
Synchronization effects on rest frame energy and momentum densities
in the proton

Adam Freese 1,2,* and Gerald A. Miller2,†
1Theory Center, Jefferson Lab, Newport News, Virginia 23606, USA

2Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 8 August 2023; revised 18 October 2023; accepted 31 October 2023; published 16 November 2023)

We obtain two-dimensional relativistic densities and currents of energy and momentum in a proton at
rest. These densities are obtained at surfaces of fixed light front time, which physically corresponds to using
an alternative synchronization convention. Mathematically, this is done using tilted light front coordinates,
which consist of light front time and ordinary spatial coordinates. In this coordinate system, all 16
components of the energy-momentum tensor (EMT) obtain clear physical interpretations, and the nine
Galilean components reproduce results from standard light front coordinates. We find angular modulations
in several densities that are absent in the corresponding instant form results, which are explained as optical
effects arising from using fixed light front time when motion is present within the target. Additionally,
transversely polarized spin-half targets exhibit an energy dipole moment—which evaluates to −1=4 for all
targets if the Belinfante EMT is used, but which is target dependent and vanishes for pointlike fermions if
the asymmetric EMT is instead used.

DOI: 10.1103/PhysRevD.108.094026

I. INTRODUCTION

Significant attention has been placed on the energy-
momentum tensor (EMT) and the associated gravitational
form factors [1] over the past few years. Major questions
in the field of hadron physics, such as the proton mass
puzzle [2–8] and proton spin puzzle [9–13] are directly
related to the EMT. Additionally, there has been much
discussion over how (and whether) the EMT encodes
distributions of static forces within hadrons [8,14–18].
This attention is especially pertinent with the anticipated
construction of the Electron Ion Collider [19–21], since the
measurement of generalized parton distributions [22–24] is
the most promising means of empirically accessing the
gravitational form factors.
Currently the literature is filled with a variety of

perspectives on how to obtain spatial distributions of local
currents in composite systems, including those encoded
by the EMT (see, for instance, Refs. [15,16,25–35]).
The light front formalism stands out among these as
providing relativistically exact two-dimensional (2D)
densities [36,37] that are obtained from elementary

field-theoretic definitions [17,26] in a wave-packet-inde-
pendent way [31]. Misgivings have been expressed about
the light front densities with the understanding that they
constitute a description of the system moving at infinite
momentum [38]. However, in a recent work [33], we
showed that light front densities constitute rest frame
densities within hadrons at a fixed light front time by
utilizing a coordinate system called tilted light front
coordinates (or tilted coordinates):

τ ¼ x0 ≡ tIF þ zIF; ð1aÞ

x ¼ x1 ≡ xIF; ð1bÞ

y ¼ x2 ≡ yIF; ð1cÞ

z ¼ x3 ≡ zIF; ð1dÞ

first proposed by Blunden, Burkardt, and Miller [39]. By
using light front time τ but ordinary Cartesian spatial
coordinates ðx; y; zÞ, the Galilean subgroup of the Poincaré
group can be exploited while utilizing everyday intuition
about space, including that a target is at rest when
ðvx; vy; vzÞ ¼ ð0; 0; 0Þ.
Operationally, the use of tilted coordinates corresponds

to synchronizing spatially distant clocks under the
assumption that the speed of light is infinite in the −z
direction, and consequently the light front densities con-
stitute a literal picture of what an observer looking in theþz
direction sees when their local time is τ. In our prior
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work [33] we refer to this synchronization rule as light front
synchronization. Light front synchronization stands in
contrast to the standard Einstein synchronization conven-
tion [40], under which spatially distant clocks are
synchronized by assuming that the one-way speed of light
is isotropic and equal to c in all directions. Using Einstein
synchronization results in the standard Minkowski (or
instant form) coordinate system, in which the observer is
understood to see a past state of the system they are
observing. (See Refs. [41–45] for detailed discussions of
synchronization conventions.)
Previously, we obtained the rest frame electromagnetic

currents of the proton and neutron in tilted light front
coordinates [33]. The purpose of the present work is to
obtain the energy and momentum currents encoded by the
EMT within the same formalism. A variety of EMT
densities already exist in the literature in different formal-
isms, but the tilted coordinate framework offers a number
of advantages that make the presentation of new EMT
densities worthwhile. Much like the standard light front
densities, the densities obtained in tilted coordinates are
relativistically exact, while the more commonly used Breit
frame densities are leading-order contributions that domi-
nate for spatially diffuse wave packets [29,31], and are as
such subject to relativistic corrections [15]. Moreover,
when localizing wave packets in instant form coordinates,
the resulting densities differ from the Breit frame densities
[32,35,46], since the dominating term in an infinite series
differs for localized wave packets [29]. The standard light
front and tilted light front densities, by contrast, are fully
independent of the target’s wave packet [31,33].
There are also several advantages to using tilted light

front coordinates over standard light front coordinates
when obtaining densities. One of these is the ability to
clearly show that the results are rest frame densities.
Additionally, for local currents such as the electromagnetic
current jμðxÞ and the energy-momentum tensor TμνðxÞ,
every component of the current obtains a clear physical
interpretation in tilted coordinates. By contrast, the com-
ponents j−ðxÞ, Ti−ðxÞ, and T−−ðxÞ do not have clear

interpretations in standard light front coordinates, and
accordingly are typically ignored. In this work, we will
present results for all 16 components of the proton’s EMT
density.
One last benefit of tilted coordinates over standard light

front coordinates is that the tilted energy E is exactly equal
to the standard instant form energy, and that the tilted
energy density

Eðb⊥; ŝÞ ¼ m
Z

d2Δ⊥
ð2πÞ2

�
Að−Δ2⊥Þ þ

Δ2⊥
4m2

Dð−Δ2⊥Þ

þ ðŝ × iΔ⊥Þ · êz
2m

�
Bð−Δ2⊥Þ − Jð−Δ2⊥Þ

−
Δ2⊥
4m2

Dð−Δ2⊥Þ
��

e−iΔ⊥·b⊥ ð2Þ

is thus an exact 2D relativistic distribution of the usual energy
E, rather than of P−. The tilted energy density is thus more
pertinent to debates about the proton mass decomposition,
which typically frame the mass decomposition as an energy
decomposition [2–4,6–8]. [Equation (2) will be proved
below in Sec. V after the necessary formalism has been
developed. Table I can be consulted to quickly find explicit
results to the EMT densities, as well as their analogs in
standard light front coordinates and the Breit frame
formalism.]
Tilted coordinates have several unfamiliar mathematical

properties, and this work is not intended as an introduction
to them. We have compiled a collection of helpful basic
properties and identities in Appendix A for easy access, but
a full exposition of the coordinate system is given in
Ref. [33]. The remainder of this work uses tilted coor-
dinates and contains occasional reminders of their idiosyn-
cratic properties.
This work is organized as follows. In Sec. II, we explain

how components of the energy-momentum tensor are
interpreted as furnishing densities and flux densities of
energy and momentum, and provide a dictionary for
converting components of the EMT into energy and

TABLE I. Explicit results for EMT densities of spin-half targets in the Breit frame formalism, in the standard light frame formalism,
and in tilted coordinates can be found in the references and equations provided in this table. The references have been chosen for easy
consultation and for providing formulas for arbitrary polarization, rather than for original discovery. In several cases, standard light front
results do not exist, or only exist for transverse components. Reference [16] provides a light front P− density in its Eq. (107), but is
excluded from the table because P− ≠ E and because the result is only for unpolarized targets. In several other cases, standard light front
densities are obtainable, but we could not find results for them in the literature, so we have pointed to equivalent formulas in the present
work.

Component Breit frame Standard light front Tilted coordinates

Energy density T0
0ðxÞ Eq. (17a) of [15] � � � Eq. (2)

Momentum density −T0
iðxÞ Eq. (17c) of [15] Eqs. (11) and (20) of Ref. [47] [long.]

Same as Eq. (38b) [trans.]
Eq. (38)

Energy flux density Ti
0ðxÞ Same as Eq. (17c) of [15] Same as Eq. (42) [trans. only] Eq. (42)

Stress tensor −Ti
jðxÞ Eq. (17b) of [15] Eq. (21) of [47] [trans. only] Eq. (43)
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momentum currents. In Sec. III, we explore how expect-
ation values of the EMT for physical states can be
decomposed into internal rest frame distributions and
state-dependent smearing functions, the latter of which
absorbs dependencies on the target’s overall motion. Next,
in Sec. IV, we obtain the rest frame energy and momentum
currents for a spin-zero target as a warm-up exercise.
Section V then provides expressions for the rest frame
EMT densities of a spin-half target as well as numerical
examples for a proton. Finally, we conclude in Sec. VI.
Throughout this work—and in contrast to our previous

work on the subject [33]—we do not include any special
markings (such as a tilde) to indicate that tilted coordinates
are being used. Unless explicitly indicated otherwise (such
as by a subscript or superscript IF for “instant form”), all
noninvariant quantities should be assumed to signify a
quantity in tilted coordinates.

II. ENERGY AND MOMENTUM CURRENTS
IN TILTED COORDINATES

The EMT is a local operator characterizing the distri-
bution and flow of energy and momentum of a system. In
quantum chromodynamics (QCD), the operator is formally
given by [11,48]

T̂μν
QCD ¼

X
q

i
4
q̄γfμD

↔νg
qþ Fμρ

a Faν
ρ

− Afμa ð∂νgBaÞ − iðDfμcÞð∂νgc̄Þ − gμνL QCD; ð3Þ

where L QCD is the QCD Lagrangian

L QCD ¼
X
q

q̄

�
i
2
∂

↔
þ g=AaTa −mq

�
q −

1

4
Fa
μνF

μν
a

− ð∂μBaÞAμ
a þ α0

2
B2
a − ið∂μc̄aÞðDμ

abc
bÞ: ð4Þ

Here Aμ
a is the gluon four-potential, Ba are Lagrange

multiplier fields, and ca and c̄a are the Faddeev-Popov
ghosts. The Lagrange multiplier and ghost fields are
unphysical and annihilate physical states, but are necessary
to quantize and renormalize the theory [48]. The different
representations of the gauge-covariant derivative are

D
!

μq ¼ ∂μ
!
q − igAa

μTaq; ð5aÞ

q̄D
 

μ ¼ q̄ ∂μ
 þigq̄Aa

μTa; ð5bÞ

Dab
μ cb ¼ ðδab∂μ þ gfacbAc

μÞcb; ð5cÞ

and the gluon field strength tensor is

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð6Þ

Here, Ta are the generators of the color suð3;CÞ algebra
and fabc are the totally antisymmetric structure constants
defined by

½Ta; Tb� ¼ ifabcTc: ð7Þ

The EMT can be derived through several methods.
Noether’s first theorem and invariance of the QCD action
under global spacetime translations infamously results in an
EMT that is not gauge invariant [11,24,48], but this is
rectified through the Belinfante improvement procedure
[49], which adds a trivially conserved quantity to the EMT
in order to restore gauge invariance. The trivially conserved
quantity is usually chosen to reproduce Eq. (3). However,
Leader and Lorcé [11] show that an alternative EMT can be
obtained, with an additional antisymmetric piece T̂μν

A ðxÞ:

T̂μν
asymðxÞ ¼ T̂μν

QCDðxÞ þ
X
q

�
1

2
q̄ðxÞγ½μiD↔ν�

qðxÞ
�

≡ T̂μν
QCDðxÞ þ T̂μν

A ðxÞ: ð8Þ

The antisymmetric piece is interpreted as describing
intrinsic fermion spin; see Ref. [11] for further details.
The EMT can alternatively be derived using Noether’s

second theorem while assuming invariance of the QCD
action under local spacetime translations [50]. If fermion
fields transform according to their Lie derivative under
these local translations, the resulting EMT is exactly that in
Eq. (3). The EMT in Eq. (3) can also be obtained by taking
the functional derivative of the QCD action with respect to
the metric tensor [24] or with respect to the vierbein [48].
These methods avoid the need for an improvement pro-
cedure to ensure gauge invariance and lack an ambiguity
about the resulting EMT.
Regardless of whether the antisymmetric piece T̂μν

A ðxÞ is
included in the EMT, integrals of the EMT over equal-time
surfaces reproduce the generators of spacetime translations,
as a consequence of being the conserved Noether current
associated with spacetime translation symmetry. If V is a
fixed-time hypersurface and nμ is a unit forward-directed
normal to this surface:

P̂νðτÞ ¼
Z
V
d3xnμT̂

μνðx; τÞ; ð9Þ

where τ is the time variable under consideration. If instant
form time (the time resulting from Einstein synchroniza-
tion) is used to define equal-time surfaces, then nμ is a
timelike vector pointing in the forward-tIF direction. If light
front time tIF þ z is instead used to define equal-time
surfaces, nμ is a lightlike vector pointing along the light
cone. The latter scenario is depicted with a finite hyper-
surface in Fig. 1. If V is extended to all of space, then P̂ν
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is conserved, and thus time-independent, by virtue of
Noether’s theorems.
The four-vector operator P̂ν plays the role of a spacetime

translation generator, specifically in its covariant form
(with a lower index):

i½P̂ν; ÔðxÞ� ¼ ∂νÔðxÞ: ð10Þ

The contravariant (upper-index) components of the four-
momenta are related to the covariant components through
P̂ν ¼ gνρP̂ρ. In instant form coordinates, this gives a trivial
relationship for components of the vector momentum:

P̂IF ¼ ðP̂1
IF; P̂

2
IF; P̂

3
IFÞ ¼ ð−P̂ðIFÞ1 ;−P̂ðIFÞ2 ;−P̂ðIFÞ3 Þ; ð11Þ

but in tilted coordinates the relationship is more
complicated—see Eq. (A2) for the metric tensor in tilted
coordinates and Eq. (A3) for the covariant-contravariant
relations. To play their proper role as space translation
generators, components of vector momentum are
identified through covariant components of the four-
momentum: P̂ ¼ ð−P̂1;−P̂2;−P̂3Þ. Likewise, the
Hamiltonian (as the time translation generator) is given
by P̂0. Accordingly, the energy and momentum densities
are associated with the mixed upper-lower form of the
EMT, T̂μ

νðxÞ, which can be interpreted as a P̂ν current.
As such, T̂μ

0ðxÞ gives an energy-four current—a combi-
nation of an energy density and energy flux density—
while −T̂μ

iðxÞ encodes three vector momentum currents.
As is standard in continuum mechanics [51–56], flux

densities of momentum can be interpreted as stresses. We
review the rationale behind this. By virtue of Noether’s
theorems, the EMT obeys a continuity equation,

∂μTμ
νðxÞ ¼ 0; ð12Þ

which is the differential form of energy-momentum con-
servation. If we integrate this differential form over
the spacetime region Ω depicted in Fig. 1 and use the
divergence theorem, we obtain the integral form of the
conservation law

d
dτ
½T0

νðx; τÞ� ¼ −
I
∂V

dAiTi
νðx; τÞ; ð13Þ

where ∂V is the boundary of the spatial region V and
dA is an area element with outward-pointing normal. This
equation describes the amount of Pν in a spatial region V
changing due to the flux of Pν through the boundary of this
region. For this reason, T0

νðx; τÞ is the Pν density and
Ti

νðx; τÞ is the Pν flux density. For ν∈ f1; 2; 3g this
equation describes a net change of momentum in the
region:

FVðτÞ≡ −
d
dτ
½PVðτÞ� ¼ −êj

I
∂V

dAiTi
jðx; τÞ: ð14Þ

Since momentum is leaving (or entering) the region V, this
will be felt by the region’s surroundings as a force FVðτÞ,
exerted by the region, which would be measured, for
instance, by a hypothetical pressure gauge placed at the
boundary ∂V. Accordingly, −êjTi

jðx; τÞ is a force per unit
area on a surface with a unit normal êi, and thus has a
straightforward interpretation as a pressure. More gener-
ally, −Ti

jðx; τÞ is referred to as the stress tensor and
encodes the pressures that would be measured on a surface
in any orientation.
For a system in equilibrium, one will have zero net force

exerted by any region V, and thus equal fluxes of
momentum into and out of any region. In integral form,
the equilibrium condition is

êj

I
∂V

dAiTi
jðx; τÞ ¼ 0; ð15Þ

but the divergence theorem can be used to require this in
differential form:

∂iTi
jðx; τÞ ¼ 0: ð16Þ

This is possible even when Ti
jðx; τÞ ≠ 0. If the stress tensor

is nonzero in an equilibrium system, this means that static
pressures will be felt, and in general the pressures will be
anisotropic. The components of Sijðx; τÞ≡ −Ti

jðx; τÞ are
referred to as stresses and Sijðx; τÞ itself as the stress tensor,
and these have an interpretation as furnishing mechanical
pressures in a variety of continuum systems [51,53,55,56],
including fluids [52], solids [57], liquid crystals [58–60],
and neutron stars [54,61]. (See also Ref. [62] for a unified

FIG. 1. A finite spacetime region Ω bounded by two hyper-
surfaces of equal light front time τ0 and τ, drawn in terms of
instant form coordinates. Each slice of fixed light front time
contains the same spatial region V. The future-directed normal nμ
to the equal-light-front-time hypersurfaces is also indicated in this
diagram.
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treatment of liquids, crystals, and liquid crystals.) Since the
fundamental ontological objects of quantum field theory
are fields rather than particles, it is sensible to interpret
QCD as a theory of a continuous medium as well, and to
interpret components of the operator −T̂i

jðxÞ as stresses in
this medium.
Although the mixed upper-lower form of the EMT has

the most straightforward interpretation in terms of energy-
momentum four-currents, it is convenient to work with
tensors having all upper indices. The rules for raising and
lowering indices in Eq. (A3) can be used to rewrite the
energy-momentum four-currents entirely in terms of
TμνðxÞ. In light of this, the following dictionary can be
quickly consulted to ascribe physical meanings to compo-
nents of the EMT in tilted coordinates:

(i) Energy density:

EðxÞ ¼ T0
0ðxÞ ¼ T00ðxÞ − T03ðxÞ: ð17aÞ

(ii) Energy flux density:

FEðxÞ ¼ Ti
0ðxÞêi ¼ ðTi0ðxÞ − Ti3ðxÞÞêi: ð17bÞ

(iii) Momentum density:

PðxÞ ¼ −T0
iðxÞêi

¼ T01ðxÞêx þ T02ðxÞêy þ T00ðxÞêz: ð17cÞ

(iv) Stress tensor (i.e., momentum flux densities):

SijðxÞ ¼ −Ti
jðxÞ

¼ Ti1ðxÞδj1 þ Ti2ðxÞδj2 þ Ti0ðxÞδj3: ð17dÞ

III. CONVOLUTION FORMALISM
FOR PHYSICAL CURRENTS

In our previous work [31,33], we suggested that physical
relativistic densities be identified as expectation values of
local currents for physical states, which include informa-
tion about how the system is prepared (in particular, its
wave packet). If a physical state is described by a density
matrix ρ̂ (which is equal to jΨihΨj for a pure state), this
expectation value can be written (in the Heisenberg
picture):

hJμðxÞi ¼ Tr½ρ̂ĴμðxÞ�⟶
pure state

hΨjĴμðxÞjΨi: ð18Þ

The central idea of Ref. [33] is that if the density is
considered at fixed light front time τ rather than fixed
Minkowski time, and if the longitudinal coordinate is
integrated out, then the physical density can be factorized
into a piece that depends only on its intrinsic structure and a

universal smearing function, the latter of which absorbs all
wave-packet dependence. In particular,1

hJμðx⊥; τÞi2D ≡
Z

dx3hJμðxÞi

¼
X
λ;λ0

Z
d2R⊥Pν

μðR⊥; τ; λ; λ0Þ

× jνðx⊥ − R⊥; λ; λ0Þ; ð19Þ

where jν is the intrinsic four-current density andPμ
ν is the

smearing function. The intrinsic density retains no infor-
mation about the system’s wave packet, encoding only
information about its internal structure (which will differ
between different hadron species), while the smearing
function is independent of hadron species and absorbs
all wave-packet dependence. The very possibility of this
factorization requires the use of light front synchronization,
as proved in Appendix B of Ref. [33].
This relation should generalize to the energy-momentum

tensor,

hTμνðx⊥; τÞi2D ¼
Z

dx3Tr½ ρ̂T̂μνðxÞ�

¼
X
λ;λ0

Z
d2R⊥Qμν

αβðR⊥; τ; λ; λ0Þ

× tαβðx⊥ − R⊥; λ; λ0Þ; ð20Þ

where here tαβ is the intrinsic EMT and Qμν
αβ is the

smearing function.
In Ref. [33], we gave explicit formulas for individual

components of the intrinsic current and associated smearing
functions. The formulas given therein can be written more
compactly as

Pμ
νðR⊥; τ; λ; λ0Þ ¼

Z
d3P

2Pzð2πÞ3
Z

d2Δ⊥
ð2πÞ2 hp; λjρ̂jp

0; λ0i

×
m
Pz

Λ̄μ
νeiΔ0τe−iΔ⊥·R⊥

���
Δz¼0

ð21Þ

for the smearing function, whereΔ0¼p00−p0¼ðP·Δ⊥Þ=Pz

and

jμðb⊥; λ; λ0Þ ¼
Z

d2Δ⊥
ð2πÞ2 ðΛ̄

−1Þμν
hp0; λ0jĴνð0Þjp; λi

2m

× e−iΔ⊥·b⊥
���
Δz¼0

ð22Þ

1Reference [33] used three-dimensional smearing functions
depending on R, but since the R3 coordinate does not appear
in the intrinsic density, no information is lost by using
Pμ

νðR⊥; τÞ≡
R
dR3ðP3DÞμνðR; τÞ instead.
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for the intrinsic electromagnetic current. Here, b⊥¼x⊥−R⊥
is the impact parameter, and additional momentum varia-
bles are given by P ¼ 1

2
ðpþ p0Þ and Δ ¼ p0 − p.

The matrix Λ̄ appearing in these formulas is given by

Λ̄μ
ν ¼

2
6664

Pz=m 0 0 0

Px=m 1 0 0

Py=m 0 1 0

ðPz−P0Þ=m −Px=Pz −Py=Pz m=Pz

3
7775: ð23Þ

It should be noted that despite its similar appearance to
Eq. (A15), Λ̄μ

ν is not a Lorentz boost, as demonstrated
by Eq. (B22).
For the energy-momentum tensor, the analogs of the

equations above are

Qμν
αβðR⊥; τ; λ; λ0Þ ¼

Z
d3P

2Pzð2πÞ3
Z

d2Δ⊥
ð2πÞ2 hp; λjρ̂jp

0; λ0i

×
m
Pz

�
Λ̄μ

αΛ̄ν
β −

Δ2⊥
4P2

z
δμ3δ

ν
3δ

3
αδ

3
β

�

× eiΔ0τe−iΔ⊥·R⊥
���
Δz¼0

ð24Þ

for the smearing function and

tμνðb⊥; λ; λ0Þ ¼
Z

d2Δ⊥
ð2πÞ2R

μν
αβ
hp0; λ0jT̂αβð0Þjp; λi

2m

× e−iΔ⊥·b⊥
���
Δz¼0

; ð25aÞ

Rμν
αβ ¼ ðΛ̄−1ÞμαðΛ̄−1Þνβ

×

(
1 ∶ μ ≠ 3 or ν ≠ 3�
1 − Δ2⊥

4m2

�
−1

∶ μ ¼ ν ¼ 3
ð25bÞ

for the intrinsic EMT.
Equation (25) is the primary formula we shall employ

throughout this work to obtain intrinsic EMT densities. A
proof of this formula, along with proofs of Eqs. (21), (22),
and (24), can be found in Appendix B.

IV. ENERGY-MOMENTUM TENSOR
OF SPIN-ZERO TARGETS

Although we are primarily interested in the proton in this
work, we consider the spin-zero target first as a warm-up
exercise, since the resulting densities are simpler.
The standard form factor breakdown for the EMT of a

spin-zero target is [15]

hp0jT̂μνð0Þjpi ¼ 2PμPνAðΔ2Þ

þ 1

2
ðΔμΔν − Δ2gμνÞDðΔ2Þ: ð26Þ

From Eq. (25), it follows that the intrinsic EMT of a spin-
zero target is

tμνðb⊥Þ ¼ m
Z

d2Δ⊥
ð2πÞ2

�
n̄μn̄νAð−Δ2⊥Þ

þ
�
Δμ

⊥Δν⊥ þ Δ2⊥gμν
4m2

�
Dð−Δ2⊥Þ

�
; ð27Þ

where n̄μ ¼ ð1; 0; 0; 0Þ is defined to project out the zeroth
component of a four-vector when written in covariant form
(with a lower Lorentz index), e.g., n̄μpμ ¼ p0. The inter-
pretations of individual components of the EMT were
described in Sec. II; we shall presently analyze results
for the components in terms of those interpretations.

A. Energy density

Consulting the dictionary of Eq. (17), the rest frame
energy density for a spin-zero target is

Eðb⊥Þ ¼ t00ðb⊥Þ − t03ðb⊥Þ

¼ m
Z

d2Δ⊥
ð2πÞ2

�
Að−Δ2⊥Þ þ

Δ2⊥
4m2

Dð−Δ2⊥Þ
�
e−iΔ⊥·b⊥ :

ð28Þ

This is a new result. Although a priori results exist for
energy densities of spin-zero [31] and spin-half [16] targets
in standard light front coordinates, the tilted coordinate
energy is different from the light front energy, so naturally
Eq. (28) differs from the light front energy density in
Ref. [31]. In fact, the energy in tilted light front coordinates
is equal to the more familiar instant form energy [33], for
which Eq. (28) provides a two-dimensional relativistic
density in the target’s rest frame.
Integrating Eq. (28) gives m as the total energy, as

expected for a system at rest. Additionally, Eq. (28) can be
used to define a rest frame energy radius:

hb2⊥ienergy ≡ 1

m

Z
d2b⊥b2⊥Eðb⊥Þ

¼ 4
dAðΔ2Þ
dΔ2

����
Δ2¼0

−
1

m2
Dð0Þ: ð29Þ

B. Momentum density

From the dictionary in Eq. (17), the momentum density
is given by

Pðb⊥Þ ¼ t01ðb⊥Þêx þ t02ðb⊥Þêy þ t00ðb⊥Þêz
¼ mêz

Z
d2Δ⊥
ð2πÞ2 Að−Δ

2⊥Þe−iΔ⊥·b⊥ ; ð30Þ
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which is nonzero only for the longitudinal momentum.
Significantly, the zmomentum in tilted coordinates is equal
to the plus momentum in light front coordinates: Pz ¼ PþLF.
It is thus not surprising that the momentum density we find
is equal to prior results for the light front momentum
density [17] upon setting PþLF → m.
It is worth stressing (see Ref. [33] and Appendix A)

that—in tilted coordinates—Pz is equal to m rather than 0
at rest. Thus, a nonzero Pz density does not indicate motion
within the system. Rather than a density for a quantity of
motion, the Pz density can be interpreted as an inertia
density, since classically, contravariant components of the
tilted momentum and the velocity are related by pi ¼ pzvi.
On the other hand, the energy fluxes ti0 have a clearer
interpretation as encoding motion within the system. We
shall look at these next.

C. Energy flux density

From the dictionary in Eq. (17), the energy flux density
is given by

FEðb⊥Þ ¼ ðti0ðb⊥Þ − ti3ðb⊥ÞÞêi ¼ 0; ð31Þ

which is identically zero.

D. Stress tensor

Using the dictionary in Eq. (17), the stress tensor for a
spin-zero target is

Sijðb⊥Þ ¼ ti1δj1 þ ti2δj2 þ ti0δj3

¼ 1

4m

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − δijΔ2⊥ÞDð−Δ2⊥Þe−iΔ⊥·b⊥ :

ð32Þ

The transverse components i; j∈ f1; 2g of the stress tensor
by themselves reproduce prior results for the transverse
light front stress tensor [17] if one sets PþLF → m.

More remarkably, however, there is apparently a new
longitudinal pressure,

pzðb⊥Þ≡S33ðb⊥Þ¼−
Z

d2Δ⊥
ð2πÞ2

Δ2⊥
4m

Dð−Δ2⊥Þe−iΔ⊥·b⊥ ; ð33Þ

where, as is standard in continuummechanics [51–53,55–57],
normal stresses are called pressures. Shear stresses involv-
ing the z direction, which would correspond to fluxes of Pz
in the transverse plane or longitudinal fluxes of P⊥, vanish
for the spin-zero target. This is likely a consequence of the z
coordinate dependence being integrated out, as integrating
out x or y likewise leads to the elimination of shear stresses
in integrated-out direction.

V. ENERGY-MOMENTUM TENSOR
OF SPIN-HALF TARGETS

Since our primary objective is to obtain energy-
momentum densities and currents for the proton, we
proceed to consider spin-half targets. We primarily focus
on the symmetric Belinfante EMT, but will briefly consider
how the formalism changes when the asymmetric EMT is
instead used in Sec. V F.
The standard form factor breakdown for the symmetric

EMT for spin-half targets is [15]

hp0; λ0jT̂μνð0Þjp; λi

¼ ūðp0; λ0Þ
�
γfμPνg

2
AðΔ2Þ þ iPfμσνgρΔρ

4m
BðΔ2Þ

þ ΔμΔν − gμνΔ2

4m
DðΔ2Þ

�
uðp; λÞ: ð34Þ

Using formulas from Appendix A of Ref. [33], we can
explicitly evaluate matrix elements of the EMT when
Δz ¼ 0 to be

hp0; λ0jT̂μνð0Þjp; λi ¼ 2PμPν

�
ðσ0Þλ0λAð−Δ2⊥Þ −

iϵαβγδnαn̄βΔγðσδÞλ0λ
2m

Bð−Δ2⊥Þ
�

þ
�
−
iPfμϵνgρστnρPσΔτ

ðP · nÞ ðσ3Þλ0λ þ
mPfμnνg

ðP · nÞ iϵαβγδnαn̄βΔγðσδÞλ0λ
�
Jð−Δ2⊥Þ

þ ΔμΔν − gμνΔ2

2

�
ðσ0Þλ0λ þ

iϵαβγδnαn̄βΔγðσδÞλ0λ
2m

�
Dð−Δ2⊥Þ; ð35Þ

where

JðΔ2Þ ¼ 1

2
ðAðΔ2Þ þ BðΔ2ÞÞ ð36Þ

is the angular momentum form factor [15]. Using Eq. (25) for the intrinsic EMT of a general system then gives

SYNCHRONIZATION EFFECTS ON REST FRAME ENERGY AND … PHYS. REV. D 108, 094026 (2023)

094026-7



tμνðb⊥; λ; λ0Þ ¼ m
Z

d2Δ⊥
ð2πÞ2

�
n̄μn̄ν

�
ðσ0Þλ0λAð−Δ2⊥Þ þ

ðσλ0λ × iΔ⊥Þ · êz
2m

Bð−Δ2⊥Þ
�

þ n̄fμðσλ0λ × iΔ⊥Þνg
2m

Jð−Δ2⊥Þ þ
�
Δμ

⊥Δν⊥ þ gμνΔ2⊥
4m2

��
ðσ0Þλ0λ −

ðσλ0λ × iΔ⊥Þ · êz
2m

�
Dð−Δ2⊥Þ

�
: ð37Þ

As with the spin-zero target, we will use the dictionary in
Eq. (17) to obtain energy and momentum densities and
currents from the intrinsic EMT. We will find the nine
Galilean components of the EMT—that is, the momentum
densities and transverse stress tensor—reproduce results
from standard light front coordinates, but the energy
density, Pz fluxes, and longitudinal energy flux are newly
found.

A. Momentum densities

We consider the momentum densities first. It is instruc-
tive to consider the Pz density and P⊥ densities in separate
equations, as their behavior is quite different. From
Eqs. (25) and (37), we find these densities to be

Pzðb⊥; ŝÞ¼−t03

¼m
Z

d2Δ⊥
ð2πÞ2

�
Að−Δ2⊥Þþ

ðŝ×iΔ⊥Þ · êz
2m

Bð−Δ2⊥Þ
�

×e−iΔ⊥·b⊥ ; ð38aÞ

P⊥ðb⊥; ŝÞ ¼ −t01êx − t02êy

¼ mðŝ · êzÞ
Z

d2Δ⊥
ð2πÞ2

êz × iΔ⊥
2m

Jð−Δ2⊥Þe−iΔ⊥·b⊥ :

ð38bÞ

The Pz density reproduces prior results for the Pþ density
in standard light front coordinates [63] if one sets Pþ → m.
For a free point fermion, AðΔ2Þ ¼ 1 and BðΔ2Þ ¼ 0, so the
Pz density just becomes mδð2Þðb⊥Þ. This is expected
because Pz is the central charge of the Galilean subgroup
and is preserved by transverse boosts, so the barycentric
coordinate R⊥ is a center-of-Pz coordinate and the intrinsic
densities are relative to the center of Pz. (This has been
explained in terms of standard light front coordinates by
Lorcé [64].)
For nonpointlike targets with BðΔ2Þ ≠ 0, transversely

polarized states will exhibit azimuthal modulations in the
Pz density. The behavior is analogous to the modulations in
its charge density [33] and is likewise induced by the
synchronization scheme—specifically by modulations in
the apparent clock rate of matter revolving around the
target’s center. It is worth pointing out that F2ðΔ2Þ—which
controls the charge density modulations—and BðΔ2Þ are
Mellin moments of the same generalized parton distribution

(GPD) Eðx; ξ;Δ2Þ, suggesting that this GPD has an
interpretation in terms of encoding partonic motion.
Despite the presence of these modulations, there is not a

Pz dipole moment. This would, of course, contradict the
barycenter being the center of Pz. If one calculates the Pz
dipole moment from Eq. (38),

hb⊥ipz
¼

Z
d2b⊥b⊥Pzðb⊥; ŝÞ ¼

êz × ŝ
2

Bð0Þ: ð39Þ

However, Bð0Þ ¼ 0, a fact known as the vanishing of the
anomalous gravitomagnetic moment [65]. It follows from
the simultaneous sum rules Að0Þ ¼ 1 (the momentum sum
rule) and Jð0Þ ¼ 1

2
(the angular momentum sum rule).

A radius can be associated with the Pz density

hb2⊥ipz
¼ 1

m

Z
d2b⊥b2⊥Pzðb⊥; ŝÞ ¼ 4

dAðΔ2Þ
dΔ2

���
Δ2¼0

: ð40Þ

This radius has appeared in the literature before. It has been
called a Pþ radius in standard light front coordinates [17],
and occasionally called a mass radius. [As pointed out by
Lorcé et al. [8], mass plays several roles in relativity, and
the Pþ radius could be considered a kind of mass radius.
This is distinct, however, from the energy radius, which we
give in Eq. (46).]
The P⊥ density in Eq. (38) would be the same in standard

light front coordinates being a Galilean component of the
EMT, but to the best of our knowledge this result has not
been previously reported. This density is related to and
tracks the z component of the total angular momentum
density, the latter being

J zðb⊥; ŝÞ ¼ ðb⊥ ×P⊥ðb⊥; ŝÞÞ · êz: ð41Þ

This may appear counterintuitive on first sight, as it
superficially resembles the formula r × p for the orbital
angular momentum of a body. However, the symmetric
Belinfante EMT appears as the source of gravitation in
general relativity, and the equivalence principle implies that
all angular momentum should gravitate the same way.
Thus, neither the Belinfante EMT nor its associated
densities should be able to distinguish between spin and
orbital angular momentum (OAM).
Moreover, despite the superficial resemblance, the right-

hand side of Eq. (41) does not give an OAM density—at
least not in terms of how OAM is usually defined. The
amount of momentum P⊥ðb⊥; ŝÞd2b⊥ contained in a small
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spatial region d2b⊥ is not necessarily the momentum
carried by a constituent of the target. This is especially
clear if the target under consideration is a pointlike particle.
The particle itself is an excitation of a field, which is the
more fundamental object in quantum field theory. The
momentum element P⊥ðb⊥; ŝÞd2b⊥ is the amount of
momentum carried by the field in this small spatial region.
However, the only particle present is the target itself, which
is at rest, so the OAM is zero. Thus Eq. (41) does not
encode an OAM density.

B. Energy fluxes

From Eqs. (25) and (37), we find the energy fluxes to be

FEðb⊥; ŝÞ ¼ ti0êi

¼ m
Z

d2Δ⊥
ð2πÞ2

ŝ × iΔ⊥
2m

Jð−Δ2⊥Þe−iΔ⊥·b⊥ : ð42Þ

There is an energy flux due to the presence of angular
momentum in the system, which is intuitively sensible. The
transverse energy flux in particular is equal to the trans-
verse momentum density. This mimics the well-known fact
that the symmetric EMT in instant form coordinates has
identical momentum densities and energy fluxes.

C. Stress tensor and momentum fluxes

We next consider the intrinsic stress tensor of a spin-half
target. From Eqs. (25) and (37),

Sijðb⊥; ŝÞ≡ −tijðb⊥Þ

¼ mδ3j
Z

d2Δ⊥
ð2πÞ2

ðŝ × iΔ⊥Þi
2m

Jð−Δ2⊥Þe−iΔ⊥·b⊥

þ 1

4m

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥ − δijΔ2⊥Þ

×

	
1 −
ðŝ × iΔ⊥Þ · êz

2m



Dð−Δ2⊥Þe−iΔ⊥·b⊥ : ð43Þ

We have broken the result into two pieces, the first of which
depends on the angular momentum form factor JðΔ2Þ, and
the other of which depends on the form factor DðΔ2Þ.
The first angular momentum piece of the stress tensor

introduces asymmetric shear stresses. Recalling that the
stress tensor consists of momentum fluxes, this piece of the
stress tensor encodes fluxes of Pz in all three spatial
directions, but not of P⊥. Now, a major difference between
Pz and P⊥ in tilted coordinates is that the former is nonzero
even if the velocity is zero; a Pz flux cannot be interpreted
as a flux of some quantity of motion. Since classically p⊥ ¼
pzv⊥ and pz − E ¼ pzvz (these relations can be found in
Appendix A), it should perhaps be the Pz flux minus the
energy flux that is compared to the P⊥ flux:

Fpz
ðb⊥; ŝÞ−FEðb⊥; ŝÞ

¼−mêz

Z
d2Δ⊥
ð2πÞ2

Δ2⊥
4m

	
1−
ðŝ×iΔ⊥Þ · êz

2m



Dð−Δ2⊥Þe−iΔ⊥·b⊥ :

ð44Þ

For comparison, the transverse components of the stress
tensor are

Sij⊥ðb⊥; ŝÞ¼
1

4m

Z
d2Δ⊥
ð2πÞ2 ðΔ

i⊥Δ
j
⊥−δij⊥Δ2⊥Þ

	
1−
ðŝ×iΔ⊥Þ · êz

2m



×Dð−Δ2⊥Þe−iΔ⊥·b⊥ : ð45Þ

Both of these include only the form factor DðΔ2Þ, which
vanishes in the case of a pointlike particle [66] and can be
interpreted as encoding internal dynamics in composite
fermions [66]. For pointlike fermions, then, the energy and
Pz fluxes are not zero, but are instead equal, and differences
between them are an indication of dynamics and internal
motion.
As a last remark, we note that the transverse Pz flux is

equal to the P⊥ density, i.e.,F ð⊥Þpz ðb⊥; ŝÞ ¼ P⊥ðb⊥; ŝÞ. This
seems to comport with the classical tilted coordinate relation
p⊥ ¼ pzv⊥ if it is applied to the momentum carried by the
target in any small region of space. Since this was a classical
relation derived for observable bodies that obey the mass-
shell relation p2 ¼ m2, it is not a formal necessity that small
elements of momenta supported by an infinitesimal region
of space obey this relation, but it is interesting to note.

D. Energy density

The last component of the intrinsic EMT to consider is the
energy density. From Eqs. (25) and (37), using Eðb⊥; ŝÞ ¼
t00ðb⊥; ŝÞ gives exactly Eq. (2) given in the Introduction. The
spin-independent piece of the spin-half energy density is
identical to the spin-zero energy density of Eq. (28). The
spin-dependent piece does not contribute to the energy
radius, which is therefore identical to the spin-zero case:

hb2⊥ienergy ≡ 1

m

Z
d2b⊥b2⊥Eðb⊥; ŝÞ

¼ 4
dAðΔ2Þ
dΔ2

����
Δ2¼0

−
1

m2
Dð0Þ: ð46Þ

The spin-dependent part of the EMT introduces angular
modulations through several of the form factors, which must
be attributed to distinct physical effects. The angular mod-
ulations introduced through the form factor BðΔ2Þ can be
attributed to clock rate modulations, as explained for the Pz

density in Sec. VA. In particular, modulations due to BðΔ2Þ
will increase density on the side of the hadron moving away
from the observer.
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The angular momentum form factor JðΔ2Þ contributes to
angular modulations with the opposite sign from BðΔ2Þ,
thus causing the density to increase on the side moving
toward the observer. This is effectively an artifact of the
density being defined with respect to the center of Pz.
Since Bð0Þ ¼ 0, the amount of Pz on each side of the spin
axis in a transversely polarized fermion is the same. If the
classical relation pz − E ¼ pzvz is assumed to hold for
each half of the fermion, the half moving toward the
observer has vz < 0 and thus should have greater energy,
and the half moving away should have less energy. The
modulations in the energy density arising from JðΔ2Þ
accomplish just this. In fact, by comparing Eqs. (43),
(43), and (2) we find

Pzðb⊥; ŝÞ − Eðb⊥; ŝÞ ¼ êz ·Fpz
ðb⊥; ŝÞ; ð47Þ

meaning that pz − E ¼ pzvz apparently holds for infini-
tesimal elements of the hadron everywhere on the trans-
verse plane.
In contrast to the Pz density, the energy density entails a

synchronization-induced energy dipole moment:

dE ≡ hb⊥iE ¼
Z

d2b⊥b⊥Eðb⊥; ŝÞ

¼ −
êz × ŝ
2

Jð0Þ ¼ −
1

4
êz × ŝ: ð48Þ

We reiterate and stress that this apparent dipole moment
arises from the proton’s “center” being given by the center
of Pz rather than the center of energy. However, the
remaining modulations from the form factors BðtÞ and
DðtÞ—which do not contribute to the dipole moment—may
be due to clock rate modulations, similar to the modulations
in the Pz density.

E. Numerical estimates for the proton

We now consider what the energy and momentum
densities and currents might look like for the proton.
Currently, high-precision empirical results for the proton’s
gravitational form factors do not exist. We shall thus utilize
reasonable model estimates instead.
It is known from holographic QCD models [67–69] that

the pole structures of the gravitational form factors are
dominated by an infinite tower of JPC ¼ 0þþ and 2þþ
glueball resonances—referred to as “glueball dominance”
by Fujita et al. [69], in analogy to the well-known vector
meson dominance [70,71] of electromagnetic form factors.
Fujita et al. also note that simple multipole forms can
reasonably approximate such an infinite tower, as has been
shown explicitly for holographic models of electromagnetic
form factors [72]. Mamo and Zahed [68] in particular find
that the gravitational form factors in their holographic

model can be reasonably estimated by the simple functional
forms2

Að−Δ2⊥Þ ≈
1

ð1þ Δ2⊥=m̃2
TÞ2

; ð49aÞ

Bð−Δ2⊥Þ ≈ 0; ð49bÞ

Dð−Δ2⊥Þ ≈Dð0Þ
1þ Δ2⊥

4m̃2
T
þ Δ2⊥

4m̃2
S

ð1þ Δ2⊥=m̃2
TÞ2ð1þ Δ2⊥=m̃2

SÞ2
; ð49cÞ

where Dð0Þ ¼ −4, m̃T ¼ 1.124 GeV, and m̃S ¼ 1 GeV.
We remark that these form factors are compatible with
lattice data [73] and with recent empirical measurements of
J=ψ photoproduction the J=ψ − 007 experiment [74].
Additionally, the large-t falloff of these form factors
follows the expected behavior from perturbative QCD [75].
Because BðtÞ ¼ 0 in the example we consider, the Pz

density is independent of polarization and is equal to

Pzðb⊥; ŝÞ ¼
m̃3

Tmb⊥
4π

K1ðm̃Tb⊥Þ; ð50Þ

where KνðxÞ is a modified Bessel function of the second
kind [76]. It is worth noting that this density is finite at the
origin:

lim
b⊥→0

Pzðb⊥; ŝÞ ¼
m̃2

Tm
4π

; ð51Þ

in contrast to the 2D Fourier transform of a monopole
form [77].
The transverse momentum density is given by

P⊥ðb⊥; ŝÞ ¼
ðŝ · êzÞðêy cosϕ − êx sinϕÞ

16π
m̃4

Tb⊥K0ðm̃Tb⊥Þ;
ð52Þ

from which it follows that the density of the z component of
angular momentum is

J zðb⊥; ŝÞ ¼
ðŝ · êzÞb2⊥m̃4

T

16π
K0ðm̃Tb⊥Þ: ð53Þ

Numerical results for the momentum and angular momen-
tum densities for a longitudinally polarized proton are
presented in Fig. 2. The Pz density is unchanged for

2We note that Mamo and Zahed [68] use Að0Þ ¼ 0.53 in their
work rather than Að0Þ ¼ 1 as we use here because they are
describing only the gluonic contributions to the gravitational
form factors. The estimates we present are for the total energy-
momentum tensor, including both quark and gluon contributions,
so we simply use their functional form for the Δ⊥ dependence
while imposing the momentum sum rule Að0Þ ¼ 1.
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transversely polarized protons owing to the assumption
BðtÞ ¼ 0, while the P⊥ and Jz densities vanish identically
for transversely polarized protons. The angular momentum
density has an apparent hole in it because b2⊥K0ðm̃Tb⊥Þ
vanishes at the origin.
The energy and momentum flux densities are our next

consideration. The transverse components of the stress tensor
have previously been considered inRefs. [16,17,47,78], with
Ref. [47] in particular exploring the distortions in eigen-
pressure directions that occur in transversely polarized states.
Since tilted coordinates newly allow access to energy and Pz
flux densities, we will focus on these specifically.
As explained in Sec. V C, the transverse Pz flux is equal

to the P⊥ density; and as pointed out in Sec. V B, it is also
equal to the transverse energy flux due to symmetry of the
EMT. We thus point the reader to the middle panel of
Fig. 2 for an estimate of these quantities for a longitudinally
polarized proton.
The longitudinal Pz flux, which can also be interpreted

as pressure in the z direction (since it is a normal stress)
can be obtained by putting Eq. (49) into Eq. (43) with

i ¼ j ¼ 3. One can similarly obtain the longitudinal energy
flux by plugging Eq. (49) into Eq. (42) with i ¼ 3.
Numerical results of taking these 2D Fourier transforms
are presented in Fig. 3.
The longitudinal flux densities all integrate to zero,

which may be difficult to see by eye in the Pz flux plots;
the core of negativePz flux is surrounded by a diffuse cloud
of positive flux. A one-dimensional reduction of Pz flux
density for longitudinally polarized protons is presented
later in Fig. 5, where the vanishing of the net flux is easier
to see.
Finally, from Eqs. (2) and (49) we obtain the energy

density. Numerical results for the energy density of both
longitudinally and transversely polarized states are pre-
sented in Fig. 4. The right panel in particular shows the
energy density of a transversely polarized proton with its
spin-up along the x axis. In these plots, the x axis is vertical
and the y axis horizontal, so that the z axis points into the
page by the right-hand rule. This is done so that the plots
are representative of what an observer would actually see at
fixed light front time. The energy is lopsided on the side of

FIG. 3. Pz and energy flux densities in the z direction. The left panel shows the Pz flux density for a longitudinally polarized state,
while the middle panel shows the same for a transversely polarized state with spin-up along the x axis. The right panel shows the
longitudinal energy flux for this same transversely polarized state. The longitudinal energy flux is identically zero for a longitudinally
polarized state (since energy flux is carried by angular momentum), and is thus not plotted. In these plots, the x axis is oriented vertically
and the y axis horizontally so that the z axis points into the page, allowing plots to mimic what an observer would see at fixed light front
time. Accordingly, positive flux is into the page (away from the observer) and negative flux is out of the page (toward the observer).

FIG. 2. Momentum and angular momentum densities in a proton. (Left panel) The Pz density, which is independent of polarization
under the assumption BðtÞ ¼ 0. (Middle panel) The P⊥ density in a proton that is spin-up along the z axis. (Right panel) The Jz (angular
momentum) density in a proton that is spin-up along the z axis. In these plots, the x axis is oriented vertically and the y axis horizontally
so that the z axis points into the page, allowing plots to mimic what an observer would see at fixed light front time.
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the proton that is revolving toward the observer, in contrast
to the modulations previously seen in the proton’s charge
density [33]. As explained in Sec. V D, these modulations
have a different cause than the charge density modulations,
which were the result of clock rate modulations. The energy
density modulations are largely an artifact of the proton’s
center in the light front formalism being the center of Pz:
there are equal amounts of Pz on both sides of the proton,
and given the tilted coordinate relation pzvz ¼ pz − E,
there must be more energy on the side with vz < 0—i.e.,
the side moving toward the observer.
It is also instructive to consider one-dimensional reduc-

tions of the densities and currents we have calculated. Such
reductions are presented in Fig. 5, specifically for the case
of a longitudinally polarized proton. This figure illustrates
several interesting qualitative features of the energy and
momentum densities. First of all, the magnitude of the
transverse momentum density is much smaller than the Pz
or energy densities. The Pz density, it should be recalled, is

not a measure of motion in tilted coordinates, but can better
be interpreted as a measure of inertia, and, in fact, the Pz
density here integrates to the mass. It is thus not surprising
that the Pz density is much larger than the P⊥ density. On
the contrary, the P⊥ density is quite large, becoming as
large as hundreds of MeV/fm, which is indicative of
ultrarelativistic motion within the proton.
Figure 5 also qualitatively illustrates that the energy

distribution in the proton is broader than the Pz distribution.
Accordingly, the energy radius should be larger than the
momentum radius. Using Eqs. (40) and (46) for the radii,
we find

hb2⊥iPz
¼ ð0.50 fmÞ2; ð54aÞ

hb2⊥iE ¼ ð0.65� 0.02 fmÞ2: ð54bÞ

We stress that these are just illustrative, and not the result of
a precision calculation or extraction from precision empiri-
cal data. Future experiments aimed at extracting general-
ized parton distributions, such as deeply virtual Compton
scattering [22–24,79] and single-diffractive hard exclusive
reactions [80], must be carried out to provide both more
realistic estimates of the proton’s gravitational form factors.
Last, it is more apparent by eye in Fig. 5 that the

longitudinal Pz flux integrates to zero than in the left panel
of Fig. 3.

F. Changes when using the asymmetric EMT

Before concluding, let us consider how the densities we
have present would be modified by including an antisym-
metric piece in the EMT, as defined in Eq. (8). This would
introduce an additional form factor

hp0; λ0jT̂μν
A ð0Þjp; λi ¼ ūðp0; λ0Þγ½μPν�uðp; λÞSðΔ2Þ; ð55Þ

which must be added to the breakdown in Eq. (34). Using
formulas from Appendix A of Ref. [33], we can explicitly
evaluate matrix elements of this when Δz ¼ 0 to be

FIG. 5. One-dimensional reductions of several transverse den-
sities in the proton. The solid blue line is the Pz density; the
dashed orange line is the magnitude of the P⊥ density; the dash-
dotted green line is the energy density; and the dotted red line is
the longitudinal Pz flux.

FIG. 4. Energy density for protons polarized with spin-up along the z axis (left panel) and spin-up along the x axis (right panel). In
these plots, the x axis is oriented vertically and the y axis horizontally so that the z axis points into the page, allowing plots to mimic what
an observer would see at fixed light front time.
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hp0;λ0jT̂μν
A ð0Þjp;λi¼−

�
−
iP½μϵν�ρστnρPσΔτ

ðP ·nÞ ðσ3Þλ0λ

þmP½μnν�

ðP ·nÞ iϵ
αβγδnαn̄βΔγðσδÞλ0λ

�
Sð−Δ2⊥Þ:

ð56Þ

Using Eq. (25), the additional contribution of this anti-
symmetric piece to the intrinsic EMT is

tμνðb⊥; λ; λ0Þ ¼ −m
Z

d2Δ⊥
ð2πÞ2

n̄½μðσλ0λ × iΔ⊥Þν�
2m

Sð−Δ2⊥Þ:

ð57Þ

Adding this to the intrinsic EMTwould alter several of the
densities we explored above. First, in the expression
for the transverse momentum density P⊥ðb⊥; ŝÞ in
Eq. (38), the form factor Jð−Δ2⊥Þ would be replaced by
Jð−Δ2⊥Þ − Sð−Δ2⊥Þ, giving

PðasymÞ⊥ ðb⊥; b̂⊥Þ ¼ P⊥ðb⊥; b̂⊥Þ

−mðêz · ŝÞ
Z

d2Δ⊥
ð2πÞ2

êz × iΔ⊥
2m

× Sð−Δ2⊥Þe−iΔ⊥·b⊥ : ð58Þ

Under the interpretation that Sð−Δ2⊥Þ encodes the spatial
distribution of fermion spin, the J − S difference encodes a
combination of quark OAM and gluon total angular
momentum. Accordingly, when using the asymmetric
EMT, the transverse momentum density tracks this par-
ticular mix of contributions to the angular momentum. If no
gluons were present in the hadron, Jð−Δ2⊥Þ − Sð−Δ2⊥Þ
would simply track OAM. It is interesting to note that for a
free fermion, this form factor difference is zero, and the
transverse momentum density in a free fermion thus
vanishes for the asymmetric EMT.
Second, in the energy flux densityFEðb⊥; ŝÞ of Eq. (42),

Jð−Δ2⊥Þ would be replaced by Jð−Δ2⊥Þ þ Sð−Δ2⊥Þ, giving

F ðasymÞE ðb⊥; b̂⊥Þ ¼ FEðb⊥; b̂⊥Þ þm
Z

d2Δ⊥
ð2πÞ2

ŝ × iΔ⊥
2m

× Sð−Δ2⊥Þe−iΔ⊥·b⊥ : ð59Þ

Along the same vein, the Pz flux is also modified by
replacing Jð−Δ2⊥Þ with Jð−Δ2⊥Þ þ Sð−Δ2⊥Þ in Eq. (43)
giving

F ðasymÞpz ðb⊥; b̂⊥Þ ¼ Fpz
ðb⊥; b̂⊥Þ

þmðêz · ŝÞ
Z

d2Δ⊥
ð2πÞ2

êz × iΔ⊥
2m

× Sð−Δ2⊥Þe−iΔ⊥·b⊥ : ð60Þ

Notably, the transverse Pz flux and transverse momentum
densities are no longer equal for the asymmetric EMT,
meaning small elements of matter inside the hadron no
longer obey the relation p⊥ ¼ pzv⊥. Of course, there is no
formal constraint that formal elements of matter (as
opposed to on-shell particles) must obey this relation, so
the asymmetric EMT is not inconsistent for this.
Last, the energy density Eðb⊥; ŝÞ is modified in Eq. (2)

by replacing Jð−Δ2⊥Þ with Jð−Δ2⊥Þ − Sð−Δ2⊥Þ, giving

EðasymÞðb⊥; b̂⊥Þ ¼ Eðb⊥; b̂⊥Þ −m
Z

d2Δ⊥
ð2πÞ2

êz · ðŝ × iΔ⊥Þ
2m

× Sð−Δ2⊥Þe−iΔ⊥·b⊥ : ð61Þ

It is interesting to note that for a free elementary fermion,
EðasymÞðb⊥; b̂⊥Þ ¼ mδð2Þðb⊥Þ regardless of polarization;
since Jfreeð−Δ2⊥Þ ¼ Sfreeð−Δ2⊥Þ, the antisymmetric contri-
bution to the energy density cancels the angular modu-
lations that occurred in the symmetric EMT. Accordingly,
for the asymmetric EMT, a synchronization-induced energy
dipole moment arises from internal dynamics rather than
being universally present in all fermions. The induced
energy dipole moment in this case is

dðasymÞE ¼
�
−
1

4
þ 1

2
Sð0Þ

�
êz × ŝ ≈ −0.148êz × ŝ; ð62Þ

if we use Sð0Þ ¼ 1
2
ðΔuþ þ ΔdþÞ from JAM estimates [81].

One benefit of the asymmetric EMT is that the energy
and momentum densities are all trivial for a free elementary
fermion, which appeals to intuition about the behavior of
pointlike particles. The symmetric EMT, by contrast,
suggests that pointlike fermions have nontrivial distribu-
tions of energy and momentum. To be sure, this picture
seems more reasonable when recalling that fields are the
fundamental objects of quantum field theories rather than
particles; it is not farfetched to imagine that the fermion
field can carry momentum around the center of an
excitation in the field. For that matter, the flux densities
in the asymmetric EMT of a free fermion are not zero,
meaning that even the asymmetric EMT describes flows of
energy and momentum—but flows that themselves contain
zero momentum. In this regard, the symmetric EMT paints
a more straightforward picture.

VI. CONCLUSIONS

In this work, we constructed and explored a formalism
for obtaining exact, two-dimensional relativistic rest frame
energy-momentum densities and currents for spin-zero and
spin-half targets. We derived a general expression for these
densities in terms of matrix elements of the EMT operator
in Eq. (25), and subsequently obtained more explicit
formulas for specific EMT components in terms of the
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gravitational form factors. Additionally, we provided
numerical estimates for what these densities may look like
for a proton, using the holographic model of Mamo and
Zahed [67,68] in light of the limited empirical data
that exist.
The densities were obtained under a nonstandard time

synchronization convention via tilted light front coordi-
nates, which results in angular modulations in the densities
of transversely polarized systems. These are similar to
previously known modulations in the light front charge
density [33,82], which arise at fixed light front time due to
clock rate modulations for quarks moving toward or away
from the observer. The energy density of transversely
polarized targets has the peculiarity that its sinϕ modu-
lations have the opposite sign from the modulations in any
other density—in particular, energy bunches on the side of
the target moving toward the observer rather than away. As
discussed in Sec. V D, this is an artifact of the hadron’s
barycenter being the center of Pz rather than the center of
energy. Curiously, the synchronization-induced energy
dipole moment of a spin-half target is universally −1=4
if the symmetric Belinfante EMT is used to define the
energy density—even for pointlike fermions. However, if
the asymmetric EMT (defined by Leader and Lorcé [11]) is
used instead, the energy dipole moment is nonuniversal and
vanishes for pointlike fermions (see Sec. V F).
That the energy density should differ depending on

whether the symmetric or asymmetric EMT is used may be
the most peculiar and interesting of our results. It is not
clear whether the energy density can be directly measured
(as opposed to indirectly obtained by taking Fourier
transforms of empirical gravitational form factors) so it
is unclear that these cases can be empirically distinguished.
Nonetheless, the energy density is one of the most
preeminent desired quantities for describing hadron
structure—being closely tied in with the mass decompo-
sition and mass origin questions—and that the different
EMT operators should entail different energy densities
suggests that we ought to seriously consider which is more
appropriate to use.
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APPENDIX A: BASIC IDENTITIES IN TILTED
LIGHT FRONT COORDINATES

For convenience, we reproduce here several identities
involving tilted light front coordinates from our previous
work [33]. In this work, we do not use tildes to signify tilted
coordinates, and expressions without explicit indication of
the coordinate system should be assumed to be in tilted
coordinates. By contrast, we explicitly signify instant form
coordinates with a subscript or superscript IF.
Tilted light front coordinates are defined in terms of

Minkowski (or instant form) coordinates as

τ ¼ x0 ≡ tIF þ zIF; ðA1aÞ

x ¼ x1 ≡ xIF; ðA1bÞ

y ¼ x2 ≡ yIF; ðA1cÞ

z ¼ x3 ≡ zIF: ðA1dÞ

In this way, tilted coordinates operationally correspond
to a change in the way that spatially distant clocks are
synchronized [33,41,44,45]. The metric tensor and its
inverse are

gμν ¼
∂xαIF
∂xμ

∂xβIF
∂xν

gαβ ¼

2
6664

1 0 0 −1
0 −1 0 0

0 0 −1 0

−1 0 0 0

3
7775; ðA2aÞ

gμν ¼ ∂xμ

∂xαIF

∂xν

∂xβIF
gαβ ¼

2
6664

0 0 0 −1
0 −1 0 0

0 0 −1 0

−1 0 0 −1

3
7775: ðA2bÞ

Covariant (lower-index) and contravariant (upper-index)
four-vector components are related by

Aμ ¼ gμνAν; Aμ ¼ gμνAν; ðA3aÞ

which in terms of individual components gives

A0 ¼ A0 − A3; A0 ¼ −A3; ðA3bÞ

A1 ¼ −A1; A1 ¼ −A1; ðA3cÞ

A2 ¼ −A2; A2 ¼ −A2; ðA3dÞ

A3 ¼ −A0; A3 ¼ −A0 − A3: ðA3eÞ

The energy and momentum are defined to be time and
space translation generators,
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i½E; ÔðxÞ� ¼ ∂0ÔðxÞ; ðA4aÞ

−i½p; ÔðxÞ� ¼ ∇ÔðxÞ; ðA4bÞ

meaning they are related to covariant (lower-index) com-
ponents of the four-momentum pμ:

pμ ≡ ðE;−px;−py;−pzÞ: ðA5Þ

The tilted coordinate energy and momentum have
the following relationships to instant form energy and
momentum:

E ¼ EIF; ðA6aÞ

px ¼ pIF
x ; ðA6bÞ

py ¼ pIF
y ; ðA6cÞ

pz ¼ EIF þ pIF
z : ðA6dÞ

The energy of a particle with mass m is given by

E ¼ m2 þ p2

2pz
: ðA7Þ

The momentum and velocity are related in the follow-
ing way:

vx ¼
px

pz
; ðA8aÞ

vy ¼
py

pz
; ðA8bÞ

vz ¼ 1 −
E
pz

: ðA8cÞ

Notably, at rest, one has prest ¼ ð0; 0; mÞ. This occurs
because pz is defined to be the generator of translations
rather than to be proportional to velocity.
As usual, boosts transform contravariant four-vectors

according to the formula

A0μ ¼ Λμ
νAν: ðA9Þ

An active transverse boost can be written in matrix
form as

ðΛ⊥Þμν ¼

2
6664

1 0 0 0

βx 1 0 0

βy 0 1 0

−β2⊥=2 −βx −βy 1

3
7775; ðA10Þ

where β⊥ ¼ ðβx; βyÞ is the velocity of the boost. An active
longitudinal boost can be written

ðΛkÞμν ¼

2
6664

eη 0 0 0

0 1 0 0

0 0 1 0

sinh η 0 0 e−η

3
7775: ðA11Þ

Here, η is the rapidity of the longitudinal boost and is
related to the velocity vz of the boost by

βkz ¼ e−η sinhðηÞ ¼ 1

2
ð1 − e−2ηÞ: ðA12Þ

As discussed in the main text, we consider states with
arbitrary momentum p to be reached from the rest state
through a longitudinal boost followed by a transverse
boost. This combined boost can be written

ðΛÞμν ¼ ðΛ⊥ΛkÞμν ¼

2
6664

eη 0 0 0

eηβx 1 0 0

eηβy 0 1 0

eηβz −βx −βy e−η

3
7775: ðA13Þ

Here,

βz ¼ e−η sinhðηÞ − β2⊥
2
¼ βkz −

β2⊥
2
; ðA14Þ

as light front transverse boosts impart longitudinal velocity
to the system, so the total longitudinal velocity of the
combined boost differs from that of the longitudinal boost
alone. Notably, the transverse boosts are defined to leave pz
invariant, but the relationship between pz and vz [see
Eq. (A8)] means that vz must change. From Eqs. (A7) and
(A8), the boost that takes a system from rest to an arbitrary
momentum p can be written in terms of its energy and
momentum as

Λμ
ν¼

2
6664

pz=m 0 0 0

px=m 1 0 0

py=m 0 1 0

ðpz−EÞ=m −px=pz −py=pz m=pz

3
7775: ðA15Þ

APPENDIX B: PROOFS OF INTRINSIC
DENSITY FORMULAS

In this appendix, we prove the intrinsic density formulas
Eqs. (22) and (25). The premises underlying the proof are
the universality (target independence) of the smearing
functions in Eqs. (19) and (20), certain reasonable expect-
ations for the intrinsic densities of point particles, and the

SYNCHRONIZATION EFFECTS ON REST FRAME ENERGY AND … PHYS. REV. D 108, 094026 (2023)

094026-15



requirement that the smearing does not mix different
irreducible representations of the Lorentz group.
Our strategy is to utilize the universality of the smearing

functions. By finding the physical densities and the
intrinsic densities in simple cases where both are already
known, components of the smearing functions can be
deduced. Since the smearing functions are target indepen-
dent, these same smearing functions are also applicable to
hadrons. We thus begin by proving Eqs. (21) and (24).
Once the smearing functions have been obtained,

Eqs. (19) and (20) can be inverted to obtain general
formulas for the intrinsic densities. Thus, after obtaining
the smearing functions, we prove that Eqs. (22) and (25) are
the results of this inversion.
Throughout this proof, we find it especially helpful to

work with Fourier transforms, utilizing the convolution
theorem. The Fourier transforms of Eqs. (19) and (20) are

hJμðΔ⊥; τÞi2D ¼
X
λ;λ0

Pμ
νðΔ⊥; τ; λ; λ0ÞjνðΔ⊥; λ; λ0Þ

���
Δz¼0

;

ðB1aÞ

hTμνðΔ⊥;τÞi2D¼
X
λ;λ0

Qμν
αβðΔ⊥;τ;λ;λ0ÞtαβðΔ⊥;λ;λ0Þ

���
Δz¼0

;

ðB1bÞ

whereΔ⊥ is the Fourier conjugate of the position argument.
When these are written as functions of Δ⊥, it should be
implicitly assumed that we mean the Fourier transform of
this function.
Given Eqs. (18) and (20), the Fourier transforms of the

physical current and EMT densities can be written

hJμðΔ⊥Þi2D ¼
X
λλ0

Z
d3P

2Pzð2πÞ3
hp; λjρ̂jp0; λ0i

×
hp0; λ0jĴμð0Þjp; λi

2Pz
eiΔ0τ

���
Δz¼0

; ðB2aÞ

hTμνðΔ⊥Þi2D ¼
X
λλ0

Z
d3P

2Pzð2πÞ3
hp; λjρ̂jp0; λ0i

×
hp0; λ0jT̂μνð0Þjp; λi

2Pz
eiΔ0τ

���
Δz¼0

; ðB2bÞ

where Δ0 ¼ p00 − p0 ¼ ðP · Δ⊥Þ=Pz. If we define non-
script counterparts to the smearing functions via

Pμ
νðΔ⊥; τ; λ; λ0Þ ¼

Z
d3P

2Pzð2πÞ3
hp; λjρ̂jp0; λ0i

×
m
Pz

pμνðP;Δ⊥ÞeiΔ0τ
���
Δz¼0

; ðB3aÞ

Qμν
αβðΔ⊥; τ; λ; λ0Þ ¼

Z
d3P

2Pzð2πÞ3
hp; λjρ̂jp0; λ0i

×
m
Pz

qμναβðP;Δ⊥ÞeiΔ0τ
���
Δz¼0

; ðB3bÞ

then Eq. (B1) can be reduced to

hp0; λ0jĴμð0Þjp; λi
2m

����
Δz¼0
¼ pμνðP;Δ⊥ÞjνðΔ⊥; λ; λ0Þ; ðB4aÞ

hp0;λ0jT̂μνð0Þjp;λi
2m

����
Δz¼0
¼qμναβðP;Δ⊥ÞtαβðΔ⊥;λ;λ0Þ: ðB4bÞ

Thus Eq. (21) is true if pμν ¼ Λ̄μ
ν and Eq. (24) is true if

qμναβ ¼ ðΛ̄μ
αΛ̄ν

β −
Δ2⊥
4P2

z
δμ3δ

ν
3δ

3
αδ

3
βÞ. We shall proceed to

prove these relations.

1. Constraints from Galilean densities

The components of the intrinsic densities with indices
0, 1, and 2 when written in contravariant form (i.e., with all
indices raised) are known as Galilean densities [16,17], and
we refer to them here as the Galilean components of jμ and
tμν. The remaining non-Galilean components (those with
a 3 as an index in contravariant form) do not mix into the
Galilean components under transformations in the Galilean
subgroup of the Poincaré group (see discussions in
Refs. [16,33,36,83]). For these components, the intrinsic
transverse densities are already known in the literature
[16,17,27,33,36,37]. To obtain them, one simply applies
the rest condition P ¼ ð0; 0; mÞ [see Eq. (A8)] to the
kinematic components of the average target momentum
in the standard hadronic matrix elements, and sets Δz ¼ 0
since the z coordinate is integrated out:

jCðΔ⊥; λ; λ0Þ ¼
hp0; λ0jĴCð0Þjp; λi

2m

����
P¼ð0;0;mÞ;Δz¼0

; ðB5aÞ

tCDðΔ⊥; λ; λ0Þ ¼
hp0; λ0jT̂CDð0Þjp; λi

2m

����
P¼ð0;0;mÞ;Δz¼0

: ðB5bÞ

Here, we use uppercase Latin letters fA;B; C;Dg for
indices constrained to f0; 1; 2g. On the other hand, the
Galilean components of the left-hand side of Eq. (B4) are
given by the same matrix elements without the rest
condition applied. The matrix elements in the rest frame
and moving frame are connected by Lorentz boosts, which
in general require the application of Wigner rotations, as
observed by Lorcé, for instance [38]. However, the spin
dependence appearing in these matrix elements is through
the light front helicity λ, which is invariant under light front
boosts [33,83]. Thus, the Wigner rotations are trivial in this
framework, and we simply have
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hp0; λ0jĴAð0Þjp; λijΔz¼0

¼ ΛA
CðPÞhp0; λ0jĴCð0Þjp; λijP¼ð0;0;mÞ;Δz¼0; ðB6aÞ

hp0; λ0jT̂ABð0Þjp; λijΔz¼0

¼ ΛA
CðPÞΛB

DðPÞhp0; λ0jT̂CDð0Þjp; λijP¼ð0;0;mÞ;Δz¼0:

ðB6bÞ

Crucially, the validity of these formulas follows from the fact
that non-Galilean components do not mix into Galilean
components under boosts; see Eq. (A15). Since for the
Galilean components specifically,ΛA

CðPÞ ¼ Λ̄A
C [compare

Eqs. (23) and (A15)], it follows that pAC ¼ Λ̄A
C and

qABCD ¼ Λ̄A
CΛ̄B

D. Additionally, since we have seen that
the Galilean components of the physical densities are
independent of the non-Galilean components of the intrinsic
densities, it follows that pA3 ¼ 0 and qABα3 ¼ qAB3β ¼ 0.
To deduce the remaining components of p and q, we

consider pointlike targets. Since the smearing functions are
universal (i.e., target independent), the smearing functions
obtained for pointlike targets are also applicable to hadrons.

2. Remaining components of electromagnetic
smearing function

The components p3A for the electromagnetic smearing
function can be deduced by considering a point particle
with chargeQ and magnetic dipole moment μ

2m in a definite-
helicity state. The intrinsic Galilean charge and current
densities are known, with the following Fourier transforms:

j0ðΔ⊥Þ ¼ Q; ðB7aÞ

j⊥ðΔ⊥Þ ¼
μλ

2m
ðêz × iΔ⊥Þ: ðB7bÞ

The matrix elements appearing in the physical densities are
also known, and using identities in Appendix A of Ref. [33]
gives

hp0; λ0jĴμð0Þjp; λi
2m

¼ Q
Pμ

m
þ μλ

2m
ðêz × iΔ⊥Þμ

−
μλ

2m
ðêz × iΔ⊥Þ ·

P
Pz

δμ3: ðB8Þ

From this and Eq. (23), a little algebra can be used to show

hp0; λ0jĴμð0Þjp; λi
2m

¼ Λ̄μ
νjμðΔ⊥Þ: ðB9Þ

Comparing to Eq. (B4), this shows that pμν ¼ Λ̄μ
ν as long

as μ ≠ 3 or ν ≠ 3; p33 remains undetermined because
j3ðΔ⊥Þ ¼ 0 in the case we just considered.

This last component can be obtained by considering the
point charge to be polarized in the transverse plane. In this
case, the charge density may (and, in fact, does) contain
synchronization artifacts due to the presence of a
z-direction current. However, the intrinsic current density
of a point magnetic dipole is stationary and thus unaltered
by synchronization effects. Accordingly, the intrinsic
z-direction current has the Fourier transform

jðΔ⊥Þ ¼
μ

4m
ŝ⊥ × iΔ⊥: ðB10Þ

Using identities from Appendix A of Ref. [33], the matrix
element appearing in the physical four-current for this
state is

hp0; λ0jĴμð0Þjp; λi
2m

¼ Pμ

m

�
Qþ μ

2m
ðŝ⊥ × iΔ⊥Þ · êz

�

þ μ

4Pz
ðŝ⊥ × iΔ⊥Þμ: ðB11Þ

One can read off the terms multiplying Pμ

m as coming from
the intrinsic charge density. The remaining term is related to
the intrinsic current density via

μ

4Pz
ðŝ⊥ × iΔ⊥Þ3 ¼

m
Pz

μ

4m
ðŝ⊥ × iΔ⊥Þ3

¼ Λ̄3
3j3ðΔ⊥Þ; ðB12Þ

meaning p33 ¼ Λ̄3
3. Thus pμν ¼ Λ̄μ

ν holds for all compo-
nents, from which Eq. (21) follows.

3. Remaining components of EMT
smearing function

The remaining components of the EMT smearing func-
tion can be derived in a similar manner to the electromag-
netic smearing functions, namely by considering pointlike
particles. The universality of the smearing functions again
means that the results are also applicable to hadrons.
As a first example, we consider a point mass without

spin. The intrinsic EMT density of this system has a Fourier
transform

t00ðΔ⊥Þ ¼ m: ðB13Þ

The matrix element appearing in the physical EMT density
of the point mass (with zero D-term and no spin) is

hp0jT̂μνð0Þjpi
2m

¼ m
PμPν

m2
¼ Λ̄μ

0Λ̄ν
0t00ðΔ⊥Þ: ðB14Þ

Thus, qμν00 ¼ Λ̄μ
0Λ̄ν

0.
Next, we consider a point particle with spin oriented

along the z axis. In addition to the intrinsic t00 density noted
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above, there are additional momentum densities, with
Fourier transforms

t0iðΔ⊥Þ ¼ ti0ðΔ⊥Þ ¼
λ

2
ðêz × iΔ⊥Þi ðB15Þ

for i ¼ 1, 2, which reproduces a point distribution of total
angular momentum λ ¼ � 1

2
at the origin. The matrix

element appearing in the physical EMT density of this
point particle is given by

hp0jT̂μνð0Þjpi
2m

¼ m

�
PμPν

m2
þ λ

2

Pfμðêz × iΔ⊥Þνg
m

−
λ

2
ðêz × iΔ⊥Þ ·

P
Pz

Pfμδνg3
m

�
: ðB16Þ

We already know the PμPν

m2 structure is the contribution from
the intrinsic t00 density. The new structure can be confirmed
component by component to be equal to

Pfμðêz × iΔ⊥Þνg
m

− ðêz × iΔ⊥Þ ·
P
Pz

Pfμδνg3
m

¼ Λ̄μ
αΛ̄ν

βn̄fαðêz × iΔ⊥Þβg; ðB17Þ
meaning that qμνCD ¼ Λ̄μ

CΛ̄ν
D, where C;D∈ f0; 1; 2g.

Components of q with 3 in the latter two indices remain
to be determined.
Just as with the electromagnetic case, we next consider a

point mass with spin oriented in the transverse plane. The
t00 density can (and will) obtain angular modulations, but
the t03 and t30 densities—such as the j3 density in the
electromagnetic case—should be related to the longitudi-
nally polarized t0i densities by rotation, since the angular
momentum is stationary. These Fourier transforms of
densities are thus

t03ðΔ⊥Þ ¼ t30ðΔ⊥Þ ¼
λ

2
ðŝ × iΔ⊥Þ · êz: ðB18Þ

The matrix element appearing in the corresponding physi-
cal EMT is

hp0jT̂μνð0Þjpi
2m

¼ m

�
PμPν

m2

�
1þ ðŝ⊥ × iΔ⊥Þ · êz

2m

�

þ λ

2

Pfμðŝ⊥ × iΔ⊥Þνg
Pz

�
: ðB19Þ

The PμPν

m2 piece (which indeed has angular modulations) can
be read off as giving the intrinsic t00 density. For the
remaining piece, one can confirm component by compo-
nent that

Pfμðŝ⊥ × iΔ⊥Þνg
Pz

¼ Λ̄μ
αΛ̄ν

βn̄fαðŝ × iΔ⊥Þβg; ðB20Þ

from which it follows that qμνC3 ¼ Λ̄μ
CΛ̄ν

3 and qμν3D ¼
Λ̄μ

3Λ̄ν
D. Only q3333 remains undetermined.

The final component of the EMT smearing function is
obtained by the requirement that different irreducible
representations of the Lorentz group do not mix under
smearing. The EMT operator can be decomposed into a
pure trace part in the (0,0) representation and a traceless
part in the (1,1) representation [3], and in principle the
formalism considered in this work should be applicable to
these parts separately.
A necessary condition for this requirement to be

observed is that smearing maps the metric into itself:

qμναβgαβ ¼ gμν: ðB21Þ
Using Eq. (23), and the equation for the tilted coordinate
metric Eq. (A2), we find

Λ̄μ
αΛ̄ν

βgαβ ¼ gμν þ δμ3δ
ν
3

Δ2⊥
4P2

z
: ðB22Þ

(This demonstrates that Λ̄ is not a Lorentz boost, since
Lorentz boosts leave the metric invariant.) Thus we observe
that qμναβ ≠ Λ̄μ

αΛ̄ν
β as has apparently been observed for all

the other components, but that there must be a departure
from this in order to preserve the metric. The metric is

preserved if q3333 ¼ ðΛ̄3
3Λ̄3

3 −
Δ2⊥
4P2

z
Þ, which means that

qμναβ ¼ ðΛ̄μ
αΛ̄ν

β −
Δ2⊥
4P2

z
δμ3δ

ν
3δ

3
αδ

3
βÞ. With this rule, the metric

is preserved, and Eq. (24) follows.

4. Inversions of convolution formulas

Since we know that the smearing functions are given by
Eqs. (21) and (24), the reduced convolution relations of
Eq. (B4) can be written

hp0; λ0jĴμð0Þjp; λi
2m

¼ Λ̄μ
νjνðΔ⊥; λ; λ0Þ; ðB23aÞ

hp0; λ0jT̂μνð0Þjp; λi
2m

¼
�
Λ̄μ

αΛ̄ν
β −

Δ2⊥
4P2

z
δμ3δ

ν
3δ

3
αδ

3
β

�
× tαβðΔ⊥; λ; λ0Þ: ðB23bÞ

Since Λ̄ is an invertible matrix (its determinant being 1),
these equations can be inverted. For the current, this
immediately gives Eq. (22). For the EMT, we have an
additional step; matrix inversion gives

tμνðΔ⊥; λ; λ0Þ −
Δ2⊥
4m2

δμ3δ
ν
3t

33ðΔ⊥; λ; λ0Þ

¼ Λ̄μ
αΛ̄ν

β
hp0; λ0jT̂αβð0Þjp; λi

2m
: ðB24Þ

For μ ≠ 3 or ν ≠ 3 the left-hand side is already the desired
quantity tμνðΔ⊥; λ; λ0Þ, while for μ ¼ ν ¼ 3 the equation

needs to be dividedby ð1 − Δ2⊥
4m2Þ to obtain the desired quantity.

Form this, Eq. (25) follows. This completes the proof.
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