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(Dated: May 17, 2023)

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized 8.5GeV
photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for
charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction
of the vector meson ρ(770). The statistical precision achieved exceeds that of previous experiments for polarized
photoproduction in this energy range by orders of magnitude. We confirm a high degree of s-channel helicity
conservation at small squared four-momentum transfer t and are able to extract the t-dependence of natural
and unnatural-parity exchange contributions to the production process in detail. We confirm the dominance of
natural-parity exchange over the full t range. We also find that helicity amplitudes in which the helicity of the
incident photon and the photoproduced ρ(770) differ by two units are negligible for −t < 0.5GeV2/c2.

I. INTRODUCTION

The photoproduction of ρ(770) mesons off the proton is
one of the photoproduction processes in which the spin state
of the incident photon is conserved in the produced vector
meson. The reaction can be described by the vector-meson-
dominance model [1] where the incident photon fluctuates
into a vector meson (e.g. ρ(770)) which then interacts with
the target nucleon. At beam energies well above 10GeV, the
process is expected to proceed through diffractive scattering
with s-channel helicity conservation [2–4] (SCHC). In order
to describe this process, both the differential cross section for
ρ(770) photoproduction and the spin-density matrix elements
(SDMEs) need to be measured. The SDMEs provide a mea-
sure of the transfer of the photon spin state to that of the vector
meson. A detailed description of the SDMEs, and their con-
nection to photoproduction, can be found in Ref. [5]. More
recently, Tabakin and colleagues have revisited the topic of
vector-meson SDMEs in several different frameworks [6–8].
With a beam of linearly polarized photons, nine real elements
of the complex-valued spin-density matrix can be measured,
and, in the case of SCHC, all but two of these should be zero
when measured in the helicity system (see Sec. V A).

The first measurements of SDMEs in the photoproduction
of ρ(770) mesons with linearly polarized photons in the 1.4 to
3.3 GeV energy range came from DESY [9]. Their measure-
ments of the beam asymmetry suggested nearly pure diffrac-
tive photoproduction over the entire energy range. A later
measurement from Cornell using 3.5GeV linearly polarized
photons also reported on the beam asymmetry, but saw some
deviation from diffractive behavior [10]. Several measure-
ments from SLAC with linearly polarized photons of energy
2.8 and 4.7GeV [11, 12] and later including 9.3GeV pho-
tons [13] reported detailed SDMEs as well as agreement with
SCHC and dominance of natural-parity exchange (NPE) in the
production process (see Appendix A for a discussion of SCHC
and NPE). Subsequent experiments at CERN with unpolar-
ized 20 to 70GeV photons measured the three unpolarized
SDMEs [14]. Finally, measurements with the Hybrid Bub-
ble Chamber facility at SLAC measured the ρ(770) SDMEs
with 20GeV linearly polarized photons [15]. While of lim-
ited statistical precision, all previous measurements are con-
sistent with a dominance of natural-parity exchange and show

∗ Corresponding author: aaustreg@jlab.org

that SCHC is valid at least over a limited range in momentum
transfer t (see Appendix A).

The Joint Physics Analysis Center (JPAC) has recently de-
veloped a model based on Regge theory amplitudes to de-
scribe the photoproduction of light vector mesons [16]. JPAC
fitted this model to the SLAC results and other cross section
measurements, and produced theoretical predictions for the
spin-density matrix elements at 8.5GeV. According to the
prediction, the dominant contributions to the photoproduction
of the ρ(770) meson at this beam energy stem from Pomeron
and f2(1270) exchanges. The analytical form of this model
uses an expansion in

√
−t/cm0 where m0 is the mass of the

vector meson. Since it only takes into account the leading
terms of this expansion, we limit the comparison with our data
to −t < m2

0c2 ≈ 0.5GeV2/c2 even though our results cover a
larger range in t.

Sections II, III and IV describe the experimental setup and
data collection, the selection of ρ(770) production events
from the data and the determination of the detector’s accep-
tance. Section V sets out the details of the analysis: it shows
how the spin-density matrix elements are obtained from the
angular distribution of the ρ(770)’s decay products, and de-
scribes the fit method and the measurements’ uncertainties.
Section VI presents and discusses the results. In Appendix A
we discuss s-channel helicity conservation and its implica-
tions for spin-density matrix elements of vector-meson states
produced by natural-parity exchange. The measurements pre-
sented in this article supersede preliminary GlueX results [17].

II. THE GLUEX EXPERIMENT

The GlueX experiment [18] at the Thomas Jefferson Na-
tional Accelerator Facility is part of a global effort to study
the spectrum of hadrons. A primary electron beam with an
energy of up to 12GeV is used to produce a secondary pho-
ton beam which impinges on a liquid-hydrogen target. The
scattered electrons tag the energy of the beam photons. A
high beam intensity provides a sufficiently large reaction rate
to study rare processes. The GlueX detector has been specif-
ically designed to map the light-quark meson spectrum up to
masses of approximately 3GeV/c2 with full acceptance for all
decay modes. A 2 T superconducting solenoid houses the tar-
get, a start counter [19], central [20] and forward drift cham-
bers [21], and a barrel calorimeter [22]. A forward calorimeter
completes the forward photon acceptance and a time-of-flight
counter provides particle identification capability.

mailto:aaustreg@jlab.org
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The key feature of GlueX is its capability to use a polarized
photon beam. Linear polarization of the photons is achieved
by coherent bremsstrahlung of the primary electron beam on a
thin diamond radiator. With a collimator reducing the contri-
bution from the incoherent bremsstrahlung spectrum, a degree
of linear polarization of up to 35% is achieved in the coherent
peak at 8.8GeV. In order to cancel apparatus effects, data are
collected with the polarization plane in four different orien-
tations, rotated about the beam direction in steps of 45◦. The
degree of polarization is measured using the triplet production
effect [23]. As the primary electron beam helicity is flipped
pseudo-randomly multiple times per second, the circularly po-
larized component of the photon beam is averaged out.

The photon beam polarization imposes constraints on the
properties of the production process. It may be used as a fil-
ter to enhance particular resonances or as an additional in-
put to multidimensional amplitude analyses. To this end,
the photoproduction mechanism must be understood in great
detail. Only very limited data from previous experiments
are available at these energies. GlueX has already mea-
sured beam-asymmetry observables for the production of
several pseudoscalar mesons: γ p → π0 p [24], γ p → η p
and γ p → η ′(958)p [25], γ p → K+Σ0 [26], and γ p →
π−∆++(1232) [27]. In addition to the beam-asymmetry mea-
surements, we have also reported SDMEs for the photopro-
duction of the Λ(1520) [28]. As an extension of this program,
the following analysis studies the production process for the
ρ(770) vector meson.

The first phase of the GlueX experiment, consisting of three
run periods, recorded a total integrated luminosity in the co-
herent peak of about 125pb−1. Only the data from the first of
those run periods (about 17% of the full data set) are used to
produce the results discussed here.

III. DESCRIPTION OF DATA SET

We study the reaction γ p → ρ(770)p, where the ρ(770)
meson decays predominantly into the π+π− final state [29].
We select exclusive events by completely reconstructing the
final state π+π−p with all particle trajectories originating
from the same vertex. A seven-constraint kinematic fit is
performed on each event. This fit enforces energy and mo-
mentum conservation for the reaction γ p→ π+π−p as well
as a common vertex for all particles, thus removing back-
grounds originating from misidentified charged tracks and
non-exclusive events. The final event selection is applied for
all figures in this section. Figure 1 shows the squared missing
mass from the assumed reaction γ p→ π+π−Xmiss p calculated
using the values of momentum and energy of the final-state
particles before they are constrained by the kinematic fit. The
observed peak very close to zero implies that there are no mas-
sive missing particles.

The π+π−p final state measured by the GlueX detector is
matched to the initial state photon via its energy and timing.
Due to the large incoming photon flux and limited resolution,
accidental coincidences can fulfill the matching requirement
and contaminate the event sample. The primary electron beam

is produced with a 250 MHz time structure, which translates
into photon beam bunches that are 4ns apart. We estimate the
accidental background by intentionally selecting events from
neighboring beam bunches. In this analysis, we select four
beam bunches on each side of the prompt signal peak as side
band regions and weight those events by− 1

8 to achieve similar
statistical precision for signal and background. About 20% of
the events are statistically subtracted from the signal sample
with this method.

Due to the requirement for a successfully reconstructed
proton track, the distribution of the squared four-momentum
transfer t shows a depletion at zero (see Fig. 2). Since the ac-
ceptance is very low in this region, we discard all events with
−t below 0.1GeV2/c2. Above −t = 1GeV2/c2, the slope of
the distribution has changed visibly, which indicates a devia-
tion from a simple t-channel process. To avoid effects from
potential target excitation, we limit the analysis to the region
below this value of −t.

We separate the ρ(770) meson signal from the continu-
ous π+π− spectrum by selecting the invariant mass of the
di-pion system to be between 0.60 and 0.88GeV/c2. This
selection suppresses non-π+π− background to an almost neg-
ligible amount, but is not able to distinguish the ρ(770) res-
onance from contributions from non-resonant ππ production.
It is well known that the interference between the ρ(770) res-
onance and the underlying non-resonant background can shift
the apparent mass of the vector meson [30]. We observe the
ρ(770) peak in the π+π− mass distribution (see Fig. 3) about
18MeV/c2 below the PDG average for the mass of the photo-
produced neutral ρ(770), which is 769.2±0.9MeV/c2 [29].

A simulation of possible background channels indicates
that the contribution of final states other than exclusive π+π−

production is negligible, at less than 1 in 1000. This study
also shows that the decay ω(782)→ π+π− constitutes an ir-
reducible background component. As the decay is suppressed
by G-parity, it only amounts to approximately 0.4% of the data
sample. This agrees with the estimation from known cross
sections and branching fractions [29] and has no measurable
impact on the presented results.

In total, we obtain data samples with nearly 9×106 ρ(770)
candidate events for each of the four orientations of the beam-
photon polarization. We extract the spin-density matrix ele-
ments in 18 bins of−t between 0.1 and 1.0GeV2/c2. In order
to approximately balance the number of events in each bin,
we use a logarithmic function for the bin boundaries.

IV. SIMULATION OF DETECTOR ACCEPTANCE

To extract the spin-density matrix elements of the ρ(770)
from the measured angular distribution of its decay products,
we must correct for acceptance effects. The acceptance of the
GlueX detector has been simulated based on a Geant4 [31]
detector model, with a subsequent smearing step to reproduce
the resolution effects of the individual detector subsystems.
Detailed comparisons between the simulation and measure-
ments have been reported elsewhere [18].

We simulate a signal sample that reproduces the produc-
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FIG. 1. The squared missing mass distribution from the reaction
γ p→ π+π−Xmiss p calculated using the values of momentum and
energy of the final-state particles before they are constrained by the
kinematic fit.
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FIG. 2. The distribution of the squared four-momentum transfer −t.
The dashed vertical lines indicate the range analyzed.

tion kinematics of the measured process, but has an isotropic
distribution in the decay angles. To describe the process
γ p→ π+π−p, we assume an exponential distribution of the
squared four-momentum transfer, i.e. proportional to ebt with
the slope parameter b = 6(GeV/c)−2. This simplified model
does not reproduce the experimentally observed t-distribution
exactly (see Fig. 2), but serves as a good approximation when
binning finely in t. We model the shape of the π+π− invariant
mass distribution in the range between 0.60 and 0.88GeV/c2

using a relativistic P-wave Breit-Wigner [32] function with an
orbital angular momentum barrier factor F that is parameter-

0.6 0.65 0.7 0.75 0.8 0.85
)2c Invariant Mass (GeV/-π+π

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
610×

2 c
E

ve
nt

s 
/ 0

.7
 M

eV
/

Reconstructed Data

MC Simulation

FIG. 3. The invariant mass distribution of the produced π+π− sys-
tem. The small difference between data and simulation is due to non-
resonant background under the ρ(770), which is not present in the
simulation. For further analysis, the simulated events are re-weighted
in order to match the mass distribution of the measured data exactly.

ized according to Ref. [33]:

BW (m) =

√
m0Γ0

m2−m2
0− im0Γ(m,L)

(1)

with Γ(m,L) = Γ0
q
m

m0

q0

[
F(q,L)
F(q0,L)

]2

. (2)

Here, q signifies the breakup momentum of the pions and
q0 is the breakup momentum at the nominal resonance
mass m0. The reconstructed mass distribution from the
Monte Carlo simulation approximates the experimentally
measured one with the parameters m0 = 757MeV/c2 and
Γ0 = 146MeV/c2 (see Fig. 3). In a second step, the simulated
sample is re-weighted in order to match the mass distribution
of the measured data exactly.

V. ANALYSIS METHOD

We use an unbinned extended-maximum-likelihood fit to
extract the spin-density matrix elements from the measured
distribution. This method is widely used in amplitude analysis
and has the advantage that neither the data nor the acceptance
corrections have to be divided into regions of angular phase
space.

A. Spin-Density Matrix Elements

We characterize the photoproduction of vector mesons by
an amplitude T , which connects the spin-density matrix ρ(γ)
for the initial photon beam to the spin-density matrix ρ(V ) of
the produced vector meson. Following Schilling et al. [5], we
write

ρ(V ) = T ρ(γ)T ∗ . (3)
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We can incorporate the photon polarization into the descrip-
tion of the vector-meson density matrix. The spin-density ma-
trix for the photon can be written as

ρ(γ) =
1
2

I +
1
2

Pγ · σ , (4)

where I is the identity matrix, σ are the Pauli matrices and the
vector Pγ is given as

Pγ = Pγ (−cos2Φ,−sin2Φ,0) , (5)

where Pγ is the degree of linear polarization (between 0 and
1) and Φ is the angle between the polarization vector of the
photon and the production plane of the vector meson. In the
case of circularly polarized photons,

Pγ = Pγ

(
0,0,λγ

)
, (6)

where Pγ is again the degree of polarization, and λγ = ±1
corresponds to the helicity of the photon. If we now consider
the three components of the photon polarization (components
1 and 2 for linear polarization and component 3 for circular
polarization), we can write the vector-meson density matrix
as the sum

ρ(V ) = ρ
0 +

3

∑
α=1

Pα
γ ρ

α , (7)

where the ρα parameterize the dependence of the total density
matrix on the photon polarization. Since we use a linearly
polarized photon beam, we will ignore the contribution from
circularly polarized photons in the remaining text by setting
ρ3 = 0.

The spin-density matrix elements ρk
i j in Eq. (7) describe the

angular dependence of the cross section. The number density
n of produced events in the experiment is proportional to the
normalized angular distribution W , i.e.:

n(ϑ ,ϕ,Φ) ∝ W (ϑ ,ϕ,Φ) . (8)

Here, W is a function of the two decay angles ϑ and ϕ , de-
fined in the helicity system of the vector meson (see Fig. 4),
and Φ, the direction of the photon polarization with respect to
the hadronic production plane as determined in the center-of-
mass frame of the reaction. Together with the independently
measured degree of polarization Pγ , the angular distribution
for vector-meson production with a linearly polarized photon
beam can be written as follows:

W (cosϑ ,ϕ,Φ) = W 0(cosϑ ,ϕ)−Pγ cos(2Φ)W 1(cosϑ ,ϕ)

−Pγ sin(2Φ)W 2(cosϑ ,ϕ) . (9)

For the case of the vector meson decaying to two spinless
particles, such as ρ(770) → π+π−, the decay distributions

W i(cosϑ ,ϕ) in Eq. (9) are given by

W 0(cosϑ ,ϕ) =
3

4π

(
1
2
(1−ρ

0
00)+

1
2
(3ρ

0
00−1)cos2

ϑ (10)

−
√

2Reρ
0
10 sin2ϑ cosϕ−ρ

0
1−1 sin2

ϑ cos2ϕ

)
W 1(cosϑ ,ϕ) =

3
4π

(
ρ

1
11 sin2

ϑ +ρ
1
00 cos2

ϑ (11)

−
√

2Reρ
1
10 sin2ϑ cosϕ−ρ

1
1−1 sin2

ϑ cos2ϕ

)
W 2(cosϑ ,ϕ) =

3
4π

(√
2Imρ

2
10 sin2ϑ sinϕ (12)

+ Imρ
2
1−1 sin2

ϑ sin2ϕ
)
.

B. Unbinned Extended Maximum Likelihood Fit

The agreement between the measured event distribution and
the acceptance-weighted model given in Eqs. (8) to (13) is
optimized by varying the spin-density matrix elements ρ i

jk and
an external normalization factor K as fit parameters. For this
purpose, the extended likelihood function is maximized by a
numerical algorithm. For the construction of this likelihood
function, the probability for an event i characterized by ϑi,
ϕi and Φi to be observed by the experiment with acceptance
η(ϑ ,ϕ,Φ) is defined by

Pi =
n(ϑi,ϕi,Φi)η(ϑi,ϕi,Φi)∫

dcosϑdϕdΦn(ϑ ,ϕ,Φ)η(ϑ ,ϕ,Φ)
. (13)

The total number of observed events N in an experiment of
fixed duration follows the Poisson distribution with an expec-
tation value N̄. The extended likelihood function

L =
e−N̄N̄N

N!

N

∏
i=1

Pi (14)

takes this variation into account. The expectation value N̄ is
identical to the integral in the denominator of Eq. (13):

N̄ =
∫

dcosϑdϕdΦn(ϑ ,ϕ,Φ)η(ϑ ,ϕ,Φ) . (15)

Hence, the likelihood function simplifies to

L =
e−N̄

N!

N

∏
i=1

n(ϑi,ϕi,Φi)η(ϑi,ϕi,Φi) . (16)

As large sums are computationally easier to handle than
large products, we maximize the logarithm of the likelihood
function

lnL =
N

∑
i=1

lnn(ϑi,ϕi,Φi)+
N

∑
i=1

lnη(ϑi,ϕi,Φi)− lnN!︸ ︷︷ ︸
const

−
∫

dcosϑdϕdΦn(ϑ ,ϕ,Φ)η(ϑ ,ϕ,Φ) (17)

in order to find the model parameters that match best the ob-
served angular distribution n(ϑ ,ϕ,Φ). The constant terms
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a)

z

x

y

pγ

ρ

p′

Pγ

Φ

ϕ

π+

π−

1

b)

z

x

y

p′ π+

π−

ϑ

1

FIG. 4. Definition of the angles used to describe vector-meson photoproduction. The hadronic production plane and the ρ(770) decay plane
are shown in red and blue, respectively. The photon polarization vector Pγ is indicated in green. Diagram a) is in the center-of-mass frame of
the reaction with the z axis along the direction of the ρ(770) meson; b) is boosted into the rest frame of the ρ(770) meson, i.e. the helicity
system.

Σ lnη and lnN! do not depend on the fit parameters and can
therefore be omitted from the fit. The recorded data sample
only appears in the first sum, where events from neighboring
beam bunches enter with negative weights to subtract back-
ground from accidental beam coincidences. The so-called
normalization integral that contains the experimental accep-
tance is evaluated using the large phase-space Monte Carlo
sample introduced in section IV. This allows us to separate
the normalization factor from the SDME fit parameters:∫

dcosϑdϕdΦn(ϑ ,ϕ,Φ)η(ϑ ,ϕ,Φ) =

K
∫

dcosϑdϕdΦW (ϑ ,ϕ,Φ)η(ϑ ,ϕ,Φ)︸ ︷︷ ︸
I

. (18)

The normalization integral I is approximated by summing
over all generated phase-space events Nacc

MC that pass the recon-
struction and selection criteria after the detector simulation:

I≈ 8π2

NMC

Nacc
MC

∑
j=1

W (ϑ j,ϕ j,Φ j) , (19)

where NMC is the total number of generated Monte-Carlo
events. The factor 8π2 is the integration volume.

The extended likelihood function is maximized by choos-
ing the SDMEs as well as the normalization coefficient K
such that n(ϑ ,ϕ,Φ) matches the measured data best. This
formalism has been implemented using the AmpTools soft-
ware framework [34]. In contrast to conventional mass-
independent amplitude analyses, the normalization integral
depends on the fitted parameters, i.e. the SDMEs, and has
to be recalculated at every iteration of the fit, with significant

computational cost. For this reason, it was essential to use
graphical processing units for the numerical evaluation of the
large sums in Eqs. (17) and (19), which can contain up to 106

summands in this analysis.

C. Fit Evaluation

For converged fits, we can evaluate the quality of the model
with the expectation value N̄ in Eq. (15). Using the numerical
approximation of the normalization integral in Eq. (19):

N̄ ≈ 8π2

NMC

Nacc
MC

∑
j=1

K ·W (ϑ j,ϕ j,Φ j) , (20)

we see that an individual MC event with the phase-space co-
ordinates (ϑi,ϕi,Φi) contributes with a weight:

wi =
8π2

NMC
K ·W (ϑi,ϕi,Φi) (21)

to the data sample. Events rejected by the reconstruction and
kinematic selection have zero weight. The acceptance of the
apparatus is therefore taken into account by construction. By
applying these weights to the phase-space MC events, we ob-
tain weighted MC samples that we can use to compare any
kinematic distribution of the fitted model with the data. If the
distributions of the angles that the model depends upon agree
within statistical uncertainties, this would be a confirmation
that the SDME model is sufficient to describe the data. The
distributions in other kinematic variables can be used to assess
how realistically the simulation reproduces detector effects.
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FIG. 5. Evaluation of the fit by comparison of measured distributions (black) to phase-space simulation weighted with fit results (shaded
green). The smaller contribution from the subtracted accidental background is shown in red. Panel a) shows the comparison for the cosine
of the helicity angle ϑ and b) compares the distribution of the helicity angle ϕ . Panel c) compares the azimuthal angle Φ of the polarization
vector with respect to the production plane in the center-of-mass frame and d) shows the distribution of the difference between Φ and ϕ .

Figure 5 shows such a comparison for the combined fit
of four orientations in one example bin at around −t ≈
0.2GeV2/c2. The distributions in the angles cosϑ , ϕ , Φ and
Φ−ϕ are very well reproduced. A small asymmetry between
ϕ = 0 and ϕ = ±π indicates the possible interference with a
ππ S-wave component, which is not included in the SDME
model.

D. Discussion of Uncertainties

We evaluate the statistical uncertainties with the Bootstrap-
ping technique [35], where a number of pseudo-experiments
are performed by sampling from the signal and background
events with replacement. The replacement method randomly
draws a sample the size of the original sample where every
event is drawn from the full sample. Thus, a given drawn set
will include some events multiple times and omit others. We
draw 200 such samples and perform fits in the same way as
for the real samples, keeping the starting values fixed at the
nominal result. The distributions for the 9 spin-density ma-
trix elements from the 200 fits can be well approximated by
Gaussian functions, and their standard deviations serve as a
measure of the statistical uncertainties.

A study of many possible sources for systematic uncertain-

ties indicates that the only significant contributions arise from
the beam polarization measurement, an apparent dependence
on the photon beam flux and the selection of the signal sample.
In particular, it is evident that the fitting procedure does not in-
troduce any bias into the measured SDMEs and that there is
no significant dependence of the SDMEs on the beam energy
within the range studied.

The largest contribution to the systematic uncertainty orig-
inates from the external measurement of the beam-photon
polarization. The 1.5% systematic uncertainty inherent in
the design and the operation of the triplet polarimeter instru-
ment [23] is combined with the statistical uncertainty of the
number of detected triplet events to give a total uncertainty of
2.1%. This overall normalization uncertainty is fully corre-
lated for all bins in t. It is added in quadrature to the final un-
certainties for the SDMEs ρ1

i j and ρ2
i j, shown in Fig. 6, whose

extraction is dependent on the polarization.
The second largest source of systematic uncertainties stems

from an apparent rate dependence of the detector efficiency.
The injection of randomly triggered hits into the simulation
successfully models the rate effect on the track reconstruction,
but the Monte Carlo simulation does not include any detector-
specific rate-dependent efficiencies. Since the primary elec-
tron current was increased from 100 nA to 150 nA for the sec-
ond part of the data sample, we perform the analysis sepa-
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rately for both parts and compare the results to estimate the
systematic effect. It dominates the systematic uncertainties
for the unpolarized SDMEs, especially for ρ0

1−1.
Significant systematic uncertainties are also caused by the

selection of the signal sample, but they may have different
magnitudes for each SDME and in each bin in t. To evaluate
this, the requirements on the measured missing mass, the con-
vergence criterion of the kinematic fit and the suppression of
possible background from excited baryons were varied such
that the total event sample is not changed by more than 10%.
The standard deviation for each type of variation is used as a
measure of its systematic effect. The quadratic sum of these
deviations is quoted as total systematic uncertainty for each
data point. All other event selection criteria do not add signif-
icant systematic uncertainties to the results.

VI. RESULTS

A. Spin-Density Matrix Elements

The analysis is performed in 18 independent bins in −t be-
tween 0.1 and 1.0GeV2/c2. The SDMEs obtained are shown
in Fig. 6, together with the earlier results from SLAC [13], the
predictions from s-channel helicity conservation with natural
parity exchange, and from the JPAC model [16]. We report
the measured SDMEs at the mean value for each t bin and
display the standard deviation of the distribution in t within
the bin by horizontal error bars. The vertical error bars corre-
spond to the statistical and systematic uncertainties added in
quadrature. The numerical values for the data shown in Fig. 6
are listed in Appendix B and can be found in Ref. [36].

In the limit of small −t, our results are consistent with
the SCHC + NPE model (see Appendix A). Deviations from
this description are predicted by Regge theory [16], which
our measurements follow qualitatively up to the point where
the prediction loses its validity at around −t ≈ 0.5GeV2/c2.
We are able to extract the SDMEs with high precision up to
−t = 1GeV2/c2.

B. Parity-Exchange Components

The spin-density matrix can be separated into the com-
ponents ρ

N,U
ik arising from natural (P = (−1)J) or unnatural

(P =−(−1)J) parity exchanges in the t channel, respectively.
The interference term between both production mechanisms
vanishes in the limit of high energy [5]. We use the results
from Fig. 6 to calculate the linear combinations

ρ
N,U
ik =

1
2
[
ρ

0
ik∓ (−1)i

ρ
1
−ik
]
. (22)

Fig. 7 illustrates the clean separation. All unnatural compo-
nents are significantly smaller than their natural counterparts.
The deviation from the pure SCHC + NPE model is driven by
natural-parity exchange processes, which supports an earlier
observation [13].

To leading order, the asymmetry between natural- and
unnatural-exchange cross sections can be reduced to one sin-
gle observable, the parity asymmetry Pσ [5], which is defined
as

Pσ =
σN−σU

σN +σU = 2ρ
1
1−1−ρ

1
00. (23)

In Fig. 8, we compare our measured Pσ values with pre-
vious measurements and the Regge model. For −t below
0.2GeV2/c2, the results are consistent with unity, which again
indicates pure natural-parity exchange. The deviation grows
towards larger values of −t and is predicted by Regge theory.

C. Relations between SDMEs

The spin-density matrix for vector mesons can be written in
the center-of-mass frame helicity representation [5] as

ρ(V )λV λ ′V
=

1
N ∑

λN′λγ λN λ ′γ

TλV λN′ ,λγ λN ρ(γ)λγ λ ′γ T ∗
λ ′V λN′ ,λ

′
γ λN

,(24)

where the λx represent the helicity of the incoming (N) and
outgoing (N′) nucleon, the photon (γ) and the vector meson
(V ), and T is the production amplitude. The term N is a
normalization factor given as

N =
1
2 ∑

λV λN′λγ λN

∣∣∣TλV λN′ ,λγ λN

∣∣∣2 , (25)

which for a given center-of-mass momentum k of the incom-
ing photon is related to the unpolarized differential cross sec-
tion as

dσ

dΩ
=

1
2

(
2π

k

)2

N . (26)

The ρα from Eq. (7) are related to the amplitudes T by

ρ
0
λV λ ′V

(V ) =
1

2N ∑
λN′λγ λN

TλV λN′ ,λγ λN T ∗
λ ′V λN′ ,λγ λN

(27)

ρ
1
λV λ ′V

(V ) =
1

2N ∑
λN′λγ λN

TλV λN′ ,−λγ λN T ∗
λ ′V λN′ ,λγ λN

(28)

ρ
2
λV λ ′V

(V ) =
i

2N ∑
λN′λγ λN

λγ TλV λN′ ,−λγ λN T ∗
λ ′V λN′ ,λγ λN

.(29)

Thus, the SDMEs are formed from helicity amplitudes that
connect the vector-meson helicity λV to the photon helicity λγ .
In the helicity system, s-channel helicity conservation implies
that the two helicities are equal λV = λγ (see Appendix A).
When SCHC is true, then of the nine measured SDMEs, only
ρ1

1−1 and Imρ2
1−1 are nonzero, and ρ1

1−1 = −Imρ2
1−1. If, in

addition to SCHC, the production mechanism is described by
the exchange of a particle with natural parity in the t-channel,
then ρ1

1−1 =
1
2 . If a particle with unnatural parity is exchanged,

then ρ1
1−1 =−

1
2 . As seen in Fig. 6, SCHC + NPE is only valid

near −t = 0.
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FIG. 6. Spin-density matrix elements for the photoproduction of ρ(770) in the helicity system. Our results are shown in red, the error bars
display the statistical and systematic uncertainties added in quadrature. The systematic uncertainties for the polarized SDMEs ρ1

i j and ρ2
i j

contain an overall relative polarization uncertainty of 2.1% which is fully correlated for all values of t. The earlier results from SLAC[13] are
shown in green. The horizontal black lines show the values for s-channel helicity conservation with natural parity exchange (SCHC + NPE),
while the blue dashed curves show Regge theory predictions from JPAC with shaded, one-standard-deviation uncertainty bands [16].

Going beyond the case where λV = λγ , there could also be
amplitudes in which the helicity changes by one or even two
units. While the former are very likely to occur, we would
expect that the latter are suppressed. If we assume that the
amplitudes with λV = λγ ±2 are zero, additional relations

between SDMEs should hold, i.e. Eqs. (30), (31) and (32).

Imρ
2
1−1 =−ρ

1
1−1 (30)

Imρ
2
10 =−Reρ

1
10 (31)

Reρ
0
10 =±Reρ

1
10 (32)
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FIG. 7. The spin-density matrix elements for ρ(770) photoproduc-
tion for natural- (left) and unnatural-parity exchange (right). See
comments in Fig. 6 caption for details.
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FIG. 8. Parity asymmetry Pσ for ρ(770) photoproduction. See com-
ments in Fig. 6 caption for details.

To prove Eq. (30), we expand Eqs. (28) and (29) as follows:

ρ
1
1−1 =

1
2N ∑

λN λN′

T+1λN′ ;+1λN T ∗−1λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

+ T+1λN′ ;−1λN T ∗−1λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 (33)

ρ
2
1−1 =

i
2N ∑

λN λN′

(−1) T+1λN′ ;+1λN T ∗−1λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

+ (+1) T+1λN′ ;−1λN T ∗−1λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 . (34)

If we define the first sum in both equations as A, and the sec-
ond as B, then we have

ρ
1
1−1 = A+B (35)

ρ
2
1−1 =−iA+ iB . (36)

Looking more closely at the A and B amplitudes, A only in-
cludes terms where the photon helicity and the vector-meson
helicity are the same, i.e. λγ = λV , while B only contains
terms where the photon helicity and the vector-meson helicity
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differ by 2, which we assume to vanish. Taking B = 0 we have

ρ
1
1−1 = A (37)

ρ
2
1−1 =−iA , (38)

which yields Eq. (30). Figure 9 shows ρ1
1−1 + Imρ2

1−1 as a
function of −t, for both the GlueX data and the older SLAC
data [13]. The sum is consistent with zero for −t values up to
about 0.5GeV2/c2 and becomes slightly positive above that.
The JPAC model [16] agrees with this prediction over its range
of validity. This suggests that amplitudes with λV = λγ ± 2
may start to become relevant for values of −t larger than
0.5GeV2/c2.
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FIG. 9. The sum of ρ1
1−1 and Imρ2

1−1 for ρ(770) photoproduction
as a function of −t. See comments in Fig. 6 caption for details.

To derive Eq. (31), we perform a similar expansion to the
one above:

ρ
1
10 =

1
2N ∑

λN λN′

T+1λN′ ;+1λN T ∗0λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

+ T+1λN′ ;−1λN T ∗0λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 (39)

ρ
2
10 =

i
2N ∑

λN λN′

(−1) T+1λN′ ;+1λN T ∗0λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

+ (+1) T+1λN′ ;−1λN T ∗0λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 . (40)

If we define the first sum in both equations as C, and the sec-
ond as D, then we have

ρ
1
10 =C+D (41)

ρ
2
10 =−iC+ iD . (42)

C is an interference term between an amplitude where the pho-
ton helicity and the vector-meson helicity are the same, i.e.
λγ = λV , and an amplitude where these helicities differ by 1.
Amplitude D is an interference term between an amplitude
where the photon helicity and the vector-meson helicity dif-
fer by 1 and an amplitude where they differ by 2. Setting the
amplitudes that have ∆λ = 2 to zero gives D = 0, and conse-
quently yields Eq. (31). Figure 10 shows the sum of Reρ1

10
and Imρ2

10 as a function of −t, both for the GlueX data and
for the older SLAC data [13]. Comparisons are also made to
the JPAC model [16]. For the GlueX data, the relationship in
Eq. (31) appears to be valid for −t below 0.3GeV2/c2, where
the JPAC model also confirms the relationship. For the GlueX
data above −t of 0.5GeV2/c2, the sum becomes slightly neg-
ative and agrees with the previous observation that amplitudes
with λV = λγ ±2 may be nonzero for larger values of −t.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
)2c/2-t (GeV

0.15−

0.10−

0.05−

0.00

0.05

0.10

0.15
GlueX

)et al.SLAC (Ballam 

SCHC + NPE

JPAC Model

10
2ρ + Im

10
1ρRe

FIG. 10. The sum of Reρ0
10 and Imρ2

10 for ρ(770) photoproduction
as a function of −t. See comments in Fig. 6 caption for details.

To explain Eq. (32), we write Eq. (27) as

ρ
0
10 =

1
2N ∑

λN λN′

T+1λN′ ;−1λN T ∗0λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

+ T+1λN′ ;+1λN T ∗0λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 . (43)
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The first term in Eq. (43) describes the interference between
an amplitude with ∆λ = 1 and one with ∆λ = 2, the latter
of which we take to be zero. The second term differs from
the first term in Eq. (39) through the difference between the
amplitudes T ∗0λN′ ;−1λN

and T ∗0λN′ ;+1λN
. These amplitudes con-

nect photons of helicity λγ =∓1 to a vector meson of helicity
λV = 0 and only differ by Clebsch-Gordan coefficients that
have the same magnitude. For a production mechanism de-
scribed by a single diagram, the two amplitudes should be
equal in magnitude but could have opposite signs. Taking
D = 0 and assuming there is a single diagram, then we can
write

ρ
0
10 =±C . (44)

Together with Eq. (40), this yields Eq. (32). Figure 11 shows
the sum of Reρ0

10 and Reρ1
10 as a function of −t both for the

GlueX data and for the older SLAC data [13]. Comparisons
are also made to the JPAC model [16]. The GlueX data are
consistent with the sum being zero over the full range of −t.
This suggests that the λV = λγ ±2 amplitudes are not impor-
tant in this case, and that the production mechanism is dom-
inated by a single diagram, or a series of diagrams that all
contribute with the same sign. The JPAC model also agrees
with this prediction.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
)2c/2-t (GeV

0.15−

0.10−

0.05−

0.00

0.05

0.10

0.15
GlueX

)et al.SLAC (Ballam 

SCHC + NPE

JPAC Model

10
1ρ + Re

10
0ρRe

FIG. 11. The sum of Reρ0
10 and Reρ1

10 for ρ(770) photoproduction
as a function of −t. See comments in Fig. 6 caption for details.

VII. CONCLUSIONS

We report measurements of the spin-density matrix ele-
ments of the π+π− system in the mass range of the vector
meson ρ(770) (0.60 to 0.88GeV/c2) photoproduced off the
proton with the GlueX experiment at Jefferson Lab. Using a

linearly polarized photon beam with energy between 8.2 and
8.8GeV and polarization close to 35%, we reach a statisti-
cal precision which surpasses previous measurements by or-
ders of magnitude. The uncertainties on the measurement are
dominated by systematic uncertainties, which are studied in
detail. Using the full GlueX data set would increase the size
of the signal sample five-fold, but would likely not improve
the precision of the results further.

Our results agree well with a prediction by the JPAC col-
laboration, which was previously fitted to far inferior data.
This comparison demonstrates impressively that the descrip-
tion of the production mechanism via a combination of dif-
ferent Regge exchanges is valid at this energy. In particular,
the photoproduction of the ρ(770) meson is sensitive to the
interplay between Pomeron and f2(1270) exchanges.

The decomposition of the spin-density matrix elements
shows that natural-parity exchanges dominate the produc-
tion process and that the contribution from unnatural-parity
exchanges is small for the analyzed range in squared four-
momentum transfer 0.1 < −t < 1.0GeV2/c2. This obser-
vation is consistent with the prediction from Regge theory,
and the measurements will be used to improve the theoreti-
cal description of the reaction. Based on assumptions about
the production process, we predict several relations between
the SDMEs and show that these relations are fulfilled by our
measurements. In particular, the results strongly suggest that
ρ(770) photoproduction at these energies is dominated by a
single production mechanism and that contributions from pro-
cesses where the helicities of the vector meson and the photon
differ by two units are negligible.

We describe the π+π− system with the spin-density matrix
elements for a pure ρ(770) meson, but the precision of the
data allows us to observe deviations from this model which
are likely caused by the interference with an underlying S-
wave production of the di-pion system. A dependence of the
SDMEs within the studied mass range supports this claim. In
the future, we plan to study this mass dependence by sepa-
rating the spin contributions into their individual amplitudes.
The formalism outlined in [37] will serve as the basis for this
investigation.
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Appendix A: Discussion of s-Channel Helicity Conservation

In the photoproduction of vector mesons such as the
ρ(770), ω(782) and φ(1020), the spin of the produced meson
is related to the spin of the initial photon through a helicity
amplitude T . The spin states are typically represented as den-
sity matrices ρ(V ) and ρ(γ) where the relation between the
two (following Schilling et al. [5]) is given by Eq. (3). This
relation can be expressed in the center-of-mass frame helicity
representation [38] as in Eq. (24), which we repeat here:

ρλV λ ′V
(V ) =

1
N ∑

λN′λγ λN λ ′γ

TλV λN′ ,λγ λN ρλγ λ ′γ T ∗
λ ′V λN′ ,λ

′
γ λN

.(A1)

This expression relates an initial photon with helicity λγ =±1
to a final-state vector meson with helicity λV = 0 or λV =±1.
The normalization factor N is given by Eq. (25), and N
and N′ represent the initial and final-state nucleons. For the
SDMEs of interest, we can write Eq. (A1) as a sum over the
photon and initial and final-state nucleons as in Eqs. (27), (28)
and (29) (which are reproduced here as Eqs. (A2), (A3)
and (A4) for convenience) where the TλV λN′ ,λγ λN are the he-
licity amplitudes. The ρ0

i j elements are related to unpolarized
photons while ρ1

i j and ρ2
i j are correspond to linear polariza-

tion:

ρ
0
λV λ ′V

(V ) =
1

2N ∑
λN′λγ λN

TλV λN′ ,λγ λN T ∗
λ ′V λN′ ,λγ λN

(A2)

ρ
1
λV λ ′V

(V ) =
1

2N ∑
λN′λγ λN

TλV λN′ ,−λγ λN T ∗
λ ′V λN′ ,λγ λN

(A3)

ρ
2
λV λ ′V

(V ) =
i

2N ∑
λN′λγ λN

λγ TλV λN′ ,−λγ λN T ∗
λ ′V λN′ ,λγ λN

.(A4)

For s-channel helicity conservation, the only nonzero am-
plitudes have λV = λγ . All amplitudes involving a change of
helicity, i.e. λV 6= λγ , are zero. Thus, the only SDMEs which
have nonzero 1 values are ρ0

11, ρ1
1−1 and ρ2

1−1. Generally, one
does not independently report ρ0

11 as it is related to ρ0
00 through

the fact that the trace of ρ0 is 1, i.e. 2ρ0
11 + ρ0

00 = 1 where

1 The SDME element ρ0
−1−1 is also nonzero, but it is equal to ρ0

11 so we do
not list it as an independent element.

ρ0
00 = 0 under SCHC.

ρ
0
11 =

1
2N ∑

λN λN′

T+1λN′ ;−1λN T ∗+1λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

(A5)

+ T+1λN′ ;+1λN T ∗+1λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 (A6)

ρ
1
1−1 =

1
2N ∑

λN λN′

T+1λ ′N ;+1λN
T ∗−1λN′ ;−1λN︸ ︷︷ ︸

λγ=−1

(A7)

+ T+1λN′ ;−1λN T ∗−1λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 (A8)

ρ
2
1−1 =

i
2N ∑

λN λN′

−T+1λN′ ;1λN T ∗−1λN′ ;−1λN︸ ︷︷ ︸
λγ=−1

(A9)

+ T+1λN′ ;−1λN T ∗−1λN′ ;+1λN︸ ︷︷ ︸
λγ=+1

 (A10)

These equations can be simplified to

ρ
0
11 =

1
2N

[
T+−T ∗+−+T++T ∗++

]
(A11)

ρ
1
1−1 =

1
2N

[
T++T ∗−−+T+−T ∗−+

]
(A12)

ρ
2
1−1 =

i
2N

[
−T++T ∗−−+T−+T ∗−+

]
(A13)

where the sum over λNλ ′N is assumed, and where we simplify
the notation of the transition amplitudes by putting λV as the
first subscript and λγ as the second.

Now, noting that only the T++ and T−− are nonzero, we
have

ρ
0
11 =

1
2N

T++T ∗++ (A14)

ρ
1
1−1 =

1
2N

T++T ∗−− (A15)

ρ
2
1−1 =

−i
2N

T++T ∗−− . (A16)

From this, we immediately see that SCHC implies that ρ1
1−1 =

−Imρ2
1−1. We also know that only ρ0 has a nonzero trace, i.e.

1 = ρ
0
11 +ρ

0
00 +ρ

0
−1−1 . (A17)

However, we have established that ρ0
00 = 0 and symmetry

gives that ρ0
−1−1 = ρ0

11. Thus, we have ρ0
11 = 1

2 . Similarly,



15

ρ0
−1−1 =

1
2 . Expanding ρ0

−1−1 as in Eqs. (A5) and (A11), we
find

ρ
0
−1−1 =

1
2N

T−−T ∗−− , (A18)

hence, we have

T++T ∗++ = T−−T ∗−− . (A19)

From this we have that

1
2N

T++T ∗++ =
1
2
, (A20)

or the amplitude T++ can be expressed in complex polar form
as

1√
2N

T++ =
1√
2

eiφ+ , (A21)

where φ+ is some phase associated with the amplitude. Sim-
ilarly the amplitude T−− can be expressed in complex polar
form as

1√
2N

T−− =
1√
2

eiφ− , (A22)

where φ− is the phase associated with T−−. Combining

Eqs. (A21) and (A22), SCHC predicts

ρ
0
11 =

1
2

(A23)

ρ
1
1−1 =

1
2

cos(φ+−φ−) (A24)

Imρ
2
1−1 =−

1
2

cos(φ+−φ−) . (A25)

Thus, the magnitudes and signs of ρ1
1−1 and Imρ2

1−1 depend
on the phase difference ∆φ = φ+− φ−. In Section VI B we
discussed the parity asymmetry Pσ as given in Eq. (23). For
pure natural parity exchange, Pσ = 1, while for pure unnatural
parity exchange, Pσ = −1. In the case of pure natural parity
exchange, we have ∆φ = 0 so ρ1

1−1 = 1
2 and Imρ2

1−1 = − 1
2 .

In the case of pure unnatural parity exchange, ∆φ = π so
ρ1

1−1 = −
1
2 and Imρ2

1−1 =
1
2 . Throughout this article, we re-

fer to s-channel helicity conservation plus natural parity ex-
change, “SCHC + NPE”, this assumption implies the case of
∆φ = 0 and implies the following predictions for the nonzero
SDMEs

ρ
0
11 =+

1
2

(A26)

ρ
1
1−1 =+

1
2

(A27)

Imρ
2
1−1 =−

1
2
. (A28)

Appendix B: Numerical Results

All numerical results for the SDMEs and their statistical
and systematic uncertainties are listed in Table I. The system-
atic uncertainties for the polarized SDMEs ρ1

i j and ρ2
i j contain

an overall relative normalization uncertainty of 2.1% which is
fully correlated for all values of t. Numerical data can also be
downloaded from HEPData [36].
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−tmin −tmax −t −tRMS ρ0
00 Reρ0

10 ρ0
1−1 ρ1

11 ρ1
00 Reρ1

10 ρ1
1−1 Imρ2

10 Imρ2
1−1

0.100 0.114 0.107 0.004 0.0056 0.0314 -0.0276 -0.0185 -0.0050 -0.0282 0.4837 0.0258 -0.4851
± 0.0003 ±0.0005 ±0.0007 ±0.0020 ±0.0010 ±0.0020 ±0.0024 ±0.0014 ±0.0023
± 0.0045 ±0.0071 ±0.0117 ±0.0020 ±0.0028 ±0.0014 ±0.0103 ±0.0011 ±0.0103

0.114 0.129 0.121 0.004 0.0062 0.0346 -0.0381 -0.0236 -0.0050 -0.0282 0.4853 0.0258 -0.4856
± 0.0003 ±0.0004 ±0.0006 ±0.0018 ±0.0012 ±0.0017 ±0.0025 ±0.0013 ±0.0022
± 0.0043 ±0.0037 ±0.0040 ±0.0037 ±0.0051 ±0.0016 ±0.0114 ±0.0020 ±0.0103

0.129 0.147 0.138 0.005 0.0073 0.0377 -0.0463 -0.0269 -0.0065 -0.0282 0.4809 0.0300 -0.4845
± 0.0003 ±0.0004 ±0.0006 ±0.0017 ±0.0010 ±0.0017 ±0.0022 ±0.0011 ±0.0021
± 0.0046 ±0.0030 ±0.0054 ±0.0018 ±0.0057 ±0.0015 ±0.0114 ±0.0021 ±0.0103

0.147 0.167 0.157 0.006 0.0076 0.0400 -0.0557 -0.0330 -0.0067 -0.0324 0.4793 0.0327 -0.4830
± 0.0002 ±0.0004 ±0.0005 ±0.0017 ±0.0010 ±0.0016 ±0.0023 ±0.0012 ±0.0020
± 0.0022 ±0.0029 ±0.0035 ±0.0023 ±0.0063 ±0.0039 ±0.0104 ±0.0012 ±0.0102

0.167 0.190 0.178 0.007 0.0085 0.0410 -0.0553 -0.0313 -0.0084 -0.0311 0.4742 0.0330 -0.4774
± 0.0003 ±0.0003 ±0.0006 ±0.0016 ±0.0010 ±0.0017 ±0.0020 ±0.0011 ±0.0022
± 0.0031 ±0.0019 ±0.0049 ±0.0029 ±0.0060 ±0.0034 ±0.0105 ±0.0019 ±0.0101

0.190 0.215 0.203 0.007 0.0101 0.0433 -0.0621 -0.0382 -0.0085 -0.0394 0.4780 0.0311 -0.4723
± 0.0003 ±0.0004 ±0.0005 ±0.0016 ±0.0012 ±0.0013 ±0.0021 ±0.0011 ±0.0021
± 0.0031 ±0.0024 ±0.0040 ±0.0059 ±0.0057 ±0.0013 ±0.0114 ±0.0033 ±0.0100

0.215 0.245 0.230 0.008 0.0106 0.0448 -0.0650 -0.0384 -0.0107 -0.0413 0.4735 0.0340 -0.4728
± 0.0003 ±0.0003 ±0.0006 ±0.0017 ±0.0011 ±0.0015 ±0.0022 ±0.0011 ±0.0018
± 0.0012 ±0.0030 ±0.0057 ±0.0018 ±0.0024 ±0.0018 ±0.0108 ±0.0012 ±0.0100

0.245 0.278 0.262 0.010 0.0128 0.0468 -0.0689 -0.0452 -0.0104 -0.0418 0.4717 0.0385 -0.4670
± 0.0003 ±0.0004 ±0.0006 ±0.0017 ±0.0013 ±0.0016 ±0.0025 ±0.0013 ±0.0021
± 0.0032 ±0.0028 ±0.0043 ±0.0043 ±0.0042 ±0.0030 ±0.0100 ±0.0010 ±0.0098

0.278 0.316 0.297 0.011 0.0141 0.0487 -0.0744 -0.0469 -0.0095 -0.0418 0.4645 0.0384 -0.4626
± 0.0004 ±0.0004 ±0.0006 ±0.0019 ±0.0014 ±0.0015 ±0.0023 ±0.0011 ±0.0022
± 0.0045 ±0.0031 ±0.0050 ±0.0031 ±0.0040 ±0.0030 ±0.0100 ±0.0022 ±0.0098

0.316 0.360 0.338 0.012 0.0181 0.0517 -0.0801 -0.0511 -0.0171 -0.0489 0.4616 0.0401 -0.4623
± 0.0004 ±0.0004 ±0.0006 ±0.0019 ±0.0015 ±0.0016 ±0.0029 ±0.0013 ±0.0021
± 0.0026 ±0.0024 ±0.0072 ±0.0030 ±0.0053 ±0.0022 ±0.0104 ±0.0019 ±0.0097

0.360 0.409 0.384 0.014 0.0229 0.0542 -0.0838 -0.0552 -0.0208 -0.0477 0.4572 0.0400 -0.4593
± 0.0004 ±0.0004 ±0.0008 ±0.0022 ±0.0017 ±0.0017 ±0.0031 ±0.0014 ±0.0027
± 0.0015 ±0.0031 ±0.0059 ±0.0045 ±0.0034 ±0.0020 ±0.0124 ±0.0015 ±0.0096

0.409 0.464 0.436 0.016 0.0291 0.0543 -0.0873 -0.0646 -0.0249 -0.0532 0.4554 0.0383 -0.4480
± 0.0005 ±0.0005 ±0.0008 ±0.0026 ±0.0020 ±0.0020 ±0.0036 ±0.0017 ±0.0024
± 0.0018 ±0.0027 ±0.0070 ±0.0035 ±0.0036 ±0.0041 ±0.0111 ±0.0013 ±0.0094

0.464 0.527 0.496 0.018 0.0375 0.0561 -0.0894 -0.0607 -0.0295 -0.0550 0.4532 0.0377 -0.4384
± 0.0006 ±0.0005 ±0.0008 ±0.0029 ±0.0029 ±0.0020 ±0.0042 ±0.0019 ±0.0033
± 0.0024 ±0.0027 ±0.0048 ±0.0020 ±0.0047 ±0.0021 ±0.0124 ±0.0014 ±0.0092

0.527 0.599 0.564 0.021 0.0499 0.0526 -0.0846 -0.0522 -0.0417 -0.0599 0.4561 0.0337 -0.4365
± 0.0007 ±0.0006 ±0.0011 ±0.0031 ±0.0035 ±0.0027 ±0.0043 ±0.0021 ±0.0038
± 0.0028 ±0.0033 ±0.0073 ±0.0016 ±0.0092 ±0.0026 ±0.0124 ±0.0019 ±0.0092

0.599 0.681 0.640 0.024 0.0653 0.0438 -0.0679 -0.0447 -0.0456 -0.0452 0.4475 0.0288 -0.4203
± 0.0009 ±0.0008 ±0.0013 ±0.0034 ±0.0043 ±0.0032 ±0.0048 ±0.0025 ±0.0043
± 0.0038 ±0.0026 ±0.0082 ±0.0049 ±0.0048 ±0.0032 ±0.0104 ±0.0035 ±0.0092

0.681 0.774 0.728 0.027 0.0825 0.0300 -0.0462 -0.0318 -0.0473 -0.0380 0.4354 0.0188 -0.4110
± 0.0012 ±0.0009 ±0.0015 ±0.0046 ±0.0048 ±0.0029 ±0.0074 ±0.0034 ±0.0052
± 0.0079 ±0.0028 ±0.0070 ±0.0051 ±0.0081 ±0.0053 ±0.0101 ±0.0029 ±0.0088

0.774 0.880 0.827 0.030 0.0976 0.0113 -0.0169 -0.0052 -0.0540 -0.0211 0.4152 -0.0115 -0.3926
± 0.0017 ±0.0010 ±0.0020 ±0.0048 ±0.0059 ±0.0041 ±0.0069 ±0.0042 ±0.0064
± 0.0055 ±0.0029 ±0.0045 ±0.0038 ±0.0067 ±0.0072 ±0.0107 ±0.0022 ±0.0084

0.880 1.000 0.940 0.034 0.1098 -0.0117 0.0159 0.0302 -0.0339 0.0156 0.4247 -0.0286 -0.3887
± 0.0024 ±0.0012 ±0.0019 ±0.0062 ±0.0078 ±0.0045 ±0.0098 ±0.0049 ±0.0078
± 0.0066 ±0.0029 ±0.0051 ±0.0026 ±0.0103 ±0.0052 ±0.0133 ±0.0015 ±0.0083

TABLE I. Spin-density matrix elements for the photoproduction of
ρ(770) in the helicity system. The first uncertainty is statistical, the
second systematic. The systematic uncertainties for the polarized
SDMEs ρ1

i j and ρ2
i j contain an overall relative normalization uncer-

tainty of 2.1% which is fully correlated for all values of t.
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