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Abstract We report on recent experimental and theoretical developments in
our understanding of the QCD running coupling αs in QCD’s nonperturbative
regime. They allow us to analytically compute the hadron mass spectrum,
with Λs the only input necessary to this determination. The computed spectra
agrees well with experimental data.
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1 Introduction

The strong coupling αs sets the magnitude of the strong interaction and trig-
gers the onsets of asymptotic freedom and confinement. As such, αs is a central
quantity to quantum chromodynamics (QCD), the gauge theory of the strong
interaction. However, while αs is well understood at high energy where its
smallness (αs < 0.2 at momentum transfers Q > 10 GeV) allows us to employ
perturbative technics, it is much less understood at low Q where αs becomes
large (αs ≈ 1 at Q . 1 GeV). Thus, studying αs in the strong QCD (sQCD)
regime has been and remains an active field of research. Reaching the sQCD
regime where pQCD fails is signaled by the unphysical divergence of αs(Q)
near Q ≈ Λs (the Landau pole), where Λs is the scale driving the pQCD loga-
rithmic evolution of αs(Q). Owing to the fact that Q ≈ Λs signals the break-
down of pQCD –presumably due to the nonperturbative confinement effects–
Λs is also understood as the momentum scale characterizing confinement. We
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discuss here works done in the low Q regime, and reported in Refs. [1]-[6].
Ref. [7] provides a recent review of αs in both small and large Q.

2 The QCD coupling αs in long distance regime

Different definitions of αs in the sQCD domain are possible and are in fact
used [7]. In this document, the “effective charge” definition is employed [8]. It
defines αs from an observable’s perturbative series truncated to its first order
in αs, and is analogous to QED’s coupling definition (Gell-Mann Low cou-
pling [9]). As an example we apply below this prescription to the Bjorken sum
rule [10], a fundamental relation for spin-dependent deep inelastic scattering.
The pQCD approximant of the Bjorken sum rule is

Γ p−n1 (Q2) ≡
∫ 1

0

[
gp1(x,Q2)− gn1 (x,Q2)

]
dx =

gA
6

[
1−

αMS(Q2)
π

− 3.58
(
αMS(Q2)

π

)2

− · · ·
]

+
∑
i=2

µ2i(Q2)
Q2i

, (1)

where gp,n1 (x,Q2) are the longitudinal spin structure functions for the proton
and the neutron, x the Bjorken scaling variable and gA the nucleon axial
charge. The µ2i(Q2) are nonperturbative higher-twist terms related to the
confinement force [11]. They become important for Q . 1 GeV. In Eq. (1), the
αs and the series coefficients are expressed in the MS renormalization scheme
(RS). Using the effective charge definition, the Bjorken sum rule becomes

Γ p−n1 (Q2) ≡
∫ 1

0

[
gp1(x,Q2)− gn1 (x,Q2)

]
dx ≡ gA

6

[
1− αg1(Q2)

π

]
, (2)

where the subscript g1 for αg1(Q2) indicates the observable chosen for the
effective charge definition. This choice can be understood as equivalent to a RS
choice [4]. With this prescription, the short distance pQCD effects (the terms
of second and higher orders in αMS in Eq. (1)) and long distance confinement
effects (µ2i terms) are folded into αg1 . This is analogous to what transmutes the
coupling constant in a classical lagrangian into a running effective coupling, i.e.
when short distance quantum effects are folded into the coupling definition in
the renormalization process [7]. The inclusion of the long distance confinement
effects removes the Landau pole of αs [7]. Thus, the effective charge definition is
akin to the renormalization process, with the long distance effects regularizing
αs.

There are several advantages offered by effective charges: they improve
the convergence of the pQCD series, are extractable at any scale, are free
of divergence and are RS-independent. This last characteristic arises because
the first order coefficient of a pQCD series is RS-independent. However, the
price to pay for these benefits is that an effective charge depends upon the
process chosen for its definition: They are a priori different effective charges
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for different processes. However, QCD predictability is retained –at least in
the perturbative domain– since effective charges are related by commensurate
scale relations [12]. As already mentioned, this process-dependence is in fact
equivalent to a particular choice of RS in the perturbative definition of αs.

Among the observables that can be used to define effective charges, the
Bjorken sum Γ p−n1 is particularly interesting: the Bjorken sum rule at finite Q2

has a relatively simple perturbative series, estimated up to α5
MS

[13]. Further-
more, experimental data on Γ p−n1 exist at low, intermediate, and high Q2 [14].
Finally, the rigorous Bjorken [10] and Gerasimov-Drell-Hearn (GDH) [15] sum
rules dictate the behavior of Γ p−n1 in the unmeasured Q2 → 0 and Q2 → ∞
limits, respectively. These sum rules therefore supplement the data in these
domains that are in practice unreachable by experiments. Consequently αg1 ,
the effective charge defined using Γ p−n1 , is known at any Q2. The experimen-
tal data supplemented by the sum rules are shown in Fig. 1. The data agree
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Fig. 1 The effective charge αg1 (Q)/π. The symbols indicate experimental data [1].
The dashed red line and solid blue band are the GDH [15] and Bjorken [10] sum rule
predictions, respectively. The continuous black line is the LFHQCD computation [2], with
its continuation to the pQCD domain [3,5] shown by the continuous magenta line The green
hatched band is the SDE calculation [16]. Comparisons with Lattice QCD calculations,
older SDE results and various models are available in Ref. [7].

well with the process-independent Schwinger-Dyson Equation (SDE) calcula-
tion from Ref. [16] (see also the contribution of J. Rodriguez-Quintero to these
proceedings [17]) and with the Light–Front Holographic QCD (LFHQCD) cal-
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culation, which will be discussed in the next Sections. Possible reasons for why
the process-depend effective charge αg1 agrees with these process-independent
calculations are discussed in Ref. [7]. Finally, we note that Eq. (2) and that
Γ1(Q2) −−−−→

Q2→0
0 impose αg1(Q2 = 0) = π. Γ1 vanishes because, as Q2 → 0, all

reactions of invariant mass W are sent to x→ 0. Hence the only contribution
to the Γ1 integral is at x = 0, i.e. infinite energy where cross-sections are zero.
Thus, we will refer to the αg1(0) = π relation as a kinematic constraint

3 The Light–Front Holographic QCD approximation

Light–Front Holographic QCD (LFHQCD) [18] is an approximation to QCD
based on light–front (LF) quantization [19]. This latter provides an exact and
rigorous formulation of QCD, providing in particular a relativistic Schrödinger
equation that describes hadrons as quark bound-states. All elements of the
equation –including the confining potential term– can be in principle obtained
from the QCD lagrangian; In practice however, we know how to compute it
only in (1+1) dimensions [20]. The overwhelming complexity of the analytic
calculations in (3+1) dimensions compels us to determine the potential with
methods other than first-principle computations. A possibility is to use the
correspondence between QCD on the LF and gravity in anti-de Sitter (AdS)
space [21] based on the AdS/CFT (conformal field theory) duality [22]. The
correspondence stems from the duality between a CFT in Minkowski space-
time and a corresponding group of isometries of a 5-dimensional AdS space-
time. Thanks to this correspondence, sQCD calculations become tractable in
the chiral sector (quark masses set to zero) and if short-distance quantum
fluctuations are neglected [18]. The projection of the 5-dimensional AdS cal-
culations onto the AdS space boundary (a 4-dimensional spacetime identified
with the physical Minkowski spacetime) provides a semiclassical approxima-
tion to sQCD that incorporates its fundamental aspects. In particular, it en-
codes by essence the conformal invariance of the classical QCD lagrangian, i.e.
the fact that the lagrangian displays no explicit energy or distance scales in
its expression.

The potential of the Schrödinger equation can be determined using the
dAFF procedure [23], which allows the inclusion of a scale in a lagrangian
without explicitly breaking the conformal symmetry of the resulting action.
The demand of explicitly preserving conformal symmetry in effect restricts the
potential to a unique form [24]; that of a harmonic oscillator on the LF, to
which is added a spin-dependent term determined by the spin representations
in AdS space. Only this form yields a massless pion in the chiral sector [25].
Furthermore, it explains the intriguing mass symmetry between baryons and
mesons and predicts tetraquark spectroscopy [26,27]. Finally, a harmonic os-
cillator potential on the LF is equivalent in the usual instant-form front to the
phenomenologically well-established linear potential for static quarks [28].

A single free parameter, the confinement scale κ, is used in LFHQCD. In
fact, any theory or model describing QCD must have a least one free parameter
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since chiral QCD must be independent of conventional (human-chosen) units
such as GeV. For pQCD, this single free parameter is Λs. For LFHQCD, it is
κ. The relation between Λs and κ is analytically and numerically known [3]
and its determination is a consequence of studying αs at low Q2. We will now
show how it is determined in this regime using LFHQCD and how the relation
between Λs and κ is obtained.

4 LFHQCD computation of αs(Q2)

The measurement of αg1 at low Q2 and the kinematic constraint that αg1(Q2 =
0) = π indicate that there, αg1(Q2) is nearly constant, viz QCD is approx-
imately conformal at low Q2. (QCD is also nearly conformal at high Q2: it
is the mildly violated Bjorken scaling). Such behavior of αg1(Q2) at low Q2

could also be deduced from the GDH sum rule [15] which predicts that:

dαg1(Q2)
dQ2

−−−−→
Q2→0

3π
4gA

(
κ2
p

M2
p

− κ2
n

M2
n

)
. (3)

where κp = 1.79 is the proton anomalous magnetic moment, κn = −1.91 the
neutron one, and Mp,n their respective masses. That |κn| ≈ κp implies that
dαg1/dQ

2 −−−−→
Q2→0

≈ 0, and hence that QCD is nearly conformal at low Q2. This

fact allows us to apply LFHQCD to compute αg1(Q2) [2].
The AdS action is similar to the Einstein-Hilbert action of General Rela-

tivity, except for being 5-dimensional:

SAdS = −1
4

∫
√
g

1
a2
5

F 2 d5x (4)

where g = det(gµν); gµν being the AdS space metric, a5 is the coupling in
AdS space and F the gauge field. A momentum scale (e.g. κ or Λs) char-
acterizes QCD’s confining potential, which thus breaks conformal symmetry.
Hence the equivalent of the potential in Minkowski space is a distortion of
its corresponding AdS space. As discussed in the previous section, there is a
unique potential, i.e. AdS space distortion, imposed by preserving the explicit
conformal symmetry of QCD’s action. This distortion takes the form of an
exponential term eκ

2z2 factorizing the AdS interval. Thus, the action becomes

SAdS = −1
4

∫
√
g

1
a2
5

F 2 eκ
2z2d5x (5)

where z is the fifth dimension of AdS space. z2 gives the scale at which the
hadron is probed, i.e. it corresponds to 1/Q2. The universal LFHQCD scale
factor κ is obtained from either a hadron mass (e.g. κ = Mρ/2, with Mρ the
ρ-meson mass) [18], a pion or nucleon form factor [18,32] or Λs [5]. Its value
is κ = 0.523± 0.024 GeV [33].

We explained in Section 2 that, just like in pQCD in which the short
distance QCD effects (vacuum polarization) folded into the definition of the
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coupling constant αs produce an effective running coupling αs(Q2), in sQCD,
the long distance confinement forces are included into the effective charge
definition. To follow this definition, the AdS space distortion factor equiva-
lent to the QCD confinement potential is included in the coupling definition:
aeff5

2
≡ a2

5e
κ2z2 . Transforming to the Minkowski momentum space yields

αLFHs (Q2) = αLFHs (0)e−
Q2

4κ2 (6)

where αLFHs (0) is undetermined. The kinematic constraint αg1(0) = π imposes
αLFHs (0) = π for the g1 scheme. The factor αLFHs (0) thus represents the
observable-dependence of effective charges previously discussed, which is akin
to the RS-dependence of αs in pQCD.

The LFHQCD prediction, Eq. (6), agrees remarkably well with the low Q2

data, see Fig. 1, while having no adjustable parameters, κ and c being imposed
by hadron masses (or form factors) and kinematic constraint, respectively.

The expected domain of validity of the LFHQCD prediction is up to Q2 ' 1
GeV2. As mentioned in the previous Section, short distance quantum effects
are not presently included in LFHQCD. Thus, LFHQCD is unsuited for high
Q2 phenomenology. Furthermore, in general AdS/CFT dualities demand the
CFT coupling to be large, which is another reason why LFHQCD is not suited
for large Q2 calculations. However, αg1 can be computed in this domain using
pQCD. In fact, the applicability domains of pQCD and LFHQCD seem to
overlap around Q2 ' 1 GeV2 [4]. This permits us to match the αg1 calcula-
tion from LFHQCD (denoted αLFHg1 ) to that from pQCD (denoted αpQCDg1 ).
Specifically, we require that at a scale Q0,

αLFHg1 (Q0) = αpQCDg1 (Q0) and

dαLFHg1 (Q)
dQ

|Q=Q0 =
dαpQCDg1 (Q)

dQ
|Q=Q0 . (7)

Q0 can be interpreted as the scale that sets the interface between the pertur-
bative and nonperturbative domains [4]. It is thus where the DGLAP [29] and
ERBL [30] evolutions begin, see e.g. Ref. [31] for an application of this concept.
The existence of the domain overlap is validated a posteriori by the existence of
a solution to Eqs (7). The solution provides both Q0 and the relation between
κ and Λs [3]. Since there is a direct relation between κ and hadron masses [18],
this in turn provides the determination of the hadron mass spectrum in terms
of Λs. The relation between Mρ and ΛMS is, at leading order [3]

ΛMS =
Mρe

−a
√
a

, (8)

where a = 4
[√

ln2(2) + β0/4 + 1 − ln(2)
]
/β0, with β0 = 11 − 2nf/3 the first

coefficient of the β-series of QCD. Would QCD be exactly conformal, the β-
function (and thus β0) would be zero and a→∞. Eq. (8) then implies Λs → 0,
as expected in a conformal theory. For actual QCD with nf = 3 quark flavors,
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a ' 0.55 at LO. At N3LO the relation must be solved numerically and is
ΛMS = 0.440Mρ.

The ρ meson state is the solution of the LF Schrödinger equation with
internal orbital angular momentum L = 0 and radial excitation n = 0. Higher
mass mesons of the same family are solutions with L > 0 or/and n > 0.
They can thus be obtained following the same method. The result at N3LO
is shown in Fig. 2 together with the prediction for strange mesons obtained
similarly. Baryonic masses can be obtained likewise, or using the mass sym-
metry between LB baryons and mesons with LM = LB + 1 predicted by the
superconformal algebraic structure in LFHQCD [26]. Hence, the method pre-
sented here provides an analytic determination of hadron spectrum with Λs as
the single input. The method can be reversed, using the known value of κ to
predict Λs. This yields Λnf=3

MS
= 0.339(19) GeV, in excellent agreement with

the Particle Data Group average of 0.332(17) GeV [34].
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Fig. 2 The LFHQCD prediction of the mass spectrum for unflavored (left) and strange
(right) light vector mesons. The gray rectangles indicate the uncertainty on the LFHQCD
calculation. The red points are the experimental data.

5 Summary and conclusion

The coupling αs(Q2) is a central element of QCD. Vigorous research efforts
aim to understand it in the strong QCD regime [7]. One such endeavor uses
the Bjorken sum rule [10] to define an effective charge αg1(Q2) [8]. Such choice
is advantageous because data [14] and sum rules [10,15] allow us to obtain
αg1(Q2) over all Q2 [1]. Both the experimental data and the sum rules in-
dependently indicate that QCD is nearly conformal at low Q2. This makes
possible to compute strong QCD using the AdS/CFT correspondence [22],
in particular in its LFHQCD incarnation [21]. This provides a semiclassical
analytic approach to strong QCD that is fully determined and can be used
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to solve QCD on the light-front [18]. The potential arising in the (rigorous)
light-front bound-state equation is imposed by explicitly respecting QCD’s
conformal symmetry [23]. Only a single free parameter, κ, is needed, which is
in fact the minimal amount of parameters necessary for any theory or model
aiming to describe the strong interaction. The strong coupling αg1(Q2) ob-
tained with LFHQCD [2] has no adjustable parameter and is in remarkable
agreement with the experimental data [1] and with calculations form different
approaches to strong QCD [7], including the recent Schwinger-Dyson Equation
calculation of a process independent coupling [16,17]. The fact that the validity
domains of LFHQCD and pQCD overlap around Q2 = 1 GeV2 enables us to
obtain both the scale Q0 that sets the interface between the nonperturbative
and perturbative domains [4,31] and an analytic determination of the hadron
mass spectrum from the fundamental QCD parameter Λs [3]. Conversely, it
permits a high-accuracy determination of Λs [4,5] that agrees well with the
world average [34].

Being able to analytically compute the hadron mass spectrum has been a
long thought goal and would signal that we finally managed to analytically
solved QCD. While LFHQCD is not QCD but a semi-classical approximation
of it, its premises are based on the rigorous LF approach to quantum field
theory and the formal relation between the isometry group of a 5-dimensional
AdS space and the conformal invariance of the dual theory in the 4-dimensional
physical space. The foundations of LFHQCD are thus solid and the analytic
computation of the hadron spectrum is an encouraging progress toward the
ultimate goal of analytically solving QCD.
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4. A. Deur, S. J. Brodsky and G. F. de Téramond, On the interface between perturbative
and nonperturbative QCD, Phys. Lett. B 757, 275 (2016) [arXiv:1601.06568 [hep-ph]];
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24. S. J. Brodsky, G. F. De Téramond and H. G. Dosch, “Threefold Complementary Ap-
proach to Holographic QCD,” Phys. Lett. B 729, 3 (2014) [arXiv:1302.4105 [hep-th]].
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