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Normal single-spin asymmetries in electron-proton scattering: Two-photon exchange
with intermediate-state resonances
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We calculate the beam (Bn) and target (An) normal single-spin asymmetries in electron–proton elastic scatter-
ing from two-photon exchange amplitudes with resonance intermediate states of spin-parity 1/2± and 3/2± and
mass W � 1.8 GeV. The latest CLAS exclusive meson electroproduction data are used as input for the transition
amplitudes from the proton to the excited resonance states. For Bn, the spin 3/2 resonances dominate by an order
of magnitude over the spin 1/2 states. In general we observe cancellations between the negative contributions
of the �(1232) and N (1520) across both beam energy and scattering angle, and the positive contributions of
the �(1700) and N (1720), leading to a rather large overall uncertainty band in the total Bn. At forward angles
and beam energies Elab < 1 GeV, where the �(1232) dominates, the calculated Bn tend to overshoot the A4 and
SAMPLE data. The calculated Bn compare well with the measured values from the A4 and Qweak experiments
with Elab > 1 GeV.
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I. INTRODUCTION

Over the last two decades the role of two-photon exchange
(TPE) in electron–proton elastic scattering has received con-
siderable attention in both the theoretical and experimental
nuclear physics communities in an effort to understand its
impact on hadron structure-dependent observables [1–4].
Among these is the analysis of the proton’s electric (GE ) to
magnetic (GM) form factor ratio, μpGE/GM , where μp is the
proton’s magnetic moment, and the well-known discrepancy
between determinations of this ratio by the longitudinal-
transverse (LT) separation and polarization transfer (PT)
methods. It has been realized for some time now that TPE can
make large contributions to the LT separation while having a
minimal effect on the PT results [5–7]. As a result, a consistent
description is possible with the inclusion of TPE effects [8].

While the real (dispersive) part of the TPE amplitude can
be accessed directly from the measurement of the ratio of the
unpolarized e+ p to e− p scattering cross sections, the imagi-
nary (absorptive) part of TPE can be determined from beam
and target-normal single-spin asymmetries (SSAs), denoted
Bn and An, respectively. Two-photon exchange generates a
SSA at leading order in the electromagnetic coupling α, with
either the beam or target polarized normal (or transverse) to
the scattering plane. Explicitly, the experimentally measured
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asymmetry is defined by

SSA = σ ↑ − σ ↓

σ ↑ + σ ↓ , (1)

where σ ↑ (σ ↓) is the cross section for ep elastic scattering
with either beam or target spin polarized parallel (antiparallel)
to the normal vector n in the scattering plane. The normal
vector n is defined as

n = k × k′

|k × k′| , (2)

where k and k′ are the three-momenta of the incident and
scattered electrons, respectively.

The leading term of the SSA comes from the imaginary
part of the TPE amplitude. It was first shown by de Rújula
et al. [9] that time-reversal invariance implies no contribution
to SSA from the single-photon exchange transition amplitude,
Mγ . The leading term of the beam or target-normal SSA
arises from the absorptive part of the TPE transition amplitude
Mγ γ , denoted Abs[Mγ γ ], according to the relation

SSA =
Im

(∑
spins M∗

γ Abs[Mγ γ ]
)

∑
spins |Mγ |2 . (3)

While there is some inconsistency with the notation used for
this observable in the literature, in this work the convention
An for target-normal SSA and Bn for beam-normal SSA will
be used.

As defined in Eq. (3), the SSA is of order α. The beam-
normal asymmetry Bn is further suppressed by the small factor
me/Elab, where me is the electron mass and Elab is the beam
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energy in the laboratory frame, so that Bn is expected to be of
order 10−6–10−5 for beam energies in the GeV range. For the
target-normal SSA An there is no additional suppression, and
hence it is anticipated to be of order 10−3–10−2 for the same
beam energy. In addition to providing an avenue to the explo-
ration of TPE effects, the beam-normal SSA Bn plays a par-
ticularly important role in parity-violating electron-scattering
experiments that use longitudinally polarized lepton beams
to measure the asymmetry due to the spin flip. A nonzero
Bn, even if small numerically, could contribute to a false
asymmetry due to a slow drift in the rapid flip of the beam
polarization. As a requirement to control possible systematic
errors, parity-violating experiments typically determine the
beam-normal SSA as a byproduct. For example, the highly
precise Qweak experiment [10] at Jefferson Lab recently deter-
mined the weak charge of the proton in a search for physics
beyond the standard model, which required knowledge of the
systematic error from Bn at forward-scattering angles.

Following the initial measurement by the SAMPLE
Collaboration [11] at a beam energy Elab = 0.2 GeV and
backward laboratory scattering angle, subsequent experiments
from the G0 [12,13], HAPPEX [14], and Qweak [10] Collab-
orations at Jefferson Lab, and the A4 collaboration at Mainz
[15–17], measured Bn over a wide range of scattering angles.
A trend observed in the data is the suppression of Bn with in-
creasing energy, although the correlation between energy and
scattering angle is less clear. For backward scattering at rela-
tively low energies, Refs. [13,16] find Bn to be of order 10−5,
whereas the more recent measurement [17] at intermediate
scattering angles finds Bn of order 10−6 over a similar range
of beam energies. Note that the SAMPLE [11] result is in
relative tension with the two other lower energy and backward
angle measurements from G0 [13] and A4 [16], which may be
related to the more restricted mass range of resonance states
that can contribute at the lower SAMPLE energy. In contrast,
the relatively higher energy (1 � Elab � 3 GeV) experiments
[10,12,14,17] correspond to small scattering angles (with the
exception of the single datum of Ref. [17]), and are consis-
tently in the range of ≈ − 7 to −4 ppm. More recently, the
beam-normal SSA has been measured at very forward angles
by the PREX and CREX Collaborations at Jefferson Lab on
spin-0 nuclei [18], with unexpected behavior found for 208Pb.

In theoretical developments, following de Rújula et al.
[9] several model estimates of Bn have been made in the
literature [19–23]. The hadronic approximation with a doubly
virtual Compton-scattering analogy of the imaginary part of
the TPE correction was used by Pasquini and Vanderhaeghen
[21,22], in which the πN intermediate state was considered
along with the elastic nucleon, with input taken from the
MAID electroproduction amplitudes [24]. Using a generalized
parton distribution approach that is more applicable at high
Q2, with a real Compton scattering (RCS) analogy, Gorchtein
et al. [19] found rather different results, with even an opposite
sign, compared with Refs. [21,22]. Subsequently, Gorchtein
[23] used a quasireal Compton-scattering (QRCS) formalism
to estimate both Bn and An, although the results are still
not in agreement with that of Refs. [21,22]. The significant
disagreement between the measured value of beam-normal
SSA by the PREX collaboration [14] and the corresponding

theoretical estimate [25] for heavier target nucleus 208Pb
raised questions about the calculations in general. More
recently, Koshchii et al. [26] calculated Bn for electron
scattering from several spin-0 nuclei, accounting for inelastic
intermediate-state contributions, in addition to several other
improvements on the uncertainty calculation. However, the
result does not resolve the discrepancy between the theoretical
estimates and the PREX [14] data for a 208Pb target nucleus.

In contrast with the beam-normal asymmetry, for the
target-normal SSA, An, there are currently no available data
for a proton target. An experiment to measure An in both e− p
and e+ p scattering has been proposed at Jefferson Lab Hall
A for beam energies Elab = 2.2, 4.4, and 6.6 GeV using the
Super Big-Bite Spectrometer [27]. Earlier, a nonzero value
of An was found for the neutron, extracted from quasielastic
electron scattering from 3He [28], assuming the proton An is
given by the TPE contribution with a nucleon intermediate
state [29].

To better understand both the beam and target-normal
SSAs originating from the spin-parity 1/2± and 3/2± res-
onance intermediate states associated with πN and ππN
channels, we revisit the imaginary part of the TPE ampli-
tude in ep elastic scattering using the latest results for the
electrocouplings extracted from recent CLAS data [30–32].
This is complementary to our work on the resonance con-
tributions to the real (dispersive) part of the TPE amplitude,
which is relevant for corrections to the ep elastic-scattering
cross section [8,33]. We begin in Sec. II by reviewing the
kinematics of electron-proton scattering at the one- and two-
photon exchange level. In Sec. III we introduce the single-spin
asymmetries for both beam and target polarization normal to
the electron-proton scattering plane and discuss the calcula-
tion of spin 1/2 and spin 3/2 intermediate-state contributions.
Numerical results for the beam SSAs Bn and the target
SSAs An are presented in Sec. IV, including a discussion of
uncertainties and comparisons with available data. A parity-
violating transverse beam asymmetry, which we denote as
Bx, can also arise from a transverse spin polarization in the
scattering plane. As discussed in Sec. IV, this turns out to
be negligibly small at the kinematics of interest. Finally, in
Sec. V we conclude with a summary of the main results of
this analysis and some discussion about future extensions of
this work.

II. ELASTIC ELECTRON-PROTON SCATTERING

In this section, we define the general kinematic quantities
needed for describing elastic electron-proton scattering. For
convenience, the calculation of SSA quantities is performed
in the center-of-mass (c.m.) frame, although the experimental
kinematics are typically given in the laboratory (or target rest)
frame. Where appropriate, we give the relevant expressions in
both frames.

A. Kinematics and definitions

For the elastic-scattering process e(k) + N (p) →
e(k′) + N (p′) (see Fig. 1), the four-momenta of the initial
and final electrons (with mass me) are labeled by k and k′,
with corresponding laboratory frame energies Elab and E ′

lab.

055202-2



NORMAL SINGLE-SPIN ASYMMETRIES IN … PHYSICAL REVIEW C 108, 055202 (2023)

FIG. 1. Contributions to elastic electron–nucleon scattering from
(a) one-photon exchange (OPE), and (b) two-photon exchange
amplitudes, with particle momenta as indicated. The intermediate
hadronic state is taken to be a resonance of invariant mass W . Only
the s-channel box diagram is shown for the TPE process, since
the imaginary part relevant for SSA originates solely from the box
diagram, with the intermediate electron and hadronic states on-shell.
The two virtual photons carry momenta q1 and q2, giving the total
momentum transfer q = q1 + q2.

The initial and final nucleons (mass M) have four-momenta
p and p′, respectively. The four-momentum transfer from the
electron to the nucleon is given by q = p′ − p = k − k′, with
the photon virtuality Q2 ≡ −q2 > 0. For the TPE process, the
two virtual photons transfer four-momenta q1 and q2 to the
proton, so that q = q1 + q2.

One can express the elastic-scattering cross section in
terms of any two of the Mandelstam invariants s (total
electron–nucleon invariant mass squared), t , and u, where

s = (k + p)2 = (k′ + p′)2, t = (k − k′)2 = q2,

u = (p − k′)2 = (p′ − k)2, (4)

with the constraint s + t + u = 2M2 + 2m2
e . For the OPE

amplitude, and for the An SSA, the electron mass can be
neglected at the kinematics of interest. However, for the Bn

SSA the electron mass must be retained for two reasons.
First, Bn has an overall factor of me, and second, Bn has a
mass-dependent quasisingularity when the intermediate elec-
tron three-momentum |k1| → 0.

For the imaginary part of the scattering amplitude, the
intermediate states are on-shell. In the c.m. frame we have
for the energies and three-momenta of the particles,

Ek = s − M2 + m2
e

2
√

s
, |p| = |k| =

√
E2

k − m2
e , (5a)

Ek1 = s − W 2 + m2
e

2
√

s
, |k1| =

√
E2

k1
− m2

e , (5b)

Ep =
√

E2
k − m2

e + M2, (5c)

where W 2 = (p + q1)2 = (p′ − q2)2 is the invariant squared
mass of the intermediate state resonance. For the four-
momentum transfer squared between the electron and nu-
cleon, Q2, and the virtualities of the two exchanged photons,
Q2

1 = −q2
1 and Q2

2 = −q2
2, we have

Q2 = 2|k|2(1 − cos θc.m.), (6a)

Q2
1 = 2

(
EkEk1 − m2

e − |k||k1| cos θ1
)
, (6b)

Q2
2 = 2

(
EkEk1 − m2

e − |k||k1| cos θ2
)
, (6c)

where θc.m. is the c.m. scattering angle, and cos θ2 =
cos θc.m. cos θ1 + sin θc.m. sin θ1 cos φ1. The Mandelstam vari-
able s is given in the laboratory frame as s = M2 + m2

e +
2MElab, with Elab the electron-beam energy in the laboratory
frame. In the laboratory frame we also have

Q2 = 2ElabE ′
lab(1 − cos θlab), E ′

lab = Elab − Q2

2M
, (7)

where E ′
lab is the energy of the electron scattered by angle θlab.

For inelastic excitations the minimum value of W is taken
to be the pion production threshold, Wth = M + mπ . For a
given s, the maximum value of W corresponds to an inter-
mediate electron at rest, |k1| = 0, so that

Wmax = √
s − me, Ek1 = me. (8)

At W = Wmax the four-momentum transfers of the two virtual
photons become

Q2
1 = Q2

2 = me

(
W 2

max − M2
)

√
s

, (9)

so that the two photons are almost on-shell (i.e., real). This
QRCS region [20–23] requires special attention to reliably
compute the SSA numerically. We discuss this further in
Sec. III C and in the Appendix.

B. One- and two-photon exchange amplitudes

The explicit expression for the one-photon exchange (OPE)
or Born amplitude Mγ of Fig. 1 can be written as [2]

Mγ = e2ūe(k′)γμue(k)
1

Q2
ūN (p′)	μ(q)uN (p), (10)

where e is the charge of the proton, and the hadronic current
operator 	μ is parametrized in terms of the Dirac F1 and Pauli
F2 form factors for on-shell particles,

	μ(q) = F1(Q2)γ μ + F2(Q2)
iσμνqν

2M
. (11)

The two-photon exchange amplitude Mγ γ contains contri-
butions from the box diagram of Fig. 1 and the correspond-
ing crossed-box diagram (not shown). However, since the
crossed-box amplitude is purely real, we focus only on the
box diagram contribution, Mbox

γ γ . The loop integral of the box
diagram amplitude can be written as [2]

Mbox
γ γ = −ie4

∫
d4q1

(2π )4

LμνHμν(
q2

1 − λ2
)(

q2
2 − λ2

) , (12)

where λ is an infinitesimal photon mass introduced to regulate
infrared divergences. Such divergences are absent for normal
single-spin asymmetries, but λ can be kept as an infinitesimal
parameter to improve numerical stability. The leptonic and
hadronic tensors, Lμν and Hμν , respectively, are given by

Lμν = ūe(k′)γμ

(/k1 + me)

k2
1 − m2

e + i0+ γνue(k), (13a)

Hμν = ūN (p′)	μα
R→γ N (pR,−q2)Sαβ (pR,W )

×	
βν
γ N→R(pR, q1)uN (p), (13b)

where the intermediate lepton four-momentum is k1 = k −
q1, and the four-momentum of the resonance R (with
mass W ) is pR = p + q1 = p′ − q2. The transition operators
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βν
γ N→R(pR, q1) and 	

μα
R→γ N (pR,−q2) between the nucleon

and intermediate-state resonance R can be expressed in terms
of the three transition form factors G1, G2, and G3. These
form factors can also be written in terms of the corresponding
helicity amplitudes A1/2, A3/2, and S1/2 (see Ref. [8]).

For spin 1/2 baryon intermediate states, the propagator
Sαβ (pR,W ) is simply the spin 1/2 Feynman propagator,

Sαβ (pR,W ) = δαβ

(/pR + W )

p2
R − W 2 + i0+ = δαβSF (pR,W ). (14)

For spin 3/2 intermediate states, on the other hand, the
hadronic propagator has the more complicated form

Sαβ (pR,W ) = −P3/2
αβ (pR)

(/pR + W )

p2
R − W 2 + i0+ , (15)

where

P3/2
αβ (pR) = gαβ − 1

3
γαγβ − 1

3p2
R

(/pRγα (pR)β + (pR)αγβ /pR)

(16)

is the spin 3/2 projection operator for momentum pR.

III. SINGLE-SPIN ASYMMETRIES
IN ELECTRON-PROTON SCATTERING

In this section we discuss several technical aspects of the
TPE amplitude, including the generalization of the calculation
from point particles to the case of finite resonance widths
(Sec. III B), and the quasisingular behavior of the asymmetry
Bn (Sec. III C). We begin, however, with some general
considerations about TPE amplitudes and their contributions
to SSAs.

A. General features

In the definition of the beam or target-normal SSA in
Eq. (3), the denominator is identical to the Born cross
section for unpolarized elastic ep scattering, since the spin
components (beam or target) have no impact at the Born level.
Summing over final-state spins and averaging over initial-state
spins, one can write the squared Born amplitude in terms of
the invariant Mandelstam variables s and Q2 = −t ,∑

spins

|Mγ |2 =
∑
spins

M†
γMγ = e4

Q4
D(s, Q2), (17)

where we define the factor

D(s, Q2) = 2

4M2 + Q2

{
G2

E (Q2)8M2[(s − M2)2 − Q2s]

+ G2
M (Q2)Q2[2M4 + Q4

+ 2(s − 2M2)(s − Q2)]
}
, (18)

with terms of order of m2
e neglected.

To derive the absorptive part of the TPE amplitude, one
can exploit the Cutkosky cutting rules [34], which involve the
replacements

1

p2
R − W 2 + i0+ → −2π iθ

(
p0

R

)
δ
(
p2

R − W 2
)
, (19a)

1

k2
1 − m2

e + i0+ → −2π iθ
(
k0

1

)
δ
(
k2

1 − m2
e

)
, (19b)

which place the intermediate-state lepton and hadron on
their mass shells. This substitution provides the disconti-
nuity, Disc(iMγ γ ) = −2 Im Mγ γ , of the TPE box diagram
of Fig. 1, and hence the absorptive part of TPE amplitude
−AbsMγ γ . After applying the Cutkosky cutting rules, the
absorptive part of the TPE amplitude in Eq. (3) can be
written as

AbsMγ γ = e4
∫

d3k1

(2π )32Ek1

ūe(k′)γμ(/k1 + me)γνue(k)

Q2
1Q2

2

Wμν.

(20)

The hadronic tensor Wμν in Eq. (20) contains all the infor-
mation about the transition from the proton initial state to
all possible intermediate hadronic states, including the elas-
tic nucleon state and the inelastic transitions to the nucleon
excited-state resonances. In practice, the SSAs are calculated
including contributions from each of the three-star and four-
star, spin 1/2 and 3/2 resonance intermediate states from the
PDG [35] below mass MR = 1.8 GeV, which are then added
together with the elastic nucleon contribution to obtain the
complete result.

In the zero-width approximation, for the elastic nucleon
and inelastic spin 1/2 resonances of mass MR the hadronic
tensor Wμν takes the simplified form

Wμν = 2πδ
(
W 2 − M2

R

)
ūN (p′)	μ

R→γ N (pR,−q2)(/pR + W )

× 	ν
γ N→R(pR, q1)uN (p). (21)

To assess the validity of this approximation, we also examine
the effect of replacing the zero-width result by a finite-width
distribution in W 2, centered around W = MR. For spin 3/2
resonances, the hadronic tensor uses the Rarita-Schwinger
spinors for each intermediate state and can be written as

Wμν = −2πδ
(
W 2 − M2

R

)
× ūN (p′)	μα

R→γ N (pR,−q2)P3/2
αβ (pR)(/pR + W )

×	
βν
γ N→R(pR, q1)uN (p). (22)

Using Eqs. (10), (17), and (20) one can write the SSA as

SSA = αQ2

2π2D(s, Q2)

∑
spins

∫
d3k1

2Ek1

ūe(k)γρue(k′)ūe(k′)γμ(/k1 + me)γνue(k)ūN (p)	ρ (−q)uN (p′)
Q2

1Q2
2

Wμν. (23)
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For the two different cases of beam and target-normal SSA,
the spin sum will lead to different expressions for the SSAs.
Taking the spin sum, one can express Eq. (23) in a concise
form in terms of the leptonic and hadronic tensors, Lρμν and
Hρμν , respectively, as

SSA = αQ2

πD(s, Q2)

∫
d3k1

2Ek1

Im LρμνHρμν

Q2
1Q2

2

. (24)

For the beam polarized parallel or antiparallel to the normal n
to the scattering plane defined in Eq. (2), the leptonic tensor
Lρμν contains the lepton spin polarization vector sμ

n ≡ (0; sn),
and takes the form

LB
ρμν = 1

2 Tr[(1 + γ5/sn)(/k + me)γρ (/k′ + me)γμ(/k1 + me)γν],

(25)

where the superscript “B” denotes the fact that the lepton
tensor corresponds to the beam-normal case. Note that the
imaginary part in Eq. (3) for Bn comes solely from this
spin-polarization-dependent term. However, the correspond-
ing hadronic tensor for the beam-normal case, Hρμν

B , remains
independent of the polarization of the target hadron and is
equivalent to the hadronic tensor for the case of unpolarized
ep scattering.

For spin 1/2 intermediate states, the hadronic tensor be-
comes

Hρμν
B = 1

2 Tr
[
(/p + M )	ρ (−q)(/p′ + M )	μ

R→γ N (pR,−q2)

× (/pR + W )	ν
γ N→R(pR, q1)

]
δ
(
W 2 − M2

R

)
. (26)

For spin 3/2 resonances, on the other hand, the hadronic
tensor is given by

Hρμν
B = − 1

2 Tr
[
(/p + M )	ρ (−q)(/p′ + M )

×	
μα
R→γ N (pR,−q2)P3/2

αβ (pR)

× (/pR + W )	βν
γ N→R(pR, q1)

]
δ
(
W 2 − M2

R

)
. (27)

For the target-normal SSA, An, the corresponding leptonic
tensor, LA

ρμν , is identical to that for unpolarized ep scattering
and can be written as

LA
ρμν = 1

2 Tr[(/k + me)γρ (/k′ + me)γμ(/k1 + me)γν]. (28)

Unlike for Bn, the hadronic tensor Hρμν
A for the target-normal

SSA An depends on the target polarization vector, Sμ
n . For

spin-1/2 resonances, Hρμν
A becomes

Hρμν
A = 1

2 Tr
[
(1 + γ5/Sn)(/p + M )	ρ (−q)(/p′ + M )

×	
μ
R→γ N (pR,−q2)

× (/pR + W )	ν
γ N→R(pR, q1)

]
δ
(
W 2 − M2

R

)
, (29)

while for spin 3/2 resonances it is given by

Hρμν
A = − 1

2 Tr
[
(1 + γ5/Sn)(/p + M )

×	ρ (−q)(/p′ + M )	μα
R→γ N (pR,−q2)P3/2

αβ (pR)

× (/pR + W )	βν
γ N→R(pR, q1)

]
δ
(
W 2 − M2

R

)
. (30)

For the numerical calculation, it will be convenient to trans-
form the phase-space integral over the intermediate electron

momentum k1 of Eq. (24) in terms of the Lorentz-invariant
Mandelstam variable s. Defining the kinematics in the c.m.
frame, the integration over d3k1 → k2

1d|k1|d(cos θk1 )dφk1 can
be written as∫

d3k1

2Ek1

→ −
∫ W 2

max

M2
dW 2 |k1|

4
√

s

∫ 1

−1
d cos θk1

∫ 2π

0
dφk1 ,

(31)

with Wmax = √
s − me. Here we have utilized the c.m. frame

relation for the intermediate electron three-momentum given
in Eq. (5b).

SSA = − αQ2

πD(s, Q2)

∫ W 2
max

M2
dW 2 |k1|

4
√

s

∫ 1

−1

× d cos θk1

∫ 2π

0
dφk1

Im LρμνHρμν

Q2
1Q2

2

. (32)

The tensor product LρμνHρμν in Eq. (32) depends on the
totally antisymmetric Levi-Civita tensor, εαβγ δ , which is de-
fined following the FeynCalc [36] convention ε0123 = −1 =
−ε0123. In the following we use the shorthand notation
ε(abcd ) ≡ εαβγ δaαbβcγ dδ . For the beam-normal spin asym-
metry Bn there are four independent antisymmetric tensors
that be constructed from the beam-normal spin four-vector
sn and three of the four-momenta k, p, q, and q1. For the
target-normal spin asymmetry An there is one antisymmetric
tensor needed. In the c.m. frame these can be written as

ε(kpqsn) = −(Ek + Ep)|k|2 sin θc.m., (33a)

ε(kpq1sn) = −(Ek + Ep)|k||k1| sin θk1 cos φk1 , (33b)

ε(kqq1sn) = |k|{[Ek|k1| cos θk1 − Ek1 |k|] sin θc.m.

+ Ek|k1|(1 − cos θc.m.) sin θk1 cos φk1

}
, (33c)

ε(pqq1sn) = |k|{[Ep|k1| cos θk1 − (Ek − Ek1+Ep)|k|] sin θc.m.

+ Ep|k1|(1 − cos θc.m.) sin θk1 cos φk1}, (33d)

ε(kpqq1) = (Ek + Ep)|k||k|2 sin θc.m. sin θk1 sin φk1 . (33e)

B. Finite-width effect

A finite resonance width is usually accommodated by using
the well-known relativistic Breit-Wigner distribution in W 2.
In this analysis we use a closely related alternative distribu-
tion, denoted as a Sill distribution by Giacosa et al. [37],
which avoids the problem of normalization inherent in the
Breit-Wigner expression. In this approach the δ-function dis-
tribution δ(W 2 − M2

R) that appears in Eqs. (29) and (30) is
replaced by the function

δSill(W
2) = θ

(
W 2 − W 2

th

)
π

√
W 2 − W 2

th 	̃(
W 2 − M2

R

)2 + (
W 2 − W 2

th

)
	̃2

,

(34)

where

	̃ = 	
MR√

M2
R − W 2

th

, (35)
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and 	 is the usual resonance width. The Sill distribution has
the desirable property that∫ ∞

W 2
th

dW 2δSill(W
2) = 1 (36)

for any threshold W 2
th < M2

R. It vanishes as W → Wth, but
is otherwise very similar to the conventional Breit-Wigner
distribution.

C. Quasisingular behavior in Bn

As discussed at the end of Sec. II A, the beam-normal
SSA Bn is sensitive to the quasisingular behavior of the
integrand in Eq. (32) when the intermediate-state electron
three-momentum |k1| → 0. This is the QRCS region, where
W → Wmax and the two virtual photons have four-momenta
Q2

1 and Q2
2 of order me [see Eq. (9)]. In this region of W ,

the integrand of Eq. (32) is characterized by a slowly varying
numerator and a rapidly varying denominator. This behavior
does not affect the target-normal SSA An because for this
asymmetry the numerator in Eq. (32) vanishes as W → Wmax.

To address this behavior in the numerical calculations in
a practical way, we have devised the following strategy in
the QRCS region with W just below Wmax. The slowly vary-
ing numerator of the integrand in Eq. (32) is evaluated at
Q2

1 = Q2
2 = 0, which is then a constant independent of θk1 and

φk1 . We keep the mild W dependence, but make no further
approximation and leave the denominator intact. Thus we are
left with an integral over W in this region that is proportional
to the angular integral

J (W ) = |k1|
4
√

s

∫
d�k1

1

Q2
1Q2

2

. (37)

This integral can be done analytically, as discussed in
Refs. [20,23,33]. Unlike Refs. [20,23] however, we only ap-
ply the analytic expression using J (W ) to the tail region,
Wmax − 5me � W � Wmax, and use the full three-dimensional
numerical quadrature of Eq. (32) elsewhere. Details of the
matching procedure at W = Wmax − 5me and the analytic ex-
pression for J (W ) are given in the Appendix.

IV. NUMERICAL SINGLE-SPIN ASYMMETRY RESULTS

In this section we present the results of our calculation of
single-spin asymmetries for both beam (Sec. IV C) and target
(Sec. IV D) spin normal to the scattering plane, at the kine-
matics of several previous experiments. Before discussing the

results for Bn and An, we will illustrate the input parameters
used in the evaluation of the integral in Eq. (32).

A. Resonance parameters

In our numerical calculations, for the proton elastic electric
(GE ) and magnetic (GM) form factors we use the parametriza-
tion from Ref. [38]. For the hadronic transition currents
	R→γ N and 	γ N→R in Eq. (32), we use the CLAS parametriza-
tion [30] of the input resonance electrocouplings Ah(Q2) at
the resonance points, where Ah represents the longitudinal
electrocoupling, S1/2, and the two transverse electrocouplings,
A1/2 and A3/2. The dependence of the electrocouplings Ah on
the invariant mass W is given in Ref. [8].

For the inelastic intermediate states in Fig. 1(b), in
this work we include the contributions of four spin-
parity 3/2± nucleon (isospin 1/2) and � (isospin 3/2)
resonances {�(1232)3/2+, N (1520)3/2−, �(1700)3/2−,
and N (1720)3/2+}, and five spin-parity 1/2± resonances
{N (1440)1/2+, N (1535)1/2−, �(1620)1/2−, N (1650)1/2−,
and N (1710)1/2+}. (In the following, for ease of notation
we will drop the spin-parity suffix from the resonance state
labels.) The Breit-Wigner mass MR and the constant decay
width 	 of the nine excited-state resonances are set to those
used in the CLAS parametrization [30] of the resonance elec-
trocouplings Ah, and their numerical values are listed in the
second and third columns of Table I.

Laboratory threshold energies E th
lab = (M2

R − M2)/2M for
the excitation of resonances R in the zero-width limit are
shown in Table I. Values range between 0.34 GeV for the first-
excited state �(1232) to 1.11 GeV for the highest-mass state
N (1720). It is evident from the threshold energy values that in
the zero-width approximation the states beyond the N (1650)
do not contribute to the total SSA for beam energies below
1 GeV, where most of the experiments to measure Bn have
taken data. In practice, the unstable resonances have a finite-
decay width with a distribution in the squared invariant mass
W 2, starting from the threshold, W 2

th, of the prominent nπ+
decay channel of most resonances. Accounting for the finite-
width effect for each resonance, using the Sill distribution of
Eq. (34), gives a nonzero contribution from the higher-mass
resonances even at beam energies Elab � 1.0 GeV. The effect
of such a nonzero width on the beam and target SSAs Bn and
An will be discussed in more detail below.

B. Uncertainty estimation

Apart from the dependence on the width, we also propagate
the uncertainty on the input resonance electrocouplings, �Ah,
into the estimation of the uncertainties on the beam-normal
SSA Bn, using

�Bn =
√(

∂Bn

∂A1/2

)2

(�A1/2)2 +
(

∂Bn

∂A3/2

)2

(�A3/2)2 +
(

∂Bn

∂S1/2

)2

(�S1/2)2, (38)

and similarly for the uncertainty, �An, on the target-normal
asymmetry, An. A constant, Q2-independent uncertainty on

the electrocouplings was assumed for each of the resonances
in the range of 0 � Q2 � 5 GeV2, with the exception of the
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TABLE I. Mass MR, width 	, and threshold energy E th
lab of each N or � resonance of spin-parity J±. The uncertainty bands �A1/2, �A3/2,

and �S1/2 on the respective electrocouplings A1/2, A3/2, and S1/2, used in estimating the uncertainty in Bn and An, are given in the last three
columns. The uncertainties �Ah are given as a percentage of the maximum absolute value of the corresponding electrocouplings, except for
the �(1232), where �A1/2 and �A3/2 are given as a percentage of A1/2 and A3/2, respectively.

Resonance MR (GeV) 	 (GeV) E th
lab (GeV) �A1/2(%) �A3/2(%) �S1/2(%)

�(1232)3/2+ 1.232 0.117 0.34 3.0 4.5 3.6
N (1440)1/2+ 1.430 0.350 0.64 10.0 15.9
N (1520)3/2− 1.515 0.115 0.75 6.1 5.3 8.9
N (1535)1/2− 1.535 0.150 0.78 5.0 22.1
�(1620)1/2− 1.630 0.140 0.91 21.2 12.1
N (1650)1/2− 1.655 0.140 0.98 15.8 23.6
�(1700)3/2− 1.700 0.293 1.09 5.0 9.1 12.9
N (1710)1/2+ 1.710 0.100 1.09 15.0 49.2
N (1720)3/2+ 1.748 0.114 1.11 4.5 10.7 13.8

�(1232), for which there is more empirical information. The
uncertainties on the transverse A1/2 and A3/2 electrocouplings
of the �(1232) transition display some Q2 dependence, and
decrease with Q2, following the magnitudes of the respective
electrocouplings [30]. As shown in Table I, the uncertainties
�A1/2 and �A3/2 on the two transverse electrocouplings are
assumed to be ≈3% and 4.5% of the corresponding electro-
couplings, respectively. For the longitudinal electrocoupling
S1/2, the uncertainty �S1/2 for the �(1232) transition (similar
to all other resonances) can be approximated by a constant
≈3.6% of the maximum value of S1/2 [30], which occurs at
Q2 = 0.127 GeV2. The constant uncertainties �Ah for the
remaining states are given in Table I as a percentage of the
maximum value of the corresponding electrocouplings Ah

over the range 0 � Q2 � 5 GeV2.

C. Beam-normal single-spin asymmetry Bn

In this section we present the results for the beam-normal
SSA Bn, computed at beam energies relevant for existing
experiments. To analyze the role of the resonances on the total
SSA, in Fig. 2 we illustrate the contributions to Bn from the
individual resonances at beam energies between ≈0.5 GeV
and ≈3 GeV as function of the laboratory scattering angle θlab.

Among the resonances considered, the four spin-3/2 states
�(1232), N (1520), �(1700), and N (1720) have sizable ef-
fects, with some partial cancellation observed between them.
Contributions from resonances with spin 1/2 are smaller by
at least an order of magnitude. However, both the lower-mass
spin-3/2 resonances �(1232) and N (1520) give negative con-
tributions to Bn, even though these states have different isospin
and parity. On the other hand, the two higher-mass spin-3/2
states �(1700) and N (1720), with opposite parity and differ-
ent isospin, make positive contributions to the total Bn. No
definite correlation between the isospin and parity is therefore
observed in the imaginary part of the TPE amplitude for
the case of normally polarized electrons elastically scattering
from unpolarized protons.

At low beam energies, Elab � 0.5 GeV, the �(1232) state
gives the dominant contribution to Bn [Fig. 2(a)]. As the
energy increases, the higher-mass resonances start playing
a more significant role. At Elab = 0.855 GeV, for example

[Fig. 2(b)], the effect from the N (1520), which has threshold
energy E th

lab = 0.75 GeV, becomes comparable to that of
the �(1232). It is interesting to note that the higher-mass
resonance states �(1700) and N (1720) show non-negligible
effects even at beam energies below their excitation threshold
[see Fig. 2(b)]. Such contributions, originating from the tail
of the W 2 distribution for the nonzero-width case, are not ac-
counted for in the more approximate zero-width calculations.
However, at energies above the threshold, the �(1700) and
N (1720) begin to dominate, as Figs. 2(c)–2(e) demonstrate.
The dependence of these major resonances on the energy
for fixed scattering angles will be further discussed below.
The overall magnitudes of the peak points of Bn decrease
with increasing beam energies for each of the resonances
above their threshold, as evident from the scale of the panels
in Fig. 2.

It is also important to note that, at forward laboratory scat-
tering angles θlab, where most of the experimental data exist,
the �(1232) contribution alone is a good approximation of
the total, with the small effects from other resonances largely
canceling in this region. Furthermore, the elastic nucleon in-
termediate state gives a negligibly small effect in Bn, unlike
the real part of the TPE amplitude in unpolarized ep elastic
scattering [8].

The combined effect of all nine resonances listed in Table I,
along with the nucleon elastic contribution, on the total Bn

is illustrated in Fig. 3, at the same kinematics as in Fig. 2.
The full results with the finite resonance decay widths are
contrasted with the approximate results computed in the zero-
width approximation over the entire range of scattering angles
θlab. Overall, the finite-width effect is small in the forward
limit for all the considered beam energies, but the results of
the two width approximations deviate in the far forward and
backward angles. We believe this may be attributable to a
non-negligible contribution from the QRCS region with W
above or below the threshold value W = MR, which is the only
value of W in the zero-width case.

At the lower beam energies, Elab = 0.5102 GeV and
0.855 GeV, the overall Bn, including the effects of all elastic
and resonance intermediate states, can be approximated by
the �(1232) state alone. Over the entire range of scattering
angles θlab studied, the total Bn remains negative, with peak
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FIG. 2. Resonance contributions to the beam-normal SSA Bn (in parts per million) as a function of scattering angle θlab at five representative
beam energies Elab equal to (a) 0.5102 GeV, (b) 0.855 GeV, (c) 1.149 GeV, (d) 1.508 GeV, and (e) 3.031 GeV. Only the four largest contributors
are shown, with the bands reflecting uncertainties arising from the input electrocouplings Ah.

magnitude of ≈160 ppm and ≈70 ppm for Elab = 0.5102 GeV
and 0.855 GeV, respectively. Compared with the experimental
values, the calculated Bn overshoots the asymmetries mea-
sured by the A4 Collaboration at MAMI at θlab ≈ 35◦ [15,17]
[Figs. 3(a) and 3(b)]. On the other hand, the calculated Bn is in
good agreement with the high-precision Qweak measurement
[10] at Elab = 1.149 GeV and θlab = 7.9◦, within uncertainties
[Figs. 3(c) and 3(d)]. The effect of the finite width at the Qweak

energy is relatively small at forward angles [zoomed-in plot
in Fig. 3(c)], but results in a significantly reduced asymmetry
at less forward angles, θlab � 20◦–30◦, compared with the
zero-width approximation.

Interestingly, the recent measurement of the asymmetry by
the A4 Collaboration [17] at the larger beam energy Elab =
1.508 GeV and angle θlab = 34.1◦ shows excellent agreement
with the calculation, especially for the finite-width model.
As seen in Figs. 3(d) and 3(e), the asymmetry changes sign

to become positive at intermediate and backward-scattering
angles, θlab � 40◦ in the Elab ≈ 1–1.5 GeV range (see
also Fig. 4 below). At beam energy Elab ≈ 3 GeV, three
data points are available from the G0 [12] and HAPPEX
[14] Collaborations in the forward-angle region, 6◦ �
θlab � 10◦. The calculated value of Bn agrees with the
sign of the measured asymmetry within the uncertainty
range but has slightly smaller magnitude for the HAPPEX
data point in particular. A complete list of experimental
and calculated Bn values is presented in Table II, in-
cluding also the early SAMPLE Collaboration result [11]
at Elab = 0.2 GeV.

To further illustrate the energy dependence of the total Bn

and its individual resonance contributions, we show in Fig. 4
the asymmetry as a function of Elab up to 1.5 GeV at the two
representative scattering angles θlab = 35◦ and 145◦ that are
close to the experimental values. The results illustrate again

055202-8



NORMAL SINGLE-SPIN ASYMMETRIES IN … PHYSICAL REVIEW C 108, 055202 (2023)

FIG. 3. The total contribution (red solid lines) from the nucleon elastic and all nine resonance states in Table I to the beam-normal SSA
Bn as a function of θlab for fixed beam energies corresponding to the A4 [15,17], Qweak [10], G0 [12], and HAPPEX [14] experiments (black
symbols). The results in the zero-width approximation are shown for comparison (blue dashed lines).

the dominance at low energies of the total asymmetry by
the �(1232) state. As expected, the higher mass resonances
grow with increasing Elab, reaching their peak values at the
threshold energies of the corresponding excited states, shown
in Table I. After reaching the threshold limit, the positive con-
tributions from the two heavier states �(1700) and N (1720)
outweigh the combined negative effects of the lower-mass
states �(1232) and N (1520), yielding a net positive value of
Bn at larger Elab. Compared with the experimental data from
the SAMPLE experiment [11] and the series of measurements
by the A4 Collaboration [15–17], the calculations give the
same sign as the data in Fig. 4 in the measured region. At
the smaller scattering angle the calculation generally gives
a larger magnitude for Bn than that observed, while at the
larger scattering angles the agreement between experiment
and theory is reasonable, within uncertainties. The results
suggest that, while the spin 1/2 and spin 3/2 resonances give

contributions to Bn that have the correct sign and order of
magnitude, there may still be room for higher spin states, such
as spin 5/2 resonances, as well as nonresonant contributions
to play some role.

D. Target-normal single-spin asymmetry An

For the target-normal SSA An, we consider four differ-
ent beam energies, Elab = 1.245, 2.2, 3.605, and 6.6 GeV,
corresponding to selected kinematics from the electron-3He
scattering experiment in Jefferson Lab Hall A [28,39], and
the proposed determination of the asymmetry in Ref. [27].
The contributions from the nucleon plus five largest excited-
state resonances, {�(1232), N (1520), N (1535), �(1700), and
N (1720)}, to the total An are shown in Fig. 5 as function of
the scattering angle θlab at the chosen beam energies. For the
highest energy Elab = 6.6 GeV, the asymmetry is shown up to
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FIG. 4. Beam-normal SSA Bn as a function of beam energy Elab in the laboratory frame at representative scattering angles θlab = 35◦ and
145◦. Contributions from the four largest resonance contributors are shown in the top row, while the bottom row represents the total Bn from
the nucleon plus all nine resonances. The experimental data points in the forward angle region are from A4 experiments [15,17], and in the
backward angle region from the SAMPLE [11] and A4 [16] experiments.

a scattering angle θlab ≈ 25◦, corresponding to Q2 = 5 GeV2,
beyond which the hadronic approximation and the input
electrocouplings parametrization used in the calculation are
not expected to be reliable.

As anticipated, An is in the subpercent to percent range
and keeps increasing with beam energy in the far-forward to
-backward directions, in contrast with the beam-normal SSA
Bn. To further compare with Bn, we observe that the nucleon

TABLE II. Experimental and calculated beam-normal SSA Bn from various experiments, along with the corresponding kinematics in the
laboratory frame. The calculated results include uncertainty estimates from the input helicity amplitudes, while the experimental results give
both statistical and systematic uncertainties.

Experiment Elab θlab Q2 Calculated Bn Experimental Bn

(GeV) (◦) (GeV2) (ppm) (ppm)

SAMPLE (2001) [11] 0.2 146.1 0.1 −40.5 ± 4.5 −15.4 ± 5.4
A4 (2005) [15] 0.855 35.0 0.230 −25.1 ± 10.1 −8.52 ± 2.31 ± 0.87

0.569 35.0 0.106 −29.9 ± 6.8 −8.59 ± 0.89 ± 0.75
G0 (2007) [12] 3.031 7.5 0.15 −2.36 ± 0.31 −4.06 ± 0.99 ± 0.63

3.031 9.6 0.25 −2.73 ± 0.35 −4.28 ± 1.87 ± 0.98
G0 (2011) [13] 0.362 108.0 0.22 −320 ± 80 −176.5 ± 9.4

0.687 108.0 0.63 −87 ± 60 −21 ± 24
HAPPEX (2012) [14] 3.026 6.0 0.099 −2.01 ± 0.27 −6.80 ± 1.54
A4 (2017) [16] 0.315 145.0 0.22 −201 ± 88 −94.83 ± 6.02 ± 4.07

0.420 145.0 0.350 −176 ± 44 −99.55 ± 6.73 ± 4.63
A4 (2020) [17] 0.315 34.1 0.032 −21 ± 11 −2.22 ± 0.40 ± 0.43

0.42 34.1 0.057 −34.5 ± 9.4 −6.88 ± 0.53 ± 0.42
0.510 34.1 0.082 −31.0 ± 7.3 −9.32 ± 0.63 ± 0.62
0.855 34.1 0.218 −24 ± 10 −7.46 ± 1.22 ± 1.55
1.508 34.1 0.613 1.7 ± 8.2 −0.06 ± 2.89 ± 1.90

Qweak (2020) [10] 1.149 7.9 0.0248 −4.34 ± 0.54 −5.194 ± 0.067 ± 0.082
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FIG. 5. The six largest contributions to the target-normal SSA An (in percent) as a function of the scattering angle θlab at four representative
beam energies Elab given by (a) 1.245 GeV, (b) 2.2 GeV, (c) 3.605 GeV, and (d) 6.6 GeV.

intermediate state alone has significant impact on the total An

for any value of Elab. Among the resonances, the �(1232) is
again the dominant contributor over the entire range of θlab

and for all beam energies considered. Particularly at forward
angles, θlab � 20◦, the only sizable contribution is that from
the �(1232) state. The effect of other resonances becomes
comparable with the �(1232) at relatively larger scattering
angles.

Interestingly, unlike for Bn and the real part of the TPE
correction [8], the contribution to the target-normal SSA
An from the spin 3/2 nucleon state N (1520) is relatively
less significant for all beam energies Elab considered over
the entire range of θlab. The two other spin 3/2 resonances,
the �(1700) and N (1720), have noticeable contributions at
the lower beam energies, Elab = 1.245 and 2.2 GeV, but are of
opposite sign, as shown in Fig. 5. At higher beam energies, the
contribution to An from these two states becomes negligible
[Figs. 5(c) and 5(d)]. On the other hand, the only spin 1/2
state, N (1535), is found to be a significant contributor to
the total An. As shown in Fig. 5(a), for Elab = 1.245 GeV
the An from N (1535) outweighs the contribution from all
other states, with the exception of �(1232). With increasing
Elab, the contribution from N (1535) rises even faster, almost
negating the �(1232) contribution alone at the highest beam
energy in Fig. 5(d). Considering all such partial cancellations,
however, the sum of the elastic nucleon and �(1232) reso-
nance contributions appears to be a good approximation to the
total An.

The total target-normal SSA An, including contributions
from the nucleon elastic and the nine spin 1/2 and 3/2 res-
onances is illustrated in Fig. 6 as a function of the scattering
angle θlab at the same four fixed beam energies. The results
of the finite-width calculation, using a Sill distribution as in
Eq. (34), are compared with the zero-width approximation.
The finite-width results are qualitatively similar to the approx-
imated ones, but quantitatively there are clear differences in
some kinematic regions.

In general, the zero-width results have a smaller magni-
tude for the total An than the finite-width case. However, as
observed above, the net An from the elastic nucleon and the
resonances resembles the trend of the �(1232) state alone.
The overall magnitude of the asymmetry can also be well
approximated by the sum of the elastic nucleon and �(1232)
contributions. As for the beam-normal SSA Bn, contribution
from higher spin states, with spin �5/2, as well as nonreso-
nant backgrounds may need to be considered in future.

Unfortunately, to date there have not been any direct
measurements of An in electron-proton scattering. However,
there has been a measurement of An for electron scattering
from polarized 3He in the quasi-elastic region at Jefferson Lab
Hall A [28], from which the electron-neutron asymmetry was
extracted assuming an input ep asymmetry. The experiment
scattered unpolarized electrons with energies Elab = 1.245,
2.425, and 3.605 GeV from a 3He target polarized normal
to the scattering plane, with the scattered electrons detected
at angle θlab = 17◦, corresponding to three different c.m.
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FIG. 6. The total contribution (red solid lines) from the nucleon plus all nine resonances to the target-normal SSA An as a function of θlab

at fixed beam energies Elab of (a) 1.245 GeV, (b) 2.2 GeV, (c) 3.605 GeV, and (d) 6.6 GeV. The zero-width results (blue dashed lines) are also
shown for comparison.

angles θc.m. = 32◦, 41◦, and 48◦ for the three respective
beam energies. For the input proton SSA An, the elastic
proton intermediate-state contribution to the TPE amplitude
from Ref. [29], giving (0.01 ± 0.22)%, (0.24 ± 2.96)%, and
(0.62 ± 1.09)% at the three beam energies shown in Table III,
respectively, was used to extract the neutron asymmetry from
the measured 3He SSA.

In contrast, in this work we find a total contribution to
An from the nucleon (N) elastic state and the nine res-
onances of (−0.381 ± 0.018)%, (−0.173 ± 0.049)%, and
(0.414 ± 0.145)%, at θlab = 17◦ and beam energies Elab =
1.245, 2.425, and 3.605 GeV, respectively, illustrated in the
central column of Table III. Overall, the input proton asym-
metry An from Ref. [29] is larger than our calculated result
for the nucleon elastic state only, although consistent within
the uncertainty. The nucleon resonant contribution is sizable

TABLE III. Comparison of the target-normal SSA An calculated
in this work with that used as input in the data analysis of electron–
3He scattering, at the beam energies Elab = 1.245, 2.425, and
3.605 GeV, and scattering angle θlab = 17◦ [28].

Elab (GeV) An (this work) Input An in Ref. [28]

N N + resonances N only

1.245 0.008 −0.381 ± 0.018 0.01 ± 0.22
2.425 0.173 −0.173 ± 0.049 0.24 ± 2.96
3.605 0.400 0.414 ± 0.145 0.62 ± 1.09

at smaller beam energies but is negligible at the highest energy
Elab = 3.605 GeV.

E. Beam-transverse single-spin asymmetry Bx

A general electron-spin vector transverse to the beam
direction ẑ is given by

S = cos φsx̂ + sin φsŷ, (39)

where φs is the azimuthal angle with respect to the scattering
(x̂-ẑ) plane. As discussed in Sec. I above, interference between
the OPE amplitude and the imaginary part of the TPE ampli-
tude produces a beam-normal SSA Bn which depends only on
the normal component of the spin.

In principle, a beam-transverse SSA can also arise from the
x component of S due to a parity-violating interaction. At low-
est order this involves the interference of the OPE amplitude
Mγ and the Z-exchange amplitude MZ . This same interfer-
ence gives the usual lowest order parity-violating asymmetry
APV for a longitudinally polarized beam,

APV = − GF√
2

Q2

4πα

1

σR

{
ge

V GMGZ
Aν(1 − ε)

− ge
A

[
GE GZ

Eε + GMGZ
Mτ

]}
, (40)

where ge
V and ge

A are the vector and axial-vector eZ couplings,
GZ

A, GZ
E , and GZ

M are the proton weak form factors, GF is the
Fermi constant, and the reduced cross section is σR = G2

Eε +
G2

Mτ . The kinematic variables in Eq. (40) are dimensionless
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quantities that can be expressed in terms of the Mandelstam
variables s, t , and u as

τ = − t

4M2
, ν = s − u

4M2
, ε = ν2 − τ (τ + 1)

ν2 + τ (τ + 1)
. (41)

The SSA for a purely transverse in-plane beam, denoted Bx, is
given by

Bx = − GF√
2

Q2

4πα

1

σR

me

Elab

√
2ε(1 − ε)

τ + 1

{
ge

V GMGZ
M2τ (τ + 1)

− ge
A

[
GE GZ

E (ν + τ + 1) + GMGZ
Mτ (ν − τ − 1)

]}
.

(42)

In combination with Bn, this results in a general beam asym-
metry of the form

Bn sin φs + Bx cos φs =
√

B2
n + B2

x sin(φs + δs),

δs = tan−1

(
Bx

Bn

)
. (43)

The general beam asymmetry then retains a sinusoidal de-
pendence on φs, but with a phase shift δs relative to the pure
beam-normal SSA.

To obtain an order of magnitude estimate of the various
asymmetries, we can write

APV ≈ Q2

M2
Z

≈ Q2 × 10−4, (44a)

Bn ≈ α
me

M
≈ 5 × 10−6, (44b)

Bx ≈ Q2

M2
Z

me

M
≈ Q2 × (5 × 10−8), (44c)

with Q2 in units of GeV2. Aside from using muons instead
of electrons, there seems to be no natural way to enhance
the ratio Bx/APV over the naive estimate of 5 × 10−4. For the
kinematics given in Table II, the largest value of this ratio
is 2 × 10−4 for the A4 (2020) kinematics, suggesting that
the transverse parity-violating asymmetry is indeed negligi-
ble compared with the longitudinal asymmetry. Measuring a
phase shift δs ≈ Bx/Bn seems equally unlikely, although the
ratio could potentially be enhanced at higher Q2.

V. CONCLUSIONS

In this study we have calculated beam and target-normal
single-spin asymmetries in elastic electron-proton scattering
using the imaginary part of two-photon exchange amplitudes,
including contributions from JP = 1/2± and 3/2± excited-
state resonances with mass below 1.8 GeV. For the resonance
electrocouplings at the hadronic vertices we employed helicity
amplitudes from the latest analysis of CLAS meson electro-
production data at Q2 � 5 GeV2.

The effect of finite resonance widths on the beam-normal
SSA Bn has been carefully investigated and found to be negli-
gible in the forward-angle region, becoming more noticeable
at larger scattering angles. We believe this may be attributable
to a non-negligible contribution from the QRCS region above
the nominal threshold excitation energy.

Among the various intermediate-state contributions to Bn,
the elastic nucleon and spin 1/2 resonances are suppressed by
an order of magnitude or more compared with the spin 3/2
resonances. The �(1232) resonance alone is a good approxi-
mation at forward angles for all beam energies. The N (1520)
contribution is noticeably smaller than the �(1232), but both
are negative across the range of energies and angles consid-
ered. The �(1700) and N (1720) are major contributors in the
far-forward and -backward angle regions above their threshold
excitation energies, both having positive contributions across
energy and angle. As a result, the total Bn is somewhat sen-
sitive to cancellations between the resonance contributions,
changing from negative to positive with increasing energy
and angle. Uncertainties in the input electrocouplings are also
significant for the N (1520), �(1700), and N (1720) states,
leading to a rather large overall uncertainty band in the
total Bn.

The results given in this work tend to overshoot the ex-
perimental Bn data at lower beam energies Elab < 1 GeV
at both forward and backward angles. This is the region
in which the �(1232) dominates, with relatively small un-
certainties in its input parameters. There is good agreement
between theory and the high-precision Qweak measurement at
Elab = 1.149 GeV, and modest agreement at the highest avail-
able energy Elab ≈ 3 GeV and very forward angles, where the
experimental uncertainties from the G0 and HAPPEX data are
rather large.

For the target-normal SSA An, the higher resonances be-
yond the �(1232) have almost no net effect. Unlike Bn, the
elastic nucleon intermediate state makes a significant con-
tribution over the entire range of energy, Elab from 0.5 to
6.6 GeV, considered in this work. The sum of nucleon and
�(1232) contributions account for most of the total An. The
spin 3/2 state N (1520) is less significant for An than it is for
Bn, but the spin 1/2 state N (1535) becomes a major contrib-
utor. Also, unlike Bn, the peak magnitude of An versus θlab

increases with energy in the range from Elab = 0.5 to 6.6 GeV.
For future work, given the significant uncertainties in the

parameters of the higher mass resonances, better data to con-
strain electrocouplings for the higher mass excitations, such as
the �(1700), would be helpful. Effects of higher spin states,
with spin �5/2, can also be investigated, although uncertain-
ties in the electrocouplings would limit the predictive power
of such calculations. Carlson et al. [40] also extended the
calculation of beam SSAs from excited-state resonance con-
tributions to inelastic channels, such as the ep → e�(1232)
production process. Finally, we note that an interesting quark
level study [19] of beam-normal SSAs, applicable at high-
Q2 � M2 region, was performed in terms of a convolution of
quark amplitudes and generalized parton distributions, which
could be viewed as complementary to the resonance domi-
nated region discussed in our analysis.
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FIG. 7. The integrand Bn(W ) of Eq. (A1) as a function of W for the N (1520) resonance at a sample kinematics of
√

s = 1.7 GeV and
Q2 = 1 GeV2. The right panel is magnified to show the quasisingular behavior of Bn(W ) as W → Wmax = √

s − me. The dashed red line
makes use of the analytic result of Eq. (A2), while the solid blue line is the fully numerical evaluation. The dot indicates our chosen matching
point at W = Wmax − 5me.
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APPENDIX: NUMERICAL EVALUATION
OF Bn IN THE QUASIREAL

COMPTON-SCATTERING REGION

We elaborate here on our semi-analytic method of evaluat-
ing the integral of Eq. (32) in the QRCS region W ≈ Wmax =√

s − me. We define Bn(W ) via

Bn =
∫ Wmax

Wth

dWBn(W ), (A1)

so that Bn(W ) includes the angular integrals of Eq. (32). As
discussed in Sec. III C, in the QRCS region the slowly varying
tensor product LρμνHρμν for Bn in Eq. (32) is evaluated at
Q2

1 = Q2
2 = 0, leaving a numerator independent of θk1 and φk1 .

The resulting expression is proportional to J (W ) as defined
in Eq. (37), which can be evaluated analytically. Applying

Eqs. (36) and (37) of Ref. [33] to the present case, we find
in agreement with Ref. [23] that

J (W ) = π

2
√

sQ2Ekx1
log

(
x1 + x2

x1 − x2

)
,

x1 =
√

x2
2 + 4m2

e

Q2
(1 − z)2, x2 = |k1|

Ek
, (A2)

where z = Ek1/Ek .
Figure 7 shows Bn(W ) for the N (1520) resonance at the

sample kinematics of
√

s = 1.7 GeV (Elab = 1.071 GeV) and
Q2 = 1 GeV2. This is above the nominal threshold energy
of E th

lab = 0.75 GeV for excitation of a zero-width resonance
(see Table I). As shown in the left panel of Fig. 7, due to
the behavior of J (W ), Bn(W ) increases in magnitude with
W above threshold, and has an extremum near W = Wmax −
me before falling sharply to zero at W = Wmax. The right panel
is magnified to show the matching between the full numerical
and semi-analytical regions. The dot indicates our chosen
matching point at W = Wmax − 5me.
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