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Transverse-momentum-dependent parton distribution functions and wave functions (TMDPDFs/
TMDWFs) can be extracted from lattice calculations of appropriate Euclidean matrix elements of
staple-shaped Wilson line operators. We investigate the mixing pattern of such operators under lattice
renormalization using symmetry considerations. We perform an analysis for operators with all Dirac
structures, which reveals mixings that are not present in one-loop lattice perturbation theory calculations.
We also present the relevant one-loop matching in a renormalization scheme that does not introduce extra
nonperturbative effects at large distances, both for the TMDPDFs and for the TMDWFs. Our results have
the potential to greatly facilitate numerical calculations of TMDPDFs and TMDWFs on the lattice.
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I. INTRODUCTION

Understanding the transverse structure of hadrons is an
important step towards the three-dimensional imaging of
hadrons. One of the key quantities that characterizes such
transverse structure is the transverse-momentum-dependent
parton distribution functions (TMDPDFs), which are a
natural generalization of collinear PDFs to incorporate the
transverse momentum of partons in the hadron, and provide
crucial inputs for describing multiscale, noninclusive
observables at high-energy colliders such as the LHC [1].
Currently, our knowledge of TMDPDFs mainly comes
from studies of Drell-Yan and semi-inclusive deep-inelastic
scattering processes where the transverse momenta of final
state particles are measured. QCD factorization theorems
allow us to relate the relevant experimental observables to
TMDPDFs via perturbatively calculable kernels, and thus
provide the theoretical basis for extracting TMDPDFs from
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such observables. In the past, there have been various
TMDPDF fittings in the literature [2—7]. However, calcu-
lating TMDPDFs from first principles has been a challenge,
because they are nonperturbative quantities defined in
terms of light cone correlations.

Early lattice efforts have been focused on extracting
certain information of TMDPDFs by studying ratios of
suitable correlators [8—12], whereas the full distribution also
becomes accessible due to the proposal of large momentum
effective theory (LMET) [13-15] which provides, in prin-
ciple, a general recipe to calculate light-front (LF) correla-
tions from lattice QCD. In the past few years, there has
been rapid progress [16-28] on how to extract the quark
TMDPDFs from appropriately defined quasi-LF correlations
involving staple-shaped Wilson line operators. A viable
matching between the quasi-TMDPDF and TMDPDF, with
a proper Euclidean construction of soft function for the
former, has been established, although either for not fully
renormalized quasi-TMDPDFs [19] or in a scheme [24] that
introduces undesired nonperturbative effects at large longi-
tudinal distances. In addition, there have been exploratory
lattice studies on the soft function [21] and the Collins-Soper
kernel [25,29] controlling the rapidity evolution of the
TMDPDFs, as well as on the potential operator mixings
under lattice regularization [26,30].

Another important quantity that encompasses informa-
tion on the transverse structure of hadrons is the TMD wave
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functions (TMDWFs) or LF wave functions, from which
one can actually obtain all parton densities. They are
defined by the same staple-shaped Wilson line operators,
and thus the lattice computation follows a similar strategy
as that for the TMDPDFs [15]. The quasi-TMDWF also
enters the calculation of soft function through the TMD
factorization of a light-meson form factor at large momen-
tum transfer [15,21].

In this work, we perform a systematic analysis of the
mixing pattern of staple-shaped Wilson line operators
under lattice regularization using symmetry considerations.
Similar analysis has been performed for straight Wilson
line operators defining the quark quasi-PDFs in Ref. [31],
where the authors analyzed the transformation properties of
straight Wilson line operators with various Dirac structures
and found the same mixing observed in one-loop lattice
perturbation theory calculations for Wilson fermions [32].
The lattice perturbation theory studies have also been
extended to quark quasi-TMDPDFs in Ref. [33], revealing
certain mixings among operators with different Dirac
structures (see also Ref. [30]). However, a systematic
analysis of the operator mixing pattern from symmetry
considerations is still missing. Here we generalize the
discussion of Ref. [31] to staple-shaped Wilson line
operators. The results show mixings that are not present
in one-loop lattice perturbation theory calculations. We also
discuss the renormalization and matching of quasi-
TMDPDFs and -TMDWFs in a scheme where no extra
nonperturbative effects are introduced at large distances in
the renormalization stage, in the same spirit as the hybrid
renormalization [34] proposed recently for the quasi-PDFs.

The rest of the paper is organized as follows: in Sec. 1I,
we give a brief overview of the quasi-TMDPDFs and -
TMDWEFs in LMET, both are defined in terms of staple-
shaped Wilson line operators along spatial directions. We
then discuss in Sec. III the transformation properties of
such operators and their mixing pattern under lattice
regularization. In Sec. IV we discuss the renormalization
and matching of quasi-TMDPDFs and -TMDWFs in a
scheme following the spirit of hybrid renormalization and
give the relevant one-loop matching kernel. Finally we
conclude in Sec. V.

II. QUASI-TMDPDFS AND -TMDWFS IN LMET

Let us begin with the definition of quasi-TMDPDFs
in LMET with Euclidean metric in four dimensions
[16,17,19,23]

f<Z7 bJ.H“’ PZ)
(PS|p(FLTW(Z. by s Lw(—224)|PS)
ZE(2L7 bJ_’,u)

= lim
L—oo

. (1)

where we have chosen a symmetric setup to simplify the
analysis. P = (P°,0,0, P?) is the hadron momentum and

S denotes its spin, L= Ln,, 7 = zn, with n, = (0,0,0,1)
being a unit four-vector along the spatial z direction, and

b 1 = (0, by, b,,0). The staple-shaped Wilson line takes the
following form

- - - E z - - l_; -
W(E b, L) = Wi(L +2L;§—L>WL<L—2L;bl>

i4+b, - 2
W.| — L +— ),
x Z( 2 +2)

L
Wi(n; L) = Pexp {—ig/ dtn; - A(n +mﬁ’)], (2)
0

for an illustration see Fig. 1. I' denotes a Dirac matrix.

Zg(2L,b,pu,0) is the square root of the vacuum
expectation value of a flat rectangular Euclidean Wilson
loop along the n, direction with length 2L and width b :

1 + - e
Zp (2L, by, p) = - Tr{OW (=5 =b )WI(E 5 -2L)

x W (E_sby)W.(=E,520)|0), (3)
where
£, =Lii, + % (4)

In contrast to the usual TMDPDF which contains lightlike
separations between quark fields, the quasi-TMDPDF
defined above involves spatial separations only. However,
the same light cone physics is projected out when the hadron
momentum becomes infinite, as one can unboost the hadron
at large momentum and apply the boost operator to the
spatial correlator in Eq. (1), yielding the same LF correlator
defining the TMDPDF [15,19]. This is similar to shifting
from Schrodinger picture to Heisenberg picture in quantum
mechanics. Note that the LF correlator in TMDPDF leads to
rapidity divergences which require a proper regulator. Given
the finite hadron momentum, the quasi-TMDPDF can be
viewed in a sense as the definition of TMDPDF with the
hadron momentum as a rapidity regulator [19].

In the above definition, also the length of the longitudinal
link is kept finite to regulate the pinch-pole singularity
associated with infinitely long Wilson lines [17]. Such link

(%.3) (%, L)
- s —
by
L ‘
V4
(_%7_%) (_%71/)

FIG. 1. Staple-shaped gauge link used to define the quasi-
TMDPDF and -TMDWE.
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length dependence drops out in the ratio of Eq. (1) so that
the final result has a proper L — oo limit. The introduction
of Zp also removes additional contributions arising from
the transverse gauge link. From Eq. (1), the momentum
space density is given by the following Fourier transform

; Dby oo
]"(_x,kl”[,t’é’z):/(271-);-el)c}»+llq~lujf(ﬂ”bl’ﬂ’PZ)7 (5)

with 4 = zP* being the quasi-LF distance, and {, =
(2xP?)? is the Collins-Soper scale. The thus defined
quasi-TMDPDF depends on two scales, y and ¢,. The
dependence on  is controlled by the renormalization group
equation [35,36]

uzagzlnf<x,bl,u,cz>::yF<asoo>, (6)

where ag = ¢?/(4x), and y is most easily obtained from
the anomalous dimension of the quark field in the axial
gauge A* = 0. In the auxiliary field language [37-39], a
straight segment of Wilson line can be replaced by the two-
point function of an auxiliary heavy quark field, yr then
represents the anomalous dimension of the auxiliary heavy-
light quark current. The Wilson line cusp anomalous
dimension does not enter because it has been canceled
between the numerator and denominator in Eq. (1).

The ¢, dependence characterizes how the quasi-TMDPDF
changes with momentum or rapidity, and the evolution is
controlled by the Collins-Soper equation [16,35]

d = -
e F b £) = K(buuw) +G(Cep) (7

PZ

where K (b, p) is the Collins-Soper kernel that is indepen-
dent of the rapidity regularization, while G({., pu) is a
perturbative term existing only in the off-light-cone regu-
larization scheme, its explicit expression at one-loop can be
found in Ref. [19].

Analogously, one can define the quasi-TMDWEF with the
same staple-shaped Wilson line operator but now between
the vacuum and a hadron state [15]

li/(z, bJ_uu? PZ)
_ i (OPEITWE b Dy (= Z51PS) o
L—oo Ze(2L.b | . ) '

Its scale dependence is controlled by evolution equations
similar to Egs. (6) and (7).

II1. MIXING PATTERN OF STAPLE-SHAPED
WILSON LINE OPERATORS ON THE LATTICE

To calculate the TMDPDFs or TMDWFs, we need to
calculate the coordinate space correlation functions defined

above on the lattice. A discretized lattice has less symmetry
than the continuum, and thus more operator mixings can
appear. Moreover, chiral symmetry might be broken after
the fermion fields are discretized, leading to additional
operator mixings. Nevertheless, the lattice action exhibits
important discrete symmetries: parity, time reversal and
charge conjugation. Investigating the transformation prop-
erties of relevant operators under these symmetries helps to
unravel potential mixings that can occur. Such an analysis
has been done for straight Wilson line operators defining
the quasi-PDFs in Ref. [31]. In this section, we extend it to
staple-shaped Wilson line operators relevant for the quasi-
TMDPDFs and -TMDWFs.

A. P, T, C and axial transformations

For the convenience of the reader, we briefly summarize
in this subsection the transformation properties of fields
under parity (P), time-reversal (7), charge conjugation (C)
and the axial transformation. We follow the convention
of Ref. [31] with the Euclidean spacetime coordinates
(x,y,z,7) = (1,2,3,4). Dirac matrices are chosen to be
Hermitian: y;ﬂ =Yy and ys = y1¥27374-

Since there is no distinction between time and space in
Euclidean space, the parity transformation in the y direc-
tion, denoted by P, with x4 € {1,2,3,4}, can be defined
with respect to any direction

Py
W () ()P = (P, (), (9)
Py
()~ ()P = §(P ()7, (10)
Uy ()50, (0P = UL (B,(x)), (1)
U, (0) 25U, ()P = U, (P, (x)), (12)

where P, (x) is the vector x with sign flipped except for the
component in the u direction. In other words, it is the parity
transformation in the x, direction. U, (x) denotes a generic
Wilson line along the u direction with the starting point at x.
Analogously, the time reversal transformation 7', can
also be generalized in any direction in Euclidean space

T}‘
w(x)—y ()T = y,rsw(T,(x)). (13)
TI‘
P~ 5 ()T = p(T,0)rsr, (14)
U, (0)—5U, ()T = US(T,(x)). (15)
TI‘
Uu;éy(x)_)Uv(xyT“ = Ul/(—l]—/l<x>)’ (16)
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where T,(x) is the vector x with sign flipped only in the
u direction.

Charge conjugation C transforms particles into their
antiparticle counterparts. Under charge conjugation, one has

p () S ()C = C ()T, (17)
()5 w(x)° = —p(x)TC, (18)
U, (x)SU,(x)° = U,(x)* = (U(x)T, (19)

with T denoting the transpose operation, and

C}/ﬂC'1 = —y;, CysC!' = yST. (20)

The continuous axial rotation A of the fermion field
reads

7 (x) = lx)eis. 1)

B. Operator mixings

Based on transformation properties of the fields listed
above, we can investigate the transformation under discrete
symmetries of the following nonlocal operators involving a
staple-shaped Wilson line

- 240\ e - Z+b
OF(Z’bJ_’L):l/_/(Z 5 l)FW(vaJ_;L)U/<_Z 3 l)-

(22)

Given that the hadron is to be boosted along the
z direction, we treat the z direction differently from other
directions, as was done in the case of straight Wilson line
operators, and categorize the Dirac structure as follows

I'e {1771', Y3+ 75 1Yi¥5, 1V37s, 0i3’€ijk5jk}v (23)

where i, j, k # 3.

From the field transformation properties in the previous
subsection, one can work out with some effort the trans-
formation properties of Or(z, b, L) under discrete sym-
metries.

- P, VY
Or(Z, bl, L)j)Oyiryi(_Z, —bﬂ_ ) ) _L)a
- P, -
OF<Z, bJ_, L)—>O},3[‘y3 (Z, _bJ_’ L),
s\ T P
OF(Z’bl’L)_)O}’SVir}’iVS(Z’bJ- L),
- T, -
OF<Z’ by, L);)07573F7375 (_Z’ by, _L)’ <24)

where l_;(l_j = (—1)505 1,j with j =1, 2 labeling the compo-

nent of the transverse vector »,. Here no summation is
implied over index j.
Under C, one has

- C -
OF(Z, bJ_,L)—)O(CFC—l)T(—Z,—bJ_,L). (25)

We can, therefore, define the following combinations
that are eigenstates under discrete symmetries

Op(z.by. L) = {[(Or(z.b. L) + 5,00r(z. by, —by. L))
+ snl(bl = _bl)] +Sn2[z = _Z]}
+ s,3{L — —L}, (26)

where s;; = (=1)l/?). O%(z,b,L) with n = 1,2, ..., 16 is
a linear combination of 16 independent operators con-
structed from freely choosing the sign in front of each
argument z, by, b,, L. Here |x] is the floor function. O}
therefore form an operator basis with definite C, P and 7
properties, and only operators with the same C, P, 7
eigenvalues can mix, making the mixing pattern manifest.
Nevertheless, the Of basis given above is much more
complicated than the original one without —z, —b | and —L
dependence. Thus, in the following we present the results
for the operators O,, defined in Eq. (22) only, although our
analysis is mainly based on the operator basis Op.

For the operators in (22), Lorentz covariance helps to
identify what mixings are forbidden. For example, the
scalar operator O; does not mix with O, and O,,, for the
TMDPDF with a staple-shape Wilson line. The same is
true for On and 075, 0],3 and OWS, and etc. These patterns

are consistent with the observation in lattice computations
[21,26] taking into account the external off shell quark
state. However, it is worth pointing out that the operator
basis Ors are not complete by themselves, as they are not
operators of definite twist and operators of higher twist
mix with operators of higher Fock states with additional
elementary fields due to QCD equations of motion. In fact,
a proper treatment for the mixings between operators
observed from one-loop calculation in [24] requires the
introduction of higher Fock states. This is already evident
from operators with straight Wilson line at twist-3 level, see
Ref. [40] and references therein. Lorentz symmetry allows
certain mixings to be identified as mixings with higher
Fock states which are statistically suppressed in general.
This explains the smallness of mixings between certain
Dirac structures observed in [26]. A thorough investigation
including operators of higher Fock state is beyond the
scope of the present paper, and left to future work.

On the other hand, we find that O mixes in general with
O,,r for arbitrary Dirac structure I', provided that a fermion
action that does not preserve chiral symmetry is used. This
is in contrast to operators with straight Wilson line, where
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such mixings do not occur for a specific set of I, e.g.,
I' = y,4 in the unpolarized case. The above mixing pattern
contains the mixings observed in lattice perturbation theory
calculations [33], but also contains mixings that are not
present in such calculations. Note that the definition of
quasi-TMDPDFs or -TMDWFs also involves a factor of
V/Z, but it does not change the mixing pattern discussed
above, as it is a common factor for operators with all Dirac
structures and depends only on the length |, and L.

IV. RENORMALIZATION AND MATCHING
OF QUASI-TMDPDFS AND -TMDWFS
IN A SIMPLE SCHEME

In this section, we discuss the renormalization and
matching of quasi-TMDPDFs and -TMDWFs in a simple
scheme that does not introduce extra nonperturbative
effects at large distances, following the same spirit as
the hybrid renormalization scheme introduced in Ref. [34].

Using the auxiliary field formalism [37], the straight
Wilson line operators have been shown to be multiplica-
tively renormalized [38,39,41]. The same can be shown to
be true for the staple-shaped operators, with the renorm-
alization factors eliminating the power divergences asso-
ciated with the Wilson line, the cusp divergences as well as
the endpoint divergences [24]. Thus, the renormalization of
the quasi-TMDPDFs and quasi-TMDWFs can be carried
out in analogy with that of the quasi-PDFs, and for the latter
a commonly used renormalization scheme is the regulari-
zation-independent momentum subtraction (RI/MOM)
scheme (or its variation RI'/MOM) [32,42-44] or the ratio
scheme [45-48]. These schemes have the advantage of
avoiding certain discretization effects at short distances.
The RI'/MOM renormalization for the quasi-TMDPDFs
has been discussed in the literature [24,26,33]. However, as
pointed out in Ref. [34], both the RI/MOM and the ratio
schemes introduce undesired nonperturbative effects at
large z in the renormalization stage, and thus become
unreliable at large distances. This can be clearly seen in a
recent analysis of data at multiple lattice spacings in
Ref. [49]. In contrast, the Wilson line mass subtraction
scheme [41,50] does not have this issue. Based on this, an
alternative renormalization strategy, the hybrid renormal-
ization, has been proposed in Ref. [34], which utilizes the
advantages of different schemes at short and long distances.
Another issue with the RI/MOM scheme is that it involves
off shell external states, which bring in a lot of complica-
tions when going to higher orders in perturbation theory
[51] or dealing with gauge particles such as gluons [52,53].
This can be avoided if one chooses physical matrix
elements for renormalization.

The discussion above indicates that for the quasi-
TMDPDFs or -TMDWFs, one shall also switch to a
more reliable renormalization scheme such as the hybrid
scheme. Fortunately, the lattice study of quasi-TMDPDFs/-
TMDWFs is focused on nonperturbative or large b

regions (for small b ; the TMDPDF:s can be studied through
a factorization into integrated PDFs, similar factorization is
expected also for the TMDWFs). Thus, even at small
longitudinal separation z one does not need to worry about
the discretization effects plaguing the quasi-PDFs. As a
result, we can perform the renormalization in a simple
manner by removing the logarithmic and linear divergences
separately, in the same spirit as the Wilson line mass
subtraction scheme [41,50].

Bearing in mind the mixing discussed in the previous
section, we can write down the following renormalization

OE OR Zr Zm ) [ OF
(o) =2(or) = (5 20)(an) oo
Og/ OIIS/ Zr/r Z]"/r/ 0?;

Zrr Zrp \ [/ OR
:z< R >(_,§>+h.f., (27)
Zrr Zrr ) \Op

where h.f. stands for higher Fock states which are an
integral part of a complete operator basis. They are
generated by terms that are proportional to the external
quark momenta should an external quark state in momen-
tum space is used in loop calculations. The investigation of
their contributions is beyond the scope of this paper and left
for future work. The superscript B and R denotes bare and
renormalized operators, respectively, I” = y;I, and we
assume the factor \/Zy has been divided in all Ops, and
ignore the arguments for notational simplicity. In the
second row, we have separated an overall renormalization
factor Z because the multiplicative renormalization is
independent of the Dirac structure involved in the operator
[9,38]. Moreover, the linear and cusp divergences associ-
ated with the Wilson line are canceled by \/Z, thus one
only needs to renormalize the remaining logarithmic
divergences at the end points of the operator. If the operator
mixing is absent, there is an easy way to achieve this. One
can calculate the straight line operator matrix elements at
two different distances zy and z,/2 (with zy being in the
perturbative region) and form the ratio which effectively
removes the factorized linear divergence e”?l from the
self-energy of the Wilson line while still retaining the
required logarithmic divergence,

— E%(ZO/z’ PZ) 28
g hr(z. P*) 2%

where ﬁr can be chosen, e.g., as the zero-momentum
hadron matrix element used in the ratio scheme or the off
shell quark matrix element used in the RI/MOM scheme,
and P? is not necessarily the same as the momentum used in
calculating the quasi-TMDPDF matrix element. For exam-
ple, in the unpolarized case, one can use
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ilyr(Zo, PZ = 0)
1

=5pi (P* =0l (20)r'W_(20,0)w(0)|P* = 0),  (29)

where P denotes the hadron momentum, or

i oo 2os(ps|0s(20)|ps s)
hy(zg, p* = 0) = S (s OYz(zo)

El

P, s>tree pzz—”é’pzzo

(30)

with p, s being the off shell quark momentum and spin,
respectively. Note that although the RI/MOM matrix
element exhibits a nonuniversal linear divergence behavior
depending on the lattice action used [49], it is still allowed
here because in Z all such linear divergences cancel out by
construction. In this way, what is left in Z is just the end
point renormalization factors associated with some pertur-
bative corrections.

However, in the presence of operator mixing, one needs
to determine the mixing matrix, which requires calculating
certain quasi-TMDPDF matrix elements. One can choose,
for example, the hadron matrix element of the quasi-
TMDPDF operator or the RI/MOM renormalization factor,
but at perturbative z and b, so that extra nonperturbative
effects are avoided at the renormalization stage.

The first option of determining the mixing matrix entries
is to follow the calculation of renormalization factors in the
presence of mixing in the RI/MOM scheme [32]. Since all
z- and b, -dependent UV divergences have been canceled
in O, we prefer to choose renormalization conditions such
that Z;; are independent of z and b | . In other words, we can
still apply the RI/MOM renormalization conditions similar
to those in [26,33], but only at a given perturbative z and
b |, and use the results for the renormalization of correlators
at all distances. In other words, we may require

Z(;I (p)ZFF’Tr[AOr (p)r/] |z:z(),hL:hm,p":p§

= Tr[AL(p)I] (31)

|Z:ZU-bL:bL0Ap#:PS’
where Z = Z71, 7,5, b, are chosen within the perburbative
region, pjy = (po,0,0,0), Ay, is the amputated Green’s
function of the operator Or- in an off shell quark state, and
the superscript “tree” denotes its tree-level value. Z,, is the
quark wave function renormalization factor determined as

1

Z,(p) = 33 TrlS™ (p)S™*(p)]. (32)

with S(p) and S§"™¢(p) denoting the quark propagator and
its tree-level value, respectively.

From Eq. (27) and the renormalization factors calculated
in Eq. (31), one obtains the renormalized quasi-TMDPDF
in the RI/MOM scheme

fr(Cz.b,)=Zrr fp(Tzby)+ Zrp fp(Tz.by ), (33)

which can be converted to the MS scheme by applying a
conversion factor

FXS(C,z,b,) = Cfp(T.z,b,). (34)

The conversion factor in general can take a diagonal form
[33] or a nondiagonal form [24], depending on the choice
of projectors. Here we choose to define a diagonal con-
version factor which reads for I' = y#

. 1 1
Cr=1+ [V (upo) -2 |. (35)

where V¥ has been calculated in Ref. [24], and no
summation is implied over the index u.

Similar renormalization conditions can be constructed if
the quasi-TMDPDF matrix elements of hadrons are used.
There are different ways to choose such conditions. We
choose to determine the renormalization factors by requir-
ing that the renormalized quasi-TMDPDF matrix element
be equal to the tree-level value at given perturbative
z and b . To avoid potential collinear divergences in the
perturbative result and thus in the renormalization factor,
we can set z = 0 or P* = 0. In the following, we illustrate
this procedure by taking I' = y# (with T” = y3p#) as an
example, we require that the renormalization factors satisfy

(P|OF|P) e = [Zrr(P|OF|P)

+ Zrr(P|OR|P)]

tree
|Z:ZOsbL:bL0~P”=pg’ (36)
where Pj = (p°,0,0, p*). The corresponding conversion
factor can be computed with dimensional regularization in
the continuum, which also takes a diagonal form. For
z0 = 0, we have

~ aSCF 1 3 1 3
Crzl— 277: <§L%_§Lb+LbLz+§L%_Lz+§ )

(37)

with L, = In(b? p?e?=/4), L, =1In(4p?/u?). While for
p* =0, we have

~ aSCF bi‘f'zz Z Z
Cr=1 L, +41 — 4% aretan =4 1),
=t (“L T p, eyt

(38)

With the renormalization and conversion factors above,
we can convert the renormalized quasi-TMDPDF to the MS
scheme, and then match it to the TMDPDE. Following

Refs. [15,19], the connection between the MS scheme
quasi-TMDPDF f and TMDPDF f™D takes the following
form,
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S™MP e byp€)

e

where C(¢./u?) is a perturbative matching kernel and its
explicit expression to O(ayg) can be found in Ref. [15]. The
exponential term contains the Collins-Soper evolution
kernel which can be computed from the ratio of fs at
different rapidity scales. ¢ corresponds to the Collins-Soper
scale characterized by the full hadron momentum. S, is the
so-called reduced soft factor. The omitted terms are power
corrections of order O(Agcp/C.. M?/(P9)*,1/(b1L,)).
Similar matching relations have also been discussed in
Refs. [24,33].

For completeness, let us also summarize here how the
remaining terms in Eq. (39) can be calculated. The Collins-
Soper kernel can be extracted by forming the ratio of quasi-
TMDPDFs at two different s [24]

; @ <m>/2_ (40)

~ 1
Korm) Fx, by, C)SHb ) + -,

(39)

7R(x7 by,u¢.) _ C(

‘]NCR(X,bJ_,/I,CQ) C(

S [
R R

As for the soft function S,(b,, u), it is calculable from

the form factor of a pseudoscalar light meson state with
quark content y# defined as [15,21]
Flby,P.P' i) = (P15 )Tn(B,)p Oy (0)P),  (41)
where P, P’ are two large momenta approaching opposite
lightlike directions. Making use of the quasi-TMDWFs 5,
in Eq. (8) with light quark state ¢, the form factor takes the
following factorized form,

F(bLstP/’:u)

— [ e B30, b )iy (x5S b,
(@2)

where the perturbative matching kernel up to one-loop has
been given in Ref. [15].

The nonperturbative renormalization and conversion
factors also apply to the quasi-TMDWFs. After converting
to the MS scheme quasi-TMDWFs, one can use the
matching derived in Ref. [15] to obtain the TMDWFs,
where the matching relation takes the same form as Eq. (39)
with a different matching kernel, whose result at one-loop
has also been given in Ref. [15].

V. CONCLUSION AND OUTLOOK

In this paper, we have investigated the mixing patterns of
staple-shaped Wilson line operators defining the quasi-
TMDPDFs and -TMDWFs under lattice regularization
using symmetry considerations. Our analysis shows that
for nonchiral fermions the mixing with other Dirac struc-
tures is generally allowed, except for certain specific cases
such as 0,0, etc. There is no Dirac structure, however,
that is completely free from mixing with other structures.
To be more specific, all I's mix with I". This is in contrast
with the case of straight Wilson line operators, where for
certain choice of I', no mixing occurs. We emphasize that
we have excluded operator mixings with higher Fock
states, which in itself is not self-consistent as the evolution
of higher-twist two-particle TMDPDFs are not autono-
mous. A complete treatment is, however, beyond the scope
of this paper and calls for further investigations. We have
also discussed the renormalization of quasi-TMDPDFs
and -TMDWFs in a simple scheme that does not introduce
extra nonperturbative effects at large distances, and pre-
sented the relevant one-loop matching. The results will
facilitate the numerical calculation of TMDPDFs and
TMDWFs on the lattice.

It is worth pointing out that the operator mixing analysis
presented here is based on transformation properties of the
relevant operators under discrete symmetries, chiral sym-
metry and Euclidean symmetry only. For a more thorough
analysis of the operator mixing pattern, it might be
convenient to start from the auxiliary field formalism
and replace the nonlocal operators with local ones in the
framework of lattice field theory, and study the mixing of
the former from that of the latter. This could be important
not only for the staple-shaped Wilson line operators but
also for the ones with a straight line, given that a different
linear divergence behavior has been observed on lattice in
the RI/MOM matrix elements from that of hadron matrix
elements, which needs to be understood.
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