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We study the Dirac decomposition of the gauge invariant quark propagator, whose imaginary
part describes the hadronization of a quark as this interacts with the vacuum, and relate each of its
coefficients to a specific sum rule for the chiral-odd and chiral-even quark spectral functions. Working
at first in light-like axial gauge, we obtain a new sum rule for the spectral function associated to the
gauge fixing vector, and show that its second moment is in fact equal to zero. Then, we demonstrate
that the first moment of the chiral-odd quark spectral function is equal in any gauge to the so-called
inclusive jet mass, which is related to the mass of the particles produced in the hadronization of
a quark. Finally, we present a gauge-dependent formula that connects the second moment of the
chiral-even quark spectral function to invariant mass generation and final state rescattering in the
hadronization of a quark.
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I. INTRODUCTION

The confinement of the strong force directly connects the propagation of quarks and gluons with their
hadronization, namely their transmutation into massive and colorless hadrons. On the one hand, the proper-
ties of partonic propagators in QCD can be theoretically investigated with techniques ranging from continuum
methods [1–10] to effective theories and model calculations [11–15] and to lattice calculations [16–26]. On the
other hand, hard scattering processes with hadrons in the final state allow one, at least in principle, to probe
the discontinuity of these propagators thanks to the optical theorem. In fact, as shown in Refs. [27–29], the
moments of the quark propagator’s spectral functions can be explicitly connected to specific integrals of quark
fragmentation functions (FFs) and furthermore directly enter the cross section of certain inclusive hard scat-
tering processes. Thus, apart from their intrinsic interest, understanding the analytic properties of the quark
propagator and of its associated spectral functions becomes of practical relevance for the phenomenology of
hadron structure and of hadronization [30, 31].

In this paper, we elaborate on the gauge invariance of the so-called fully inclusive jet correlator introduced
in Refs. [27, 28], namely of

Ξij(k;w) = Disc

∫
d4ξ

(2π)4
eik·ξ

Trc
Nc

⟨Ω|
[
T W1(∞, ξ;w)ψi(ξ)

] [
T ψj(0)W2(0,∞;w)

]
|Ω⟩ , (1)

where |Ω⟩ is the interacting vacuum state of QCD, ψ the quark field, W1,2 are Wilson lines that ensure the
gauge invariance of the correlator, and w is an external vector that determines the direction of their paths, as
discussed in detail later. T represents the time ordering operator for the fields whereas T represents the anti
time ordering operator [32, 33]. For sake of brevity we omit the flavor index of the quark fields and of Ξ. The
color trace averages over the incoming quark color quantum number. One can show that the correlation function
in Eq. (1) is related to the correlator for the single-hadron quark fragmentation functions at the operator level,
by a sum over the flavor and spin of the produced hadrons and an on-shell integration over the four-momentum
of the same hadrons [28]. Thus, Ξij(k;w) represents mathematically the inclusive limit of the hadronization
mechanism. Moreover, as extensively discussed in Refs. [27, 28], the jet correlator Ξ can be written as the
discontinuity of the gauge-invariant quark propagator:

Ξij(k;n+) = Disc

∫
d4ξ

(2π)4
eik·ξ

Trc
Nc

⟨Ω|ψi(ξ)ψj(0)W (0, ξ;n+)|Ω⟩ , (2)

where the Wilson line is W = W2W1.
The form of Ξ given in Eq. (1) describes the hadronization of a quark into an unobserved jet of particles. It

is relevant to calculate the cross section of processes with unidentified jets in the final states, for example for
inclusive electron-proton Deep-Inelastic Scattering (DIS) [29, 31, 34, 35] and of Semi-Inclusive electron-positron
Annihilation (SIA) [29, 36, 37]. Its emergence from factorization theorems is connected with the endpoint
kinematics for the considered processes, see e.g. Refs. [38, 39].

The form of Ξ given in Eq. (2), instead, is a gauge-invariant generalization of the quark propagator, and
makes possible the mentioned connection between quark propagation in the vacuum and hadronization. This
connection is valid at the operator level and, after some formal manipulations, produces a sum rule that links the
first moment of the chiral-odd quark spectral function (identified as the nonperturbative mass of the propagating
quark) to the average of the produced hadron masses weighted by the chiral-odd scalar quark fragmentation
functions E [27, 28].

While in Refs. [27, 28] the calculations were limited to the light cone gauge, in this paper the study of the
gauge invariant propagator Ξ is extended to a generic gauge. It is shown that the sum rule for the chiral-odd
spectral function presented in Refs. [27, 28] is in fact formally valid in any gauge. Moreover, a novel sum rule
for the quark spectral function associated to the gauge fixing vector in light-like gauges is derived. Finally, a
complete calculation of the twist-4 component of the jet correlator is presented, together with a sum rule for
the second moment of the chiral-even spectral function.

This research line connects two aspects of QCD (and two research communities) which are intertwined,
namely the study of the analytic properties of the quark and gluon propagators and the study of hadronization
via scattering processes with hadrons in the final states. This article is devoted in particular to the properties
of the quark propagator, and addresses in a sistematic way the calculation of the quantities which are relevant
for hard scattering processes, namely the moments of the spectral functions and their gauge independence.
The motivation behind this work lies, in part, in the possibility to express the jet mass as a moment of the
chiral-odd quark spectral function in a generic gauge and not only in the light-cone gauge. In this gauge,
in fact, computations are considerably more involved [1, 40] and, to the best of our knowledge, absent for
quark spectral functions. Our results provide additional motivation to push forward with these calculations.
Furthermore, the moments are also instrumental to determine mass corrections to semi-inclusive processes at
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sub-leading twist and to investigate higher-twist fragmentation functions [30, 41]. This connection is timely
given the growing interest for higher-twist effects from the point of view of perturbation theory [42–44], the
current and future experimental measurements [36, 37, 45–50] and the recent phenomenological analyses in this
direction [29, 36, 37, 51].

The paper is organized as follows. In Sec. II the Dirac structure of the gauge-invariant quark propagator is
discussed, together with the related coefficient functions. Sec. III features the spectral representation for the
propagator, taking into account also the contribution from a light-like gauge-fixing vector v. Sec. IV presents a
comparison between the expressions for the coefficient functions obtained in the light-cone gauge [27, 28] with
those obtained in a generic gauge. In Sec. V the results are summarized.

II. GAUGE INVARIANT QUARK PROPAGATOR

As shown in Refs. [27, 28], the gauge invariant quark propagator (2) can be further rewritten as a convolution
of a quark bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

Ξij(k;w) = Disc

∫
d4p

Trc
Nc

⟨Ω|iS̃ij(p; v)W̃ (k − p;w, v)|Ω⟩, (3)

where

iS̃ij(p, v) =

∫
d4ξ

(2π)4
eiξ·p T ψi(ξ)ψj(0), (4)

W̃ (k − p; w, v) =

∫
d4ξ

(2π)4
eiξ·(k−p)W (0, ξ;w, v). (5)

In the definition (3), k denotes the quark 4-momentum, |Ω⟩ is the interacting vacuum state, and the tilde sign
marks functions in the momentum space. The 4-vector w defines the direction of the Wilson line [27, 28], which
is introduced in order to guarantee the gauge invariance of the correlator, and will further be discussed below.
One then easily sees that Ξ provides one with a gauge-invariant definition of the two-point quark correlator

⟨Ω|iS̃|Ω⟩. The quark operator iS̃ and the Wilson line W̃ may furthermore depend on the 4-vector v defining
an axial gauge; in non-axial gauges v can still formally be used as a label reminding one of the dependence of
these two quantities on the gauge fixing condition.

The convolution representation in Eq. (3) is convenient because it allows a direct connection between the gauge
invariant quark correlator Ξ and the spectral representation of the gauge-dependent quark propagator, that will
be exploited and further studied below. The quark spectral representation has been extensively explored in
recent years since its properties and analytical structure can possibly shed light on confinement [5, 14, 15, 52–
55]. Spectral properties of gauge invariant quark correlators have also been discussed in [56, 57] beside the
aforementioned Refs. [27, 28]. It is also worth emphasizing once more that the jet correlator Ξ is in itself is

gauge invariant, whereas the quark operator iS̃ is not, and therefore the LHS of Eq. (3) is independent of v.
Building on Refs. [27, 28], we will exploit this fact to derive novel sum rules for the quark spectral functions in
Sec. III and IV.

Following Refs. [27, 28], we work in light-cone coordinates (see Appendix A) and boost the quark to large
momentum in the light-cone minus direction so that its components satisfy k− ≫ |kT | ≫ k+, where |kT | ∼ O(Λ)
and k+, k2 ∼ O(Λ2), and Λ is a power counting scale of order of the nonperturbative QCD scale ΛQCD. We
can then consider the gauge-invariant correlator integrated over the subdominant k+ component of the quark
momentum :

Jij(k
−,kT ;n+) ≡ 1

2

∫
dk+Ξij(k;w = n+), (6)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
along the quark direction of motion, and we call “inclusive jet correlator”. It is precisely the integration over
k+ that allows one to derive sum rules for the quark spectral functions. Note that, in the definition of J , we
follow Ref. [28] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape of the
considered Wilson line is discussed in detail in the mentioned reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will
only need to consider the simpler WTMD(ξ+, ξT ) ≡ W (0−, ξ+, ξT ) transverse-position-dependent Wilson line
and the Wcoll(ξ

+) ≡W (0−, ξ+,0T ) light-cone Wilson lines, defined as

WTMD(ξ+, ξT ) = Un+ [0−, 0+,0T ; 0−,∞+,0T ]UnT
[0−,∞+,0T ; 0−,∞+, ξT ]Un+ [0−,∞+, ξT ; 0−, ξ+, ξT ] (7)

Wcoll(ξ
+) ≡WTMD(ξ+,0T ) = Un+ [0−, 0+,0T ; 0−, ξ+,0T ] , (8)
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where Uv[a;∞] is a straight Wilson line from a to infinity along the v direction,

Uv[a;∞] = P exp

(
−ig

∫ ∞

0

ds vµAµ

(
a+ sv)

))
, (9)

where P denotes the path-ordering operator, and with slight abuse of notation Uv[a; b] = Uv[a;∞]Uv[∞; b]. In
Eqs. (7) and (8) one recognizes, respectively, the staple Wilson line used in TMD factorization theorems, and
the light-cone Wilson line used in collinear factorization theorems.

With these Wilson lines, the integrated correlator in Eq. (6) can then be used in perturbative calculations
of inclusive DIS structure functions [29] and semi-inclusive electron-positron annihilation [36, 37], where it
coiuples respectively, to the nucleon’s transversity parton distribution function and the polarized (e.g. Λ) hadron
transversity fragmentation function. In these processes, the “inclusive jet correlator” J is used instead of the
free quark propagator to describe the hadronization of a scattered quark in the so-called end-point kinematics
of the process [34, 35, 38, 58], where the invariant mass of the final state is limited, and the produced hadrons
are kinematically constrained into a narrow – yet unobserved – jet of particles along the quark’s direction of
motion, thus earning its name.

Keeping in mind the outlined phenomenological applications – but independently of these – one can leverage
the strong k− ≫ |kT | ≫ k+ ordering to give the inclusive jet correlator in Eq. (6) a “twist” decomposition
controlled by a power counting scale Λ [27, 28]:

J(k−,kT ;n+) =
1

2
α(k−)γ+ +

Λ

k−

[
ζ(k−)I + α(k−)

/kT

Λ

]
+

Λ2

2(k−)2
ω(k−,k2

T )γ− , (10)

where γµ are Dirac matrices and we suppressed the Dirac indices for simplicity. Notice that the coefficients α
and ζ are only functions of k−, while ω is a function of both k− and kT . This is indeed the case as it will be
further discussed below and will also be shown in Sec. IV by an explicit calculation of these coefficients. Notice
that we did not include time-reversal odd (T-odd) structures in the decomposition (10), since these are not
allowed in the fully inclusive hadronization of a quark described by the inclusive jet function J [28]. On the
contrary, T-odd structures would be allowed in less inclusive observables, such as with identified jet (see e.g.
Refs. [59, 60]) or in one- and two-particle semi-inclusive measurements [30]. Likewise we have not included any
parity odd (P-odd) structures.

The α(k−), ζ(k−) and ω(k−,k2
T ) are, respectively, the twist-2, twist-3 and twist-4 coefficients of the jet

correlator, and can be obtained by projecting Eq. (6) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix Γ by

J [Γ] ≡ Tr

[
J

Γ

2

]
=

1

2

∫
dk+Tr

[
Ξ

Γ

2

]
, (11)

one finds:

α(k−) = J [γ−] =
1

2

∫
dk+Tr

[
Ξ
γ−

2

]
, (12)

ζ(k−) =
k−

Λ
J [I] =

k−

Λ

1

2

∫
dk+Tr

[
Ξ

I
2

]
, (13)

ω(k−,k2
T ) =

(
k−

Λ

)2

J [γ+] =

(
k−

Λ

)2
1

2

∫
dk+Tr

[
Ξ
γ+

2

]
. (14)

The specific dependence of α and ζ on k− and of ω on k− and kT can be understood by considering the
decomposition of the jet correlator Ξ(k, n+) appearing in the integrands of Eqs. (12)-(14) on a basis of Dirac
matrices, as it was discussed in detail in Ref. [28]. The coefficients of this expansion can only depend on
the Lorentz scalars k2 and k · n+ = k−. Integrating over k+ and tracing over γ− to obtain α, for instance,
corresponds to integrating Ξ over k2 and tracing over γ−. Therefore, one obtains that α can only be a function
of k−, and the same reasoning also applies to ζ. On the other hand, a factor of (k2 + k2

T )/2k− appears in the
analogous calculation of the trace in Eq. (14), and ω necessarily depends on both k− and kT .

We will discuss the calculation of these coefficients in detail in Sec. IV, but it is already worthwhile comparing
the free propagator of an on-shell quark of mass m decomposed in light-cone coordinates,

/k +m = k− γ+ + /kT +mI +
m2 + k2

T

2k−
γ− , (15)

and the the quark-jet correlator (10) in its final form, namely,

J(k−,kT ;n+) =
θ(k−)

4(2π)3 k−

{
k− γ+ + /kT +MjI +

K2
j + k2

T

2k−
γ−

}
. (16)
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In the latter formula, the “jet mass” Mj corresponds to a mass term for the hadronizing quark [27, 28] and the
“jet virtuality”

K2
j = µ2

j + τ2j (17)

receives contributions from the invariant mass initially produced in the quark fragmentation process (µ2
j ), and

from the transverse broadening of the jet of particles due to final state interactions (τ2j ). The θ(k−) factor
in front of the curly brackets appears because the discontinuity of the jet correlator is summing over all real
particles production processes in the final state [28], and the Mj and K2

j factors are k-independent because
of the Lorentz covariance and gauge invariance of the jet correlator Ξ, as we will also explicitly prove later.
Comparing the free quark propagator (15) to the jet correlator (16), we can thus interpret the twist-3 O(1/k−)
coefficient as a gauge-invariant nonperturbative generalization of the quark’s current mass,

m↭Mj , (18)

withMj summing over the masses of the quark hadronizatio products [27, 28]. The twist-4 O(1/(k−)2) coefficient
can be similarly interpreted as a gauge-invariant nonperturbative generalization of the quark’s invariant mass,
that now includes a contribution from all hadronization products.

m2 ↭ K2
j . (19)

It is worth emphasizing the Mj and K2
j are gauge invariant quantities, although the separation of the latter

into invariant mass produced during hadronization and transverse broadening of the final state depends on the
choice of gauge (see Sec. IV). As with any multiparticle state, K2

j is not constrained to be equal to M2
j as it

happens for a perturbative quark.

III. SPECTRAL ANALYSIS IN THE LIGHT-CONE GAUGE

The jet correlator Ξ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq. (3)

which depends on the gauge choice. This has been made explicit with the inclusion in the arguments of iS̃ of
the 4-vector 4-vector v that defines the axial gauge condition

v ·A = 0. (20)

The vector v can in principle be spacelike, timelike or lightlike. For our puposes, it suffices to consider the
light-like axial gauge,

v2 = 0 , (21)

in which case the most general form of the quark bilinear is given by:

iS̃ij(p, v) = ŝ3(p2, p · v) /pij +
√
p2 ŝ1(p2, p · v) Iij + ŝ0(p2, p · v) /vij , (22)

where ŝi(p
2, p · v) are spectral operators that are functions of all non-trivial Lorentz scalars that can be built

with the 4-vectors p and v, namely p2 and p · v. Note that we omitted structures proportional γ5 and [/p, /v]
because of parity and time-reversal invariance.

The gauge condition (20) is in fact invariant under a v → αv rescaling of the gauge vector. This implies that
the operators ŝ3,1 can only depend on p2,

ŝ3(p2, p · v) = ŝ3(p2) , ŝ1(p2, p · v) = ŝ1(p2) , (23)

while

ŝ0(p2, p · v) =
p2

p · v
ŝ0(p2) , (24)

where the p2 factor is included at the numerator for dimensional purposes only. Thus, the quark operator in
the light-cone gauge has the restricted form (omitting the Dirac indices):

iS̃(p, v) = ŝ3(p2)/p+
√
p2ŝ1(p2)I +

p2

p · v
ŝ0(p2)/v. (25)
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For later convenience, we also decompose each one of the ŝi(p
2) operators into “physical” (σ̂i) and “non-physical”

(ω̂i) contributions,

ŝi(p
2) = σ̂i(p

2) θ(p2)θ(p−) + ω̂i(p
2)

[
1 − θ(p2)θ(p−)

]
, (26)

where θ(p−) selects positive-energy states and θ(p2) selects momenta on or inside the lightcone.
The quark propagator can be given an integral representation of the Källén-Lehmann type [61, 62]:

Trc
Nc

⟨Ω|iS̃(p, v)|Ω⟩ =

∫
dσ2

(2π)4
ρ(σ2)

p2 − σ2 + i0
θ(σ2), (27)

where here ρ(σ) is a matrix in Dirac space:

ρ(p2) = ρ3(p2)/p+
√
p2ρ1(p2) +

p2

p · v
ρ0(p2)/v. (28)

With the discontinuity at p2 in the integrand evaluating to (−2πi) ρ(σ2) δ(p2 − σ2) θ(p−), we find that

Disc
Trc
Nc

⟨Ω|iS̃(p, v)|Ω⟩ =
1

(2π)3
ρ(p2)θ(p2)θ(p−), (29)

and one can easily see that only the physical operators are discontinuous,

Disc
Trc
Nc

⟨Ω| σ̂i(p2) |Ω⟩ = ρi(p
2)/(2π)3, (30)

Disc
Trc
Nc

⟨Ω| ω̂i(p
2) |Ω⟩ = 0 , (31)

and by virtue of Eq. (30) can thus be called “spectral operators”.
Compared to expressions often found in literature, and in particular in the Refs. [27, 28] that this paper

elaborates on, Eq. (28) contains an additional spectral function ρ0(σ2) corresponding to the /v Dirac structure.
When v is chosen proportional to n+, this new term can bring additional contributions to the twist-4 coefficient
ω(k−,kT ) in Eq. (14) (see also Ref. [28]). This is however not the case due to a novel sum rule for the new
spectral function ρ0 that we derive below as a consequence of the gauge invariance of the jet correlator.

The starting point to derive the sum rule for ρ0 is to consider the J [γ∓] projections of the integrated jet
correlator onto γ− or γ+, and utilize the decomposition (25) of the quark bilinear operator:

J [γ∓] = Disc

∫
dk+

∫
d4p

Trc
Nc

⟨Ω|
[
ŝ3(p2)(p · n±) +

v · n±
v · p

p2 ŝ0(p2)
]
W̃ (k − p;n+)|Ω⟩, . (32)

The gauge invariance of J [γ∓] then implies that the second term on the right hand side must vanish for any
(light-like) vector v:

ϕ∓(k−) ≡ Disc

∫
dk+

∫
d4p

(v · n±)p2

v · p
Trc
Nc

⟨Ω|ŝ0(p2)W̃ (k − p;n+)|Ω⟩ = 0 , (33)

where ϕ∓ is introduced as a convenient shorthand, and the ± superscripts refer, respectively to the traces of J
multiplied by γ− and γ+, respectively. Taking v = n+, the function ϕ−(k−) vanishes identically, but for ϕ+(k−)
we have

ϕ+(k−) =
1

2
Disc

∫
dp2

∫
dp−

p2

(p−)2
Trc
Nc

⟨Ω|ŝ0(p2)

∫
dξ+

2π
eiξ

+(k−−p−)Wcoll(ξ
+)|Ω⟩, (34)

where we have written the measure as d4p = dp2 d2pT dp
−/2p− and the integrations over k+ and pT have

produced the collinear Wilson line Wcoll(ξ
+). With the specific v = n+ gauge vector choice and by virtue of

our choice of staple-like Wilson lines in the ω ≡ v direction in the definition of the jet correlator, the collinear
Wilson line reduces to the identity matrix in color space: Wcoll(ξ

+) = I. Using then the decomposition of the
operator ŝ0 in terms of the operators σ̂0 and ω̂0 given in Eq. (26), the discontinuity can be calculated using
Eqs. (30) and (31):

ϕ+(k−) =
1

2(2π)3
θ(k−)

(k−)2

∫ ∞

0

dp2 p2 ρ0(p2) . (35)
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By virtue of Eq. (33), we therefore obtain a new sum rule for the ρ0(p2) quark spectral function:∫ ∞

0

dp2 p2 ρ0(p2) = 0 . (36)

By defining the nth-moment of a generic spectral function ρ as:

ρ(n) =

∫ +∞

0

dp2
(
p2
)n/2

ρ(p2) , (37)

one can express the sum rule in Eq. (36) simply as ρ
(2)
0 = 0. Notice that this term could in principle have

contributed to the twist 4 projection J [γ+] of the integrated jet correlator in a generic axial gauge [28]. However,
with the sum rule Eq. (36) one can explicitly see that this projection does not depend on gauge-related quantities
such as ρ0, as it may be expected on the basis of the gauge invariance of J . Sum rules for ρ3 and ρ1 in the
light-cone n+ · A = 0 gauge were discussed in Ref. [27, 28] and will be further examined in a generic gauge in
the following section.

IV. TWIST EXPANSION IN A GENERIC GAUGE

As discussed in Ref. [28], the α(k−) and ζ(k−) coefficients of the integrated jet correlator (10) can be directly
evaluated in the light-cone gauge by using the convolution representation (3) and the Dirac decomposition (22)
of the quark bilinear operator. In the following, we will instead obtain expressions for these coefficients without
committing to a choice of gauge and show that they are actually invariant in form and not just numerically
due to gauge invariance. Moreover, the strategy employed will also allow us to complete the calculation of the
twist-four projection, which is more involved and was only partially carried out in Ref. [28] in the light-cone
gauge. Here, we complete that calculation and extend it to a generic gauge.

A. Twist two projection

Using the definition (12) and after integrating over k+ and pT , the twist-2 α(k−) coefficient can be written
as

α(k−) =
1

2
Disc

∫
dp2

∫
dp−

Trc
Nc

⟨Ω|ŝ3(p2)

∫
dξ+

2π
eiξ

+(k−−p−)Wcoll(ξ
+)|Ω⟩. (38)

Notice that the domain of integration of p2 extends over the entire real axis. The physical region, however, is
constrained to p2 > 0 and p− > 0 as previously discussed. Using the quark operator decomposition given in
Eq. (26), the only non-vanishing contribution to α(k−) comes from the physical operator σ̂3(p2):

α(k−) =
1

2
Disc

∫ ∞

0

dp2
Trc
Nc

⟨Ω|σ̂3(p2)I2(k−)|Ω⟩,

(39)

where

I2(k−) =

∫ ∞

0

dp−
∫
dξ+

2π
eiξ

+(k−−p−)Wcoll(ξ
+). (40)

1. Light-cone gauge

In the light-cone gauge, the collinear Wilson line reduces to the identity in color space and the result of the
integral above is straightforward,

I2(k−) =

∫ ∞

0

dp− δ(k− − p−) = θ(k−). (41)

and the twist-2 coefficient takes on a particularly simple form,

α(k−) =
θ(k−)

2(2π)3

∫ ∞

0

dp2 ρlcg3 (p2) , (42)
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where we have used the properties (30)-(31) of the spectral operators, and the “lcg” superscript on the
gauge-dependent spectral function emphasizes that, thus far, this sum rule has only been established in the
light-cone gauge. Exploiting, furthermore, the normalization property of the ρ3(p2) spectral function, namely∫∞
0
dp2ρ3(p2) = 1 [61, 62], one also finds

α(k−) =
θ(k−)

2(2π)3
. (43)

Due to the gauge invariance of the integrated correlator J , and therefore of its Dirac coefficients, this result is
valid in any gauge, as we will explicitly verify next.

2. Generic gauge

For the calculation in a general gauge, in which the Wilson line cannot be handled in a trivial way, it is
convenient to define the dimensionless variables

y = ξ+k− and σ = p−/k− . (44)

Using these new variables and inverting the order of integration, I2(k−) can be written as

I2(k−) =

∫
dy

2π
eiyuk−(y)Wcoll(y/k

−), (45)

where we have defined

uk−(y) ≡
∫ ∞

0

dσ e−iy sign(k−)σ. (46)

The uk−(y) function is nothing else than a half-plane Fourier transform,∫ ∞

0

dω e±ixω = πδ(x) ± iP

(
1

x

)
, (47)

where P denotes the Cauchy principle value [63]. When using Eq. (47) in Eq. (45), one can furthermore take
advantage of

∫∞
−∞ dxP

(
1
x

)
eiyf(x) = iπf(0) to set the Wilson line to unity, and find

α(k−) =
θ(k−)

2(2π)3

∫ ∞

0

dp2 ρ3(p2) (48)

independently of the chosen gauge. Furthermore,
∫∞
0
dp2 ρ3(p2) = 1 by virtue of the canonical commutation

relations [62], and one arrives at

α(k−) =
θ(k−)

2(2π)3
. (49)

B. Twist three projection

We can now apply the method that has just been discussed to calculate the twist-three ζ(k−) coefficient.
Using its definition (13) and integrating over k+ and pT one obtains:

ζ(k−) =
1

2Λ

∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|
√
p2 σ̂1(p2)I3(k−)|Ω⟩ , (50)

where I3(k−) is defined to be:

I3(k−) = k−
∫ ∞

0

dp−

p−

∫
dξ+

2π
eiξ

+(k−−p−)Wcoll(ξ
+). (51)



9

1. Light-cone gauge

As in the twist-two case, the I3 integral can be directly evaluated in the light-cone gauge, leading to I3(k−) =
θ(k−). Therefore

ζ(k−) =
θ(k−)

2Λ(2π)3
Mj , (52)

where

Mj =

∫
dp2

√
p2 ρlcg1 (p2) (53)

is the chiral-odd jet mass [27–29] and “lcg” emphasizes that ρlcg1 (p2) is to be understood as the spectral function
calculated in the light-cone gauge. While the numerical value of Mj must be the same in any gauge due to the
gauge invariance of the Dirac coefficients of the integrated jet correlator J , the same is not a priori true of the

sum rule (53): in principle, in a different gauge the relation might be of the form Mj = ρ
(1)
1 +“other terms”.

Nonetheless, the invariance in form of Eq. (53) will be proven in the next subsection.

2. Generic gauge

In a general gauge, we can once again utilize the dimensionless variables y and σ defined in Sec. IV A and
write

I3(k−) = sign(k−)

∫
dy

2π
vk−(y) eiyWcoll(y/k

−) , (54)

where vk−(y) is defined as

vk−(y) ≡
∫ ∞

0

dσ

σ
e−iyσsign(k−). (55)

Note that the vk−(y) function is conveniently related to the uk−(y) defined in Eq. (46) by

v′k−(y) = −i sign(k−)uk−(y). (56)

In order to deal with the Wilson line, we can then write the exponential appearing in Eq. (54) as a derivative,
eiy = −i ∂

∂y e
iy, and perform the integration over y by parts. Repeating the same trick as needed, one sees that

I3(k−) = θ(k−)

[ ∞∑
n=0

in
(
∂nyWcoll(y/k

−)
)]

y=0

= θ(k−)

(
1

1 − i∂y
Wcoll(y/k

−)

)
y=0

. (57)

Substituting this result into Eq. (50), one obtains

ζ(k−) =
θ(k−)

2Λ

∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|
√
p2 σ̂1(p2)

(
1

1 − i∂y
Wcoll(y/k

−)

)
y=0

|Ω⟩ . (58)

In the light-cone gauge, where Wcoll = I we recover I3(k−) = θ(k−) and the light-cone sum rule (53). In a
general gauge, we can expand Eq. (58) in powers of g and obtain

ζ(k−) =
θ(k−)

2Λ

∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|
√
p2 σ̂1(p2)

[
1 +

g

k−
A−(0) +O

( g

k−

)2
]
|Ω⟩ . (59)

Now, compare this to the light-cone gauge result given in Eq. (52), that depends on k− only through the θ(k−)
function. By gauge invariance of ζ, this must be true also of Eq. (59). But nothing in the RHS can generate
k−-dependent terms to cancel the explicitly written O(g/k−)n factors when n > 0. Therefore all the terms of
O((g/k−)n) terms must vanish with the exception of the n = 0 term. Therefore, one obtains

Mj =

∫
dp2

√
p2 ρ1(p2) . (60)

Recalling the definition of moments given in Eq. (37), this means that Mj ≡ ρ
(1)
1 is gauge invariant, even though

the spectral function itself is not. To the best of our knowledge, this is a novel spectral function sum rule.



10

C. Twist four projection

We now proceed to the calculation of the twist-4 ω coefficient defined in Eq. (14). Its non-vanishing contri-
bution in a generic gauge is given by

ω(k−,k2
T ) =

(
k−

Λ

)2

Disc

∫
dk+

∫
d4p

Trc
Nc

⟨Ω|σ̂3(p2)
p2 + p2

T

2p−
W̃ (k − p;n+)|Ω⟩, (61)

where we have written p · n− = (p2 + p2
T )/2p−. The integration over k+ simply sets the conjugate space

coordinate to zero in the partial Fourier transform of the Wilson line reducing this to WTMD. In the term
term proportional to p2 the integration over the transverse momentum then acts directly over WTMD, further
reducing the Wilson line to its collinear Wcoll form and simplifying the calculation. In a general gauge, where
Wcoll ̸= I, the calculation is more complicated but can be performed by following the strategy employed for
the twist-2 and twist-3 coefficients. However, the integration of the second term in the integrand of Eq. (61) is
substantially more involved due to the presence of p2

T which prevents one from directly integrating the Wilson
line over its transverse momentum. We thus write Eq. (61), in general, as a sum of two terms and will address
these in turn:

ω(k−,k2
T ) = ωℓ(k

−) + ωt(k
−,k2

T ), (62)

where ωℓ and ωt are, respectively, the transverse-momentum-independent (“longitudinal”) and transverse-
momentum-dependent (“transverse”) components of the twist-4 coefficient:

ωℓ(k
−) =

1

(2Λ)2

∫ ∞

0

dp2p2 Disc
Trc
Nc

⟨Ω|σ̂3(p2)Iℓ(k
−)|Ω⟩, (63)

ωt(k
−,k2

T ) =
1

(2Λ)2

∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|σ̂3(p2)It(k
−,kT )|Ω⟩, (64)

where

Iℓ(k
−) =

∫ ∞

0

dp−
(
k−

p−

)2 ∫
dξ+

2π
eiξ

+(k−−p−)Wcoll(ξ
+), (65)

It(k
−,kT ) =

∫ ∞

0

dp−
(
k−
p−

)2 ∫
d2pT

∫
d2ξT
(2π)2

p2
T e

iξT ·(kT −pT )W̃TMD(k− − p−, ξT ). (66)

1. Light-cone gauge

In the light-cone gauge, the calculation of the longitudinal term is straightforward, and one finds

I lcgℓ (k−) = θ(k−) (67)

ωlcg
ℓ (k−) =

θ(k−)

(2Λ)2(2π)3
(µ2

j )lcg, (68)

where

(µ2
j )lcg ≡

∫ ∞

0

dp2 p2 ρlcg3 (p2) (69)

can be interpreted as the average invariant mass squared of the particles produced by the quark fragmenta-
tion [28].

The calculation of the transverse It operator in Eq. (66) is more involved. First, we can eliminate the p2
T

term by using

p2
T e

iξT ·(kT −pT ) =
[
(i∂T )2 + k2

T + 2 ikT · ∂T

]
eiξT ·(kT −pT ) , (70)

where we shortened ∂T = ∂/∂ξT . Then, the integration over the term proportional to k2
T presents no difficulty,

and proceeds as for Iℓ in Eq. (67). In the remaining terms, integration by parts over d2ξT produces derivatives
of the WTMD Wilson line with respect to the transverse space coordinate. In the light-cone gauge, WTMD

reduces to a transverse gauge link at light-cone infinity, which can also be set to unity by imposing advanced
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boundary conditions on the transverse gauge fields, namely AT (∞+) = 0 [64, 65]. The transverse derivatives
are then identically equal to zero and we obtain a simple enough final result:

I lcgt (k−,kT ) = θ(k−)k2
T ,

ωlcg
t (k−,kT ) =

θ(k−)

(2Λ)2(2π)3
k2
T . (71)

Together with Eq. (68) this leads to the full result for the twist 4 projection in the light-cone gauge,

ωlcg(k−,k2
T ) =

θ(k−)

(2Λ)2(2π)3
[
(µ2

j )lcg + k2
T

]
. (72)

This has a simple interpretation: the invariant mass m2
q of the (single particle) quark is replaced by the non-

perturbative invariant mass µ2
j of the particles produced in the quark’s fragmentation process, while the k2T

contribution is of purely kinematic origin. However, unlike the twist-3 ζ coefficient, this simple interpretation
is not gauge invariant as we will discuss next.

2. Generic gauge

In a generic gauge, the longitudinal Iℓ and ωℓ can be obtained by following the strategy deployed for the
calculation of the twist-2 and twist-3 projections. One obtains

Iℓ(k
−) = θ(k−)

[
1

(1 − i∂y)2
Wcoll(y/k

−)

]
y=0

,

ωℓ(k
−) =

θ(k−)

(2Λ)2(2π)3

∫
dp2 p2 ρ3(p2) +O

( g

k−

)
. (73)

To calculate the transverse part one needs to evaluate It and ωt. The starting point is to use Eq. (70) to
remove the p2

T dependence in the integrand of Eq. (66) with transverse derivatives. After integration by parts,
we are left with first and second transverse derivatives of the Wilson line. By symmetry arguments, the term
proportional to the first derivative can be shown to vanish upon integration. However the second derivative
of the Wilson line, that vanished in the light-cone gauge, will give a nontrivial contribution to the twist-4
coefficient. Upon recursively using eiy = −i ∂

∂y e
iy as for the twist-3 calculation, we find that

It(k
−,kT ) = θ(k−)

[(
k2
T − ∂2

T

) 1

(1 − i∂y)2
WTMD(y/k−, ξT )

]
y,ξT =0

,

ωt(k
−,k2

T ) =
θ(k−)

(2Λ)2

∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|σ̂3(p2)

[(
k2
T − ∂2

T

)
(1 − i∂y)2

WTMD(y/k−, ξT )

]
y,ξT =0

|Ω⟩ . (74)

Expanding the latter in powers of g/k− we find

ωt(k
−,k2

T ) =
θ(k−)

(2Λ)2(2π)3
k2
T +

θ(k−)

(2Λ)2

∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|σ̂3(p2)JT |Ω⟩ +O
( g

k−

)
, (75)

where

JT =
[
−∂2

TWTMD(y/k−, ξT )
]
y,ξT =0

. (76)

The detailed evaluation of the above derivative can be found in Appendix B. The result is

JT = igDTAT (0) (77)

+ ig

[∫ ∞+

0

ds+DT

(
Un+ [0−, 0+, ξT ; 0−, s+, ξT ]GT−(0−, s+, ξT )Un+ [0−, s+, ξT ; 0−,∞+, ξT ]

)]∣∣∣∣∣
ξT =0

,

where DT = ∂T +igAT is the transverse covariant derivative and GT− is the field strength tensor, and repeated
transverse T indexes are contracted in the 2D transverse Euclidean space.

In the light-cone gauge, JT and therefore ωt vanish as already implied by Eq. (72). It is interesting to see
how this explicitly works out in the general expression we just derived. Indeed, in the light-cone gauge GT− =
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−∂−AT and the integral in Eq. (77) evaluates to DTAT (∞)−DTAT (0). The term evaluated at the origin then
cancels the first term in Eq. (77), and the term evaluated at infinity vanishes by imposing advanced boundary

conditions, meaning that indeed J lcg
T = 0. It is also interesting to notice that this cancellation is actually

quite general within the class of local contour gauges [66–68], to which the light-cone gauge supplemented with
boundary conditions pertain. The first term in Eq. (77) is actually a residual gauge footprint left behind by
not completely fixing the gauge. The contour gauge, in contrast, is by construction free of gauge redundancies
and, applied to the staple-like Wilson line that appears throughout this work, implies that WTMD = I, leading
to JT = 0 in any contour gauge.

The cancellation of the first term itself (if not of the whole JT ) happens in fact in any gauge. This can be seen
by perturbatively expanding the U contributing to the line integral of Eq. (77) in powers of g, and explicitly
integrating the leading term. The JT operator is then proportional to g2 and can be interpreted as describing
two gluon rescatterings along the Wilson line from 0+ to ∞+.

We can now quote the result for the full ω projection in a generic gauge. First, we plug Eq. (77) back in
Eq. (75) and add the longitudinal part of the ω projection. Then, we realize that by gauge symmetry all terms of
order g/k− must be zero, because in the light cone gauge ω is independent of k− apart from the theta function,
but the lack of any dependence on k− in the integrand in the second term in Eq. (73) prevents any cancellation
of the k− in the higher order terms. Finally, we find that

ω(k−,kT ) =
θ(k−)

(2Λ)2(2π)3
(
K2

j + k2
T

)
, (78)

where the jet virtuality

K2
j = µ2

j + τ2j (79)

gets contributions from two distinct sources. The first one is the invariant mass of the quark hadronization
products,

µ2
j =

∫ ∞

0

dp2 p2 ρ3(p2) , (80)

which is calculated as the second moment of the chiral-even spectral function in the considered gauge and, at
variance with Mj , turns out to not be gauge invariant as we shall see in a moment. The second source is the
transverse momentum broadening of the final state particles,

τ2j = (2π)3
∫ ∞

0

dp2 Disc
Trc
Nc

⟨Ω|σ̂3(p2)igDT (AT (ξT ) + ZT (ξT ))ξT =0 |Ω⟩, (81)

with

ZT (ξT ) = ig

∫ ∞+

0

ds+Un+ [0−, 0+, ξT ; 0−, s+, ξT ]GT−(0−, s+, ξT )Un+ [0−, s+, ξT ; 0−,∞+, ξT ]|Ω⟩ . (82)

In interpreting this expression, one should keep in mind that AT appears in Eq. (81) only as a residue of
incomplete gauge-fixing procedures, as remarked earlier, so that final state rescattering effects are effectively
contained in DTZT only.

Because of the gauge invariance of the integrated jet correlator, the ω coefficient is also gauge invariant.
However, the decomposition (79) in invariant mass of the hadronization products and transverse momentum
broadening in the final state is not. For example, in the the light-cone gauge with appropriate boundary

conditions no rescattering seems to occur because τ lcgj = 0. On should however notice that, although final
state interactions seemingly disappear with the appropriate choice of gauge and boundary conditions, their

effect is subsumed into (µ2
j )lcg – in fact, embedded inside the chiral-even quark spectral function ρlcg3 . In a

specific calculation, one would have to balance the simplicity of a vanishing line integral in Eq. (82), with
the added complexity found when solving the fully dressed quark propagator to obtain the quark spectral
functions. Indeed, the boundary condition for the gauge fields at light-cone infinity implies a specific choice of
pole prescription for the gluon propagator appearing in the calculation, which renders it more complex than
in, say, the Landau gauge (where, however, one would also need to calculate the τj term).

V. CONCLUSIONS

This paper has completed the spectral analysis of the gauge invariant quark propagator initiated in Ref. [27, 28]
in the light cone gauge, and now extended to a generic gauge. In particular, the coefficients of the Dirac



13

decomposition of the gauge-invariant quark propagator (2) have been identified with specific moments of the
chiral even and chiral odd quark spectral functions. The gauge invariance of the formulas so obtained has been
investigated, and novel spectral function sum rules derived.

In Sec. IV A and IV B it is shown that the twist-2 and twist-3 coefficients α(k−) and ζ(k−) are proportional

in any gauge to the zeroth moment ρ
(0)
3 and first moment ρ

(1)
1 of the chiral even and odd spectral functions,

respectively, even though the spectral functions themselves depend on the chosen gauge. The former result
squares with the well known

∫
dp2ρ3(p2) = 1 sum rule, which depends only on the properties of equal time

commutators of the quark fields, and is indeed independent of the chosen gauge. The latter result is particularly

interesting because it shows that the jet mass Mj =
∫
dp2

√
p2ρ1(p2) (a color-screened gauge-invariant dressed

mass for the quark) can always be interpreted as the dynamically generated mass in the quark fragmentation
process, and provides one with the means of actually measuring this, for example, in inclusive DIS [35] or

in semi-inclusive electron-positron annihilation [37]. On the theoretical side, the gauge invariance of ρ
(1)
1 is a

feature that should be confirmed by independent calculations.
In Sec. IV C the calculation of the twist-4 term previously analyzed in Ref. [28] has been completed. The

decomposition of this coefficient function in terms of the invariant mass of the hadronizing quark and the effect
of final-state interactions is elucidated. This decomposition is not gauge invariant, but the sum of the two
contributions is, with final state interactions disappearing in the light cone gauge.

Finally, the presence of an additional quark spectral function in axial gauges has been discussed in Sec. III.
With considerations based on the Dirac structure of the propagator and on the gauge invariance of the jet

correlator, it has been shown that the second moment of this spectral function, ρ
(2)
0 , vanishes identically. We

look forward to independent investigations of this new sum rule as well as numerical confirmations of the gauge

invariance of ρ
(1)
1 , for example, with a calculation of the light cone gauge quark spectral functions that is yet to

appear in the literature.
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Appendix A: Light-cone basis

In a given reference frame, we collect the space-time components of a four-vector aµ inside round parentheses,
aµ = (a0, a1, a2, a3), with a0 the time coordinate. We define the light-cone ± components of the a vector as

a± =
1√
2

(a0 ± a3) (A1)

and collect these inside square brackets: aµ = [a−, a+,aT ], with aT = (a1, a2) being the 2-dimensional com-
ponents in transverse space. The transverse component of a vector aµ is aµT = [0, 0,aT ], such that a2T = −a2

T .

Namely, the norm of aT is taken according to the Euclidean metric δijT = diag(1, 1), whereas the norm of aT is
calculated using the Minkowski metric gµν = diag(1,−1,−1,−1). Note that, in this paper, we consider highly
boosted quarks and hadrons with dominant momentum component along the negative 3-axis, namely along
the negative light-cone direction. Hence, we grouped the light-cone components inside the square parenthesis
starting with the minus component.

The light-cone basis vectors are defined as:

n± =
1√
2

(1, 0, 0,±1) , (A2)

such that n2+ = n2− = 0, nµ+n−µ = 1, and a± = aµn∓µ. The transverse basis vectors in 2D Euclidean space are

n1 = (1, 0) and n2 = (0, 1), corresponding to n1 = [0, 0,n1] and n2 = [0, 0,n2] in Minkowski space.
Following Ref. [69, 70], the transverse projector, gµνT , and the transverse anti-symmetric tensor, ϵµνT , are

defined as:

gµνT ≡ gµν − n
{µ
+ n

ν}
− (A3)

ϵµνT ≡ ϵµνρσn−ρn+σ ≡ ϵµν+− , (A4)
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where gµν is the Minkowski metric, ϵµνρσ is the totally anti-symmetric Levi-Civita tensor (with ϵ0123 = 1).
Note that gµνT aν = aµT projects a four-vector onto its transverse component, and ϵµνT aν = ϵµνT aTν rotates that
component by 90 degrees in the transverse plane.

Appendix B: Second derivative of a Wilson line

Here we outline the derivation of Eq. (76), which involves second derivatives of the staple-like Wilson line
with respect to the transverse direction. The derivative with respect to any point in the path can be cast in the
following form [71, 72]:

∂

∂zµ
W (y, x) = igW (x, s)Aα(s)

∂sα

∂zµ
W (s, y)|s=x

s=y + ig

∫ x

y

W (x, s)Gαβ(s)W (s, y)
∂sα

∂zµ
dsβ , (B1)

where y and x are the starting and ending points of the Wilson line, respectively. Applying Eq. (B1) to the
staple Wilson line given in Eq. (7) we get that the derivative of the Wilson line with respect to ξT is given by:

∂

∂ξT
WTMD(ξ+, ξT ) = igAT (ξ+, ξT )WTMD(ξ+, ξT ) + ZT (ξ+, ξT ) (B2)

where ZT (ξ+, ξT ) is the line integral piece of the Wilson line derivative:

ZT (ξ+, ξT ) = −ig
∫ ξ+

∞+

ds+Un+
[0−, ξ+, ξT ; 0−, s+, ξT ]GT−(0−, s+, ξT )Un+ [0−, s+, ξT ; 0−,∞+, ξT ] (B3)

Notice the negative sign in front of the integral, which is due to the derivative acting on a Wilson path oriented
in the negative (ligtcone plus) direction. Taking another derivative with respect to ξT , we have:

∂2

∂ξ2T
WTMD(ξ+, ξT ) = ig

∂

∂ξT
AT (ξ+, ξT )WTMD(ξ+, ξT ) + igAT (ξ+, ξT )

∂

∂ξT
WTMD(ξ+, ξT ) +

∂

∂ξT
ZT (ξ+, ξT )

= igDT

[
AT (ξ+, ξT )WTMD(ξ+, ξT ) + ZT (ξ+, ξT )

]
, (B4)

where repeated transverse indexes are contracted in the 2D Euclidean transverse space. In the first line, we
used Eq. (B2) for the derivative of the Wilson line appearing in the second term. This gives rise to two terms,
one that is combined with the first term to form a covariant derivative and the other that is also combined into
a covariant derivative with the last term. Writing explicitly the action of the covariant derivative on the second
term, one obtains:

∂2

∂ξ2T
WTMD(ξ+, ξT )

= igDTAT (ξ+, ξT )WTMD(ξ+, ξT ) + ig

∫ ∞+

ξ+
ds+ Un+

[ξ+, ξT ; s+, ξT ]DTG
T−(s+, ξT )Un+ [s+, ξT ;∞+, ξT ]

− (ig)2
∫ ∞+

ξ+
ds+

∫ ∞+

s+
dr+ Un+

[ξ+, ξT ; s+, ξT ]GT−(s+, ξT )Un+ [s+, ξT ; r+, ξT ]GT−(r+, ξT )Un+ [r+, ξT ;∞+, ξT ] .

(B5)

As noticed in the main text, the first term appears as an artifact of an incomplete gauge fixing procedure,
which cancels with boundary contributions from the line integrals. [This can be explicitly seen by expanding
the U Wilson lines in the first line integral in powers of the g coupling constant, and integrating the leading
ig

∫
ds+DTG

T−(s+, ξT ) term.]. The second derivative of the Wilson line can then be interpreted as describing
two-gluon rescattering along the straight path from ξ+ to ∞+ at a fixed transverse coordinate ξT .
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