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Understanding the dynamics of bound state formation is one of the fundamental questions in
confining quantum field theories such as Quantum Chromodynamics (QCD). One hadronization
mechanism that has garnered significant attention is the breaking of a string initially connecting a
fermion and an anti-fermion. Deepening our understanding of real-time string-breaking dynamics
with simpler, lower dimensional models like the Schwinger model can improve our understanding
of the hadronization process in QCD and other confining systems found in condensed matter and
statistical systems. In this paper, we consider the string-breaking dynamics within the Schwinger
model and investigate its modification inside a thermal medium, treating the Schwinger model as
an open quantum system coupled to a thermal environment. Within the regime of weak coupling
between the system and environment, the real-time evolution of the system can be described by a
Lindblad evolution equation. We analyze the Liouvillian gaps of this Lindblad equation and the
time dependence of the system’s von Neumann entropy. We observe that the late-time relaxation
rate decreases as the environment correlation length increases. Moreover, when the environment
correlation length is infinite, the system exhibits two steady states, one in each of the sectors with
definite charge-conjugation-parity (CP) quantum numbers. For parameter regimes where an initial
string breaks in vacuum, we observe a delay of the string breaking in the medium, due to kinetic
dissipation effects. Conversely, in regimes where an initial string remains intact in vacuum time
evolution, we observe string breaking (melting) in the thermal medium. We further discuss how the
Liouvillian dynamics of the open Schwinger model can be simulated on quantum computers and

provide an estimate of the associated Trotter errors.
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FIG. 1. Illustration of the string breaking process for the
Schwinger model in a thermal medium.

spatial directions are discretized. The need to simulate
exponentially large Hilbert spaces makes large-scale clas-
sical simulations intractable. This necessitates the devel-
opment of quantum algorithms to simulate for example
high energy scattering processes [10-13] or field theories
at finite chemical potential, which are relevant to nu-
clear and particle physics [14-34]. In particular, lower
dimensional lattice field theories that share features with
quantum chromodynamics (QCD) have received an in-
creased attention recently. An example is the Schwinger
model [35, 36], which corresponds to quantum electro-
dynamics (QED) in 1+1 dimensions. This U(1) gauge
theory coupled to fermions exhibits confinement and chi-
ral symmetry breaking. DBesides the similarities with
QCD, lower dimensional field theories are an important
testing ground for developing simulation protocols in or-
der to eventually build up toward simulations of QCD.
Recent work investigated quantum and tensor network
simulations of the U(1) gauge theory and the Schwinger
model [16, 37-51] and studied Hamiltonian dynamics of
non-Abelian lattice field theories [52-70], in particular,
several efforts aim to understand the thermalization of
non-Abelian lattice gauge theory as an isolated quantum
system [71-73].

One of the most intriguing aspects of the Schwinger
model is the string-breaking mechanism. This involves
a pair of fermion and anti-fermion at a certain distance,
connected by a string of electric flux. When the string is
sufficiently long, it breaks in real-time, ultimately form-
ing two or more tightly bound fermion anti-fermion pairs,
analogous to mesons. The initial energy stored within
the string transforms into the kinetic energies of these
pairs, which thus separate with corresponding velocities.
Details of this mechanism largely depend on the fermion
mass and the coupling strength between fermions and the
gauge field.

The string-breaking process in the Schwinger model
presents fascinating parallels to quark confinement in
QCD, where quarks and gluons hadronize into baryons
and mesons. This is one of the universe’s most compelling
enigmas. The phenomenon of string breaking, viewed
as a model for hadronization, is also represented in the
simulations of high energy particle collisions carried out

by Monte Carlo event generators like PYTHIA[74]. Ad-
ditionally, in Ref.[75], initial-state string dynamics and
string junctions were found to be necessary for describ-
ing particle production in heavy ion collisions within a
three-dimensional dynamical initialization model.

Recently, high-energy collider measurements of jet sub-
structure [76, 77] have facilitated the direct imaging of
the transition between the hadron and parton angular
scaling regions, providing a hint of how the confinement
scale is set within jets. This can be explicitly observed
through measurements of correlations as a function of an-
gle, between the asymptotic energy flux, and is further
enhanced by probing these intricate correlations between
hadrons with different quantum numbers [787 —84]. Nev-
ertheless, the theoretical understanding of these measure-
ments, especially in the transition from the universal par-
ton scaling region to the free hadron scaling region—a
deeply nonperturbative process—remains a challenging
task.

Enhancing our grasp of real-time non-perturbative
methods using simpler, lower dimensional models like the
Schwinger model could significantly improve our under-
standing of such real-world collider measurements. Such
an understanding could unravel the mystery of quark
confinement and has implications for precision measure-
ments of Standard Model parameters [85], studies of the
quark-gluon plasma (QGP) in heavy ion collisions [86—
88], and the investigation of cold nuclear matter effects
at the future Electron-Ion Collider [89]. Furthermore,
an analogous confinement process occurs in several quasi
one-dimensional compounds in condensed matter and
statistical systems [90-95]. Hence, studying real-time
string-breaking dynamics with the Schwinger model pro-
vides a more realistic approach to understanding confine-
ment dynamics in these systems as well.

In this work, we explore the dynamics of the string-
breaking mechanism in vacuum and in the presence of a
medium, as illustrated in Fig.1. The static string in the
Schwinger model has been studied at both finite tempera-
ture and chemical potential [96-99] (different lattice field
theories at finite temperature and/or chemical potential
were also studied in Refs. [100-104]). It was observed
that the string tension decreases as temperature and/or
chemical potential increase. We extend these studies to
the dynamical case, where a thermal environment modi-
fies the real-time evolution of the string-breaking process.
We find that this environment delays the string-breaking
process and reduces the velocity at which the fermion
anti-fermion pairs separate. This behavior can be at-
tributed to a quantum drag force acting on the fermion
pairs, aligning with findings in the static case. To study
real-time dynamics, we consider the Schwinger model in-
teracting with a thermal scalar field via a Yukawa-type
coupling. We work in the Brownian motion limit where
the environment temperature is high compared to the
system’s typical energy levels [105]. In this limit, memory
effects are negligible and the dynamics are Markovian, al-
lowing us to express the evolution of the Schwinger model



as an open quantum system in terms of a Lindblad equa-
tion [106-108]. The open quantum system framework has
been extensively studied for quarkonium dynamics inside
the QGP [109-127].

One key aspect of non-equilibrium physics in the open
quantum system is the late-time relaxation dynamics to-
ward equilibrium. These relaxation dynamics are gov-
erned by the Liouvillian gap, which is given by the eigen-
value of the Liouvillian spectrum whose real part is clos-
est to 0. This gap is a fundamental quantity of the open
quantum system analogous to the energy gap of a Hamil-
tonian describing a closed quantum system. We deter-
mine the Liouvillian spectrum and corresponding eigen-
modes of the open Schwinger model for different choices
of the environmental correlator (long and short-range
correlations), study its dependence on the system size,
and compare it to the free fermion model. We find that
a long-range correlated environment leads to slower ther-
malization of the system since the energy and information
exchange between the system and environment is slowed
when long-range correlations are present in the environ-
ment. Moreover, we find that special care needs to be
taken in the case of an infinitely long correlation length.
In this case, the Liouvillian dynamics of the open quan-
tum system preserve the charge conjugation and parity
(CP) symmetry of the system. We decompose the Hilbert
space into a CP-even and odd sector. Only in the case
of infinite environment correlation, the two sectors evolve
independently and there exist two equilibrium states, one
in each sector. To study the impact of the environment
correlation length on the relaxation dynamics, we study
the von Neumann entropy of the system that quantifies
its decoherence due to the interaction with the environ-
ment. These results are closely related to the study and
classification of field-theoretical dissipative phase transi-
tions [128]. Our results provide a starting point for more
detailed studies in the future.

Finally, we study the resource requirements for quan-
tum simulations of the Schwinger model as an open quan-
tum system. For this case study, we focus on a quantum
algorithm that interleaves short time steps in the sys-
tem’s Hamiltonian evolution with a time evolution oper-
ator comprising the Lindblad operators that act on the
system and an additional register of ancilla qubits. By
using a first-order Trotter decomposition for both unitary
operators, we find that, in practice, the Trotter errors as-
sociated with the Lindblad evolution may not necessarily
increase the total error when compared to the vacuum
calculation of the Schwinger model. This is due to some
cancellations of errors in the quantum algorithm for sim-
ulating the Lindblad evolution, which is an encouraging
sign for quantum simulations of open systems in the near
to intermediate-term future.

The remainder of this paper is organized as follows. In
Section II, we introduce the lattice formulation of the
Schwinger model as an open quantum system includ-
ing the decomposition into separate CP sectors. In Sec-
tion III, we present results for the Liouvillian spectrum

and study its relation to the decoherence of the system
and relaxation dynamics toward equilibrium. In Sec-
tion IV, we present numerical studies of the string break-
ing process in vacuum and the medium and study its de-
pendence on system parameters. We estimate the Trotter
errors of a quantum algorithm for simulating open quan-
tum systems in Section V and conclusions are drawn in
Section VI.

II. THE SCHWINGER MODEL AS AN OPEN
QUANTUM SYSTEM

The Lagrangian of the Schwinger model is given by

C= 06D —mp— P B, ()

with a two-component fermion field 1, the covariant
derivative D,, = 0,, —ieA,,, the U(1) gauge field 4, and
the field strength tensor F,, = 9,4, —0,A,,. The Hamil-
tonian of the Schwinger model can be discretized on a
spatial lattice in the axial gauge Ay = 0 using the stag-
gered fermion formulation and the Jordan-Wigner trans-
form [9]

Ny—2
1
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Here a denotes the lattice spacing, and n represents
the index of the lattice position z = na. Through-
out the paper, we will quote parameter values of the
Schwinger model in units of a. Moreover, the (anti-
)fermion creation/annihilation operators are given by
ot /o~ (07 /ot) on even (odd) sites with o = (0, +
ioy)/2. Due to the U(1) nature of the theory, we will
use electrons interchangeably for fermions and positrons
for anti-fermions. Here L correspond to the raising and
lowering operators associated with the states of the elec-
tric field that lives on the links between lattice sites n and
n—+ 1. The states of the electric field are labeled by their
eigenvalues €2¢2, which are obtained by acting on these
states with the electric field operator squared e? E%(n) at
site n. We assume open boundary conditions, which lead
to an unambiguous definition of the environment corre-
lator in the Lindblad equation that will be introduced
below. Under open boundary conditions, the upper limit
of the first sum in Hg is Ny — 2, where Ny is the number
of fermion sites. This is twice the number of physical sites
N in the stagger fermion formulation so that Ny = 2N
is an even number. In the case of open boundary condi-
tions, Ny — 1 gauge links are needed to connect nearest
neighbors for Ny fermion sites.

Physical states have to satisfy Gauss’s law, which can



FIG. 2. Example of how physical states transform under the
CP operator. Green (blue) dots are unoccupied (occupied)
fermion sites. Fermions (electrons) only live on even sites
while anti-fermions (positrons) only live on odd sites. The left
and right arrows on the links indicate negative and positive
electric fluxes, respectively.

be written as
€n+1 - gn = —0

For the n = 0 and n = Ny — 1 sites, imposing Gauss’s
law requires information about £y and £, which are not
part of the links that we keep track of for dynamics but
are determined by the open boundary conditions:
6y =0, In, =0. (4)

Other boundary conditions can also be studied, which
correspond to cases where the system has a nonzero to-
tal charge and/or a uniform background electric field. In
one spatial dimension, one can completely integrate out
the electric fields by repeatedly using Eq. (3), starting at
one end, which leads to non-local interactions between
fermions. We will not pursue this here and simply trun-
cate the electric field flux at |£,|max = 1 for all sites
n. Studies with higher truncation or electric fields com-
pletely integrated out are left for the future.

The discretized Hamiltonian has a CP symmetry given
by

cpP

oF(n) RSLN ot (Ny—1—-n),
o.(n) — —0,(Ny —1—n),

+ CP 4+
Ln LNf—Z—n’

b L tn, o (5)

Under the CP operator, physical states of the theory
transform as illustrated in Fig. 2.

Next, we consider the Schwinger model coupled to an
environment, which is described by a scalar field theory
at thermal equilibrium, as in Ref. [129]. The total Hamil-
tonian takes the form

H=Hs+ Hp+ Hj, (6)

where the three terms describe the system, the environ-
ment, and their interaction, respectively. The system

4

Hamiltonian Hg is given in Eq. (23). The environment
Hamiltonian describes a thermal scalar field theory. The
interaction Hamiltonian H; describes the coupling be-
tween the Schwinger model and the scalar field theory.
Different models of the scalar field interaction terms may
be considered. Here we consider a Yukawa-type interac-
tion

Hy = / dz p(z)d(x)p(z) (7)

While the system and environment can be strongly cou-
pled, we assume that the interaction between them is
sufficiently weak such that the time evolution of the
Schwinger model itself is Markovian and a Lindblad equa-
tion can be used to describe its time evolution. We con-
sider the quantum Brownian motion limit valid at high
temperatures, which allows us to assume that the total
density matrix factorizes as p(t) = ps(t) ® pg, where pg
denotes the density matrix of the Schwinger model and
pe = e e /Tr(e=#HE) is the density matrix of the en-
vironment at thermal equilibrium. The Lindblad master
equation for pg can be written as [105, 129]

dps(t)
dt

= —i[Hs,ps(®)] +a* 3 Dl — )

x (Le2)psIi (e1) — (L (e1) L(aa), ps}) - (8)

Here 1 = n1a and x5 = nsa are discrete spatial coor-
dinates. The environment correlator D(z) only depends
on the relative distance between z; and z2. It can be
expressed as

D(xy —x5) = )\2/

—00

+o0
d(t1 — t2)Tr[p(t1, 21)9(t2, ¥2)pE] ,

9)

where ¢(t,z) denotes the scalar field in the interaction
picture at thermal equilibrium. The Lindblad operators
are L(z) = Yy (x)— 45 [¥¢(x), Hs] whose notation should
be distinguished from the symbol L} for the raising and
lowering operator of the electric field introduced earlier.
On a discrete lattice, we have

L(na) = O(n) ~ 7 (0(n), H]
Ofm) = (-1 =L (10)

In principle, the environment correlator D(x) can be cal-
culated, which depends on the model for the scalar field
theory. For example, for small-size quarkonium inside
the QGP, the relevant environment correlator has been
formulated [113, 121] and studied in both the weak cou-
pling [130, 131] and strong coupling limits [132, 133].
Here instead of calculating the correlator D(z) for a spe-
cific scalar field theory model, we directly model the func-
tional form of the correlator. In order to test the depen-
dence of our results on the correlation length of the envi-
ronment, we use three different models for the correlator:



1. For short-range correlations, we use a delta func-
tion: Dg(x) = Dgdp,, where Dy is a constant and
x is discrete.

2. For various intermediate-range correlations, we use

a Gaussian':

2

x
D¢ (x) = Dgexp ( ~ 50

) = DoG(z,0) . (11)

3. For long-range correlations, we use a constant func-
tion D.(z) = Dy.

The normalizations of these three types of correlators
are chosen such that they agree at x = 0. By consider-
ing these different choices, we can assess the numerical
impact of the environmental correlation length on our
results below.

Under the CP transformation, the operators O(n) that
appear in the Lindblad operators in Eq. (10) transform
as

COREYITECES SRS

(12)

where we have used the fact that N; is an even number.
One can then show that if the environment correlator
D(x) is constant, the Lindblad equation given in Eq. (8)
preserves the CP symmetry. As a result, if an initial
state pg(0) is CP-even (odd), the state will remain CP-
even (odd) throughout the time evolution. In this case,
one can construct two invariant subspaces of the entire
Hilbert space: one sector is CP-even and the other one
is CP-odd. The construction can be done as follows: We
consider each state in the entire Hilbert space. If the
state is invariant under the CP transformation, then the
state is CP-even. Otherwise, a symmetric linear combi-
nation of the original state and the state after the CP
transformation leads to a CP-even state while an an-
tisymmetric linear combination yields a CP-odd state.
The CP-even and odd sectors decouple in the time evo-
lution when the environment correlator is constant and
thermalize independently. However, we would like to em-
phasize this is not the case if the environment correlator
D(x) is Gaussian or a delta function. An intuitive expla-
nation is as follows: individual Lindblad operator L(x) is
not CP invariant. However, when D(z1 — z2) is constant
in the Lindblad equation (8), the two sums over x; and
xo can be performed independently and then ) L(x) is
CP invariant.

1 The Gaussian function decreases much faster at large x than
polynomial and exponential functions, which are common func-
tional forms of correlation functions. Studies using polynomial
and exponential correlation functions are left for future work.

III. DECOHERENCE AND RELAXATION
DYNAMICS

The characterization and classification of the re-
laxation dynamics of open quantum systems to the
steady/thermal state has received significant interest in
recent years [134-144]. A common approach entails con-
sidering either the short or long time non-equilibrium
dynamics. At short time scales, the Lindblad evolution
can be approximated by a non-hermitian Hamiltonian.
In this paper, we primarily focus on long-time relax-
ation dynamics. The relevance of characterizing these
dynamics extends to investigations of non-equilibrium
and dissipative phase transitions. For example, while no
such transitions occur in the equilibrium state, a phase
transition could occur in the decay modes of the Li-
ouvillian. Moreover, the study of dissipative dynamics
contributes to understanding phenomena like topological
phases, domain walls, non-trivial boundary modes, and
exceptional points. While a comprehensive exploration
of these aspects within the quantum field theory limit of
the Schwinger model is beyond the purview of our cur-
rent work, we hope this section will provide a valuable
starting point for more in-depth future studies.

A. Liouvillian eigenmodes and relaxation dynamics

We start by rewriting the Lindblad master equation in
Eq. (8) in terms of a Liouvillian superoperator £ which
operates on the density matrix p as

dp _

%= Lp. (13)
As expected from the open quantum system, the den-
sity matrix diagonalizes over time due to thermalization
when expressed in terms of the energy eigenstate basis.
With our re-expression of the Lindblad equation as a Li-
ouvillian superoperator acting on this density matrix, we
are also able to understand how the system approaches
the thermal state, i.e. the non-equilibrium and relaxation
dynamics by carrying out a spectral analysis. That is, we
expand the density matrix describing the open quantum
system dynamics in terms of eigenmodes of the Liouvil-
lian. The right and left eigenmodes pf’L are defined as
where the subscript j = 1,---d? indexes the j-th eigen-
mode with the eigenvalue A;, and d is the size of the
Hilbert space. The left and right eigenmodes are orthog-
onal

(p|pt) ~ i - (15)

Here we define the inner product as (A|B) = Tr[ATB].
The dimensionality of the Liouvillian is d* x d?, acting
on a vectorized density matrix of length d?. In Fig. 3,
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FIG. 3. Scatter plots of the Liouvillian eigenvalues of the open Schwinger model for N = 4 lattice sites (Ny = 8) with
e=0.8, m=0.5, §=0.1, and Dy = 1 for different types of environmental correlators.

we plot the eigenvalues for the open Schwinger model
using an N = 4 lattice with Ny = 8 fermion sites
for different types of interactions that we introduced in
Section II. In order to facilitate the visual comparison,
we limit the range of Re()\;) to [—8.5,0], although the
case with a constant environment correlator has a few
eigenvalues at much smaller (more negative) real values.
These spectra of eigenvalues clearly demonstrate that the
non-equilibrium dynamics are nontrivially modified for
different types of interactions with the medium. For ex-
ample, in the case where the interaction corresponds to a
delta function for the environment correlator, we observe
the emergence of a vertical band structure. This indi-
cates that different subspaces of the Hilbert space decay
at separate stages, see also Ref. [135] for example.

Assuming, for now, that there is no degeneracy for the
steady state, we can order the eigenvalues such that their
real parts are sorted in descending order 0 = Re()\g) >
Re(M) > ... > Re(Agz_1). The time evolution of the
general density matrix can then be written, for instance
with respect to the right eigenmodes, as

d?—1

p(t) =po+ Y c;eMplt. (16)
j=1

The coefficients c; are obtained by calculating the overlap
of the left eigenmodes with the initial state and including
an appropriate normalization factor

. (p¥1p(t =0))
! (pE1pk)

This result is obtained by diagonalizing the Liouvillian
in Eq. (13). Since the eigenvalues satisfy Re(A;>1) < 0,
the density matrix p(t) eventually relaxes to pg, which is
referred to as the (non-equilibrium) steady state, which
can be shown to be 1 — 2 for our Lindblad equation (8).
It is nothing but the thermal state e=#s/T in the high-
temperature limit, up to corrections of the order (Hg /T)?
(recall that the quantum Brownian motion approxima-
tion involves an expansion in Hg/T [105]). We note that
po is the only eigenmode with a trace equal to 1, while

(17)

all the other eigenmodes have vanishing traces. Thus
none of the other eigenmodes satisfy the condition to be
a density matrix by themselves.

Analyzing the behavior of the open quantum system in
terms of the eigenmodes provides means to interpret the
non-equilibrium and relaxation dynamics. For example,
the approach of the general p(t) to pp will be dominated
by the first few Liouvillian eigenvalues A; and the corre-
sponding eigenmodes pf. In particular, for a given ob-

servable O, the expectation value (O) p(t) = Tr[Op(t)] will
approach the thermal expectation given by the steady-
state eigenmode (O),, and its long time rate of ap-
proach will be bounded by the real eigenvalue of the
first non-stationary eigenmode with smallest i such that
(O)pr # 0, as elif > eM* for i < j.

In general, the relaxation dynamics towards the sta-
tionary state cannot last longer than the rate of decay of
the eigenmode pf. For this reason, it is common to de-
fine the Liouvillian or spectral gap A1, which dominates
the asymptotic long time decay rate of the Liouvillian,
as

A = |Re(\)]. (18)

The Liouvillian gap A; is one of the primary features
that characterize and are used to classify the dynamics of
open quantum systems. In many ways, it is analogous to
the spectral gap of closed quantum system Hamiltonians
and is associated with the longest lived eigenmode [135].

On the other hand, the relaxation time 7 is defined
as the maximum time at which the following inequality
is satisfied [140]

max(7) : |<@>p(t:7') - <@>Po‘ > €_1|<@>p(t:0) - <@>po|7
(19)

where the maximization operation is over arbitrary den-
sity matrices p(t). Then, from Eq. (16), one naively ex-
pects
1
TR~ —.
R™ A
This expectation is not always met, and Liouvillian skin
effects from boundary conditions are a potential source

(20)
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FIG. 4. Illustration of the gap sizes for different environmen-
tal correlators.

of deviation from this relation, which were discussed
for different quantum mechanical systems in the liter-
ature [137, 140, 143, 145]. In our case, we do not observe
such skin effects, but it would be interesting to study
systems with Liouvillian skin effects in the context of
quantum field theories as well.

As discussed in Section I, the Lindblad equation with
a constant environment correlator preserves CP symme-
try, leading to the existence of two distinct CP sectors.
This implies a degeneracy in the spectrum unless we sepa-
rate the system into these distinct CP sectors. Therefore,
we have two stationary states, p§*® and pgdd. That is,
our evolution equation in Eq. (16) is now modified to

pUt) = oo™ + cEope

N.—1 No—1
e At R,even o Aot R,odd
+ E cjenitp; + g cre  py . (21)
j=1 k=1

Here N, and N, are the dimensions of the Hilbert spaces
of the CP-even and CP-odd sectors, respectively. They
must satisfy the condition N, + N, = d?, where d is the
dimensionality of the total Hilbert space. While the di-
vision between the two CP sectors is clear when the CP
symmetry is exact, resulting for example in separate Li-
ouvillian gaps in each sector, it is anticipated that this
case will be approximated by a Gaussian environment
correlator Dg(z) as its width o increases, even without
satisfying the exact CP symmetry. This is illustrated
in Fig. 4, where the constant correlator case D.(z) de-
picts the situation before the decomposition into definite
CP sectors. As the figure illustrates, the Liouvillian gap
denoted by A that is present in the case of a delta func-
tion and Gaussian correlator reduces as the correlation
length of increases. An analytic explanation of this de-
pendence is given in Appendix A. Eventually, the Liou-
villian gap vanishes when the correlation length becomes
infinite. The vanishing of A; corresponds to the emer-
gence of two degenerate steady states, one in each CP
sector. Consequently, the decay rate towards the global
stationary state for pf* becomes so slow for a Gaussian
correlator with a very wide width that its relaxation dy-

namics at an earlier time scale are primarily dominated
by the next gap in the Liouvillian spectrum,

Ay = |Re(N2)], (22)

which corresponds to the eigenmode pf. As the width
continues to increase, it eventually reaches the limit of a
constant environment correlator, where p¥ itself becomes
the stationary state in the CP-odd sector. In Fig. 5, we
study the behavior of the first Liouvillian gap, A, and
the second gap As, as functions of the environment cor-
relation length. The Gaussian correlator smoothly con-
nects the cases of a delta function and constant corre-
lator, which have zero and infinite widths, respectively.
We found that both gaps demonstrate a smooth behavior
while interpolating between the two limits. In particular,
we observe that the Lindblad equation with a large-width
Gaussian correlator has an approximate CP symmetry,
signaled by the vanishing gap A, which plays an impor-
tant role in its relaxation dynamics as we will see. We
also note that in the infinite correlation length limit, A,
reaches a nonzero value.

A further intriguing aspect to explore is the relation-
ship between the Liouvillian gap and system size. With
the lattice spacing a fixed, it is expected that the size
of the Liouvillian gap decreases as the number of lattice
sites increases. This results in a slower thermalization
rate since there are more excited modes to equilibrate.
However, to obtain the QFT in the continuum limit, one
needs to first take a — 0 with the system volume fixed,
which we leave for future studies. Here we only focus on
the case with a fixed. In Fig. 6, we illustrate this phe-
nomenon by plotting the Liouvillian gap A; for the open
Schwinger model with a delta function environment cor-
relator. The figure demonstrates how the gap decreases
as the system size increases, which is explained in Ap-
pendix A. Also, for comparison, we include the case of
a 141D free fermion theory coupled with a thermal en-
vironment with the same delta function correlator. The
free fermion theory can be discretized by using the stag-
ger fermion formalism and the Jordan-Wigner transform,
which is the non-interacting limit e — 0 of the discretized
Schwinger model. The free fermion model Hamiltonian
can be mapped onto a spin system analogous to the
Schwinger model, which gives

Ny—2
Hg = % Z (et (n)o~(n+1)+ ot (n+1)o (n))
+5m > (-1)"ou(n). (23)
n=0

In order to achieve a direct comparison with the
Schwinger model where the total net charge is fixed to
zero as a result of the open boundary condition with van-
ishing electric flux outside the lattice, we also constrain
the free fermion system to the sector with zero net charge.
The result of Ay for the free fermion case is shown in
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FIG. 5. The first two Liouvillian gaps, A; and As, as functions of the Gaussian width in the environment correlator. We
apply the arctan function to the width to smoothly map both zero and infinite widths onto a finite domain. As indicated in
the figure, when the Gaussian width o is zero, the correlator reduces to a delta function, and when o is infinite, the correlator
becomes a constant. The o dependence of the relaxation rate is explained in Appendix A.
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correlator described by a delta function in all cases. The N
dependence is explained in Appendix A.

red in Fig. 6, where the dashed line represents an exact
o N~2 function. The four red points are well described
by this function, indicating the first gap A; in the open
free fermion model with a delta environment correlator
decreases quadratically with the system size. We note
that for other choices of environment correlators, the de-
pendence on N is more complicated than a simple mono-

mial in NV but it remains monotonically decreasing with
N.

Since we truncate the maximum electric flux at mag-
nitude 1 for the open Schwinger model, we also need to
include a similar constraint for the free fermion model

to make a direct comparison. To this end, we only
consider states where two neighboring occupied lattice
sites cannot both be electrons or positrons. For ex-
ample, [0,eT,e™,eT,e™,0) (where 0 denotes an unoccu-
pied fermion site) is included in both the constrained
and full free fermion models for an Ny = 6 lattice,
whereas |e7,0,e™,et,0,e") is only included in the full
free fermion model, as this state would create electric
field flux value 2 > |€,|max = 1 at some sites in our
constrained Schwinger case. In the second example, the
two electrons are on two occupied neighboring sites even
though they are separated by one fermion lattice site
that is unoccupied. The results for this constrained free
fermion model are shown by the green line in Fig. 6.
We see that as the coupling in the Schwinger model de-
creases, the gap results approach those in the constrained
free fermion case. The black, blue, and green dashed
lines are fits of the form o« N~¢. The fitted parameter
values are 1.316, 1.422 and 1.443 for the black, blue, and
green cases. We see that a monomial in NV can approx-
imately describe the N dependence of Ai, but not ex-
actly. Given the smooth transition from the constrained
Schwinger model to the constrained, free fermion case,
we predict that as e decreases, removing the constraint
will lead to a convergence towards the free fermion case
with the exponent approaching —2.

While there are several studies that discuss boundary
dissipative systems with bounds on the decay rate of the
first Liouvillian gap as a function of the system size [135,
146], a more detailed examination of this phenomenon for
the open Schwinger model is left for future work. We now
examine the von Neumann entropy of the system, which
illustrates that the Liouvillian gap discussed here plays
a significant role in describing the relaxation dynamics.
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FIG. 7. The von Neumann entropy Syx of the open Schwinger model for N = 4 lattice sites with e = 0.8, m = 0.5, 8 = 0.1, and
Do = 1. Left: Syn for different environmental correlators starting from the bare vacuum state in the full Hilbert space as the
initial state, which is CP-even. Right: Syn for the constant D. = Dy environment correlator where the CP sectors are studied
separately. In each individual sector we choose appropriate pure states as the initial states. Since the size of the Hilbert space
of each sector is smaller than that of the whole system, the maximal von-Neumann entropy of each sector depicted as dashed

lines on the right is smaller than the dashed line on the left.

B. Decoherence and von Neumann entropy

The entropy of quantum systems is frequently studied
in the literature. In order to quantify the decoherence of
the open Schwinger model, we are going to consider the
von Neumann entropy Syn, which is given by

Syn = —tr[plogp]. (24)

The von Neumann entropy vanishes for a pure state
where p? = p and a finite value for S,x measures the
deviation from a pure state. In our case, the decoher-
ence results from the interaction with the thermal envi-
ronment. The von Neumann entropy is a generalization
of the Gibbs (and Shannon) entropy of thermodynamic
systems to the quantum case. The phenomenon of de-
coherence in the density matrix language is frequently
discussed in the literature of high energy heavy ion col-
lisions [109, 116, 147] and the concept of entropy has
also been discussed in the context of parton distribution
functions in Refs. [148-150] and jet physics in Ref. [151].

In the Schwinger model as an open quantum system,
the pure initial state of a string (or analogously the fully
unoccupied vacuum state) decoheres due to the interac-
tion with the thermal environment, which is described
by the Lindblad equation. Therefore, we obtain a fi-
nite value for the von Neumann entropy for ¢ > 0 which
increases as a function of time due to the continued in-
teraction with the environment until the system reaches
its steady state. Once the system is in a thermal state,
the von Neumann entropy reaches its maximum value,
indicating the initial state fully decoheres. The von Neu-

mann entropy is generally bounded by
0< Syn <logd, (25)

where d is the dimension of the Hilbert space. As men-
tioned above, the lower limit is obtained for a pure state,
whereas the upper limit is realized for a maximally mixed
state proportional to the identity matrix pmm = %]1.
The thermal state generated at late times of the Lind-
blad evolution approximates the maximally mixed state
in the limit 7" — oco. Here we explore numerically the
real-time dependence of the von Neumann entropy in the
Schwinger model as an open quantum system.

In Fig. 7, we plot the von Neumann entropy starting
from an initial pure state as a function of time for N = 4
lattice sites with parameters e = 0.8, m = 0.5, 5 = 0.1.
In the left panel, we study the time evolution in the full
Hilbert space of the Schwinger model (which includes
both CP-even and odd sectors) by starting from the bare
vacuum state that is CP-even and show the results for
different environmental correlators. We observe that the
relaxation dynamics significantly depend on the different
environment correlation lengths. The von Neumann en-
tropy reaches its maximal value fastest for a delta func-
tion correlator Ds, i.e. for short-range correlated envi-
ronment that allows for an efficient exchange of momen-
tum and information between the system and environ-
ment. For the Gaussian case Dg ~ G(0), we observe
that it smoothly approximates the result of a delta func-
tion correlator in the limit ¢ — 0. On the other hand, as
the correlation length is increased, Syn reaches its max-
imum value at a much later time. This observation is



generally in line with the hierarchy of the gaps for dif-
ferent interactions with N = 4, as illustrated in Fig. 5.
Interestingly, we find that for a constant environmental
correlator D., the von Neumann entropy asymptotes to a
lower value. This is due to the decoupling of the two dis-
tinct CP sectors in the Liouvillian dynamics. Given that
our initial state is CP-even, the thermal state to which it
relaxes to is also a CP-even state. The reduction of the
Hilbert space for a definite CP sector decreases the final
entropy value. We also find that the Gaussian case with
a large width does not smoothly approximate the result
for a constant correlator D.. While it does approximate
it for early times, it eventually deviates and asymptotes
to the larger value of S,x, as shown by the green line.
This is because the Lindblad evolution in this case only
approximately preserves the CP symmetry and eventu-
ally the entire Hilbert space thermalizes. In this sense,
we find a discontinuity of the late time dynamics in the
limit ¢ — oo.

These results illustrate the nontrivial roles of A; and
A, as the environment correlation length changes. For
instance, the early dynamics of the large Gaussian width
case (o = 100) closely follow the constant environment
correlator case, a similarity that can be attributed to the
very close As values in both cases. On the other hand,
in the case of large Gaussian width, the A; value is very
small, yet nonzero. This contrasts with the constant case,
where A; vanishes, leading to a second stationary state.
The small but nonzero A; value in the large Gaussian
width case causes very slow decay, which results in a
deviation from the constant case behavior in the large
time region. Physically the system quickly thermalizes
in the CP-even sector (since the initial state is CP-even),
which is governed by Ajs. The small A; determines the
much slower thermalization between the two CP sectors,
which eventually leads to a global thermalization in the
whole Hilbert space. This example further demonstrates
that non-equilibrium dynamics cannot, in general, be de-
scribed solely by the first few Liouvillian eigenstates in
the full time region. In fact, our example highlights the
significant role played by the second gapped state, es-
tablishing a principle that can be generalized to higher
gapped states in other instances. Non-equilibrium dy-
namics can display nontrivial behaviors across various
time scales, with these behaviors being influenced by
multiple eigenstates. For instance, our example clearly
exemplifies the type of behaviors that can be expected
when a set of eigenvalues are hierarchically separated,
i.e., e > Ag > AQ > Al-

In the right panel of Fig. 7, we study the Liouvillian
dynamics in each CP sector individually and show the in-
dividual von Neumann entropy as a function of time for
D.. This clearly demonstrates that initial states from
different sectors each relax to their respective thermal
states within their sector, which are given by e He/T
and e~ He/T for the even and odd sectors respectively (H,
and H, are the corresponding Hamiltonians). In each CP
sector, the Hilbert space is smaller than the total Hilbert
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space with two CP sectors, so the maximum entropy is
smaller than the left panel. In addition, we find that
the dimensionality of the CP-even Hilbert space is larger
compared to the CP-odd case leading to a larger asymp-
totic value for S,n. If one studies the time evolution of
an initial state that contains both CP-even and odd parts
p(0) = o (0) + (1 — )p14(0) , (26)
the entropy at late times will be a combination of the two
asymptotic entropy values of each CP sector
SvN,asym =c s\ﬂﬁgsym + (1 - C)S\?l%(}asym
—cloge—(1—c)log(l—c¢), (27)
where Sve‘lilezi;id is the asymptotic entropy value in the
CP-even/odd sector.

IV. STRING DYNAMICS IN A THERMAL
MEDIUM

In this section, we study the real-time dynamics of the
string breaking process in the Schwinger model. As men-
tioned above, the evolution of the string in the Schwinger
model can be considered as a model of deconfinement and
hadronization in QCD where a quark and an antiquark
are separated by a color string, see for example the Lund
string model [152]. The in-medium string evolution of
the Schwinger model can also be thought of as a model of
the quarkonium dynamics in the QGP, where dissociation
and recombination of quarkonium occur. String breaking
in the Schwinger model has been studied numerically in
the vacuum in several previous studies [38, 42, 46]. We
will consider both the vacuum case within our setup as
well as for the first time the medium modification to the
string breaking dynamics.

A. Vacuum

To begin, we study the string breaking process in vac-
uum in our setup. We consider an initial configuration
where an electron-positron pair separated by some dis-
tance is located in the middle of the one-dimensional lat-
tice, connected by a string of electric field links. In order
to focus on the dynamics of this string, we will subtract
from this configuration the results when a configuration
without any fermion and electric flux is initialized, i.e.
the bare vacuum state (fully unoccupied). We choose
suitable values of m, e where string breaking occurs in the
vacuum. In particular, we choose: mass m = 0.5, electric
charge e = 0.8, and lattice spacing a = 1. Other parame-
ter values will be discussed further in Section IV C. Since
the numerical simulation of the medium case is compu-
tationally very expensive we limit ourselves to N = 6
lattice sites (INy = 12 fermion sites) corresponding to 11
electric field links throughout this section unless stated
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FIG. 8. String breaking in vacuum for Ny = 12 fermion lattice sites, corresponding to 11 electric field links. (a): Numerical
simulation where the electric field value at each link is used as a measure of the location of the string. (b): Schematic diagram
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time evolution.
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FIG. 9. String breaking in the medium for Ny = 12 fermion lattice sites for three different values of Do with the delta function

environment correlator.

otherwise. Other numerical approaches such as the quan-
tum trajectory method will allow us to study bigger sys-
tems, which will be explored in the future. We note that
our initial state corresponds to a bare state where effec-
tively two fermion creation operators are applied to the
bare vacuum. It is possible to extend this description
and smear the relevant states into wave packets. In this
work, we do not pursue this direction further but instead,
refer the reader to Refs. [153—-155]. Another extension is
to first prepare the interacting vacuum state (i.e. ground
state in energy) and use the state created by applying the
fermion creation operators onto the interacting vacuum
as the initial state, see e.g. Ref. [156]. This is also left
for future work.

We quantify the presence of the string by measuring
the electric field expectation value in units of e as a func-
tion of position and real-time, i.e., (E(x,t)) (the electric
field operator is eF). The initial configuration can be

seen at t = 0 on the left end of Fig. 8. The string is shown
in blue whereas green corresponds to no electric field. In
our convention, we choose the electric fields pointing up-
ward in the figure to have negative values such that the
initial nonvanishing electric fields are (E,) = —1. If it
is pointing in the opposite direction it will take positive
values up to (E,) = +1.

As time evolves, the string breaks? and hadronizes
into two spatially separated electron-positron pairs
(“mesons”) that move away from each other with a cer-
tain velocity. These bound meson states can be seen in
Fig. 8a as small blue regions moving toward the upper
and lower edges of the spatial lattice until t ~ 6. Even-
tually, when the two meson states reach the boundary of

2 Again, we will discuss other parameter choices, including a case
where the string does not break, in Section IV C.



the lattice, they rescatter and start moving back toward
the center of the lattice, as shown by the yellow regions
after t = 8. This is an artifact of the finite size of our
setup. With tensor networks, it is possible to simulate
significantly larger lattices [42], which we do not pursue
in this work.

B. Medium

As a starting point, we will first explore how the string
breaking process described in Fig. 8 is modified in a ther-
mal medium. The real-time evolution of the string is de-
scribed by the Lindblad equation given in Eq. (8). For
our numerical simulations, we choose the delta function
environment correlator Dg = Dydg, with different values
of the prefactor Dy. Similar to the vacuum case, we again
subtract the result of the Lindblad evolved bare vacuum
state from the result obtained from an initial string con-
figuration. When ¢ > ﬁ, the initial bare vacuum state

also thermalizes and the subtraction gives zero. There-
fore, we focus on the time region t < \Alll'

The open quantum system evolution of the string is
shown for an N = 6 lattice in Fig. 9. The constant
Dy = 0.01,0.15,0.3 is increased from left to right. As
Dy increases, the system is more significantly modified.
Additionally, we investigate whether a delay of the string
breaking mechanism is observed as Dy is increased. In
order to quantify this effect, we determine the time t*(z)
at which each site x = na reaches its maximum electric
field value,

t*(z) = arg inax [(E(x,t))]. (28)

Here t is chosen in an interval t € [0, tmax], Where tmax is
determined by the onset of boundary effects due to the

609 o D=0
- Dy = 0.01
Dy = 0.15
504 = Dy =03

t*(x) = arg max |(E(z,t))]

T = na

FIG. 10. The time t*(z) at which each site = na reaches the
maximum electric field value. We find that t*(z) is larger for
all z in the open system (excluding the trivial central three
sites), with a larger delay observed for stronger Dy.
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finite size of the lattice and is roughly ¢ ~ 6 as shown
in Fig. 8. The results are shown in Fig. 10, where we
plot t* as a function of the site x = na with the index
n € [0,1,2,3] (we excluded the middle sites where the
string is initialized). We see that in the limit of small Dy
(Do = 0.01) the open system behavior approaches the
vacuum behavior. We also find that ¢*(x) is larger for
all z in the open system, with a longer delay observed
for a larger Dg. This delay can be understood from the
medium dissipation effect, which is already known in the
quarkonium dynamics in a thermal medium [118, 119].
When the initial pair of the electron and positron is bro-
ken into two mesons, the energy stored in the initial elec-
tric string is converted into the masses of the extra two
fermions and the kinetic energies of the two mesons. The
initial kinetic energies are the same as in the vacuum
evolution. The dissipative term, i.e., the Hg/T term in
the Lindblad operators shown in Eq. (10), reduces the
kinetic energy of the system and plays a crucial role for
the system to approximately thermalize. As a result of
the kinetic dissipation, the velocities at which the two
mesons move away from each other decrease, and the
separation of the two mesons is delayed.

We also note that for a sufficiently long time, the string
magnitude at every site tends to zero. This is because
we take the difference between the result obtained from
an initial bare string state and that from an initial bare
vacuum state. After a long time, the system reaches
the approximate equilibrium state, which is the same for
different initial conditions in the case of the delta function
environment correlator. We would like to point out that
if the initial state was prepared by applying two fermion
creation operators on the interacting vacuum state, the
subtraction performed here would not be necessary.

C. Dependence on system parameters

The real-time dynamics of the string breaking depend
on the fermion mass m and coupling e. In the vacuum,
there are three different regimes [38, 42], which are quan-
tified in Fig. 11a with a metric E defined as the average
expectation value of the electric fields in units of e at the
three central sites over a specified time window:

F=_—_1 /t Cat Y (Ban)  (29)

3(t2 —t1) Jy, nel4,5,6]

The three regimes are as follows:

e In the parameter region where m ~ e? < 1, the
fermion mass, the electric energy stored in the elec-
tric fields, and the kinetic energy are all on the same
order, and string breaking can happen in real-time
dynamics. The electric flux between an electron-
positron pair will break to release enough energy to
create another electron-positron pair to form two
charge-neutral mesons that move away from each
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E(m, e), t=[3.0—4.0] (medium)
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FIG. 11. String breaking in vacuum (a) and the medium (b) for different values of the mass m and coupling e. We show the
expectation value of the electric fields in units of e averaged over the three central lattice links and averaged over all the times
between t = 3 and t = 4 with an initial string located at the three central links. We use a delta function environment correlator
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FIG. 12. Real-time string dynamics in both vacuum (a,b,c) and the medium (d,e,f) with three different sets of parameters of
the Schwinger model. For the in-medium evolution, we use the delta correlator with Dy = 1 and 8 = 0.1.

other. This process can only happen when the elec-
tric energy stored in the electric flux is comparable
to the sum of the typical kinetic energy and twice
the fermion mass. In Fig. 11a, we observe that at
small m and e the string breaks, corresponding to

large (i.e. less negative) E. The typical vacuum
real-time dynamics in this regime are plotted in
Fig. 12a. We predict that states with long initial
strings would undergo multiple string breakings, as
anticipated from string fragmentation, resulting in



the creation of multiple mesons. For instance, if
the initial string is 7a long, the string can break
in three places to produce four mesons. The phe-
nomenon of multiple breakings requires the initial
string to be long, which is not considered here.

e In the region where 2m ~ €2 >> 1, the string cannot
really break in real-time dynamics since the energy
released from the breaking of the electric flux is ex-
actly equal or very close to twice the fermion mass,
leaving little kinetic energy for the two mesons to
carry. The two mesons stay together and after a
certain time, the fermion and anti-fermion next to
each other convert back into a string. The real-
time dynamics is just an oscillation between these
two states, i.e. fermion pairs are created and anni-
hilated but the string effectively stays in place and
the created mesons do not move away from each
other, behaving like a molecule state. The typical
vacuum real-time dynamics in this regime are plot-
ted in Fig. 12b. This regime corresponds to the
“wing” structure in Fig. 11a. It appears as light-
blue in the plot, corresponding to an intermediate
value of E ~ 0.6 due to configurations where the
electric field values on central sites oscillate and the
fermion pair is created and annihilated. The period
of these oscillations depends on the values of m, e
which give rise to a varying magnitude of E due to
the fixed time window we examine.

e In the region where m > e2,1 or e? > m, 1, the
string stays intact since the energy released from
the breaking of one unit electric flux is either too
small to create an electron-positron pair in the case
with m > €2, 1, or too large to have kinetic energies
of mesons sustainable on the current finite lattice
setup in the case with e? > m, 1. Processes that
significantly violate energy conservation cannot oc-
cur at any nonzero time in real-time dynamics. The
first case arises due to the inability to create a new
electron-positron pair, while the second case is the
result of the inability to access states of higher mo-
mentum. This regime corresponds to E ~ —1 (the
dark blue region) in Fig. 11a and its typical vacuum
real-time dynamics are plotted in Fig. 12c, where
the string stays intact during the time evolution.
We expect that the string remaining intact in the
e? > m, 1 region is an artifact of the finite lattice
setup that we are studying, which imposes a cutoff
on the highest (lowest) momentum state available
as ~ 1/a (~ 1/(Na)). In the continuum and infi-
nite volume limits, the system can sustain arbitrary
momentum and the energy being released from the
string breaking can be converted into kinetic ener-
gies.

The modification of these three regimes due to medium
effects is shown in Fig. 11b, where E is obtained from
the Lindblad equation as a function of e, m. We choose
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B = 0.1 and the environment correlator to be a delta
function with Dy = 0.15. While we observe the same
three regimes as in vacuum, their behaviors are signifi-
cantly modified. At small m and e, we observe a regime
of string breaking with slightly larger magnitude of the
string flux than in vacuum, due to the delayed breaking
effect discussed above. In Fig. 12d, we plot the real-time
dynamics in this regime for the medium case with the
delta correlator, Dy = 1 and 8 = 0.1. We clearly see the
quantum dissipation effect caused by the medium, which
damps the kinetic energies of the mesons and protects
the string from completely breaking. This phenomenon
has already been noted in open quantum system stud-
ies for quarkonium inside the QGP [118, 119] and may
be partially interpreted as quarkonium recombination,
a phenomenon known for a long time in the heavy ion
community [157-159]. At thermal equilibrium, quarko-
nium dissociation and recombination reach detailed bal-
ance [160, 161]. Similarly, the significant kinetic dissipa-
tion observed here can be interpreted as string reconnec-
tion in the medium. States with different string config-
urations in the Schwinger model reach detailed balance
when the system thermalizes, driven by the interaction
with the thermal environment.

Next, we consider the case where the string does not
break in vacuum, i.e. it is a bound state, which happens
at larger values of e, m. The medium can induce melting
of the string, no matter whether the string is oscillat-
ing or stable in vacuum, as shown in Figs. 12e and 12f
where we use the delta environment correlator again with
Dy = 1 and 8 = 0.1. The evidence of the medium-
induced string breaking can be seen from the lighter blue
regions at late times in the center of the lattice. This
scenario is analogous to quarkonium dissociation inside a
QGP. The medium-induced string breaking rate depends
on the parameters of the Schwinger model, as well as the
environment correlator. Here we see the string breaking
rate is larger for e = 2,m = 1 than e = 0.8, m = 3.0.

V. TOWARD QUANTUM SIMULATIONS:
ESTIMATION OF TROTTER ERRORS

Lindblad dynamics can be simulated with a quan-
tum algorithm based on the Stinespring dilation theo-
rem [162]. The non-unitary evolution of the open quan-
tum system can be achieved by including an ancillary
register, which allows for the embedding of the evolu-
tion in an enlarged Hilbert space. In this larger Hilbert
space, the evolution is step-wise unitary and repeated
reset operations of the ancillary qubit register lead to
a time irreversible and non-unitary evolution. Follow-
ing Ref. [163], we can simulate the Lindblad evolution
in terms of small time steps 6t = t/Ncy1, where ¢ is
the final time we evolve to and Ny, is the number of
time steps or cycles. The simulation protocol illustrated
in Fig. 13 proceeds by alternating between the applica-
tion of the unitary evolution operator associated with the
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FIG. 13. Quantum algorithm to simulate Lindblad evolution
based on the Stinespring dilation theorem [162]. Here |15(0))
denotes the initial state of the system.

system Up, = exp(—iHgdt) and the evolution operator
Uy = exp(—iJV/dt), where J is a block matrix that con-
tains the Lindblad operators in the first row and column

0o LI ... L},
Ly 0 ... 0

= . . . . (30)
Lym 0 ... 0

Here we limit ourselves to the case where the environ-
mental correlator is given by Ds(z) = do., as in the dis-
cussion around Egs. (8) and (11) above. The evolution
operator U acts on the system and the ancillary register
of qubits. The ancillas are reset after every time step
0t, which leads to a non-unitary evolution. In the limit
Ney1 — 00, the exact Lindblad evolution is recovered.
The error associated with the decomposition of the Lind-
blad evolution in terms of Uy, and U; operators scales
as 6t15. To illustrate the numerical size of the error that
is introduced by using a finite number of Ny time steps,
we show the evolution of the Schwinger model as an open
quantum system for N1 = 1 — 4 in Fig. 14 along with
the full result based on the fourth order Runge-Kutta
(RK4) method. As an example, we consider the expecta-
tion value of the electric field in units of e summed over
all links of the lattice

<ZE(x:na)>, (31)

with the bare vacuum as the initial state. The same
quantum algorithm considered in this section can also be
directly used to simulate string breaking or the von Neu-
mann entropy studied in previous sections. All numerical
results presented in this section are based on an N = 2
spatial lattice with e = 0.8, m = 0.5, a =1, and = 0.1.

As the number of steps Ny is increased, the agree-
ment with the full result improves. Here we assumed
that both U; and Ug, can be mapped exactly to ele-
mentary quantum gates, without considering shot noise
and gate errors. In general, the mapping of the unitary
evolution operators Uy and Up, to elementary quantum
gates requires further approximations. In Ref. [129, 164]
an efficient compilation method [165] was used to ap-
proximately map the unitary operators U; and Ug, to
elementary quantum gates. However, for unitary oper-
ators acting on a larger number of qubits this compila-
tion process can become computationally expensive. In-
stead, to implement the evolution operators Uy, and U
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FIG. 14. Upper panel: Comparison of the full Lindblad evo-
lution (RK4) and results from the (noiseless) quantum sim-
ulation using different numbers of cycles Ny, as shown in
Fig. 13. Lower panel: Ratio of the different approximate re-
sults to the full RK4 solution.

on a quantum computer, a Trotter-Suzuki decomposi-
tion [166, 167] can be employed for both operators. This
decomposition will introduce additional errors, besides
the errors arising due to a finite number of cycles, as
shown in Fig. 13. In this section, we will quantitatively
assess both types of errors.

We can write any Hamiltonian acting on n qubits, in
our case Hg and J, as

H=Y Hj=aP, (32)
j

where P;: {1,X,Y,Z }®" are strings of n Pauli operators
(and the identity). The relevant coefficients a; can be
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FIG. 15. Numerical results for the time evolution of the

Schwinger as a closed system. Results with a different number
of Trotter steps r are shown in comparison to the full result,
which is labeled as r = oo.



0.4 4 Neyele

=4

rg=11;=1 ry=1r;=00

rg =00, T;=1 TH = 00, Tj = 00

ra=sc)
|

)

[ By = (X By

FIG. 16. Upper panel: Lindblad evolution of the Schwinger
model using the quantum algorithm shown in Fig. 13 for
Ney1 = 4 as in Fig. 14. We show the result for different num-
bers of Trotter steps of the operators Ugg and/or U indi-
cated by g, , respectively. Lower panel: Difference between
the different Trotter approximations and the result without
further Trotter decomposition rg,; = co.

obtained as

1

St (P H) (33)

aj =
The unitary evolution with any of the terms in Eq. (32),
i.e. et can be directly mapped to elementary quan-
tum gates without further approximations [167]. We can
implement the evolution of the full Hamiltonian H in
Eq. (32), using a first order Trotter decomposition

Ui(t) = H ettt (34)

J
The upper bound for the error of this approximation, i.e.
the difference between U, () and e ™!, is given by [168]

e =)l < 5 ZH

j>k

i H || (35)

where || - || denotes the spectral norm. The error bound
of the first order Trotter decomposition is proportional
to the square of the time ¢ and the size of the prefac-
tor depends on the number of non-commuting terms in
Eq. (32). By decomposing the interval ¢ into r time steps,
the error can be reduced to

le™ ™" = U/l < 5 ZII

J>k

i, Hy) ||* (36)

Here U7 (t/r) denotes r applications of the Trotter de-
composed unitary Uy with each time step being ¢/r. This
implies that the value that needs to be chosen for r
and the computational cost to perform the simulations
within spectral-norm error e, scales as O(t?/¢). To fur-
ther reduce the cost, higher order Trotter formulas can
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be used [168-170]. Here we limit ourselves to first-order
Trotter decompositions since we are primarily interested
in the difference between the closed and open system evo-
lution.

In the following, we present numerical results for the
Lindblad evolution of the Schwinger model using differ-
ent numbers of Trotter steps. For comparison, we start
by considering the error induced by the Trotter decom-
position for the vacuum evolution (i.e. Ny = 1) of the
Schwinger model, which was also considered in Ref. [40].
The results are shown in Fig. 15, where we choose exem-
plary values for the number of Trotter steps r = 3,5, 10.
As expected, the error increases for late times in com-
parison to the full result, which is labeled as r = oo.
Next, we consider the Trotter error for the Lindblad evo-
lution. Our numerical results are shown in Fig. 16. For
all results, we choose N¢y1 = 4, which provides a good ap-
proximation of the full result for the time values shown
here, as demonstrated in Fig. 14. We denote the number
of Trotter steps for Uyy and U; by rg j, respectively.
These Trotter steps correspond to a further decomposi-
tion of the time interval of each cycle of time length §t.
In other words, here rg,; = 1 is analogous to a Trot-
ter decomposition of the vacuum result in Fig. 15 with
r = 4. Interestingly, we observe that the error induced by
the Trotter decomposition for the open quantum system
evolution is smaller compared to the time evolution of the
closed system. This holds even though more qubits and
gates have to be applied to realize the Lindblad evolution
due to the unitaries U;. For the closed system evolution,
we use 3 qubits and for the open system, we need twice
as many. From the upper bound for the Trotter error
in Eq. (36) and the sequential application of quantum
gates, one might have expected an increased error for
the open quantum system evolution as there are signifi-
cantly more non-commuting terms that contribute to the
total error when Uy is included. While these results may
not be universally applicable, they suggest the presence
of interesting error cancellation effects in the Trotter de-
composition of field-theoretical open quantum systems,
which motivates further detailed studies in future work.
Furthermore, we note that the Trotterization errors as-
sociated with U are much smaller than those associated
with Upy, as shown in Fig. 16.

VI. CONCLUSIONS

In this work, we considered the Schwinger model as an
open quantum system and studied its Liouvillian dynam-
ics focusing in particular on the string breaking mech-
anism. This was achieved by coupling the Schwinger
model to a thermal environment and in the quantum
Brownian motion limit its time evolution is described
by a Lindblad evolution equation. We were thus able
to extend previous studies of the static string tension in
a thermal medium to the dynamical case and observed
a delay in the breakup process with a lower relative ve-



locity of the fragments due to kinetic dissipation. We
explored the dependence of this effect on system param-
eters and we also identified regions of medium-induced
breaking and reconnection of the string. Due to simi-
larities of the string breaking process in the Schwinger
model and QCD hadronization, our results may provide
guidance for constructing hadronization models with or
without medium [89, 171, 172] and help us to decipher
real-world collider events. With also significant develop-
ments in real-time simulation of scatterings in quantum
field theories [10, 11, 173] and simulation of jet produc-
tion in the Schwinger model [29, 156, 174, 175], we hope
these advancements combined with our work will pro-
vide a promising outlook to simulate and study real-time
hadronization processes using simulations of real collider
scattering. In addition, we studied Liouvillian eigenval-
ues and eigenmodes for short- and long-range correlated
environments. In particular, we studied the late time re-
laxation dynamics in terms of the von Neumann entropy,
which is governed by the Liouvillian gap. We observed
that the CP symmetry of the Lindblad equation plays a
critical role when the environmental correlator is taken
to be a constant. These results set the stage for future
investigations such as non-equilibrium phase transitions
in quantum field theories. Lastly, we estimated Trotter
errors relevant to quantum simulations of open quantum
systems. These errors turned out to be relatively small,
making simulations of open quantum systems an attrac-
tive candidate for the intermediate-term future applica-
tion of quantum computing.
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Appendix A: Dependence of the Thermalization
Rate on the Environment Correlation and System
Size

In the numerical studies presented in the main text,
we observe the first Liouvillian gap A; decreases as the
width of the Gaussian environment correlation function
increases, and it also decreases with the system size
(when the environment correlation is a delta function).
Here we provide an analytic explanation.

We perform Fourier transforms in the Lindblad equa-
tion (8) by introducing

1 .

D(Il - 932) = N, Z D(k)eﬂﬂk(ml*xz)/Nf ,

=0
Np—1
L(k)= Y L(x)e /s, (A1)
k=0
and then obtain
dps(t) . a?
e i[Hs, ps(t)] Jer kZ:O D(k)

< (L(R)psIH ) — S{E (R)L(R), ps}) - (A2)

The anticommutator part of the Liouvillian operator can
be thought of as an imaginary Hamiltonian. We can use
it to estimate the relaxation rate of the system:

D(k)LY(k)L(k) . (A3)

The operator LT(k)L(k) is positive semi-definite. As a
result, the relaxation rate is increased when the values of
D(k) are larger with fixed Ny. For example, if we con-
sider a Gaussian environment correlation with width o in
position space, which corresponds to another Gaussian
with width 1/0 in momentum space, the contributions
to I' from terms with nonzero k are more suppressed as
o increases. This is why the Liouvillian gaps characteriz-
ing the relaxation rates decrease as the width ¢ becomes
larger in Fig. 5.

Next, we consider Ds(z) = dp, and discuss why the
first Liouvillian gap decreases with the system size N.
With this delta correlation function, we have Ds(k) = 1
for all k. Whether Eq. (A3) decreases with Ny is not
obvious, since each value of k in the summation con-
tributes and there is an overall prefactor 1/Ny. To un-
derstand the Ny dependence of the Liouvillian gaps, we
need to analyze the dissipation rate on a deeper level. We
consider how an arbitrary eigenstate |E,,) of the system
with eigenenergy F,, dissipates by setting ps = |Fy) (Fy|
and sandwiching the right hand side of Eq. (A3) between
(E,| and |E,). The dissipation rate of this eigenstate is



roughly given by

a

T, ~ N ; D(k)
* ((Bu|LT (k) L(k)|En) — (Ea|L(K)| En)|?)
5 Np—1
k=1 m#n
’ (A4)

where we have inserted a complete set of eigenstates (for
simplicity, we assume no degeneracy in the following).
It is worth noting that for each value of k, diagonal
matrix elements of L(k) do not contribute to Eq. (A4).
The typical absolute value of the off-diagonal matrix el-
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ement [(E.,|L(k)|E,)| is expected to decrease exponen-
tially with the system size for our system (e.g. as in the
eigenstate thermalization hypothesis for non-integrable
systems). On the other hand, the number of terms in
the summation of Eq. (A4) is also exponential in the sys-
tem size, i.e., ~ e“™Ns for some constant ¢. However, not
all of them are nonvanishing. In fact, only eigenstates
|E,,) whose momenta differ from that of |E,,) exactly by
k contribute. Their number is still exponential in the
system size, by only a fraction of the total number of
eigenstates, i.e., ~ NifeCN f, since this fraction is roughly
given by the inverse of the number of momentum sec-
tors in the system, which is Ny. This explains why the
relaxation rate decreases with Ny. But it does not ex-
plain why the first Liouvillian gap decreases in a specific
power law N 7 @, It is expected that details of the system
may influence the power exponent and we leave a more
complete explanation to future work.
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