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We study the nucleon’s partonic angular momentum (AM) content at peripheral transverse distances 
b = O(M−1

π ), where the structure is governed by chiral dynamics. We compute the nucleon form factors 
of the energy-momentum tensor in chiral effective field theory (ChEFT) and construct the transverse 
densities of AM at fixed light-front time. In the periphery the spin density is suppressed, and the AM 
is predominantly orbital. In the first-quantized representation of ChEFT in light-front form, the field-
theoretical AM density coincides with the quantum-mechanical orbital AM density of the soft pions in 
the nucleon’s periphery.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Explaining how the nucleon spin emerges from the motion of 
quark and gluon fields is an essential step in understanding nu-
cleon structure on the basis of QCD. The microscopic fields carry 
angular momentum (AM) both in their space-time dependence (or-
bital AM) and in their internal degrees of freedom (spin). The iden-
tification of these contributions is inherently not unique because 
relativistic covariance and gauge symmetry connect both aspects 
of the motion. Several decompositions of the QCD AM operator 
have been proposed, based on considerations of the mechanical 
interpretation of the operators, and of their relation to partonic 
operators that can be measured in deep-inelastic processes [1,2]; 
see Ref. [3] for a review. Thanks to extensive theoretical studies 
the correspondence between these definitions is now well under-
stood at the formal level; see Ref. [4] for a recent summary. This 
concerns not just the global spin decomposition but also the lo-
cal densities of spin and orbital AM, defined in terms of the axial 
vector current and the energy-momentum tensor (EMT) operators 
[4–6]. It is therefore possible to use these concepts in dynamical 
calculations of nucleon structure.
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The large-distance behavior of QCD is governed by the spon-
taneous breaking of chiral symmetry. It leads to the appearance 
of Goldstone bosons, the pions, which are almost massless on 
the hadronic scale and mediate hadronic interactions at distances 
O(M−1

π ). The resulting dynamics can be formulated and solved 
using methods of chiral effective field theory (ChEFT) [7,8]; see 
Refs. [9,10] for a review. These methods can be used to com-
pute nucleon structure at “peripheral” distances O(M−1

π ) from first 
principles. A rigorous formulation of the spatial structure of the 
nucleon can be provided in the context of light-front (LF) quanti-
zation. The transverse densities at fixed LF time x+ ≡ x0 + x3 are 
frame-independent (boost-invariant) and free of vacuum fluctua-
tions, and permit an objective spatial representation of the nucleon 
as a relativistic system [11,12]. ChEFT has been used to calcu-
late the transverse charge and current densities at peripheral dis-
tances b = O(M−1

π ), as well as the peripheral partonic structure; 
the results are model-independent and provide interesting insights 
into the mechanical properties of the nucleon at large distances 
[13–17]. It is thus natural to apply the same methods to the EMT 
and the AM densities in the nucleon.

In this letter we study the partonic AM in the nucleon’s chi-
ral periphery. We calculate the nucleon form factors of the EMT 
in ChEFT and construct the transverse densities of AM at distances 
b = O(M−1

π ). We find that at these distances the spin density is 
suppressed and the AM density is predominantly orbital. Convert-
ing the ChEFT expressions to a first-quantized representation in 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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LF form, we show that the field-theoretical AM density coincides 
with the quantum-mechanical orbital AM density of the soft pions 
in the nucleon’s periphery. As results of this study we (a) esti-
mate the peripheral AM in the nucleon from first principles, (b) 
validate the concept of transverse AM density [4,6], (c) obtain a 
simple mechanical picture of peripheral nucleon structure. Details 
will be provided in a forthcoming article [18].

Our approach brings several new methodological elements to 
the study of partonic AM. (a) ChEFT represents the “true” large-
distance dynamics of QCD. The results therefore have universal 
significance, in contrast to ad-hoc dynamical models. (b) ChEFT is a 
relativistic quantum field theory and can illustrate aspects of field-
theoretical AM besides its connection with QCD. ChEFT is essen-
tially relativistic [the typical pion momenta are k = O(Mπ )] and 
requires treatment of AM with methods appropriate for relativistic 
systems (LF formulation). ChEFT is not a gauge theory and allows 
us to explore field-theoretical AM without the complications of 
gauge invariance. ChEFT is perturbative and has a limited parti-
cle content, making it possible to change from a second-quantized, 
field-theoretical to a first-quantized, particle-based representation 
for the interpretation of the results.

2. Transverse angular momentum densities

In relativistic field theory the AM consists of an “orbital” and 
a “spin” part, resulting from rotations acting on the space-time 
dependence and the internal degrees of freedom of the fields. In 
QCD the total AM can be grouped into gauge-invariant quark and 
gluon contributions. The gluon contribution cannot be split into 
orbital and spin parts in a gauge-invariant manner. Several defini-
tions of quark and gluon AM have been proposed; see Refs. [3,4]
for a detailed discussion. In our study we use the “kinetic” defini-
tion [4]; our results for the peripheral densities do not depend on 
this choice, and the relation to other definitions is discussed be-
low. The total (quark plus gluon) AM tensor of QCD is organized 
as

Jμαβ(x) = Sμαβ
q (x) + J̃μαβ(x). (1)

Sq is the quark spin contribution and expressed in terms of the 
flavor-singlet axial current of the quark field,

Sμαβ
q (x) = 1

2
εμαβγ

∑
f
ψ̄ f (x)γγ γ 5ψ f (x). (2)

J̃ is the “rest” of the AM and given in terms of the total (quark 
plus gluon) kinetic EMT of QCD,

J̃μαβ(x) = xα T μβ(x) − xβ T μα(x). (3)

T can be split into gauge-invariant quark and gluon contributions 
[2]. Correspondingly, J̃ can be split into a quark contribution de-
scribing the quark orbital AM, and a gluon contribution describing 
the gluon spin and orbital AM [4]. We do not require this split-
ting in the following and consider Eq. (3) with the total EMT of 
QCD (which can be matched with the EMT of ChEFT; see below). 
We refer to Eq. (3) in short as the “orbital” AM, keeping in mind 
that it includes the gluonic contribution and is really the total AM 
“other than quark spin.”

The kinetic EMT in Eq. (3) is not symmetric [4]. Its transi-
tion matrix element between nucleon states with 4-momenta p1,2

and spin quantum numbers σ1,2 is parametrized as (at space-time 
point x = 0) [3,19]

〈
N2|T μν |N1

〉 = ū2

[
γ {μpν} A − p{μσν}α
α

B

2MN
+ 
μ
ν − 
2 gμν

MN
C − p[μσν]α
α

2MN
D

+ MN gμν C̃

]
u1, (4)

where p ≡ (p1 + p2)/2, 
 ≡ p2 − p1; u1 ≡ u(p1, σ1) etc. are the 
nucleon bispinors, σμν ≡ 1

2 [γ μ, γ ν ]; and we use a{μbν}, a[μbν] ≡
1
2 (aμbν ± aνbμ). The form factors A–C̃ are invariant functions of 
t ≡ 
2. They satisfy the sum rules A(0) = 1 and B(0) = 0; other 
sum rules are discussed in Ref. [20].

Local densities of AM have been defined based on the above 
operators and their form factors [4–6]. Since the dynamical system 
is relativistic, it is natural to consider densities at fixed LF time 
x+ = const. In a frame where the momentum transfer is transverse 

± = 0, �T �= 0, t = −�2

T , one defines transverse densities associ-
ated with the invariant form factors A and B as

ρA(b) ≡
∫

d2
T

(2π)2
e−i�T ·b A(t = −�2

T ), (5)

and likewise for B . These densities are invariant under longitu-
dinal boosts and free of vacuum fluctuation contributions to the 
matrix element [12]. In the context of the partonic description 
of nucleon structure, ρA + ρB is equal to the sum of the second 
moments (x-weighted integrals) of the generalized parton distri-
butions H and E in the impact parameter representation [2,11]; as 
such this combination of densities is connected to measurable ma-
trix elements of twist-2 QCD operators and of general interest. In 
a similar way one defines the transverse density of the axial form 
factor associated with the nucleon matrix element of the axial cur-
rent operator in Eq. (2) [4],

ρS(b) ≡
∫

d2
T

(2π)2
e−i�T ·b G A(t = −�2

T ). (6)

Transverse densities of AM at fixed LF time can be constructed 
from these invariant form factor densities [4,6]. To construct the 
“orbital” AM density associated with Eq. (3), we consider the EMT 
component T +T and take its matrix element between nucleon LF 
helicity states [21] with LF helicities σ1 = σ2 ≡ σ = ± 1

2 , corre-
sponding to spin expectation value Sz[rest] = σ in the nucleon rest 
frame,

〈T +T 〉(�T ) ≡ 〈p+,�T /2,σ |T +T |p+,−�T /2,σ 〉, (7)

T +T (b) =
∫

d2
T

(2π)2
e−i�T ·b 〈T +T 〉(�T ). (8)

The transverse density of orbital AM in the longitudinally polarized 
nucleon is then defined as [4]

〈Lz〉(b) ≡ [b × T +T (b)]z

2p+ (9)

= −σ

2

(
b

d

db

)
(ρA + ρB + ρD)(b). (10)

The expression Eq. (10) is obtained by evaluating Eq. (9) with the 
specific form of the matrix element Eq. (4). ρD is the transverse 
density associated with the form factor D , defined in analogy to 
Eq. (5). The tensor in Eq. (9) and the densities in Eq. (10) refer to 
the total EMT (sum of quark and gluon contributions). The trans-
verse density of the quark spin associated with Eq. (2) is defined 
as

〈Sz〉(b) ≡ σ ρS(b). (11)
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Together the AM densities satisfy the sum rule [4]∫
d2b [〈Sz〉 + 〈Lz〉](b) = σ = Sz[rest]. (12)

The densities defined by Eqs. (9)–(11) have a mechanical inter-
pretation as AM densities in LF quantization and a simple relation 
to the invariant form factors of the EMT. This dual role allows 
them to be computed using various theoretical methods (includ-
ing methods requiring an invariant formulation, such as dispersion 
theory or Euclidean correlation functions) and makes them valu-
able tools for nucleon structure studies.

3. Angular momentum in chiral periphery

At peripheral transverse distances b = O(M−1
π ) the EMT den-

sities Eq. (5) and the AM densities Eqs. (9)–(11) are governed by 
chiral dynamics and can be computed model-independently using 
ChEFT. The general method is based on the analytic properties of 
the form factors in t and described in detail in Refs. [14,16,17]; 
here we discuss only the aspects specific to the AM operators.

When the effective large-distance dynamics of QCD is described 
by ChEFT, the total (quark plus gluon) EMT of QCD can be matched 
with the total EMT of ChEFT,

T μν [QCD] → T μν [ChEFT], (13)

as both operators arise from the invariance of the dynamics under 
space-time translations. The EMT of ChEFT with nucleons consists 
of terms involving the pion fields, the nucleon fields, and the pion-
nucleon interactions [22]. Contributions to the nucleon densities 
at peripheral distances b = O(M−1

π ) are generated by chiral pro-
cesses in which the operator couples to the nucleon by two-pion 
exchange (two-pion cut of the invariant form factors); processes in 
which the operator couples directly to the nucleon result in con-
tributions at short distances b = O(M−1

N ). The relevant operator is 
therefore the pionic part of the EMT of ChEFT. At O(p2) it is given 
by (the summation is over the isospin of the pion field)

T μν [ChEFT, π ] =
∑

a

(
∂μπa∂νπa − 1

2 gμν∂ρπa∂ρπa

+ 1
2 gμν M2

ππaπa
)

+ terms π4, ... (14)

Its form is uniquely determined by chiral invariance and cannot be 
modified by adding terms that are conserved without the equa-
tions of motion (improvement) [23–25]. In particular, the tensor 
Eq. (14) is symmetric. This implies that the peripheral densities of 
the form factors A and B [related to the symmetric part of Eq. (4)] 
are leading, while those of D (related to the antisymmetric part) 
are suppressed,

ρA,B(b) leading
ρD(b) suppressed

}
[b = O(M−1

π )]. (15)

The same logic can be applied to the nucleon matrix element of 
the quark axial current in Eq. (2). The isoscalar axial current in 
ChEFT does not have terms quadratic in the pion field; the form 
factor G A therefore does not have a two-pion cut; and the density 
is suppressed at peripheral distances,

ρS(b) suppressed [b = O(M−1
π )]. (16)

Here we mean that the “leading” densities decay at large b
as ∼ exp(−2Mπ b) (with a b-dependent pre-exponential factor), 
whereas the “suppressed” ones decay at least ∼ exp(−3Mπ b). Al-
together, we find that at peripheral distances the AM density is 
predominantly orbital,
Fig. 1. (a) LO ChEFT process contributing to the two-pion cut of the EMT form fac-
tors A and B (cut Feynman diagram). (b) Contact term diagrams do not contribute 
to A or B . (c) LF formulation of the ChEFT process (LF time-ordered diagram). 
(d) Quantum-mechanical picture of the ChEFT processes. The initial nucleon with 
spin σ = 1/2 makes a transition to a π B intermediate state (B = N, 
). The pe-
ripheral AM density is generated by the orbital AM of the soft pion, Lz .

〈Lz〉(b) 	 〈Sz〉(b) [b = O(M−1
π )], (17)

with the main contribution coming from ρA and ρB in Eq. (10). 
This conclusion relies only on chiral symmetry, the quantum num-
bers of the AM operators, and the restriction to peripheral dis-
tances, and is therefore robust.

It appears natural that the spin density ρS is suppressed in the 
same way as the orbital AM density resulting from the antisym-
metric part of the EMT, ρD . In fact, the spin AM tensor Sq in 
Eq. (1) is related to the antisymmetric part of the kinetic quark 
EMT by the condition of AM conservation [4]. Note that our con-
clusions would not change if we used the Belinfante instead of the 
kinetic definition of the EMT and the AM tensors [4]: the symmet-
ric part of the EMT is the same in both definitions, and differences 
appear only in the antisymmetric parts of the EMT and the spin 
AM tensors, which are both suppressed at b = O(M−1

π ).
We have calculated the leading peripheral EMT densities ρA,B

and the AM density 〈Lz〉 in ChEFT at LO. The calculation has been 
performed in two ways: (I) By computing the two-pion spectral 
functions of the invariant form factors A and B in the invariant 
formulation of ChEFT (cut Feynman diagrams) [22], and construct-
ing the peripheral densities through a dispersion relation [14]. At 
LO the only diagram contributing to the two-pion cut of A and B
is Fig. 1a, where the vertices are the LO π N N coupling. Diagrams 
with ππ N N contact terms such as Fig. 1b do not contribute to A
or B; such diagrams contribute only to the form factors C and C̃ . 
We have included 
 isobars in order to maintain the correspon-
dence with the large-Nc limit of QCD (see below) [17]. (II) By 
computing the nucleon matrix element of the EMT component 
T +T , Eq. (7), in the LF formulation of ChEFT and constructing the 
AM density through Eqs. (9) [16,17]. In this first-quantized formu-
lation one follows the evolution of the ChEFT process in LF time 
x+ (LF time-ordered diagrams). At LO, the only process contribut-
ing to ρA,B and 〈Lz〉 at b = O(M−1

π ) is Fig. 1c. The equivalence of 
the two methods has been demonstrated at the analytic and nu-
merical level; the explicit expressions will be given elsewhere [18].
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In the following we present the results in the LF formulation of 
ChEFT, which is particularly suited for illustrating the mechanical 
properties of the AM densities. In this formulation the periph-
eral nucleon matrix elements are expressed in terms of the LF 
wave function describing the transition of the initial nucleon to 
the intermediate pion-baryon state (B = N, 
) through the ChEFT 
interaction (see Fig. 1c). In momentum representation it is given 
by [16,17]

N→π B(y, k̃T ,σB |σ) ≡ �π N B(y, k̃T ,σB |σ)


M2
N→π B(y, k̃T )

, (18)


M2
N→π B(y, k̃T ) ≡ k̃

2
T + M2

π

y
+ k̃

2
T + M2

B

ȳ
− M2

N . (19)

Here y ≡ k+/p+ is the pion “plus” momentum fraction, ȳ ≡ 1 − y, 
and ̃kT is the pion transverse momentum in the π B configuration. 

M2

N→π B is the invariant mass difference between the initial N
state and the π B intermediate state. �π N B is the π N B vertex, 
which depends on the pion LF momentum in the intermediate 
state and on the LF helicities of the intermediate B and initial N , 
σB and σ ; its specific form is given in Ref. [17]. The wave func-
tion Eq. (19) is defined in the parametric domain y = O(Mπ/MN )

and |̃kT | =O(Mπ ), corresponding to soft pions in the nucleon rest 
frame, and is used in this sense only. The peripheral contribu-
tions to the transition matrix element of the EMT component T +T , 
Eq. (7), are obtained as

〈T +T 〉(�T ) =
∑

B=N,


C B p+
∫

dy

y ȳ

∫
d2kT

(2π)3

∑
σB

× ∗
N→π B(y,kT 2,σB |σ)

× N→π B(y,kT 1;σB |σ) kT

[kT 1,2 ≡ kT ± ȳ�T /2]. (20)

The expression has the form of an overlap integral between the 
LF wave functions of the incoming and outgoing π B states (B =
N, 
). C B is an isospin factor (CN = 3 and C
 = 2; the N→π B

are normalized such that they describe the p → π0 p and p →
π−
++ transitions, respectively [17]). The first-quantized operator 
representing the EMT component T +T is given by the average pion 
transverse momentum kT . Similar results are obtained for the ma-
trix elements of the other EMT components and the invariant form 
factors [18].

For expressing the transverse densities it is convenient to use 
the transverse coordinate representation of the N → π B LF wave 
function,

�N→π B(y, rT ,σB |σ) ≡
∫

d2̃kT

(2π)2
eirT ·̃kT

× N→π B(y, k̃T ,σB |σ), (21)

where rT is the transverse separation of the intermediate π B sys-
tem in the initial nucleon rest frame [17]. In this representation 
the AM density Eq. (9) is obtained as

〈Lz〉(b) =
∑

B=N,


C B

4π

∫
dy

y ȳ3

∑
σB

�∗
N→π B(y, rT ,σB |σ)

×
[

ȳrT × (−i)
∂

∂rT

]
�N→π B(y, rT ,σB |σ)

[rT = b/ ȳ, σ = +1/2]. (22)
Fig. 2. Peripheral transverse density of orbital AM in the nucleon obtained from 
ChEFT, Eq. (22). The graph shows the rescaled density 〈Lz〉(b) × exp(2Mπ b). Solid 
(red) line: Intermediate nucleon contribution. Dashed (blue) line: Intermediate 
 con-
tribution with reversed sign (the actual values are negative). Dotted (black) line:
Isovector charge density (3/2) ρV

1 (b), rescaled by the same exponential factor, cf. 
Eq. (24).

This result has an appealing form: the first-quantized operator rep-
resenting the AM is the quantum-mechanical orbital AM of the 
pion in the chiral processes. Equation (22) can be used for the 
physical interpretation and numerical evaluation of the peripheral 
AM density. We emphasize that Eq. (22) is an exact representation 
of the LO ChEFT result and equivalent to the invariant calculation 
of the EMT form factors.

4. Interpretation and evaluation

The first-quantized representation Eq. (22) permits a quantum-
mechanical interpretation of the peripheral AM density (see 
Fig. 1d). The initial nucleon with LF helicity σ = + 1

2 makes a 
transition to a π B intermediate state (B = N, 
). The π B in-
termediate state has orbital AM; in the state with B = N the 
allowed values are Lz = {+1, 0}; in the state with B = 
 they 
are Lz = {+2, +1, 0, −1}. Lz is the total AM of the π B system; be-
cause Mπ 
 MN and y 
 1 it effectively coincides with the orbital 
AM of the pion relative to the transverse center-of-momentum 
[see last line of Eq. (22)]. The peripheral AM density in the nu-
cleon is then given by the quantum-mechanical AM density of 
the pion, summed over all intermediate states. We emphasize that 
this interpretation is obtained from the result of ChEFT, the ac-
tual large-distance dynamics of QCD, not from a phenomenological 
pion cloud model.

The numerical result for the peripheral AM density is shown in 
Fig. 2 (the radial wave functions used in evaluating Eq. (22) are 
given in Ref. [17]). The graph shows 〈Lz〉(b) as a function of b, 
after removing the exponential dependence ∼ exp(−2Mπ b). One 
sees that the contribution from intermediate N states is positive 
and dominates the peripheral AM density; the contribution from 
intermediate 
 states is negative and numerically small. Note that 
the signs of the contributions are in accordance with the quantum-
mechanical interpretation.

The ChEFT result for the peripheral AM density has several 
other interesting properties. Because the ChEFT calculation in-
cludes N and 
 intermediate states, the peripheral AM density 
has the correct scaling behavior in large-Nc limit of QCD [17]; see 
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Ref. [26] for a general discussion. In the first-quantized representa-
tion of Eq. (22) we find that in the large-Nc limit the intermediate 
N and 
 contributions become equal and opposite

〈Lz〉[B = 
] = −〈Lz〉[B = N] [large Nc]. (23)

The cancellation ensures the proper Nc scaling of the total periph-
eral AM density, 〈Lz〉(b) =O(N0

c ) at b ∼ M−1
π =O(N0

c ). The quoted 
Nc scaling refers to the isoscalar AM densities of Eqs. (1)–(3) con-
sidered here; the isovector quark spin and orbital AM densities 
exhibit different scaling. We note that the numerical densities ob-
tained with the physical N and 
 masses and couplings are far 
from the large-Nc relation Eq. (23) (see Fig. 2); the same was ob-
served in the electromagnetic transverse densities [14,17].

The first-quantized representation also allows us to compare 
the transverse AM density to other peripheral densities in the nu-
cleon generated by chiral dynamics. Specifically, we can relate it to 
the isovector transverse charge density ρV

1 (b), which is associated 
with the nucleon’s isovector Dirac form factor, cf. Eq. (5). Compar-
ison of the first-quantized expressions at the level of the radial 
wave functions [17] shows that the densities are approximately re-
lated as

〈Lz〉(b) ≈ 3

2
ρV

1 (b); (24)

here we neglect the contribution of the L = 0 state in ρV
1 , which is 

∼ 30% at b = 1 M−1
π , as well as the contact term in ρV

1 . Note that 
this approximate relation is specific to LO CHEFT and should not 
be used for modeling the densities at distances � 1M−1

π .
Some comments are in order regarding the domain of appli-

cability of the ChEFT results for the peripheral densities. Studies 
of the electromagnetic transverse densities have shown that the 
ChEFT expressions are applicable only at large distances b � 2M−1

π . 
At smaller distances the densities are strongly modified by ππ
rescattering effects in the t-channel, which enhance the spectral 
functions of the electromagnetic form factors on the two-pion cut 
compared to the ChEFT result (ρ resonance). A similar enhance-
ment can be expected in the spectral functions of the EMT form 
factors A and B . The ChEFT results for the AM density, Eq. (22), 
should therefore not be regarded as realistic numerical approxi-
mation to the density at distances b ∼ 1M−1

π . However, we expect 
that the qualitative conclusions based on chiral dynamics (domi-
nance of the symmetric part of the EMT, dominance of orbital AM 
over spin) are valid at distances b ∼ 1M−1

π and even smaller. We 
note that ππ rescattering effects could be included in the ChEFT 
calculation of the invariant EMT form factors A and B using the 
unitarity-based methods developed in Refs. [27–30].

Our finding that the peripheral spin density is suppressed com-
pared to the orbital AM density, Eq. (17), can be explained by the 
fact that in the two-pion exchange processes of Fig. 1a the op-
erators couple to a single free pion, which cannot support a spin 
structure because it has spin zero. Note that a nonzero spin density 
can arise from three-pion exchange processes between the nucleon 
and the spin operator, as appear in higher orders of the chiral 
expansion. Such processes involve the π → ππ transition matrix 
element of the QCD spin operator, which can support an isovector 
spin structure (this mechanism was discussed in Ref. [31] in the 
context of the chiral soliton picture of the nucleon in the large-Nc

limit).

5. Summary and prospects

We have studied the transverse densities of partonic AM in the 
nucleon at peripheral distances b = O(M−1

π ), where the structure 
is governed by chiral dynamics. The main conclusions are: (a) At 
peripheral distances the AM density is mostly orbital, while the 
spin density is suppressed. This follows from the general form of 
the pionic EMT and axial current operators in chiral dynamics and 
is a robust conclusion. (b) In the first-quantized LF representation 
of ChEFT at LO, the field-theoretical AM density coincides with the 
quantum-mechanical AM density of the soft pions in the chiral 
processes. This permits a simple interpretation of the peripheral 
AM density and relates it to other quantities of peripheral nucleon 
structure.

The relevance of the ChEFT results presented here is twofold: 
(a) They provide insight into nucleon structure in QCD; (b) they 
illustrate general properties of the AM densities in the context 
of relativistic field theory. Our findings validate the concept of 
the LF AM densities defined in Eqs. (9)–(11) [6,4]. The equiva-
lence between the field-theoretical AM density and the quantum-
mechanical AM density is demonstrated specifically for the trans-
verse density at fixed LF time, which has a well-defined first-
quantized representation even for relativistic systems. This sug-
gests that the LF AM density is a useful concept for nucleon struc-
ture studies also at non-exceptional distances.

The studies reported here can be extended in several ways. Us-
ing the same methods we can compute the T ++ current in the 
nucleon’s periphery, study the associated AM densities (Ji’s sum 
rule [2]), and relate them to the T +T current Eq. (8) and the 
AM density Eq. (9) studied in the present work [18]. We can also 
compute the peripheral T +T and T ++ currents for transverse nu-
cleon polarization and explore possible LF densities of transverse 
AM [32]. The ChEFT methods described here could also be used 
to compute nucleon densities at fixed instant time (x0 = const.) 
and illustrate their physical meaning [5]. Finally, the nucleon form 
factors of the EMT could be computed with methods combining 
ChEFT and dispersion theory, which include ππ rescattering ef-
fects through unitarity [27–30].

In the present work we have considered the nucleon matrix 
elements of the total AM operator, Eq. (1) corresponding to the 
sum of quark and gluon contributions in QCD. The total AM op-
erator is obtained from the total EMT of QCD, Eq. (3) which is 
scale-independent and represents the conserved current generated 
by the invariance of the dynamics under space-time translations 
(Noether current). This circumstance has made it possible to con-
struct the same operator in ChEFT, as the conserved current gen-
erated by the same invariance of the ChEFT dynamics, without 
information on the detailed relation between the degrees of free-
dom of the two theories, cf. Eq. (13). In the context of nucleon 
structure in QCD, one is of course interested also in the matrix el-
ements of the individual quark and gluon AM operators and their 
densities. These individual operators could be matched with ChEFT 
operators by invoking additional information on the quark/gluon 
structure of the pion and the nucleon, as obtained from empirical 
analysis of deep-inelastic scattering data. Specifically, the couplings 
of the QCD quark and gluon EMT to the pion could be fixed using 
information on the LF momentum carried by quarks and gluons 
in the pion (the second moments of the quark and gluon parton 
densities in the pion). This would make it possible to compute the 
individual peripheral densities of quark and gluon AM in the nu-
cleon using ChEFT and would represent an interesting extension of 
the present study [18]. The peripheral quark and gluon momen-
tum densities resulting from chiral dynamics have been studied in 
a similar approach in Refs. [33,34].
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