. It generates FFs with correct analytic properties
(position of singularities) and realistic quantitative behavior
(strength of singularities), which provide an excellent
description of scattering data up to Q2 ∼ 1 GeV2 [9]. It
also quantifies the theoretical uncertainty of the FF calcu-
lations. A special feature of this method is that it generates
FF predictions that depend on the assumed proton radius as
a parameter. As such it explicitly realizes the correlations
between the proton radius and the finite-Q2 behavior of
the FF. It permits the use of finite-Q2 data for the radius
extraction with controlled uncertainties, which has many
experimental and theoretical advantages. The method has
been used successfully for the extraction of the proton
electric and magnetic radii from electron scattering
data [9,10].
In this work we use DIχEFT to study the prospects for

proton radius determination in μp elastic scattering at
MUSE and optimize the extraction procedure. We compute
the μp cross section with the DIχEFT FFs, quantify the
theoretical uncertainties and TPE corrections, and evaluate
the sensitivity to the proton radius. Specifically, we attempt
to answer the following questions:
(1) What is the theoretical sensitivity of the μp cross

section in MUSE kinematics to the proton radius?
(2) What are the theoretical uncertainties in the μp cross

section resulting from the DIχEFT FF predictions
and from TPE corrections?

(3) What kinematic range in beam energy and Q2 has
the most impact on the radius extraction?

(4) What are the differences between ep and μp
scattering in radius extraction in MUSE kinematics?

We demonstrate that the radius extraction is characterized
by a trade-off between several effects—the sensitivity
of the cross section to the radius, the theoretical
uncertainty in the FF predictions for a given radius,
and the size and kinematic dependence of TPE correc-
tions [9,10]. We determine the optimal kinematics
for radius extraction at MUSE based on these consid-
erations. In addition, we provide predictions of the
expected μp and ep cross sections for the nominal value
of the proton radius.

II. METHODS

A. Lepton-proton elastic scattering

The elastic lepton-proton scattering process lðkÞþpðpÞ→
lðk0Þþpðp0Þ, where l ¼ μ∓ or e∓, is described by the
invariant variables

s≡ ðkþ pÞ2; Q2 ¼ −t≡ −ðk − k0Þ2: ð1Þ

In the initial proton rest frame (lab frame), the initial and
final muon momenta are k and k0, the energies are ω≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
and ω0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk0j2 þm2
p

, and the invariants are
given by

s ¼ M2 þ 2Mωþm2; Q2 ¼ 2Mðω − ω0Þ; ð2Þ

where m is the lepton mass and M the proton mass. The
scattering angle θlab ¼ angleðk0; kÞ is related to the final
lepton energy and momentum by

cos θlab ¼
ωω0 −m2 −Mðω − ω0Þ

jkjjk0j : ð3Þ

The kinematic range of the momentum transfer accessible at
a given initial lepton momentum is

0 ≤ Q2 ≤
4M2jkj2

s
≡Q2

max: ð4Þ

In the one-photon-exchange approximation, the differ-
ential cross section for unpolarized scattering is given by
(see, e.g., Ref. [11])

dσ1γ
dQ2

¼ πα2

2M2jkj2
ðϵ=τPÞG2

E þ G2
M

1 − ϵT
: ð5Þ

Here α is the fine structure constant, andGE;M ≡GE;MðQ2Þ
are the electric and magnetic Sachs FFs of the proton. ϵ is
the virtual photon polarization parameter and given by

ϵ ¼ Q2
max −Q2 þ m2

s ð4M2 þQ2Þ
Q2

max −Q2 þ Q2

2s ð4M2 þQ2Þ
; ð6Þ

and τP ≡Q2=ð4M2Þ. ϵ=τP is the ratio of the fluxes of
longitudinal and transverse polarized photons in the one-
photon-exchange approximation. ϵT is the degree of linear
polarization of the transverse photons,

ϵT ¼ Q2
max −Q2

Q2
max −Q2 þ Q2

2s ð4M2 þQ2Þ
; ð7Þ

and is bounded by 0 ≤ ϵT < 1. In the case of zero lepton
mass (as usually assumed in electron scattering) ϵ ¼ ϵT ,
but for nonzero lepton mass (muon scattering) there are
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important differences. ϵ attains values > 1 at Q2 ¼ 0, and
remains nonzero at Q2 ¼ Q2

max,

ϵðQ2 ¼ 0Þ ¼ ω2

jkj2 > 1; ð8Þ

ϵðQ2 ¼ Q2
maxÞ ¼

m2s
2M2jkj2 > 0: ð9Þ

Two-photon exchange (TPE) corrections play an impor-
tant role in the analysis of low-energy lepton-proton elastic
scattering, see Refs. [12,13] for a review. At order α3, the
correction arises from the interference between the two-
photon and one-photon exchange amplitudes and is usually
included through a multiplicative factor modifying the one-
photon exchange cross section,

dσ
dQ2

≈
dσ1γ
dQ2

ð1þ δ2γÞ: ð10Þ

The correction δ2γ for μp scattering has been computed
in several theoretical approaches, such as dispersion

theory [11,14] and chiral effective field theory [15–17].
In this work we use the results of Ref. [14], which give
corrections δ2γ ≲ 0.5% in the kinematic range of the MUSE
experiment. While in Ref. [14] the inelastic contribution to
the dispersion integral for δ2γ was computed in forward
kinematics, the analysis of Ref. [11] showed that this
approximation is accurate within 10%.

B. DIχEFT representation of form factors

The foundations and applications of the DIχEFT method
are described in detail in Refs. [7,8,18]; our implementa-
tion in this study follows in particular Ref. [8]. Here we
provide a brief summary, emphasizing the aspects relevant to
proton radius extraction (information flow, parameters,
uncertainties).
DIχEFT is based on dispersion theory, in which the FFs

GE;MðtÞ at spacelike momentum transfer t < 0 are repre-
sented as integrals over their imaginary parts Im GE;MðtÞ
on the cut at timelike t > 0, the so-called spectral functions.
The main steps in the construction of the spectral functions

FIG. 1. Flowchart of the DIχEFT description of the nucleon FFs. Shown is the case of the proton electric FFGE; the same flow applies
to the neutron electric FF. In the case of the magnetic FF GM, the right-hand side of the dispersive sum rules is given by the magnetic
moment μ and the magnetic radius r2M.
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and the FFs are outlined in Fig. 1. In the following we
describe the steps for GE; the ones for GM are similar.
In the first step, one constructs the spectral function.

The proton FF has an isovector and isoscalar component,
GE ≡GV

E þ GS
E. The isovector FF GV

E has the two-pion cut
at t > 4M2

π ≡ tthr, which dominates the analytic structure
at low t and plays an essential role in radius extraction.
The isovector spectral function is represented as the sum of
two parts,

Im GV
EðtÞ ¼ Im GV

EðtÞ½ππ� þ Im GV
EðtÞ½high-mass�: ð11Þ

The ππ part covers the region tthr ≤ t < tmax ≈ 1 GeV2 and
is computed theoretically, using the elastic unitarity relation
in the ππ channel in the “manifestly real” form (N/D
representation) [8]

Im GV
EðtÞ½ππ� ¼

k3cm
mN

ffiffi
t

p J1þðtÞjFπðtÞj2: ð12Þ

Here kcm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=4 −M2

π

p
is the center-of-mass momentum

of the ππ system in the t-channel. jFπðtÞj2 is the
squared modulus of the pion timelike FF. This function
contains the full ππ interaction effects and the ρ resonance
and is measured in eþe− annihilation experiments. J1�ðtÞ
describes the coupling of the ππ system to the nucleon. This
function is free of ππ interaction effects (it is real for
t > 4M2

π) and can be computed in relativistic χEFT with
good accuracy. At low t≲ 10 M2

π, J1�ðtÞ is governed by the
Born term singularities of the πN amplitudes and known
without free parameters. At higher values t ∼M2

ρ, J1�ðtÞ is
subject to higher-order corrections and depends on chiral
low-energy constants as free parameters; this dependence
allows the height of the spectral function at the ρ peak to
vary in a controlled manner and plays an important role in
radius extraction (see below). In the present implementa-
tion at partial N2LO accuracy [8], it is one single low-
energy constant, λ, that controls the behavior of J1�ðtÞ at
t ∼M2

ρ and acts as a free parameter.
The high-mass part of the spectral function covers the

region t > 1 GeV2 and can be parametrized by effective
poles. This is justified by the fact that the low–t FF “sees”
only the overall spectral strength in the high-mass region,
not the details of its distribution (see quantitative assess-
ment below). In the present implementation we use a single
effective pole [8]

Im GV
EðtÞ½high-mass� ¼ πaeffδðt − teffÞ: ð13Þ

The free parameters entering in this part are the pole
strength aeff and pole position teff .
The isoscalar FFGS

E has a three-pion cut, and the spectral
function is represented as

Im GS
EðtÞ ¼ Im GS

EðtÞ½πππ� þ Im GS
EðtÞ½high-mass�: ð14Þ

The πππ part is overwhelmingly concentrated in the ω
resonance and parametrized by a pole πaωδðt −M2

ωÞ. The
high-mass part is parametrized by an effective pole, whose
position can be taken as the ϕ mass, πaϕδðt −M2

ϕÞ. The
free parameters entering in the isoscalar spectral function
are the pole strengths aω and aϕ. Altogether, the first step
results in a theoretical parametrization of the spectral
function of the proton electric form factor

Im GEðtjΛÞ ¼ Im GV
EðtÞ þ Im GS

EðtÞ; ð15Þ

where fΛg collectively denotes the free parameters. In
the present implementation these are fΛg ¼ fλ; aeff ; teff ;
aω; aϕg.
In the second step, one imposes the dispersive sum rules

for the proton charge and radius

1

π

Z
∞

tthr

dt
Im GEðtjΛÞ

t
¼ QE; ð16Þ

1

π

Z
∞

tthr

dt
Im GEðtjΛÞ

t2
¼ r2E

6
; ð17Þ

where QE ¼ 1 is the proton charge and r2E > 0 the proton
charge radius squared. (The same relations are imposed for
the neutron electric FF, in which caseQE ¼ 0 and r2E < 0 is
the negative neutron charge radius squared.) These rela-
tions express the FF at t ¼ 0 and its derivative as integrals
over the spectral function. One uses them to constrain the
parameters in the spectral function. In particular, Eq. (17) is
valid for any assumed value of the proton charge radius rE,
and one can use it to express one of (or a combination of)
the original parameters in terms of the radius, i.e., to
introduce the radius as a parameter:

fΛg → frE;Λ0g: ð18Þ

In this way one obtains a set of spectral functions that
depend explicitly on the assumed radius, as well as on the
remaining parameters Λ0

Im GEðtjrE;Λ0Þ: ð19Þ

In the present implementation we use Eqs. (16) and (17) for
the proton spectral function (and the same relations for the
neutron) to fix the chiral low-energy constant λ and the
effective pole strengths aeff ; aω; aϕ, retaining the isovector
effective pole position teff as the only undetermined
parameter.
In the third step, one computes the spacelike FF (t < 0,

or Q2 > 0) as the dispersion integral with the spectral
function,
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GEðtjrE;Λ0Þ ¼ 1

π

Z
∞

tthr

dt0
Im GEðt0jrE;Λ0Þ

t0 − t
: ð20Þ

The FF thus obtained depends on the assumed radius rE
and the undetermined parameters Λ0. The nominal pre-
diction for the FF with assumed radius rE is obtained with
the nominal values of Λ0,

GEðtjrEÞ ¼ GEðtjrE;Λ0
nomÞ: ð21Þ

In the last step, the theoretical uncertainty of the FF with
assumed radius rE is estimated by varying Λ0 over a
plausible range,

δGEðtjrEÞ ¼ varΛ0 GEðtjrE;Λ0Þ: ð22Þ

In this way one obtains a nominal prediction and a
theoretical uncertainty estimate for the form factor
with any given assumed radius. In the present implementa-
tion, the undetermined parameter is the position of the
isovector high-mass pole. Physical considerations based
on eþe− annihilation data and the vector meson spectrum
suggest the nominal value teff ¼ 2.1 GeV2, and a plausible
range of variation for the uncertainty estimate as teff ¼
1.4–2.8 GeV2 [10].
Figure 2 shows the resulting FF parametrization for an

assumed nominal radius rE ¼ 0.84 fm as a function of
−t ¼ Q2 in the kinematic range covered by the MUSE
experiment. The lower panel shows the theoretical uncer-
tainty δGE=GE, Eq. (22), estimated from the variation of
the high-mass pole position. The upper panel shows the
nominal prediction GEðtjrEÞ, Eq. (21), for several values
of rE and illustrates the radius sensitivity. One observes:
(a) The uncertainty caused by the variation of the high-mass
pole position is zero at t ¼ 0 and grows quadratically in −t
(see lower panel). This is a result of the dispersive sum rules
and highlights the “information flow” in the DIχEFT
approach. The FF is constrained by the sum rule Eq. (17)
to have a certain first derivative at t ¼ 0, given by the
assumed radius parameter; any other elements of the para-
metrization (such as the high-mass poles) can only cause
modifications of higher order in −t. (b) The uncertainty
caused by the variation of the high-mass pole position is of
the order ∼10−3 ¼ 0.1% in the momentum range jtj ≲
0.1 GeV2 considered here. This shows the constraining
power of the dispersive sum rules, which “project” the
information from the radius into the finite-t behavior of the
FF. Note that the FF has a nontrivial t-dependence and is far
from a simple linear behavior in the t-range considered here;
this can be demonstrated quantitatively by inspecting the
higher derivatives and revealing their dynamical scales [18].
(c) The radius sensitivity of the FF is much larger than the
uncertainty from the high-mass pole in the t-range consid-
ered here (see upper panel). A radius variation ΔrE=rE ¼
∓ 0.01 causes a change of the FF that is an order of

magnitude larger than the estimated uncertainty. This is
the basis for the use of the DIχEFT method for radius
extraction from low-Q2 scattering data (see below).
The low-t FF predictions (for a given radius) and their

estimated theoretical uncertainty are not sensitive to the
details of the parametrization of the high-mass states in the
spectral function. To demonstrate this quantitatively, we
construct the DIχEFT FF with different parametrizations
of the high-mass states and compare the results. As a
generalization of the one-pole parametrization Eq. (13), we
consider a two-pole parametrization of the form [19]

Im GV
EðtÞ½high-mass� ¼ πað0Þeff δðt − tð0Þeff Þ

þ πað1Þeff δ
0ðt − tð1Þeff Þ; ð23Þ

FIG. 2. Radius sensitivity and theoretical uncertainty of the
DIχEFT FF prediction. Lower panel: theoretical uncertainty of
DIχEFT FF prediction estimated with two different parametriza-
tions of the high-mass states (details see text). Solid red lines/
shaded red band: One-pole parametrization, Eq. (13). Dotted blue
lines/shaded blue band: Two-pole parametrization, Eqs. (23) and
(24). Upper panel: DIχEFT FF prediction for a nominal proton
radius rE ¼ 0.84 fm (solid black line) and for radii changed by
ΔrE=rE ¼∓ 0.01 (dashed black lines). The shaded red band
around the solid line shows the theoretical uncertainty of the FF
from the bottom panel (one-pole parametrization). Note that the
graphs in the top and bottom panels have different scales on the
vertical axes.
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with pole strengths að0Þeff and a
ð1Þ
eff and pole positions t

ð0Þ
eff and

tð1Þeff .
1 In addition to the dispersive sum rules for the charge

and radius, Eqs. (16) and (17), we now impose also the sum
rule ensuring the ∼jtj−2 asymptotic behavior of the space-
like FF at jtj → ∞ (superconvergence relation),

1

π

Z
∞

tthr

dt Im GEðtjΛÞ ¼ 0; ð24Þ

and use the extended set of sum rules to fix the pole
strength parameters. We then estimate the theoretical

uncertainty by varying the pole positions tð0Þeff and tð1Þeff
independently over the plausible range 1.4–2.8 GeV2

determined by physical arguments [19]. The two-pole form
Eq. (23) covers a much larger range of functional variation
in the distribution of high-mass strength than the one-pole
form Eq. (13), while being constrained by the same sum
rules for the charge and radius. Figure 2 (lower panel)
shows the estimated uncertainty. One observes that the
uncertainty obtained with the two-pole parametrization has
similar magnitude and t-dependence to that obtained with
the one-pole parametrization, with the range being ∼1.5
times larger at t ¼ −0.05 GeV2.
Some comments are in order regarding the uncertainty

from the high-mass states in our approach. (a) The theo-
retical uncertainty of the FF prediction (for a given assumed
radius) from the high-mass states is not the dominant
uncertainty in radius extraction in MUSE kinematics (see
Sec. III). A rough estimate of this theoretical uncertainty, as
made here, is therefore sufficient. The differences between
the high-mass uncertainties estimated with the one-pole and
two-pole forms are at the level of “uncertainty of the
uncertainty;” they would become relevant to radius extrac-
tion only if the other uncertainties could be suppressed to a
level that the high-mass uncertainty becomes a limiting
factor. (b) The present uncertainty estimates assume that
nothing is known about the spectral strength at high masses
aside from the dispersive sum rules, which is overly
conservative. In fact, data on the spacelike FF at larger
jtj ≈ 1–2 GeV2 could effectively constrain the high-mass
spectral function (within a given parametrization) and
reduce the theoretical uncertainty, as is done in empirical
dispersive fits to the nucleon FFs [20–22]. We do not take
this approach here, as our study focuses on low jtj, and we
want to treat the functional form of the high-mass spectral
function as a theoretical uncertainty, even if it means
ignoring certain information. We note that the DIχEFT
method could be combined with an empirical fit to high-jtj
FF data in a more comprehensive approach.

The magnetic FF GV
M and its uncertainty are constructed

by an analogous procedure. The dispersive sum rules for
GM now involve the magnetic moment μ and the magnetic
radius r2M; see Ref. [8] for details. A computer code
generating the radius-dependent DIχEFT FFs GE;M used
in the present analysis is available in the Supplemental
Materials of Ref. [9].

C. Proton radius extraction

The DIχEFT representation of the FFs enables a new
theory-guided method of proton radius extraction (see
Fig. 3) [9,10]. For each assumed value of the proton radius,
the theory generates a spectral function whose features
(height of the ρ resonance peak, strength of effective poles)
quantitatively depend on the value of the radius. The
dispersion integral projects these features into the spacelike
region, up to spacelike momentum transfers of the order
Q2 ∼M2

ρ and beyond. This effectively correlates the
assumed value of the radius with the behavior of the
spacelike FF at finite Q2 of this order. The correlation
described here is based on complex analyticity and the
particular information flow in the DIχEFT calculation and
extends far beyond what one could infer from the series
expansion in Q2 with a given first derivative. Altogether,
this allows one to recruit FF data of the order Q2 ∼M2

ρ and
beyond for constraining the proton radii.
Radius extraction using DIχEFT proceeds as follows.

For a range of assumed radii, one generates the DIχEFT
FFs as functions of Q2, including their theoretical uncer-
tainties resulting from the undetermined parameters,
Eqs. (21) and (22). From these FFs one predicts the
cross section for the given assumed radius, including its

dispersion integral

E

0 Q2 � t�

GIm GE

data

radius

t

FIG. 3. Illustration of the correlation between the proton radius
and the spacelike FF, resulting from analyticity and the informa-
tion flow in DIχEFT. The assumed value of the radius constrains
the spectral function through the sum rule Eq. (17). The
corresponding FF at Q2 > 0 is produced by the dispersion
integral Eq. (20). Variation of the radius causes variation of
the spectral function and the corresponding FF. (The graph shows
only the isovector part of the spectral function at t > 0).

1The combination of a pole and the first derivative of a pole is
effectively equivalent to the sum of two simple poles. The
derivative form has the advantage that the pole coefficients have
natural size, which helps with understanding their variation in
uncertainty estimates.
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theoretical uncertainty from the FFs and two-photon
exchange corrections. For a given experimental setup
(kinematic coverage, statistical, and systematic errors)
one can then assess how data in a given range of energies
and Q2 can constrain the radii. The optimal range is
determined by a trade-off between the sensitivity of the
DIχEFT FFs to the value of the radius, the theoretical
uncertainty of the DIχEFT FFs, the two-photon exchange
effects, and the precision of the data [9,10]. The actual
radius can then be determined by a fit in this optimal range,
taking into account all the uncertainties. In the following
we apply this method to μp scattering at MUSE and discuss
the prospects for proton radius extraction.
The DIχEFTmethod offers several advantages compared

to other methods of proton radius extraction. Compared to
empirical fits (polynomials, splines), the DIχEFT method
incorporates the analytic structure of the FFs, which
includes both the position of the singularities at t > 0
and the quantitative distribution of strength in the spectral
function. The analytic structure governs the global behavior
of the FF, which is difficult to implement in approaches
based on polynomial expansions because of strong corre-
lations between higher-order coefficients (analyticity
effectively controls the “collective behavior” of higher
derivatives of the FF atQ2 ¼ 0 [7]). Compared to traditional
dispersion analysis [20–23], the DIχEFT method allows the
strength of the isovector spectral function in the ρ resonance
region to vary with the proton radius in a theoretically
controlled manner, providing critical flexibility for fitting
the spacelike FF data and recruiting them for radius
determination. In traditional dispersive fits the ππ part of
the isovector spectral function is completely fixed by theory,
and the spacelike FF data only constrain the high-mass part
of the spectral function, which restricts the interplay of the
FF data with the proton radius (the ρ resonance region of
the spectral function accounts for about half the value of
the proton radius in Eq. (17) [7]).

III. ANALYSIS

A. Sensitivity of μp cross section to proton radius

We now apply the DIχEFT framework to study the
prospects for proton radius extraction at MUSE. In the first
step, we study the sensitivity of the μp elastic scattering
cross section to the proton electric radius and compare it
with the theoretical uncertainties resulting from the
DIχEFT FF predictions, from two-photon exchange cor-
rections, and from the magnetic FF contributions.
To exhibit thevarious effects,wegenerate a set ofDIχEFT

FF predictions by varying the proton electric radius over the
range rE ¼ 0.83–0.88 fm in steps ΔrE ¼ 0.01 fm, and
evaluate the μp elastic scattering cross section with each
of these FFs (themagnetic radius is kept at its nominal value;
the role of the magnetic FF in the cross section is discussed
below).We include in the cross section theTPE correction of

Ref. [14]. Figure 4 shows the predicted cross sections for
various incident muonmomenta k≡ jkj, as functions ofQ2.
The lines show the cross section obtained with the nominal
DIχEFTFFpredictions for each value of the radius, Eq. (21);
the associated bands show thevariation due to the theoretical
uncertainty of the DIχEFT FF predictions for the given
radius, Eq. (22). The bands at the bottom of the plots show

FIG. 4. DIχEFT predictions for the μ−p differential cross
section at MUSE for several assumed values of the proton radius.
The cross section predictions include the TPE correction,
Eq. (10), and are normalized to the standard dipole cross section
without TPE effects. Lines (solid, dashed, dotted, dashed-dotted):
Nominal DIχEFT predictions for the assumed value of the proton
radius (see legend). Shaded bands around lines: Intrinsic theo-
retical uncertainty of DIχEFT predictions, unrelated to assumed
proton radius. Shaded band at bottom: TPE contribution to cross
section [14].
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the absolute size of the TPE correction in the cross section
predictions (note that this is the overall size of the TPE
correction, not its theoretical uncertainty). The standard
dipole cross section (σSD) used for normalization is the one-
photon exchange cross section evaluated assuming the
standard dipole Q2-dependence ∝ ð1þQ2=0.71 GeV2Þ−2
for both FFs GE;M.
One observes: (a) The sensitivity of the cross section to

the proton radius increases with Q2 and with the beam
momentum k, because the separation of the FF predictions
with different radii increases with Q2 [9,10]. At the highest
beam momentum, k ¼ 210 MeV, the relative variation of
the cross section reachesΔσ=σ ∼ 1% forQ2 at the upper end
of the range shown here. (b) The theoretical uncertainty of
the cross section predictions for given radius also increases
with Q2 [9,10]. Overall, the theoretical uncertainty is
substantially smaller than the relative variation of the cross
section for ΔrE ¼ 0.01 fm over the kinematic range shown
here. (c) The magnitude of the TPE correction does not
vary strongly withQ2 and k over the range covered here. At
the upper end of the Q2 range, the magnitude of the TPE
correction is comparable to the relative variation of the cross
section with ΔrE ¼ 0.01 fm. This clearly shows the impor-
tance of the TPE correction for radius extraction.
We also need to consider the uncertainties resulting

from the contribution of the magnetic FF to the μp elastic
scattering cross section. This is particularly important, as
with the DIχEFT framework we can recruit data at higher
Q2 for radius extraction, comparable toQ2

max at the given k.
Figure 5 shows the ratio of magnetic and electric contri-
butions to the one-photon exchange cross section,
ðτP=ϵÞG2

M=G
2
E, in MUSE kinematics. One sees that the

ratio depends mainly on Q2, having values ∼0.1 at Q2 ¼
0.04 GeV2 and reaching ∼0.4 atQ2 ¼ 0.08 GeV2. Overall,

the magnetic contributions to the cross section are limited
in all kinematic settings. Using the DIχEFT framework and
the results of the analysis of ep scattering data of Ref. [9],
we have computed the effect of the experimental uncer-
tainties ofGM on the μp cross section predictions in MUSE
kinematics. We observe a maximum variation in the cross
sections of the order of 0.04% at the highest Q2, which is
small compared to the variation of ∼1% resulting from a
change of the electric radius ΔrE=rE ¼ 1%. We conclude
then that the current experimental uncertainties in GM do
not limit the extraction of the proton electric radius from the
μp scattering data at the accuracy considered here.

B. Optimal kinematics for proton radius extraction

In the second step, we discuss the optimal kinematic range
for the radius extraction at MUSE. It is determined by the
trade-off between the sensitivity of the cross section to the
radius, the theoretical uncertainties of the DIχEFT FF
predictions and the TPE corrections, and the experimental
errors of the cross section measurement. While the exper-
imental errors can only be estimated at present, some
interesting conclusions can already be obtained at this stage.
To make this assessment, we use the difference between

the cross section predictions for different radii in Fig. 4
as an estimate of the experimental accuracy required to
discriminate between these values of the radii. At each
value of Q2 in Fig. 4, we compute the minimal difference
between the cross section predictions for radii differing by a
given ΔrE, taking the minimum over all pairs of radii with
the given ΔrE, and taking into account their theoretical
uncertainties (i.e., computing the minimal gap between the
theoretical uncertainty bands of the cross section predic-
tions for a givenΔrE). The minimal cross section difference
computed in this way is independent of the nominal value
of rE. Figure 6 shows the minimal cross section differences
obtained in this way, for radius differences ΔrE ¼ 0.01,
0.02, 0.03 and 0.04 fm, as functions of Q2. One observes:
(a) The cross section differences depend strongly on Q2 for
fixed k. They depend relatively weakly on k for fixed Q2

(when comparing them at a fixed Q2 that is kinematically
accessible at multiple values of k). The main role of k is to
define the kinematically accessible range of Q2. (b) At low
values of Q2, high experimental precision is needed for
radius determination. At Q2 ≲ 0.015 GeV2, a relative
accuracy ≤ 0.2% is needed for ΔrE ¼ 0.01 fm, independ-
ently of k. (c) The demands on the experimental accuracy
decrease at higher Q2. At Q2 ∼ 0.05 GeV2, a relative
accuracy ∼0.5% is needed for ΔrE ¼ 0.01 fm.
Another factor to consider is the uncertainty in the

theoretical calculation of the TPE correction [14].
Depending on the kinematics, this contribution to the cross
section can be crucial for determining the radius with the
necessary precision. Figure 6 compares the value of the
TPE correction with the predicted cross section differences

FIG. 5. Ratio of magnetic and electric contributions to the μp
elastic scattering cross section, ðτP=ϵÞG2

M=G
2
E, in MUSE kin-

ematics. The vertical dotted lines represent the kinematic upper
limits of Q2 at the given beam momentum k, Eq. (4).
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for a given radius difference (note that the plots show the
estimated total value of the TPE correction, not its uncer-
tainty). The theoretical uncertainty of the TPE correction is
not well known; however, we can assess how an assumed
theoretical uncertainty of the TPE correction would impact
on the overall uncertainty of the radius extraction. For the
lowest beammomentum, k ¼ 115 MeV, the size of the TPE
correction is larger than the variation of the cross section
prediction for ΔrE ¼ 0.01 fm. The TPE correction thus has
a decisive influence on the radius extraction in this kin-
ematics. The situation becomes more favorable at higher

beam momenta, where the TPE correction is comparable or
smaller than the cross section variation for ΔrE ¼ 0.01 fm.
Overall, our analysis suggests that the optimal kinematics

for proton radius determination at MUSE with the DIχEFT
method is at the highest beam momentum, k ¼ 210 MeV,
using momentum transfers Q2 ∼ 0.05–0.08 GeV2, at the
upper end of the experimentally accessible range. In this
setting, the experimental precision required for radius
determination with ΔrE ¼ 0.01 fm is estimated at ∼0.8%.
The final uncertainty of the radius extraction depends on the
theoretical uncertainty of the TPE correction, which is not

FIG. 6. Estimated accuracy of μ−p cross section measurement
required to discriminate between different values of the proton
radius. Lines: Differences between DIχEFT cross section pre-
dictions for proton radii differing by ΔrE (values see legend).
Shaded band at bottom: Size of the TPE contribution [14].

FIG. 7. DIχEFT predictions for the average of μþ and μ− elastic
scattering cross sections Eq. (25) in MUSE kinematics, normal-
ized to the standard dipole. Lines, shaded bands: Same notation
as in Fig. 4.
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known at present. An alternative method for proton radius
extraction with μp scattering uses the average of μþ and μ−

cross sections,

σ̄ ≡ ½σðμþpÞ þ σðμ−pÞ�=2; ð25Þ

in which the TPE correction cancels due to its charge
dependence. The sameDIχEFTanalysis of radius sensitivity
and optimal kinematics as above can be performed in this
case. The cross section prediction is now given by the one-
photon exchange cross section Eq. (5). Figure 7 shows the
predicted cross section and its theoretical uncertainty. The
assessment of the optimal Q2 values is the same as for
μþp above.

C. Cross section prediction for nominal radius

The present study focuses on the prospects for
extracting the proton radius from μp scattering experi-
ments at MUSE. The proton radius can also be extracted
from atomic spectroscopy and ep scattering experiments.
In this context we can use DIχEFT to predict the μp cross
section expected for a given value of the radius and its
theoretical uncertainty. For reference, we give here the
prediction for the μp cross section with the proton charge
radius obtained in the previous DIχEFT analysis of ep
scattering results [9,10]

rE ¼ 0.842ð2Þ fm: ð26Þ

Figure 8 shows the predicted μ−p cross section in MUSE
kinematics, Eq. (10), which includes the TPE correction;
and the charge-averaged cross section, Eq. (25) in which
the TPE correction cancels.

D. Comparison of ep and μp scattering

It is interesting to compare the prospects for proton
radius extraction in ep and μp scattering in the same
kinematics. The MUSE experiment will measure both ep
and μp scattering, and methods for proton radius extraction
were studied intensively in earlier ep scattering experi-
ments. Characteristic differences between ep and μp occur
in the TPE effects [14,24] and in the role of the magnetic
FF. We exhibit them by repeating the DIχEFT analysis for
ep scattering and comparing with the μp results.
Figure 9 shows the DIχEFT predictions for the ep cross

section for a range of assumed values of the proton radius,
in the same style as Fig. 4 for μp. One observes: (a) The
TPE corrections have different kinematic dependence in ep
than in μp scattering [14,24]. In ep they increase strongly
with Q2 at fixed k, and decrease with k at fixed Q2. In μp
the dependencies are much weaker. (b) The size of the TPE
corrections relative to the variation of the cross section with
the radius is much larger in ep than in μp, especially at low
beam momenta. At k ¼ 115 MeV and Q2 ¼ 0.02 GeV2,

the size of the TPE correction amounts to a change of the
radius ΔrE ≈ 0.03 fm in ep scattering, compared to ΔrE ≈
0.015 fm in μp scattering in the same kinematics.
(c) Overall, the different size and kinematic dependence
of the TPE corrections causes a differentQ2-dependence of
the cross section for ep and μp scattering at low Q2.
Figure 10 shows the estimated accuracy of the e−p cross

section measurement required for discriminating between
different values of the radius, in the same style as Fig. 6 for
μ−p. The optimal kinematics for radius extraction in ep
scattering at MUSE can be determined in the same way as
for μp. The results of Fig. 10 show that the experimental
accuracy required for radius extraction from ep scattering
is least at the highest beam momentum k ¼ 210 MeV. The
optimal Q2 value determined by the trade-off between

FIG. 8. DIχEFT predictions for μp elastic scattering cross at
MUSE for the nominal proton charge radius rE ¼ 0.842ð2Þ fm.
Dashed line and shaded band (blue): μ−p cross section, including
one- and two-photon exchange contributions. Solid line and
shaded band (red): Average of μþp and μ−p cross sections, given
by the one-photon exchange contribution.
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radius sensitivity and theoretical uncertainty is at
Q2 ∼ 0.065 GeV2, slightly below the kinematic limit.
Figure 11 shows the ratio of the μp to ep cross sections

(including the TPE corrections) for the same set of assumed
proton radii. The ratio directly expresses the different Q2-
dependence of the ep and μp cross sections. Its magnitude
and Q2-dependence are determined by the kinematic
factors in the one-photon-exchange cross section Eq. (5)

et seq. One observes that the ratio is remarkably insensitive
to the proton charge radius in this kinematic regime,
especially at the lower values of k. Only at k ¼
210 MeV the differences between the radii become visible
at the largest Q2 values.
The results of Fig. 9 show that the TPE corrections play a

much larger role in proton radius extraction from ep
scattering than μp scattering, and that they limit the
theoretical uncertainty of the extracted radius. With the

FIG. 9. DIχEFT predictions for the differential cross section of
ep scattering for several assumed value of the proton radius
(compare with Fig. 4 for μp scattering). The cross section
predictions include the TPE correction and are normalized by
the standard dipole cross section without TPE effects. Lines
(solid, dashed, dotted, dashed-dotted): nominal DIχEFT predic-
tions for the assumed value of the proton radius (see legend).
Bands around lines: intrinsic theoretical uncertainty of DIχEFT
prediction (unrelated to assumed proton radius). Blue band at
bottom: TPE contribution to cross section [24].

FIG. 10. Estimated accuracy of e−p cross section measure-
ments required to discriminate between different values of the
proton radius (compare with Fig. 6 for μp scattering). Lines:
differences between DIχEFT cross section predictions for proton
radii differing by ΔrE (values see legend). Shaded band at
bottom: size of the TPE contribution [24].
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DIχEFT method, the influence of TPE corrections in ep
can be minimized by using the data at the highest beam
momentum k ¼ 210 MeV and momentum transfers in the
range Q2 ∼ 0.03–0.08 GeV2 for radius extraction. In this
kinematics the cross section shows good sensitivity to the
proton charge radius, the theoretical uncertainty of the
DIχEFT predictions is small, and the size of the TPE
corrections amounts to a shift of the radius ΔrE ∼ 0.01 fm
(see Fig. 9). The ability to recruit higher-Q2 data for radius
extraction with DIχEFT is thus even more advantageous in
ep than in μp scattering.
An important difference between ep and μp scattering

appears in the contribution of the magnetic FF at large
momentum transfers, at the upper end of the allowed

kinematic range. In ep scattering ϵ ¼ 0 at Q2 ∼Q2
max (if

one neglects the electron mass), while in μp scattering ϵ
attains a finite value, see Eq. (9). In ep scattering the one-
photon exchange cross section forQ2 → Q2

max is therefore
dominated by GM. Figure 12 shows the ratio of magnetic
and electric contributions to the one-photon-exchange
cross section for ep scattering, in the same way as Fig. 5
for μp. One sees that the magnetic contribution to the
cross section is substantially larger in ep than μp already
for Q2 in the middle of the kinematic range. This
circumstance must be taken into account when assessing
the sensitivity of the cross section to rE in DIχEFT, and
one should remain in the region where the cross section is
not dominated by GM. We have quantified the impact
of the uncertainty in GM on the proton radius extrac-
tion from ep scattering in the same way as for μp (see
Sec. III A), using the DIχEFT framework and the exper-
imental uncertainty of GM obtained in an earlier analysis
[9]. We find that the current experimental uncertainty
of GM produces a relative variation of the cross section
of at most ∼0.05% in the range covered by Fig. 9. The
uncertainty from GM is thus not a limiting factor of the
DIχEFT-based radius extraction from ep scattering data
in MUSE kinematics.
Because of the large TPE corrections in ep scattering,

it would be an attractive option to perform the proton
radius extraction with the average of e−p and eþp cross
sections [see Eq. (25) for μ�p], in which the TPE effects
cancel. In this case the cross section is accurately
described by the one-photon-exchange formula, and
the analysis greatly simplifies. Figure 13 shows the
DIχEFT predictions for the charge radius dependence
of the charge-averages cross section σ̄ in e�p scattering in
MUSE kinematics.

FIG. 11. DIχEFT predictions of the ratio of μp to ep elastic
scattering cross sections σ, Eq. (10), including the TPE correc-
tions, for several assumed values of the proton radius.

FIG. 12. Ratio of magnetic and electric contributions to the ep
elastic scattering cross section, ðτP=ϵÞG2

M=G
2
E, in MUSE kin-

ematics (compare with Fig. 5 for μp scattering). The vertical
dotted lines represent the kinematic upper limits of Q2 at the
given beam momentum k, Eq. (4).
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IV. CONCLUSIONS

In this work we have used the DIχEFT framework to
study the prospects for the proton radius extraction from μp
scattering at MUSE. The principal conclusions are
(i) When extracting the radius from fits to cross section

data at low momentum transfers Q2 < 0.01 GeV2, the
TPE corrections need to be included with high
precision. At Q2 < 0.01 GeV2, the estimated absolute
size of TPE correction amounts to a shift of the
extracted radius by 0.03–0.04 fm. Any theoretical
uncertainty of the TPE correction will influence the
extracted radius proportionally.

(ii) The DIχEFT method allows one to extract the radius
from fits to cross section data at higher momentum

transfers Q2∼ few times 0.01 GeV2 in the MUSE
kinematic range. This is advantageous experimen-
tally, because the higher sensitivity of the cross
section to the radius lowers the demands on the
experimental precision of the cross section measure-
ment. It is also advantageous theoretically, as it
reduces the influence of the TPE correction on the
radius extraction.

(iii) The optimal kinematics for the DIχEFT-based
radius extraction at MUSE is k ¼ 210 MeV and
Q2 ∼ 0.05–0.08 GeV2, at the upper end of the kin-
ematic coverage. It is determined by the trade-off
between theoretical effects—the sensitivity of the
cross section to the radius, the uncertainty of the
DIχEFT FF predictions, and the TPE correction. In
this kinematics, even a 100% uncertainty of the TPE
correction would shift the extracted radius only by
0.01 fm. An experimental precision of ≤ 0.5% is
required for determining the radius with 0.01 fm
accuracy. Such accuracy would be sufficient for
solving the proton radius puzzle.

(iv) In ep scattering in MUSE kinematics, the TPE cor-
rections are generally larger that in μp, and the
advantages of using the DIχEFT method with
higher-Q2 data for radius extraction are even more
compelling. The ratio of same-charge ep and μp cross
sections is predicted to be practically independent of the
proton radius and can be used for validation of the
analysis.

Our findings affirm the need for accurate theoretical
estimates of the TPE corrections in elastic μp and ep
scattering. If the radius extraction is performed using
the DIχEFT framework and data at finite momentum
transfers Q2 ∼ 0.05–0.08 GeV2, as recommended here,
efforts should focus on improving the TPE estimates in
this kinematic region. At these finite values of Q2 the
constraints on the TPE amplitude from the limit of forward
scattering (Q2 ¼ 0) are less restrictive, and the calculations
become more dependent on dynamical assumptions
[14,24]. Methods based on the 1=Nc expansion of QCD
could enable systematic calculations of TPE effects with
controlled theoretical uncertainties; see Refs. [25,26] for
recent developments.
The DIχEFT framework used in the present study is a

general method that can be improved through further
development. In particular, the treatment of the high-mass
states in the spectral function can be chosen depending on
the Q2 range and the required accuracy. In this work we
have used simple effective parametrizations of the high-
mass spectral function and treated the functional form as a
theoretical uncertainty, which is sufficient for the present
analysis in the MUSE Q2-range (see Sec. II B). The
uncertainty could be reduced by using more elaborate
parametrizations of the high-mass spectral function and
constraining it with FF data at larger Q2 ≲ 1 GeV2. This

FIG. 13. DIχEFT predictions for the average of eþ and e−

elastic scattering cross sections, as in Eq. (25) for μþp and μ−p,
in MUSE kinematics (compare with Fig. 7 for μp scattering).
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would allow one to include higher-Q2 data in the DIχEFT-
based radius extraction.
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