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1 Introduction

The motion of charged particles in a particle accelerator is typically studied using the linear
and uncoupled theory of betatron motion. The Courant-Snyder theory [1] allows the study of
unidimensional and uncoupled motion by having an elegant parametrization whose optical parameters
have a clear physical meaning. However, in many machines, coupling between the two transverse
degrees of freedom is present. The coupling of the particle transverse motion has long been
considered an undesirable effect. This residual coupling, if not well controlled, can cause undesirable
effects such as vertical emittance increase in electron synchrotrons or impact linear and nonlinear
observables such as amplitude detuning [2]. To take into account the effect of residual coupling,
it is possible to start from the uncoupled theory and consider the coupling as a perturbation. This
perturbation theory is no longer applicable as soon as the coupling arises from strong systematic
coupling fields. In this case, the machine design contains elements that introduce coupling on
purpose. In colliders, it is the case for interaction regions where large solenoidal fields and
compensation elements are present. Atypical optics schemes based on strong coupling insertions
have also been proposed to improve the performance of lepton and hadron colliders, such as the
“Möbius accelerator” [3], planar-to-circular beam adapters for circular modes operation [4], and
round beam operation for lepton storage rings [5, 6].

Recently, vertical excursion fixed field accelerators (vFFAs) [7–9] have experienced a resurgence
in interest [10], with their inherent coupling by design. The detailed beam dynamics study of advanced
accelerator designs such as vFFAs requires models adapted to strongly coupled optics [11, 12], and
a deep understanding of the existing models is thus essential. In what follows, 𝑋 is the horizontal
coordinate, 𝑌 is the vertical coordinate, and 𝑍 is the longitudinal coordinate in the Cartesian frame.
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In conventional, horizontal excursion, FFAs, the nonlinear magnetic field respects a scaling condition
that allows having a constant tune for all energies [13–15] and higher momentum particles move to
orbits of larger radius. By contrast, vFFA fields fulfill another scaling condition:

𝐵 = 𝐵0𝑒
𝑘 (𝑌−𝑌0 ) , (1.1)

where 𝑘 = (1/𝐵) (𝜕𝐵/𝜕𝑌 ) is the normalized field gradient, 𝑌0 is the reference vertical position and
𝐵0 is the magnetic field strength at the reference position. The bending field increases exponentially
in the vertical direction, leading higher energy particle orbits to have the same radius but to shift
vertically. The vFFA magnetic field components at any position (𝑋,𝑌, 𝑍) can be expressed with the
out-of-plane polynomial expansions given in appendix A. The three field components in the median
plane — the vertical plane at 𝑋 = 0 — are [11]:

𝐵𝑋 (0, 𝑌 , 𝑍) = 0, (1.2)
𝐵𝑌 (0, 𝑌 , 𝑍) = 𝐵0𝑒

𝑘𝑌𝑔(𝑍), (1.3)

𝐵𝑍 (0, 𝑌 , 𝑍) =
𝐵0
𝑘
𝑒𝑘𝑌

𝑑𝑔

𝑑𝑍
, (1.4)

where 𝑔(𝑍) corresponds to the magnet fringe fields. The vFFAs thus present a non-zero longitudinal
field component, which arises due to the fringe fields at the vFFA element ends. It is especially
important as the magnet construction, respecting the scaling law, will induce important fringe
fields. By neglecting the fringe field in the element body, the transverse field components can be
expressed as multipolar expansions by rewriting the exponential in terms of its Taylor series. The
first-order terms of this expansion correspond to skew quadrupolar components, as explicitly shown
in appendix A.

Because of the longitudinal and skew quadrupolar field components, which are the main
sources of transverse motion coupling, vFFAs feature strongly coupled optics. The longitudinal and
skew quadrupolar field components are the principal focusing elements in vFFAs, as there is no
normal quadrupole; both coupling fields are present simultaneously, complexifying the coupled
linear optics. It is therefore necessary to study vFFA lattices with a model adapted to strongly
coupled optics. The choice of a given parametrization for such machines, suitable for the design,
optimization, and operation phases, is key to a thorough understanding of their peculiar beam
dynamics. In this work, we explore in detail the main parametrizations commonly put forth to
describe coupled optics by applying them to strongly coupled lattices, such as snake [16] and spin
rotator designs [17, 18]. Highlighting the interpretation, possible anomalies, and specificities of
these parametrization methods is the main motivation of the present work in order to be able to apply
them to vFFA designs in future studies.

Several parametrizations propose to describe coupled optics as elegantly as the Courant-Snyder
theory for uncoupled motion. The most widely known parametrizations are those of Edwards and
Teng (ET) [19] and of Mais and Ripken (MR) [20]. In addition, these parametrizations were extended
and revisited in several works: Sagan and Rubin [21], Parzen [22], Luo [23], Wolski [24–26] and
Lebedev and Bogacz (LB) [27]. The exact formalisms and notations used by these authors differ, and
slightly different parametrization choices lead to an apparently inhomogeneous theory. To clarify
the situation, we provide interpretations of these parameters and explicit links between them for
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the different parametrizations. While both parametrization categories can often be computed and
interpreted without problems, anomalies can arise in the ET optical functions for strongly coupled
lattices, resulting in potentially infinite or negative 𝛽-functions with difficult interpretation. This
work illustrates this phenomenon on a Snake lattice [17], highlighting when these lattice functions
diverge and can no longer be associated with finite beam sizes.

The structure of the paper is as follows. Section 2 defines specific notations that are used
throughout the paper. Section 3 briefly reviews the coupling parametrizations from ET and MR,
with their extensions. Physical interpretations regarding lattice functions and clarifications of the
relationships between the quantities appearing in the different parametrizations are provided. The
methods are implemented in the Zgoubidoo Python interface [28] for the Zgoubi code [29] and
discussed in section 4 where applications are presented for example lattices and for realistic examples
of snakes and spin rotators. Concepts rarely thoroughly illustrated in previous parametrization
studies, such as the forced mode flip and local coupling concepts, are explored in detail, emphasizing
the comparative advantages of the different parametrization formalisms. The implementations have
been validated by comparing the generalized lattice functions computed by Zgoubidoo with those
obtained by MAD-X [30] and PTC [31]. Conclusions and recommendations for the study of vFFA
lattices are provided in section 5.

2 Notations

Lowercase bold letters are used to indicate vectors of geometric coordinates x ≡ (𝑥 𝑥′ 𝑦 𝑦′)𝑇 . The
vectors of canonical coordinates are designated with a hat as x̂ ≡

(
𝑥 𝑝𝑥 𝑦 𝑝𝑦

)𝑇 . Bold uppercase
letters indicate matrices (for example, M denotes a transfer matrix), and a hat is added when it comes
to the transfer matrice over a full period (“one-turn transfer matrices” M̂). The horizontal (𝑥) and
vertical (𝑦) directions are referred to as “physical directions” or “physical space” as opposed to the
“eigen-directions” related to the directions of the decoupled motion.

To study the particle transverse motion, we use the natural coordinates of the particle that are
the coordinates in the moving Frenet-Serret frame (𝑥, 𝑦, 𝑠) attached to a reference trajectory; 𝑥 and 𝑦

correspond to the horizontal and vertical deviations of the particle from the reference trajectory, and
the longitudinal coordinate 𝑠 corresponds to the path length along this reference. In the following,
we assume that the transverse components 𝐴𝑥 and 𝐴𝑦 of the vector potential can be written:

𝑒

𝑝0
𝐴𝑥 = −1

2
𝑅1(𝑠)𝑦 +𝑂 (𝑦3), (2.1)

𝑒

𝑝0
𝐴𝑦 =

1
2
𝑅2(𝑠)𝑥 +𝑂 (𝑥3), (2.2)

where 𝑅1 and 𝑅2 are related to the longitudinal field component. In the Frenet-Serret frame, the
relation between geometric coordinates and canonical variables reads:

𝑥′ =
𝑃𝑥

𝑝0
− 𝑒

𝑝0
𝐴𝑥 =

𝑃𝑥

𝑝0
+ 1

2
𝑅1𝑦, (2.3)

𝑦′ =
𝑃𝑦

𝑝0
− 𝑒

𝑝0
𝐴𝑦 =

𝑃𝑦

𝑝0
− 1

2
𝑅2𝑥, (2.4)

where 𝑝0 is the total reference momentum.
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In the matrix formalism, the solution of the equations of motion can be written in the form
x̂(𝑠) = Ms0→sx̂(𝑠0), where

Ms0→s =

(
A B
C D

)
(2.5)

is the transfer matrix that propagates the physical coordinates (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦) from 𝑠0 to 𝑠. In the case
of linear motion, the transfer matrix Msi→sj is symplectic [32]:

M𝑇SM = S, where S =

©­­­­«
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

ª®®®®¬
. (2.6)

This symplecticity condition results in (𝑛2 − 𝑛)/2 scalar conditions. The 𝑛 × 𝑛 transfer matrix M
therefore contains 𝑛

2 (𝑛 + 1) independent elements [1, 19, 27, 32]. For a two-dimensional motion, at
least 10 independent parameters are needed to parameterize the matrix.

3 Comparison of transverse coupled motion parametrizations

In the case of uncoupled motion, the lattice functions 𝛽(𝑠), 𝛼(𝑠), and 𝜇(𝑠) have a clear physical
meaning and give information about the focusing properties of the lattice: 𝛽(𝑠) limits the betatron
oscillation amplitude of the particles and is related to the beam size, while 𝜇(𝑠) represents the phase
advance of the oscillation. The functions 𝛼(𝑠) and 𝛾(𝑠) are directly related to the 𝛽-function, while
the linear tune of the periodic cell is directly related to the phase advance on a period: 𝑄 = (𝜇/2𝜋).

Several parametrizations propose to describe the coupled optics and characterize the coupling in
an elegant fashion. Among these parametrizations, the most widely known are the parametrization
from Edwards and Teng [19] (“ET” parametrization) and the parametrization from Mais and
Ripken [20] (“MR” parametrization). Both parametrization categories (ET and MR) provide
complementary information and are generally computed for different purposes. The ET lattice
functions are useful to compute the linear invariants and study the motion in the linearly decoupled
planes, while the MR lattice functions can be easily linked to measurable beam parameters, such
as beam sizes, and provide insight into the focusing properties of the lattice. Several authors have
revisited and extended these two parametrizations: Sagan and Rubin [21], Parzen [22], Luo [23],
Wolski [24–26], and Lebedev and Bogacz (LB) [27]. In this section, we briefly review the main
parametrization categories (ET and MR) and their variants in order to highlight the links, similarities,
and fundamental differences in the lattice parameters. The different parametrizations are applied to
example lattices in section 4 to further clarify their interpretations and singularities.

3.1 Edwards and Teng (ET) parametrization

The ET parametrization transforms the coupled transfer matrix into a decoupled block-diagonal
matrix using a linear similarity transformation [21]:

P𝑠0→𝑠 = R̃−1(𝑠)M𝑠0→𝑠R̃(𝑠0), with R̃ =

(
𝛾I C

−C 𝛾I

)
, (3.1)

– 4 –
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where 𝛾 is a scalar quantity representing the coupling strength, C is a 2×2 matrix, C is its symplectic
conjugate, and I is the unit matrix. The decoupling matrix R̃ allows to go from the coupled physical
space to the decoupled space in which the motion along two so-called “eigen-directions” can be
described independently. This matrix can also be described as a symplectic rotation [19] that gives
the orientation of the normal modes compared to the axes of the physical system, by imposing
𝛾 = cos 𝜙 and C = D−1 sin (𝜙), where D is a symplectic 2 × 2 matrix [19]:

R̃ =

(
I cos (𝜙) D−1 sin (𝜙)
−D sin (𝜙) I cos (𝜙)

)
,D =

(
𝑎 𝑏

𝑐 𝑑

)
. (3.2)

The transfer matrix in the decoupled frame P propagates the decoupled coordinates (u, 𝑝u, 𝑣, 𝑝𝑣)
from one point to another in the accelerator: û(𝑠2) = Pû(𝑠1). The lattice functions are defined by
parametrizing each block of the block-diagonal matrix P̂ as a Twiss matrix:

Ai =

(
cos (𝜇𝑖) + 𝛼𝑖 sin (𝜇𝑖) 𝛽𝑖 sin (𝜇𝑖)

−𝛾 sin (𝜇𝑖) cos (𝜇𝑖) − 𝛼𝑖 sin (𝜇𝑖)

)
, (3.3)

where 𝑖 = 1, 2 indicates the considered eigenmode. The lattice functions are thus connected to the
eigenmodes of oscillation and not to the physical directions of the transverse plane.

As described in [21], two solutions exist for the decoupling matrix R̃ when |B + C̄| > 0.
Depending on the chosen solution, one obtains a different block-diagonal matrix P̂, and the blocks
of this matrix can be associated differently with the eigenmodes; the Twiss parameters will also
have different values in one case or the other [21]. In a weakly coupled lattice, the horizontal and
vertical oscillations are nearly unchanged, and the oscillation eigenmodes can be associated with
the horizontal and vertical motions. The decoupling matrix must be close to the unit matrix so that
the eigen-axes are close to the horizontal and vertical directions. In a strongly coupled lattice, only
one solution may exist at some locations of the lattice (where |B + C̄| < 0), which forces the mode
identification. The change in mode identification at different locations of the lattice is referred to as
mode flipping and only occurs in elements that introduce a strong coupling between horizontal and
vertical motions. In strongly coupled lattices, the Twiss parameters can thus be different depending
on the chosen mode identification. The knowledge of the ET generalized Twiss parameters is not
sufficient anymore to compare lattices; the identification of the eigen-axes is required as well. The
sign change of |B + C̄| characterizes a forced mode flip. When the determinant of the matrix is equal
to 0, only one solution remains. When a forced mode flip occurs in the lattice, 𝛾 → 0. The lattice
functions can be discontinuous at this location, with diverging 𝛽-functions. Because the 𝛽-functions
can become infinite or negative, it is not possible to preserve their physical interpretation in terms of
envelope functions.

The 10 independent parameters of the ET parametrization include the generalized Twiss
parameters 𝛼, 𝛽, and 𝜇 for each eigenmode of oscillation, as well as four periodic functions for
the decoupling matrix R̃. The generalized Twiss parameters characterize the oscillations in the
decoupled space, while the parameters of the matrix R̃ describe the coupling between the two
transverse motions (strength and structure [19, 32, 33]). The Twiss parameters are defined with
respect to eigen-axes that no longer correspond to the physical axes. They thus no longer have
their usual physical interpretation, with the 𝛽-functions that are not directly related to the beam
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size in the physical plane. The mode identification can be tedious, and 𝛽-functions can become
negative or infinite if computed with the wrong mode identification when only one solution of the
decoupling matrix exists, as will be illustrated in section 4. The interpretation of the parameters
of the decoupling matrix is detailed in refs. [21, 34]. Notably, C, normalized by the 𝛽-functions,
characterizes the coupling strength and can be used in coupling correction algorithms [21]. The
elements of C are associated with the ellipse formed in the physical plane (𝑥 − 𝑦) when only one
of the eigenmodes is excited. In addition, the parameters of the decoupling matrix (𝛾 and C) can
be linked to the parameters of the difference coupling resonances obtained from the perturbative
approach for weak coupling [35, 36]. The parameter 𝛾 provides the coupling strength and indicates
if the system is close to a coupling resonance and the type of this resonance. Finally, in the ET
parametrization, the linear invariants are easily expressed in terms of the eigenmode lattice functions
𝛼, 𝛽, and 𝜇 and have the same expression as the usual Courant-Snyder invariants.

3.2 Mais and Ripken (MR) parametrization

The MR parametrization consists in parameterizing the normalization matrix — the matrix that
transforms the transfer matrix into its normal form (i.e. a rotation matrix): N−1M̂N = R(𝜇1, 𝜇2) —
with lattice functions or, in an equivalent way, parameterizing the eigenvectors of the coupled transfer
matrix. The resulting lattice parameters represent the effect of the two eigenmodes of oscillation
on each physical transverse direction, which allows for interpreting them in relation to the physical
beam sizes. Two variants are in use for the parametrization method. The first one uses the generating
vectors that define the curve formed by the turn-by-turn coordinates in phase space, as for Willeke
and Ripken (WR) in ref. [37]. The second one uses the normalization matrix, as for Lebedev and
Bogacz (LB) in ref. [27], and Wolski in refs. [25, 26]. Both methods ultimately parameterize the
eigenvectors of the one-turn transfer matrix.

WR [37] parameterize the principal and non-principal oscillations1 with independent lattice
functions. There is a set of 20 parameters that are related to each other: (𝛽, 𝛼, 𝛾, 𝜙, and 𝜙) for each
mode and each transverse direction. These lattice parameters are related by [37, 38]:

𝛽𝑥𝜙
′
𝑥 + 𝛽𝑦𝜙

′
𝑦 +

1
2
(𝑅1 + 𝑅2)

√︁
𝛽𝑥𝛽𝑦 sin (𝜙𝑥 − 𝜙𝑦) = 1, (3.4)

𝜙(𝑠) = 𝜙(𝑠) − arctan( 𝛽𝜙
′

𝛼
), 𝛾 =

𝛽2𝜙′2 + 𝛼2

𝛽
. (3.5)

The projection of the 4D phase space surface on the phase space 𝑧− 𝑧′ (𝑧 = 𝑥, 𝑦) can be characterized
by the superposition of two ellipses described by the lattice functions associated with the plane and
the two oscillation modes, as will be illustrated in section 4 (figure 4 for example).

LB [27] parameterize the normalization matrix with 10 independent parameters (four 𝛽-functions,
four 𝛼-functions, and the two phase advances 𝜇1 and 𝜇2 appearing in the rotation matrix) and three
additional real functions (𝜈1, 𝜈2 and 𝑢). The functions 𝜈1 and 𝜈2 represent the phase shift of the
non-principal oscillation linked to an eigenmode with respect to the principal oscillation of the same

1In the following, “main” or “principal” lattice functions denote the lattice functions in the transverse direction mainly
associated with the mode eigendirection in the limit of weak coupling. Nevertheless, this denomination should not make
one forget that there are no “main” 𝛽-functions in the course of strong coupling, but only four 𝛽-functions corresponding
to the two eigenmodes projected on the physical axes.
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eigenmode. The principal and non-principal optical functions of WR and LB are similar, except
that the coupling due to the longitudinal field is directly taken into account in the 𝛼-functions of
the LB parametrization, while this is not the case in the WR parametrization. Additionally, the
real function 𝑢 of LB combines in a single expression the non-principal lattice functions 𝛽𝑥𝐼𝐼 and
𝛽𝑦𝐼 , the non-principal phase advances 𝜙𝑥𝐼𝐼 and 𝜙𝑦𝐼 , and the coupling parameters 𝑅1 and 𝑅2 that
represent the coupling due to a longitudinal field:

𝑢 = 𝛽𝑦𝐼𝜙
′
𝑦𝐼 +

𝑅2
2

√︁
𝛽𝑥𝐼 𝛽𝑦𝐼 sin (𝜈1) = 𝛽𝑥𝐼𝐼𝜙

′
𝑥𝐼𝐼 −

𝑅1
2

√︁
𝛽𝑥𝐼𝐼 𝛽𝑦𝐼𝐼 sin (𝜈2). (3.6)

This real function quantifies the lattice coupling within a single parameter. If there is no coupling in
the lattice, 𝑢 is zero. This parameter represents the relative importance of the 𝑥 and 𝑦 components
of an eigenvector associated with a mode. In addition, it can also be linked to the areas of the two
ellipses due to a mode in the phase planes 𝑥 − 𝑥′, 𝑦 − 𝑦′.

The parametrization of Wolski [26] includes the main optical functions 𝛽𝑥 , 𝛼𝑥 , 𝛽𝑦 , 𝛼𝑦 , and
functions reflecting the coupling 𝜁𝑥 , 𝜁𝑦 , 𝜁𝑥 , 𝜁𝑦 , which combine the different non-principal optical
functions appearing in WR [37] and LB [27]:

𝜁𝑥 =
√︁
𝛽1𝑦𝑒

−𝑖𝜈1 , 𝜁𝑦 = −
𝛼1𝑦√︁
𝛽1𝑦

𝑒𝑖𝜈1 − 𝑖
𝑢√︁
𝛽1𝑦

𝑒𝑖𝜈1 , (3.7)

𝜁𝑦 =
√︁
𝛽2𝑥𝑒

−𝑖𝜈2 , 𝜁𝑥 = − 𝛼2𝑥√
𝛽2𝑥

𝑒𝑖𝜈2 − 𝑖
𝑢

√
𝛽2𝑥

𝑒𝑖𝜈2 . (3.8)

The motion in the 𝑥-direction can be seen as the superposition of two quasi-harmonic motions. The
“main” motion corresponds to the projection of the oscillation mode I in the 𝑥-direction, leading to a
quasi-harmonic oscillation whose amplitude is characterized by 𝛽𝑥 and which is in phase with the
oscillation in the eigen direction I. The “non-principal” motion corresponds to the projection of the
oscillation mode II in the 𝑥-direction, resulting in a quasi-harmonic oscillation whose amplitude is
characterized by |𝜁𝑦 | =

√
𝛽2𝑥 and whose phase shift compared to the oscillation eigenmode II is −𝜈2.

The parameters appearing in the different parametrizations of the MR category are summarized
in table 1. In addition to these approaches, which are restricted to a minimal number of parameters,
it should be noted that parametrizations with more parameters have also been proposed [24]. Consid-
ering additional parameters allows having similar expressions for all the lattice functions, as well as
elegant expressions for the correlation matrix elements in terms of these generalized lattice functions.

To summarize, the parameter set of the MR parametrization generally includes two main phase
advances, four main lattice functions 𝛽, 𝛼, or 𝛾, and parameters reflecting the coupling. Variants
exist for the coupling parameters describing the off-diagonal part of the normalization matrix. These
parameters are described either by non-principal 𝛽, 𝛼, and phase advances as in the parametrizations
of WR and LB [27, 37], or by complex parameters which combine these non-principal functions
into a single quantity as in the parametrization of Wolski [26]. The non-principal optical functions
are characteristics of the coupling. If there is no coupling, the non-principal 𝛽 and 𝛼 functions (or
equivalently the complex 𝜁 functions) are zero: 𝛽1𝑦 = 𝛽2𝑥 = 𝛼1𝑦 = 𝛼2𝑥 = 𝜁𝑦 = 𝜁𝑥 = 𝑢 = 0.

The physical interpretation of the MR parameters is similar to the usual Twiss interpretation of
the Σ matrix of the second-order moments in the physical laboratory axes. This constitutes the main
advantage of this parametrization. The 𝛽-functions (and the modulus of 𝜁), which are positive and
finite functions (unlike the 𝛽-functions of the ET parametrization), characterize the amplitude of the
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Table 1. Comparison of the parameters appearing in [27], [37] and [26].

Principal lattice functions
Willeke & Ripken [37] Lebedev & Bogacz [27] Wolski [26]

𝛽𝑥𝐼 𝛽1𝑥 𝛽𝑥

𝛽𝑦𝐼𝐼 𝛽2𝑦 𝛽𝑦

𝛼𝑥𝐼 + 𝑅1
2
√︁
𝛽𝑥𝐼 𝛽𝑦𝐼 cos (𝜈1) 𝛼1𝑥 𝛼𝑥

𝛼𝑦𝐼𝐼 − 𝑅2
2
√︁
𝛽𝑥𝐼𝐼 𝛽𝑦𝐼𝐼 cos (𝜈2) 𝛼2𝑦 𝛼𝑦

𝜙𝑥𝐼 𝜇1 𝜇𝐼

𝜙𝑦𝐼𝐼 𝜇2 𝜇𝐼 𝐼

Non-principal lattice functions
Willeke & Ripken [37] Lebedev & Bogacz [27] Wolski [26]

𝛽𝑥𝐼𝐼 𝛽2𝑥 |𝜁𝑦 |2
𝛽𝑦𝐼 𝛽1𝑦 |𝜁𝑥 |2
𝛼𝑥𝐼𝐼 + 𝑅1

2
√︁
𝛽𝑥𝐼𝐼 𝛽𝑦𝐼𝐼 cos (𝜈2) 𝛼2𝑥 -𝑅𝑒(𝜁𝑦𝜁𝑥)

𝛼𝑦𝐼 − 𝑅2
2
√︁
𝛽𝑥𝐼 𝛽𝑦𝐼 cos (𝜈1) 𝛼1𝑦 -𝑅𝑒(𝜁𝑥𝜁𝑦)

𝜙𝑥𝐼𝐼 𝜇1 − 𝜈1 𝜇𝐼 + 𝑝ℎ(𝜁𝑥)
𝜙𝑦𝐼 𝜇2 − 𝜈2 𝜇𝐼 𝐼 + 𝑝ℎ(𝜁𝑦)

transverse betatron oscillations and are related to the horizontal and vertical beam sizes; they allow
to easily generalize the envelope expression of the uncoupled motion. The 𝛼-functions also have the
same meaning as in Courant-Snyder’s theory if there is no longitudinal field that couples motion.
Otherwise, the 𝛼-functions of the WR parametrization will remain identical, while the 𝛼 parameters
of the other parametrizations will have an additional term that accounts for this longitudinal field
coupling. The MR parametrization allows computing the elements of the correlation matrix explicitly,
as shown in table 2.

Table 2. Correlation matrix elements with the parameters appearing in [27] and [26].

Elements Lebedev & Bogacz [27] Wolski [26]

< 𝑥2 > 𝛽1𝑥𝜀𝐼 + 𝛽2𝑥𝜀𝐼 𝐼 𝛽1𝑥𝜀𝐼 + |𝜁𝑦 |2𝜀𝐼 𝐼
< 𝑦2 > 𝛽1𝑦𝜀𝐼 + 𝛽2𝑦𝜀𝐼 𝐼 |𝜁𝑥 |2𝜀𝐼 + 𝛽2𝑦𝜀𝐼 𝐼

< 𝑥𝑦 >
√︁
𝛽1𝑥𝛽1𝑦𝑐𝑜𝑠(𝜈1)𝜀𝐼 +

√︁
𝛽2𝑥𝛽2𝑦𝑐𝑜𝑠(𝜈2)𝜀𝐼 𝐼

√
𝛽1𝑥𝑅𝑒(𝜁𝑥)𝜀𝐼 +

√︁
𝛽𝑦𝑅𝑒(𝜁𝑦)𝜀𝐼 𝐼

< 𝑥𝑝𝑥 > −𝛼1𝑥𝜀𝐼 − 𝛼2𝑥𝜀𝐼 𝐼 −𝛼1𝑥𝜀𝐼 + 𝑅𝑒(𝜁𝑦𝜁𝑥)𝜀𝐼 𝐼
< 𝑦𝑝𝑦 > −𝛼1𝑦𝜀𝐼 − 𝛼2𝑦𝜀𝐼 𝐼 𝑅𝑒(𝜁𝑥𝜁𝑦)𝜀𝐼 − 𝛼2𝑦𝜀𝐼 𝐼

The particle distribution is characterized by the mode emittances 𝜀1 and 𝜀2, which are invariants
of motion in linear optics, and the 4D beam emittance is defined by the product of the mode emittances
𝜀4𝐷 = 𝜀1𝜀2 [27]. The expression of the Σ matrix using the MR parameters provides a path to
the beam-based measurements of these parameters. In ref. [25], Wolski presents an experimental
method to obtain the phase advances and ratios of lattice functions (𝛽-functions and 𝜁 modulus)
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from beam position monitor (BPM) measurements. In ref. [23], Luo establishes a procedure to
reconstruct the normalization matrix from turn-by-turn BPM data. In his work, the normalization
matrix is written in the most general way without parametrizing the matrix elements using amplitude
and phase functions. It gives insight into the practical use of the normalization matrix [35].

3.3 Relationships between ET and MR parametrizations

The ET parametrization directly expresses the linear invariants in terms of the Twiss parameters in the
decoupled space, and the MR parametrization provides direct expressions for the Σ matrix in terms
of the generalized Twiss parameters. Expressing the linear invariants with the MR parametrization
or expressing the Σ matrix with the ET parametrization proves difficult. The link between these
parametrizations was clarified by Lebedev and Bogacz in ref. [27]. They have highlighted the
relations between the parameters involved in the two types of parametrizations:

1 − 𝑢 = cos2 𝜙 ⇒ sin 𝜙 = ±
√
𝑢, (3.9)

𝛽1𝑥 = 𝛽1 cos2 𝜙 ⇒𝛽1 =
𝛽1𝑥

1 − 𝑢
, 𝛽2𝑦 = 𝛽2 cos2 𝜙 ⇒𝛽2 =

𝛽2𝑦

1 − 𝑢
, (3.10)

𝛼1𝑥 = 𝛼1 cos2 𝜙 ⇒𝛼1 =
𝛼1𝑥

1 − 𝑢
, 𝛼2𝑦 = 𝛼2 cos2 𝜙 ⇒𝛼2 =

𝛼2𝑦

1 − 𝑢
. (3.11)

The parameter 𝑢, which reflects the coupling in the LB parametrization, is related to the rotation
angle in the ET parametrization. When the parameter 𝑢 is negative, the ET rotation angle 𝜙 is
complex. It is equivalent to the situation where |B+ C̄| < 0, meaning that only one solution exists for
the ET parametrization. When the parameter 𝑢 changes sign, a mode flip is forced. As mentioned by
LB in ref. [27], the phase advances 𝜇1 and 𝜇2 are the same in the ET and the MR parametrizations.

The MR parametrization allows univocally determining the generalized Twiss parameters from
the transfer matrix eigenvectors, with no mode identification problems. Nevertheless, it is impossible
to uniquely determine the eigenvectors if only the lattice functions are given. By contrast, the
knowledge of the ET generalized Twiss parameters allows uniquely determining the eigenvectors, but
it is impossible to uniquely determine the ET parameters from the knowledge of these eigenvectors.
Knowing the eigenvectors of the coupled transfer matrix allows for calculating the parameter 𝑢, but
there are four possible ET rotation angles 𝜙 for a given parameter 𝑢. To determine the generalized
ET Twiss parameters from the coupled transfer matrix, it is necessary to choose 𝜙, or equivalently,
to choose one of the possible solutions for the decoupling matrix (distinct mode identifications).

4 Applications of the parametrizations on typical and strongly coupled lattices

The ET and LB parametrizations have been implemented in Zgoubidoo [28], a Python interface
for the ray-tracing code Zgoubi [29, 39, 40], and validated by comparing with the coupled lattice
functions obtained with MAD-X [30] and PTC [31]. Ray-tracing codes, like Zgoubi, allow particles
to be tracked in arbitrary electro-magnetic fields. The ability to perform step-by-step tracking makes
Zgoubi a method of choice for (v)FFA studies [12, 41–43]. Zgoubidoo provides a user-friendly
Python interface and is capable of processing the tracking data to extract relevant quantities for beam
dynamics studies [44].

The ET parametrization was implemented using the method presented by Parzen [22] and
allows for finding linear invariants. This method is advantageous because it allows studying the
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coupled motion in a phase space of greater dimension: for example, the ET parametrization is
extended by Parzen for coupled motion in 6 degrees of freedom [22]. The LB parametrization
was chosen among all the parametrizations of the MR category because it provides interesting
additional quantities (𝑢, 𝜈1, 𝜈2) together with the lattice functions of the WR parametrization. The
LB lattice functions provide the evolution of the beam envelope in the laboratory axes along the
lattice. The implementations were first tested on weakly coupled example lattices, then validated
with more complicated strongly coupled lattices against results obtained with MAD-X for the
ET parametrization [33], and MAD-X combined with PTC for the MR parametrization [30, 31].
The different parametrization methods allow, on the one hand, to find the periodic conditions for
periodic lattices and, on the other hand, to propagate initial lattice functions in a beamline. The
examples presented below validate both the computation of coupled periodic lattice functions and
the propagation of initial lattice functions. In addition, forced mode flips, local coupling, and
interpretation of lattice parameters are analyzed in detail. Table 3 summarizes the different example
lattices discussed in this section, with the lattice function computation method (periodic conditions
or propagation of initial lattice functions) and the concepts the example illustrates.

Table 3. Examples used to validate the parametrization implementation and illustrate some peculiar concepts
and parameter interpretation. “Periodic” stands for “Periodic initial conditions”, while “Propagation” stands
for “Propagation of initial lattice functions”.

Examples Computation Illustration

FODO + skew quad Periodic - Global coupling and 𝑢 parameter
- ET/MR functions to characterize
decoupled and coupled phase spaces

FODO + solenoid Periodic - WR/LB param. (MR category) characterizing
geometric and canonical coupled phase spaces

Snake lattice [17] Propagation - Forced mode flip
- Local coupling and 𝑢 parameter

Spin rotator [17] Propagation - Local coupling and 𝑢 parameter

The longitudinal and skew quadrupolar field components being the principal coupling sources,
the weakly coupled lattice examples are FODO lattices featuring short skew quadrupolar or solenoid
insertions. One can observe in figures 1 and 2 that an excellent agreement is found between the
lattice functions computed with Zgoubidoo (ET and LB parametrizations) and those computed
with MAD-X (ET parametrization) combined with PTC (MR parametrization), for the two weakly
coupled example FODO lattices. In addition, the phase advances 𝜇1 and 𝜇2 obtained from the ET
and MR parametrizations are identical, as expected. It should be noted that the solenoid models in
MAD-X and Zgoubi are different, which may introduce differences in the computed lattice functions.
MAD-X models a hard-edge solenoid, while Zgoubi models a more realistic solenoid with fringe
fields whose length depends on the solenoid (finite) radius.

When computing these lattices, the initial conditions were obtained assuming a periodic transfer
matrix. The lattice functions represented in figures 1 and 2 are thus periodic optical functions and re-
flect the global coupling of the lattice. This global coupling can be understood by analyzing the lattice
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Figure 1. Comparison between the coupled lattice functions (ET and MR parametrizations) obtained with
Zgoubidoo and those obtained with MAD-X and PTC on a lattice consisting of a FODO with a small skew
quadrupole. The MR-category parametrization implemented in Zgoubidoo is the LB parametrization.
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Figure 2. Comparison between the coupled lattice functions (ET and MR parametrizations) obtained with
Zgoubidoo and those obtained with MAD-X and PTC on a lattice consisting of a FODO with a small solenoid.
The MR-category parametrization implemented in Zgoubidoo is the LB parametrization.

parameters of LB. The non-principal lattice functions (𝛽1𝑦 and 𝛽2𝑥) are non-zero at the beginning of
the lattice. They are computed with periodic conditions and therefore take into account the coupling
present in the whole lattice and not only the coupling at the location where they are calculated. The
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coupling is distributed over the entire line. The LB parameter 𝑢 on the full lattice remains constant on
the entire line at a value of 0.176. When computed with periodic conditions, this parameter gives a
measure of the overall coupling of the lattice. It provides insight into the weight of the non-principal
lattice functions compared to the principal ones over the complete lattice. A fully coupled lattice
would have principal functions equal to the non-principal ones and 𝑢 = 0.5; it is the case, for example,
of a FODO cell in which all the elements are rotated by 45 degrees. The parameter 𝑢 has constant
values in the elements not introducing coupling but varies in the elements introducing coupling and
indicates whether the element couples more or less the motion than the lattice does globally.

The parameter 𝑢 can also be linked to the area of the ellipses in the coupled phase spaces.
Figures 3a and 3b show the decoupled phase space (u − 𝑝u) and the coupled phase space (𝑥 − 𝑝𝑥),
obtained by tracking over 1000 iterations a particle with an initial horizontal amplitude in the
FODO cell with the additional skew quadrupole. We observe that the lattice functions of the ET
parametrization allow describing the ellipse in the decoupled phase space, while the lattice functions
of the MR parametrization allow describing the two ellipses in the coupled phase space. The area of
the ellipse in the phase space (u − 𝑝u) is given by 𝜋𝜖1 and is an invariant of the motion, while the
areas of the ellipses corresponding to the two oscillation modes projected into the transverse phase
plane (𝑥 − 𝑝𝑥) can be calculated using the parameters of LB: Γ1𝑥 = 𝜋𝜖1(1 − 𝑢), Γ2𝑥 = 𝜋𝜖2𝑢. The
parameter 𝑢 gives the relative importance of the two ellipses coming from an oscillation eigenmode
in the two transverse phase spaces (𝑥 − 𝑝𝑥) and (𝑦 − 𝑝𝑦).

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008 Tracking data
Ellipse computed with the ET parameters

(a)

−0.2 −0.1 0 0.1 0.2

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008 Tracking data
Ellipses computed with the MR parameters

(b)

Figure 3. (a) Decoupled phase space (u − 𝑝u) obtained by tracking a particle over 1000 iterations in a
cell composed of a FODO with a skew quadrupole. The ET lattice functions describe the decoupled phase
space ellipse whose area is 𝜋𝜖1. (b) Coupled phase space (𝑥 − 𝑝𝑥) obtained by tracking a particle over 1000
iterations in a cell composed of a FODO with a skew quadrupole. The MR lattice functions characterize the
two ellipses due to the two oscillation eigenmodes appearing in the coupled phase space. The ellipse areas are
given by 𝜋𝜖1 (1 − 𝑢) and 𝜋𝜖2𝑢.

When the phase space corresponds to geometric variables (𝑥 − 𝑥′), the chosen MR lattice
functions are those of WR rather than those of LB. Indeed, the major difference between the 𝛽
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and 𝛼-functions of WR and those of LB comes from considering or not the coupling due to the
longitudinal magnetic field (see table 1). In the example of the FODO with a skew quadrupole,
there is no longitudinal field at the place where the coordinates are sampled (𝑅1,2 = 0). The lattice
functions of WR and those of LB are thus equivalent, and the phase spaces in canonical or geometric
coordinates are the same. In the example of the FODO with a solenoid, it is possible to sample the
coordinates at a place where the longitudinal field is non-zero. The phase spaces in geometric or
canonical coordinates are then very different, as shown in figure 4. The phase space portraits obtained
in each case are characterized by the superposition of two ellipses. These ellipses are described
by the WR parameters in the geometric case and by the LB parameters in the canonical case.

−0.005 0 0.005
−2×10 −4 

−1.5×10 −4 

−1×10 −4 

−0.5×10 −4 

0

0.5×10 −4 

1×10 −4 

1.5×10 −4 

2×10 −4 

2.5×10 −4 
Tracking data - Geometric coordinates
Ellipses computed with the parameters of WR

−0.005 0 0.005
−2×10 −4 

−1.5×10 −4 

−1×10 −4 

−0.5×10 −4 

0

0.5×10 −4 

1×10 −4 

1.5×10 −4 

2×10 −4 Tracking data - Canonical coordinates
Ellipses computed with the parameters of LB

Figure 4. Coupled phase spaces in geometric (left) or canonical (right) coordinates. The lattice functions of
WR describe the geometric phase space, while the lattice functions of LB describe the canonical phase space
by taking into account the longitudinal field.

As examples for more complex strongly coupled lattices, we used a “Snake” lattice [16, 17],
illustrated in figure 5, and a “Spin Rotator” beamline [17, 18]. The calculation of the lattice functions
was done by propagating initial conditions. The initial lattice functions are not coupled, meaning

0 2 4 6 8

−2

−1.5

−1

−0.5

0

Z (m)

X
 (

m
)

Figure 5. Representation of the example Snake lattice. Quadrupoles are depicted in red, dipoles in blue, and
solenoids in yellow.
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that the coupling parameters are zero: in the ET parametrization, the decoupling matrix equals the
identity; in the MR parametrization, non-principal lattice functions and additional parameters (𝑢,
𝜈1, 𝜈2) are zero at the beginning of the transfer line. Figure 6 shows the comparison of the coupled
𝛽-functions (in the ET and MR parametrizations) computed with Zgoubidoo and those obtained
with MAD-X and PTC on the Snake lattice. We see a good agreement, even if there are some
discrepancies due to the difference in the solenoid model. Figure 7 shows the same comparison but
on the Spin Rotator lattice. Again, an excellent agreement is found.
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Figure 6. Comparison between the coupled 𝛽-functions (ET and MR parametrization) obtained with
Zgoubidoo and those obtained with MAD-X and PTC on the Snake lattice. The MR-category parametrization
implemented in Zgoubidoo is the LB parametrization. The data points obtained with Zgoubidoo are joined by
interpolating straight lines to highlight the overall shape of the lattice functions.

The propagation of lattice functions allows for an in-depth study of other key concepts such as
forced mode flip and local coupling concepts. In the Snake lattice, we can highlight the problems
related to forced mode flips by propagating the 𝛽-functions of the ET parametrization. Figure 8a
shows the evolution of the ET 𝛾 parameter throughout the lattice. By propagating initial lattice
functions, a forced mode flip can occur when 𝛾 → 0. Figure 8b shows the 𝛽-functions and 𝛾

parameter of the ET parametrization on a portion of the transfer line. When 𝛾 → 0, the 𝛽-functions
of ET seem to diverge; it illustrates that the ET lattice functions can sometimes be discontinuous or
negative. Therefore, they cannot be related to the beam size.

In this example, the transfer matrix in decoupled space is block-diagonal at all lattice points,
which indicates that there is no mode flip between the start and the end of the lattice. The initial mode
identification is kept throughout the transfer line due to Parzen’s method [22] used to implement the
ET parametrization. This method solves the problem of mode identification of the ET parametrization
because it is based on the eigenvectors of the transfer matrix. Each eigenvector is associated with an
eigenvalue. The eigenvalues of M being the same as those of P (matrices related by a similarity
transformation), the oscillation eigenmodes can also be associated with these eigenvalues. To keep
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Figure 7. Comparison between the coupled 𝛽-functions (ET and MR parametrization) obtained with
Zgoubidoo and those obtained with MAD-X and PTC in the Spin Rotator lattice. The MR-category
parametrization implemented in Zgoubidoo is the LB parametrization. The data points obtained with
Zgoubidoo are joined by interpolating straight lines to highlight the overall shape of the lattice functions.
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Figure 8. (a) Parameter 𝑢 of the LB parametrization and 𝛾 of the ET parametrization, obtained by the propaga-
tion of initial lattice functions on the Snake lattice. (b) 𝛽-functions and 𝛾 parameter of the ET parametrization
on a portion of the Snake line. This figure is a zoom on the lattice location that shows forced mode flip
conditions (𝛾 → 0). At this location, the 𝛽-functions can diverge and can not anymore be related to beam sizes.
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Figure 9. 𝛽-functions and 𝑢 parameter of the LB parametrization in addition to the 𝛾 parameter of the
ET parametrization. This figure is a zoom on lattice portions where 𝑢 > 0.5, including the lattice location
that shows forced mode flip conditions (𝛾 → 0). When 𝑢 > 0.5, the non-principal functions become more
important than the principal ones.

a specific mode identification throughout the lattice, it is thus sufficient to calculate the optical
parameters of each eigenmode with the eigenvectors of the coupled transfer matrix corresponding to
the same eigenvalues. One can thus ensure that the Twiss parameters always correspond to the same
oscillation eigenmode. This method allows removing the mode flips.

However, when a mode flip is “forced”, it means that the mode identification is incorrect: it is
not possible to correctly compute lattice functions with this mode identification. At the location
of a forced mode flip, the planes are completely exchanged. The eigen-axes correspond to the
horizontal and vertical axes (𝑥 and 𝑦), but the axes are switched; the two modes are identified with
the perpendicular axes so that the 𝛽-functions diverge totally. When 𝛾 → 0, the transfer matrix in
the coupled space tends towards an anti-diagonal matrix: any initial offset in 𝑥 is transformed almost
entirely into a motion in 𝑦 and vice versa, confirming the interpretation of the total axes exchange
due to the strong coupling of the lattice. To summarize, when a forced mode flip condition occurs at
some place of the lattice (𝛾 → 0), either the mode identification is changed, which allows keeping
finite 𝛽-functions but poses mode identification difficulties, or the mode identification is kept, which
leads to lattice functions that can diverge and can no longer be associated with finite beam sizes.

By analyzing the 𝛽-functions of the MR parametrization (see figure 9), we note that this
phenomenon results in the fact that a mode is first more reflected on a plane and then more on the other
plane. When 𝛾 → 0 (𝑠 ≈ 5.19 m), the main 𝛽-functions (𝛽1𝑥 and 𝛽2𝑦) are zero, and the eigenmode
oscillations are reflected on the other axis, which translates into non-principal lattice functions (𝛽1𝑦

and 𝛽2𝑥). Finally, it should be noted that the forced mode flip conditions in this lattice appear inside a
solenoid. The potential problems are thus only fully detected when the tracking code allows step-by-
step tracking inside the elements. Zgoubidoo, with Zgoubi in the backend, allows for obtaining step-
by-step transfer matrices and thus detecting any potential problem related to the ET parametrization.

In addition to the forced mode flips analysis, the propagation of the generalized Twiss parameters
in the Snake lattice allows for a better understanding of the “local coupling” concept (a term used
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in many references). To that end, the propagation of the parameter 𝑢 throughout the lattice can be
analyzed. Figure 8a shows that 𝑢 is initially zero because we impose uncoupled initial conditions. It
remains zero in all the elements that do not introduce coupling until reaching the first solenoid. We
observe that if an element does not introduce coupling, the parameter 𝑢 remains constant. From an
eigenvector point of view, it means that the ratio between the 𝑥 and 𝑦 components of the eigenvector
remains constant [27] because the element does not introduce more coupling than the initial coupling
at the element entry. In the snake beamline, the only elements that change the parameter 𝑢 are
the solenoids, with their longitudinal field that couples the transverse motion. In parallel with the
parameter 𝑢, we can analyze the principal and non-principal 𝛽-functions of the MR parametrization,
shown in figure 9. When 𝑢 is greater than 0.5, the non-principal functions become more important
than the principal ones. If 𝑢 remains greater than 0.5 at a solenoid output, which is the case at
the end of the Snake line, the non-principal functions remain dominant until the end of the line.
Moreover, when 𝑢 → 1, the principal functions cancel each other out. It corresponds to 𝛾 → 0: the
transfer line is then so coupled that the planes have been totally inverted (forced mode flip). A strong
enough coupling is necessary to have this mode inversion along the line; nevertheless, when 𝑢 tends
to 1, the line is locally totally decoupled if we invert the mode identification.

When propagated in a lattice from initial conditions, the parameter 𝑢 thus gives a measure of
the local coupling. If initially uncoupled lattice functions are propagated into elements without local
coupling, the non-principal 𝛽 and 𝛼 functions (or equivalently, the complex 𝜁 functions) remain zero.
Nevertheless, these parameters can be non-zero in elements without coupling if they follow lattice
parts introducing coupling; the parameter 𝑢 will then have a finite value that will remain constant in
these elements. To support this interpretation, the parameter 𝑢 can also be examined in the Spin
rotator lattice, as shown in figure 10. The various observations made for the Snake lattice also hold
in this example. The parameter 𝑢 is constant except in the solenoids, which allow turning electron
spin. We observe that the coupled insertion is designed to cancel the coupling of the solenoids. In
figure 7, we can see that the non-principal functions are non-zero only in the coupled insertions;
when 𝑢 returns to 0, indicating a zero local coupling, the non-principal lattice functions are also zero.

0 10 20 30 40 50 60

0

0.05

0.1

0.15

S (m)

Figure 10. Parameter 𝑢 of the LB parametrization, obtained by the propagation of initial lattice functions in
the Spin Rotator lattice.
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The parameter 𝑢 of LB, calculated with periodic conditions or by the propagation of initial
lattice functions, thus gives an idea, respectively, of the lattice average coupling strength or the
local coupling at a specific place in the lattice. Moreover, we have highlighted the link between this
parameter and the ellipses in the physical coupled phase space. Although this parameter can be
used qualitatively, it cannot be rigorously used in all cases to evaluate the coupling strength because
it includes different terms that can cancel each other out in some situations, in particular when a
longitudinal field is present (𝑅1,2 ≠ 0, see eq. (3.6)). The interpretation of the constant value of 𝑢 in
the elements not introducing coupling remains nevertheless valid because the relative importance of
the 𝑥 and 𝑦 components of the coupled transfer matrix eigenvectors does not change if the element
does not introduce any additional coupling.

5 Summary and conclusions

Transverse betatron motion coupling is a frequent occurrence, whether originating from residual
coupling that appears due to imperfections or being coupling “by design” from strong systematic
coupling fields. Vertical excursion FFAs exhibit strong coupling due to their longitudinal and skew
quadrupolar field components. The in-depth study of their linear optics must be studied using models
adapted to strongly coupled optics. To support that effort, the available parametrization methods
have been briefly reviewed and applied to strongly coupled lattices to highlight the interpretation of
their key parameters. The ET parametrization allows readily finding the linear invariants of motion
by exploring the motion in the decoupled axes. However, the generalized lattice functions of this
parametrization are not easily interpretable in terms of beam Σ-matrix. The MR parametrization
allows having a lattice function interpretation similar to that of the Courant-Snyder theory, allowing
to link these lattice functions to measurable beam parameters. The ET and MR parametrizations are
complementary and are used for different purposes. To benchmark the different parametrization
methods, these methods have been implemented in a Python interface to the Zgoubi ray-tracing
code. The validation of these implementations was carried out on different example lattices with a
remarkable agreement with MAD-X and PTC.

The ET parametrization, with its generalized Twiss parameters and decoupling matrix, is
used to find linear invariants and to analyze the motion in linearly decoupled phase spaces, for
example for the computation of the dynamic aperture. The ET parametrization was implemented
in Zgoubidoo by using the method presented by Parzen in ref. [22], which can easily be generalized
in higher-dimensional phase space. We obtained an excellent agreement between our results and
those obtained with MAD-X, which implements the method presented by Edwards and Teng in
ref. [19] and extended by Sagan and Rubin in ref. [21]. In parallel with the decoupled motion study,
one can also use a parametrization of the MR category to link it with measurable quantities, such
as the beam sizes. We have highlighted that the parametrizations of the MR category describe the
quasi-harmonic motions in the coupled phase spaces, resulting from the eigen oscillations in the
decoupled space. Depending on the chosen parametrization, one can describe the principal and
non-principal oscillations either independently with parameter sets for each oscillation (WR) or with
parameters describing the non-principal oscillations relative to the principal ones. The amplitudes
and phase shifts are then either given explicitly (LB) or with phasors gathering amplitude and phase
in the same quantity (Wolski). If the motion is studied using geometric coordinates, the phase space is
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described by the WR parameters. If the motion is expressed in canonical coordinates, the phase space
is described by parameters accounting for the longitudinal field coupling, such as the LB parameters.

For studies of strongly coupled accelerators, the LB parametrization is encouraged as it provides
relevant additional parameters compared to the WR description. The parameter 𝑢 qualitatively
evaluates the local coupling strength. It characterizes the size of the two ellipses coming from an
oscillation eigenmode in the two transverse phase spaces, can be related to the local coupling concept,
and can indicate a forced mode flip because it is linked to the 𝛾 parameter of the ET parametrization.
The in-depth interpretation, implementation, and validation of the available parametrization methods
pave the way for complete and detailed studies of the beam dynamics in strongly coupled vFFA lattices.
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A Magnetic field components of a vFFA lattice

vFFAs satisfy the following scaling condition:

𝐵 = 𝐵0𝑒
𝑘 (𝑌−𝑌0 ) , (A.1)

where 𝑘 = (1/𝐵) (𝜕𝐵/𝜕𝑌 ) is the normalized field gradient, 𝑌0 is the reference vertical position and
𝐵0 is the magnetic field strength at the reference position. Assuming 𝑌0 = 0, the three magnetic field
components can be written with an out-of-plane expansion of order N [11]:

𝐵𝑋 (𝑋,𝑌, 𝑍) = 𝐵0𝑒
𝑘𝑌

N∑︁
𝑖=0

𝑏𝑋𝑖 (𝑍)𝑋 𝑖 , (A.2)

𝐵𝑌 (𝑋,𝑌, 𝑍) = 𝐵0𝑒
𝑘𝑌

N∑︁
𝑖=0

𝑏𝑌𝑖 (𝑍)𝑋 𝑖 , (A.3)

𝐵𝑍 (𝑋,𝑌, 𝑍) = 𝐵0𝑒
𝑘𝑌

N∑︁
𝑖=0

𝑏𝑍𝑖 (𝑍)𝑋 𝑖 , (A.4)

where, by taking into account the fringe field function 𝑔(𝑍), the coefficients of these equations are
given by the following recurrence relations [11]:

𝑏𝑋0(𝑍) = 0, 𝑏𝑋,𝑖+1(𝑍) = − 1
𝑖 + 1

(𝑘𝑏𝑌𝑖 +
𝑑𝑏𝑍𝑖

𝑑𝑍
),

𝑏𝑌0(𝑍) = 𝑔(𝑍), 𝑏𝑌,𝑖+2(𝑍) =
𝑘

𝑖 + 2
𝑏𝑋,𝑖+1,

𝑏𝑍0(𝑍) =
1
𝑘

𝑑𝑔

𝑑𝑍
, 𝑏𝑍,𝑖+2(𝑍) =

1
𝑖 + 2

𝑑𝑏𝑋,𝑖+1

𝑑𝑍
.

(A.5)

If we look at the field in the element body, by neglecting the fringe field (𝑔(𝑍) = 𝑐𝑜𝑛𝑠𝑡.,
𝑔′(𝑍) = 0, 𝐵𝑍 = 0), the transverse field components can be expressed as multipolar expansions by
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rewriting the exponential in terms of its Taylor series. It is readily seen that the first-order terms of
this expansion correspond to skew quadrupolar components:

𝐵𝑋 (𝑋,𝑌, 𝑍) ≃ −𝐵0(𝑘𝑋 + 𝑘2

2!
(2𝑋𝑌 ) +𝑂 (𝑋3))

≃ −𝐵0𝑘𝑋,

(A.6)

𝐵𝑌 (𝑋,𝑌, 𝑍) = 𝐵0(1 + 𝑘𝑌 + 𝑘2

2!
(𝑌2 − 𝑋2) +𝑂 (𝑋3))

∼ 𝐵0 + 𝐵0𝑘𝑌 .

(A.7)
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