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We study the changes in the short-distance quark structure of the Nambu-Goldstone boson when the
long-distance symmetry-breaking scales are depleted controllably. We achieve this by studying the valence
parton distribution function (PDF) of pion in 2þ 1 dimensional two-color QCD, with the number N of
massless quarks as the tunable parameter that slides the theory from being strongly broken for N ¼ 0 to the
conformal window for N > 4, where the theory is gapped by the fixed finite volume. We perform our study
nonperturbatively using lattice simulations with N ¼ 0, 2, 4, 8 flavors of nearly massless two-component
Wilson-Dirac sea quarks and employ the leading-twist formalism (LaMET/SDF) to compute the PDF of
pion at a fixed valence mass. We find that the relative variations in the first few PDF moments are only mild
compared to the changes in decay constant, but the shape of the reconstructed x-dependent PDF itself
dramatically changes from being broad in the scale-broken sector to being sharply peaked in the near-
conformal region, best reflected in PDF shape observables such as the cumulants.
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I. INTRODUCTION

QCD offers a unified theoretical description of the mass-
gapped hadron spectrum in its infrared limit, and of the
asymptotically free quarks and gluons in the short-distance
limit. While the perturbative facet of QCD has been subject
to stringent tests in collider experiments [1], the only first-
principle field theoretic description of the low-energy
hadronic physics with a controlled continuum limit comes
from the numerical lattice QCD computations. Even though
lattice QCD reproduces the low-energy behavior of
QCD precisely (c.f., [2–4] and references therein), a good
theoretical understanding of QCD by abstracting and
characterizing the cause of the complex nonperturbative
low-energy features to few relevant aspects of the theory is
sought after. A fascinating aspect of QCD is the very fact
that there is a nonzero mass gap in this classically
conformal field theory. Understanding how lengthscale
emerges in QCD in terms of the short-distance dynamics
of the partons inside the proton and other hadrons is one
way to approach this problem, and will be a key question
that will be studied in the Electron-Ion Collider [5].
A starting point in this approach is to break-down the

energy-momentum tensor [6,7] into the quark and gluon
momentum fractions (cf. [8,9] for recent results for such a
break-down of proton momentum fraction), and the trace-
anomaly parts. This approach thus closely ties the under-
standing of emergence of scale in the infrared to the parton
distribution functions (PDF), fðxÞ of hadrons and their
moments, with x being the momentum fraction of hadrons
carried by a parton.
One of the low-energy scale generating mechanism is the

spontaneous chiral symmetry breaking (SSB) that leads to a
dimensionful quark condensate, with the pion being its
Nambu-Goldstone (NG) boson. The natural question then
is whether we can learn about the SSB physics by studying
the quark and gluon structure of pion, which has to be
constrained in such a way as to make it exactly massless in
the chiral limit. Therefore, not surprisingly, the PDF of pion
has been determined from multiple analyses of experimen-
tal data with increasing levels of sophisticated analysis
techniques, processes being included and at different
perturbative orders [10–18]. Of special theoretical interest
has been the valence quark distribution and its puzzling
ð1 − xÞβ large-x behavior—whether the value of β ≈ 1 or
≥ 2. These aspects have been extensively studied through
many model calculations [18–30]. With the rapid progress
in the leading-twist perturbative matching formalisms
(LaMET [31,32], SDF [33–35], good lattice cross-section
using current-current correlators [36,37], and see reviews
[38–42]), the lattice QCD computations of the pion
PDF have been able to weigh in on the large-x behavior
[43–49]. While the lattice findings seem to lean closer to
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β ≈ 1, the studies [43,49] found that variations in alternate
analysis methods could make the results consistent with 2
as well. Thus, our understanding of the pion PDF is still
evolving, and will be guided further by some of the
upcoming experiments [50,51] as well as the future lattice
computations.
The aim of this paper is to make use of the leading-twist

formalism and extend it to lattice computations of PDF in a
family of QCD-like theories, with the degree of infrared
scale-breaking varying within the family. By studying how
and which aspects of the quark structure inside the Nambu-
Goldstone boson (which we simply call as the pion) change
because of variations in the infrared scale, induced by the
choice of members in the family of theories, we aim to
understand the correlations between the quark structure of
pion and the long-distance vacuum structure. By such
observations on how the PDFs evolve to their functional
forms in the strongly broken theories as one slowly turns-
on the infrared scales from near-zero values, it also gives us
a new viewpoint of the nonperturbative origin of the parton
distribution.
The model system we choose to work with is the 2þ 1

dimensional two-color (Nc ¼ 2) QCD coupled to even
number N of two-component massless Dirac fermions in a
parity-invariant manner. In a previous study [52], we found
the global flavor symmetry in this system to be sponta-
neously broken for N ≲ 4, and conformal in the infrared for
N ≥ 8 with nontrivial infrared mass anomalous dimension.
In order for us to meaningfully talk about the ground-state
with pion quantum number in the infrared across both the
scale-broken and conformal regimes, we perform this study
in a fixed box size and at finite valence quark mass; as
an upshot, an artificially produced mass-gapped system
from an underlying CFT serves as a scientific control to
compare a naturally mass-gapped scale-broken QCD-like
system with.
While reducing the computational cost of exploratory

studies as the present one, the 2þ 1 dimensional gauge
theories coupled to massless fermions by themselves are
being studied for their unexpected dual relationships
[53–56], as well as for their condensed-matter physics
applications [57–59], especially the SU(2) theory being
relevant to spin liquids. As an alternative proposal to
understanding the infrared mass gap to arise from quark-
gluon parton dynamics, the identification of few symmetry-
breaking operators, such as four-Fermi operators and
monopole operators that are naively irrelevant in the UV
Gaussian fixed point, but become relevant in an interacting
infrared fixed-point as the cause of the mass gap below the
conformal window is being pursued in 2þ 1 dimensions
[60–62]. Thus, the confluence of the recent developments
in studying the quark structure of hadrons using lattice
computations, with the fast pace of theoretical develop-
ments in 2þ 1 dimensional field theories in the infrared,
seems to be a promising avenue to understand the

confinement, symmetry breaking and the quark-gluon inter-
actions leading to them. We should also point to previous
applications of the LaMET/SDF methodology used in this
paper to other QCD-like systems in Refs. [63–66].
The plan of the paper is as follows. In Sec. II, we

describe the aspects of parity-invariant 2þ 1 dimensional
SU(2) theory in the continuum that are relevant for this
paper. In Sec. III, we describe the set-up of the calculation
and state the problem addressed in this paper precisely. In
Sec. IV, we explain the leading twist methodology that is
used in this paper to obtain PDFs on the lattice, and also
explain its differences from (3þ 1) dimensional version. In
Sec. V, we explain the lattice setup and computational
techniques, and in Sec. VI, we explain the extraction of
boosted pion bilocal matrix element. These two sections
can be skipped if one is not interested in the technical
details. In Sec. VII, we present the results.

II. THREE-DIMENSIONAL PARITY-INVARIANT
SU(2) THEORY AND ITS SYMMETRIES

The zero temperature system is defined on three-
dimensional Euclidean torus of physical extents l1 × l2 ×
l3 with l3 ≫ l1;l2. Here, we are using the convention that
μ ¼ 1, 2 are the spatial x, y-directions, and μ ¼ 3 is the
temporal t-direction. We will refer to the aspect ratio of
the spatial slice as ζ ¼ l2=l1. The parity-invariant three
dimensional QCD consists of SU(2) valued gauge fields
coupled to N flavors of two-component fermions. Writing
the action as S ¼ Sg þ Sf, the gauge action is

Sg ¼
1

4g2
X3
μ;ν¼1

Z
d3xTrF2

μν; ð1Þ

with F being the SU(2) algebra valued field strength.
The important difference from the (3þ 1) dimensional
QCD is that the gauge coupling g2 has mass dimension 1,
making the theory superrenormalizable. This makes the
scale-setting simpler, as one simply needs to measure all
dimensionful quantities in the fundamental units of g2.
Once UV regulated, the continuum limit is simply obtained
by removing the regulator at the fixed values of quantities
in units of g2. Particularly for this work, it will also greatly
simply our computation of the PDF compared to (3þ 1)
dimensions. The dimensionful nature of g2 also makes the
theory trivially asymptotically free.
The SU(2) gauge fields aμ are coupled to an even

number N ¼ 2n flavors of Dirac fermions, which are
two-component spinors, in a parity-invariant manner; in
order to make the action parity-invariant, n of the fermion
flavors have mass þm and the other n have mass −m.
We will refer to the fermions with positive mass as u and
those with negative mass as d. This is a deliberate choice to
be analogous to the light flavors in (3þ 1) dimensional
QCD. Throughout this paper, we will simply refer to the
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two-component Dirac fermions as quarks, to make the
connection to the real-world (3þ 1) dimensional QCD
easier. The N ¼ 2n flavor parity-invariant continuum
action is

Sf ¼
Xn
i¼1

ūið=DþmÞui þ
Xn
i¼1

d̄ið=D −mÞdi;

=D ¼
X3
μ¼1

σμð∂μ þ iaμÞ ð2Þ

with σμ being the three 2 × 2 Pauli matrices. In 2þ 1

dimensions, the continuum Dirac operator is anti-
Hermitian, and therefore, one can rewrite the Dirac operator
that the d-quarks couple to as −=D†. This will be the form of
the lattice regulated fermion action. Wewill use the value of
n as a tunable knob to control the infrared fate of the theory.
The explicitly massive theory has a global SpðnÞ×SpðnÞ

symmetry [67] (with the symplectic group being special for
SU(2) gauge group due to it being pseudoreal. For other
generic color, it becomes UðnÞ × UðnÞ symmetry). At the
massless point, the theory has a larger SpðNÞ symmetry,
which gets spontaneously broken to SpðnÞ × SpðnÞ sym-
metry when N is smaller than some critical flavor N < N�
[68,69]. The conformal window extends for all N above
N�. Indications of nonzero value of N� have been seen in
previous large-N Schwinger-Dyson equation study [70]
and in ϵ-expansion calculation [71]. In a previous lattice
study [52] to determine N�, we found that it is likely for N�
to lie somewhere between 4 and 6, with N ¼ 8 showing
strong evidences in the finite-size scaling of low-lying
Dirac eigen values for being scale-invariant in the infrared,
with mass-anomalous dimension γm ≈ 0.4. In the scale-
broken side for N < N�, the theory develops a scalar
condensate, Σ≡ hūiui − d̄idii that sets the infrared scale
even after the box size taken to infinity, and sets the scale
for the mass gaps in the theory; the hadronic content in the
SU(2) theory are mesons of the type q̄q and diquarks
(“baryons”) of the type qTτ2q with τ2 being the Pauli
matrix in color space. In the scale-broken sector, there will
be 4n2 Nambu-Goldstone (NG) modes. Of these, the 2n2

NG modes will be the mesons

πþij ¼ d̄jui; π−ij ¼ ūjdi ð3Þ

which we simply refer to as pions in this theory, that couple
to the conserved flavor currents Aμ;ijðxÞ ¼ d̄jσμuiðxÞ.
Associated with the symmetry-breaking, there is the pion
decay constant,1

h0jA∓
μ;ijð0Þjπ�ij;pμi≡ −ipμFπ; ð4Þ

with an on-shell pion at momentum p ¼ ðp1; p2; EÞ. The
remaining set of NG modes will be of the diquark type
uTi σ2τ2dj and dTi σ2τ2uj that couple to the correspond-
ing conserved currents. Since these conserved currents
and extra NG modes are very special to the SU(2) theory,
we simply consider the pions πþ and π− that exists
for any number of color, and roughly belong to the
Uð2nÞ → UðnÞ × UðnÞ symmetry breaking part of the enla-
rged Spð2nÞ → SpðnÞ × SpðnÞ symmetry-breaking pattern
for SU(2) gauge theory.2

Before ending this section dealing with the system in the
continuum, we discuss the subtlety with parity symmetry in
the theory. The spatial parity P acts as

x ¼ ðx1; x2; x3Þ → x0 ¼ ð−x1; x2; x3Þ;
½a1ðxÞ; a2ðxÞ; a3ðxÞ� → ½−a1ðx0Þ; a2ðx0Þ; a3ðx0Þ�;

½uiðxÞ; diðxÞ� → ½σ1uðx0Þ; σ1dðx0Þ�;
½ūiðxÞ; d̄iðxÞ� → ½−ūiðx0Þσ1;−d̄iðx0Þσ1�: ð5Þ

For a single two-component Dirac fermion, N ¼ 1, this
symmetry is broken by the mass term and also becomes
anomalous in the massless limit [72,73]. While it appears as
though this is not a symmetry of Eq. (2) with even N, in
fact, it is a symmetry once the fermions are integrated out,
or the symmetry can be made more obvious by performing
a parity P transformation along with a pairwise flavor
permutation, G∶½uiðxÞ; diðxÞ� → ½diðx0Þ; uiðx0Þ�. This GP
operation is usually referred to as the parity in the literature
on parity-invariant theories in 2þ 1 dimensions. Since we
are interested in hadron spectroscopy, it is easier to consider
the usual notion of spatial parity P above, and whether
bilinears are odd or even under it. As in (3þ 1) dimensions,
the pions π and the corresponding current Aμ in (2þ 1)
dimensions are pseudoscalars and axial-vectors under the
spatial parity P (However under GP, the bilinears can be
linearly combined to become even under it, but this does
not play any role in our further discussions.)

III. DESCRIPTION OF METHOD AND
STATEMENT OF THE PROBLEM

We propose to study the internal quark structure of NG
boson as a function of the varying vacuum structure by
varying the number of massless fermion flavors, wherein
the theory moves from being scale-broken to being con-
formal in the infrared. In this section we first discuss how to
prepare a well-defined massive valence pion on top of a
vacuum containing massless sea quarks, and then define its

1The mass dimension of Fπ in d space-time dimensions is
ðd − 2Þ=2; 1=2 in d ¼ 3. We will therefore consider F2

π to be the
IR scale in the subsequent sections

2At the level of correlators after Wick contraction of fermions,
the diquark correlators can be seen to be degenerate with the that
of mesons.
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valence PDF which we will use to characterize the pion
quark structure.

A. Setting-up the computation such as to ensure
nonzero mass gaps for all N

In the scale-broken side of smallN, the infrared content of
the theory are the mass-gapped hadrons, with the typical
gaps, denoted by MH, set by the IR scales such as the
condensate Σ, the decay constant Fπ, and in the case of pure-
gauge theory, the string tension σ. These nonzero gaps
survive the thermodynamic and massless quark limit. On
the other hand, in the conformal side of the theory, the
eigenstates of the Hamiltonian are gapless and continuous in
the thermodynamic limit. We need to deform the theory to
introduce a mass-gapped spectrum in order for us to address
the quark structure of a distinct ground state for any number
of flavors. Such a deformation would only be a subleading
correction in the scale-broken side, but will be the leading
contribution in the conformal side. One can introduce the
nonzero mass gap (1) by studying the theory at finite spatial
volume, where the box size l sets the infrared scale [74].
That is, the mass gaps becomeMHðl; ζÞ ¼ cðζÞ=l where ζ
is the aspect ratio of the two-dimensional spatial torus, and c
is some function of ζ. (2) by introducing finite quark massm
in the theory [75], so that all the masses receive finite mass
corrections with MHðmÞ.
In this work, we will take a hybrid approach, which is

easier to implement in a lattice calculation, than being
theoretically pristine. In order to capture the effect of N
flavors of fermions without them getting decoupled in the
infrared, we sample the gauge configurations in the theory
coupled to N massless fermions in a finite spatial volume,
l2 with ζ ¼ 1. In the lattice theory terminology, the sea
quarks are massless. On the gauge fields sampled this way,
we construct pion states πij built out of ui and dj quarks
which have a finite quark massm, which is tuned so that the
mass of pion for any flavor N in l2 spatial volume is an
arbitrary chosen value. In the lattice terminology, the
valence pion is made massive by tuning the mass of the
valence quark masses to nonzero values. This approach has
the advantages that (a) the depletion of the infrared scales is
preserved due to the presence of massless fermions, and
(b) the pion is massive even in the scale-broken side which
makes computation of matrix elements feasible without
large periodicity effects [43], which is a technical boon.
We chose the mass of the valence pion, Mval

π ¼ 0.53g2,
and kept this fixed across all N. The reason for this value
being that the pion is light enough to have the chiral
properties in the scale-broken side, whereas in the con-
formal side, it will ensure that the mass Mval

π ðm;l; ζÞ,
which is now a function of valence quark mass and spatial
volume, is dominated by the finite m. This preference is
because we will use hadrons boosted in the x-direction in
our computation of PDF, which will cause a Lorentz
expansion of extent l1 to γl1 in the rest frame of that

state, which effectively will decrease the aspect ratio ζ to
ζ=γ in that state’s rest-frame [76]. Our choice of Mval

π is to
minimize the effect of this variation in ζ on the energy-
momentum dispersion for the ground state in the IR
conformal sector. One could also use lattices with small
ζ (i.e., l1 ≫ l2) to begin with, but we realized it post facto
and intend to improve the calculation with ζ < 1.

B. Definition of u− d and valence PDFs

Having described the preparation of valence pion state of
mass Mval

π above, we now specify how to study its valence
PDF, fvðxÞ, which wewill use to characterize the UV quark
structure of the pion. To define a valence PDF, we should
first consider the u − d PDF of the πþij ¼ uid̄j pion which
has a well-defined operator definition as

fui−djðxÞ≡
Z

dξ−

4π
e−ixξ

−Pþhπij;PjOσþjπij;Pi;

OσþðξÞ ¼
Xn
k¼1

ðūkðξ−ÞσþWþðξ−; 0Þukð0Þ

− d̄kðξ−ÞσþWþðξ−; 0Þdkð0ÞÞ: ð6Þ

Here, the light-cone coordinates ξ� ¼ ðx3 � x1Þ=
ffiffiffi
2

p
, σ� ¼

ðσ3 � σ1Þ=
ffiffiffi
2

p
and Wþðξ−; 0Þ is the straight Wilson line

along the light-cone connecting the quark and antiquark
that are displaced by ξ−. Roughly speaking, the bilocal
operator Oσþ counts the number of massless u type quark
minus the number of d type quark moving long the light-
cone, each carrying a fraction x of the momentum Pþ. We
have written the operator O formally to be a singlet in
the unbroken SpðnÞ × SpðnÞ symmetry but nonsinglet in
the full Spð2nÞ symmetry. For practical purposes, we can
simply speak of the operator of the type ūiui − d̄jdj for a
pion of type πij. Since the magnitude of the quark masses
are all the same as jmj, we will drop the indices i, j from πij
and fui−djðxÞ. The u − d PDF has support from x ∈ ½−1; 1�.
The charge conjugation symmetry and the GP symmetry
ensures that fu−dðxÞ ¼ fu−dð−xÞ. Thus, we can write,

fu−dðxÞ ¼
�
0.5fvðxÞ for x > 0;

0.5fvð−xÞ for x < 0:
ð7Þ

This defines for us the valence PDF fvðxÞ of pion defined
in x ∈ ½0; 1�.3 Their moments are defined as

hxniu−d ¼
Z

1

−1
xnfu−dðxÞdx; hxniv ¼

Z
1

0

xnfvðxÞdx;

ð8Þ

3By defining antiquark distribution fq̄ðxÞ ¼ −fqð−xÞ, and
using the same symmetry argument, one can see that fvðxÞ ¼
fuðxÞ − fūðxÞ for x > 0.
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respectively. The even moments hx2kiu−d ¼ hx2kiv, but for
the odd ones, hx2k−1iu−d ¼ 0 whereas hx2k−1iv ≠ 0. Since
we can only determine fu−d via the well-defined operator
definition above, we will be inferring properties of fvðxÞ
indirectly from fu−dðxÞ in this paper.
With the setup and key quantities defined, the precise

questions we want to address are the following. As we
increase N, the IR scales will vanish, and can be quantified
by how Fπ decreases. Is fvðxÞ of the pion sensitive to the
changes in the symmetry-broken vacuum given its role as
the NG boson? If so, to what degree the PDF changes with
Fπ and what aspects of the pion valence PDF and its
moments are sensitive to these changes?

IV. LEADING-TWIST OPE IN A PLANAR WORLD

The defining equation for the PDF involving the quark
and antiquark separated on the light-cone is given in
Eq. (6). Instead, one can take the matrix element

2PþMðξ−; PþÞ≡ hπ;PjOσþjπ;Pi; ð9Þ

as the defining central object, which is also called as Ioffe-
time distribution [77], and one can define the moments
hxkiu−d of u − d PDF through its expansion as a function
ν ¼ Pþξ−, referred to as the Ioffe time in the literature,

Mðξ−; PþÞ ¼ MðνÞ ¼
X∞
k¼0

ð−iξ−PþÞk
k!

hxkiu−d with;

hπ;Pj½ūσþðiDþÞku − ðu ↔ dÞ�jπ;Pi≡ 2PþðPþÞkhxkiu−d:
ð10Þ

Only even u − d moments are nonvanishing in the above
equation for the pion. Since, the (2þ 1) dimensional QCD
is superrenormalizable, owing to the dimensionful cou-
pling, there are no UV divergences once the theory is
regularized. Therefore, there are no additional scales μ
entering the matrix elements defining hxki in the equation
above, unlike in (3þ 1) dimensions. Hence, one can talk of
the PDF without referencing an MS renormalization scale
of the PDF in (2þ 1) dimensions, as is the case in the
superrenormalizable (1þ 1) dimensional QCD as well.
A brute-force Monte Carlo computation of Mðξ−PþÞ

via simulation in Euclidean space-time is difficult due to
the unequal time separation in the operator Oσþ evaluated
within a hadron state (however, there is no fundamental
theoretical issue in performing the Wick rotation from the
Minkowski to Euclidean space-time [78,79]). Computing
the matrix elements of the local operators [80] defining
the PDF moments in Eq. (10) is one possibility. Another
recent method [31,33], which has been proven to be very
successful in ð3þ 1Þd, is to compute the following equal
time bilocal matrix element of the pion boosted with a
momentum P ¼ ðP1; 0; EðP1ÞÞ,

2EMBðz1; P1Þ≡ hπ;PjOσ3ðz1Þjπ;Pi; where ;

Oσ3ðz1Þ ¼ ūð0Þσ3W1̂ð0; zÞuðzÞ − ðu ↔ dÞ; ð11Þ

containing a purely spatial displacement z ¼ ðz1; 0; 0Þ of
the quark and anti-quark. The operator now has σ3, along
the t-direction instead of the σþ present in Eq. (6). The
straight Wilson line along the x-direction joining the quark
and antiquark is denoted as W 1̂. This equal time matrix
element in (3þ 1) dimensions has been called quasi-PDF
matrix element, pseudo-ITD matrix element or, simply as
Ioffe-time Distribution in the literature. In this paper, we
simply refer to the equal time correlation above as the
bilocal quark bilinear matrix element (or simply as bilocal
matrix elements) due to its central role in both quasi- and
pseudo- approaches to PDF from lattice, and the present
work can be viewed from any perspective the reader wants
to approach it with. The OPE of the above equal time
bilocal matrix element [81], arranged by twist, gives

MBðz1; P1Þ ¼
X∞
k¼0

ð−iz1P1Þk
k!

hxkiu−d

þOððg2z1Þ2; ðF2
πz1Þ2; ðMval

π z1Þ2Þ; ð12Þ

with the first term being at leading twist, and the rest are
higher twist corrections due to the nonvanishing P2 and z2

present off the light cone, unlike in the similar expression
Eq. (10) on the light cone. A similar OPE expansion
formalism to relate the equal-time and light-cone matrix
elements was considered before in the context of current-
current correlators [35]. The leading twist term is exactly
the same as the one in Eq. (10). In (3þ 1) dimensions, the
similar expression [34,81] will involve a matching Wilson-
coefficient cnðz2μ2Þ which is 1 at tree-level and the terms
higher order in coupling capture logðz2μ2Þ divergence in
the limit of z2 → 0. In the above expression for (2þ 1)
dimensions, the Wilson coefficients take their tree level
value cn ¼ 1, and there are no higher order perturbative
corrections to this tree-level value at leading twist, making
it exact at leading twist. This peculiarity in (2þ 1)
dimension arises because the coupling g2 has mass dimen-
sion 1, which means that a perturbative correction to cn
increases the twist of the term occurring in the OPE by 1.
Therefore, we have discarded such higher-order terms as
ðg2z1Þ2 higher-twist corrections. Along with such correc-
tions, there could be other genuine higher twist corrections
coming from higher-dimensional operators that occur in
the OPE, which we have denoted by a ðF2

πzÞ2 corrections.
Even at leading twist, there will be target mass corrections
[82,83] coming from the trace terms which bring factors
of P2 ¼ ðMval

π Þ2. We have denoted these as the ðMval
π z1Þ2

corrections above.
In the above discussion, we have been a little cavalier

about the Wilson line. In (3þ 1) dimensions, the self
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energy divergence of the Wilson-loop causes a nonpertur-
bative expð−cz1=aÞ suppression of Wilson line as a
function of z [84–86]. The nonperturbative renormalization
of the bilocal operator removes this nonperturbative z1
dependence. In (2þ 1) dimensions, there will instead be
expð−c0g2z1Þ behavior as g2 is dimensionful; one way to
justify this is to see that the set of 1-loop diagram in real-
space that contributes to the αsðz1aÞ=a2 behavior of the
bare Wilson line in (3þ 1) dimensions, now contributes
g2ðz1aÞ=a; where, the factor of ðz1aÞ in both the dimen-
sions comes from the integral measure when the endpoints
of the gluon loop on the Wilson line become nearly
coincident, whereas, the other 1=a2 factor in (3þ 1)
dimensions comes from jzj−2 gauge field propagator,
and similarly the 1=a factor in (2þ 1) dimensions comes
from the corresponding jzj−1 gauge field propagator. The
residual expð−c0g2zÞ effect of the Wilson-loop insertion,
which is hadron momentum independent, is then a non-
perturbative higher-twist effect, which we remove by
forming ratio as done in (3þ 1) dimensions [34], namely

M̃ðz1; P1Þ ¼
�
MBðz1; P1Þ
MBðz1; 0Þ

��
MBð0; 0Þ
MBð0; P1Þ

�
; ð13Þ

which we expect to converge to leading-twist expansion in
Eq. (12) better in a moderate range of z1 and P1. The reason
for the second factor in the above equation to ensure z1 ¼ 0
matrix element is 1 by definition, since it is the charge
of the pion. From the OPE, one can obtain the light-front
Ioffe-time distribution M from the Euclidean construction
M̃ in the limit,

MðνÞ ¼ lim
z1→0;P1→∞

P1z1¼ν

M̃ðz1; P1Þ: ð14Þ

In practice however, we will simply be looking at a set
of data that spans a range of z1 and P1. If the leading
twist expansion works, we expect a scaling M̃ðz1; P1Þ ¼
M̃ðz1P1Þ for all z1 and the range of P1 where the scaling
violations from z21-type higher twist corrections in Eq. (12)
are negligible. Based on fits of Eq. (12) to a subset of data
where the leading twist OPE works the best, we will be able
to infer MðνÞ, and the PDF and its moments.

V. LATTICE METHODOLOGY
AND TECHNICAL DETAILS

In this section, we detail the lattice regularization of
(2þ 1) dimensional QCD in a parity-invariant manner, the
gauge field statistics, and the construction of correlators
required to build the pion bilocal matrix element.
We regulate the system defined on l1 × l2 × l3 on a

periodic L1 × L2 × L3 lattice with isotropic lattice spacing
a ¼ lμ=Lμ. In this paper, we will be using 28 × 28 × 48

lattices. The basic gluon object in the computation are the

SU(2) gauge-links, Uμ;x connecting the lattice site x to
xþ μ̂. The gauge action is the lattice regulated Wilson
single plaquette action,

Sg ¼ −
β

2

X3
μ>ν¼1

X
x

Re TrPμνðxÞ; β ¼ 4

g2a
; ð15Þ

where PμνðxÞ is the SU(2) valued plaquette at lattice site
x ¼ ðx1; x2; x3Þ. Periodic boundary condition is imposed
on all three directions (an explicit anti-periodic boundary
condition in the temporal direction is superfluous as −1 is
part of the SU(2) gauge group). We will use a single fixed
lattice spacing β ¼ 9.3333 in this work. Our choice is based
on an observation in the study of glueballs in (2þ 1)
dimensional pure-gauge SU(2) theory [87], where L1 ¼
L2 ¼ 28 at this lattice spacing was found to be close to the
thermodynamic limit.
The gauge fields are coupled to a system of N ¼ 2n

massless fermions, which we regulate by using two-
component Wilson-Dirac fermions [52,88,89], defined
using the regulated Dirac operator,

=Dw ¼ =Dn þ Bþmw; ð16Þ

where =Dn is the naive Dirac operator,

=Dn ¼
1

2

X3
μ¼1

σμ
�
UðnÞ

μ;xδxþμ̂;y −UðnÞ†
μ;x−μ̂δx−μ̂;y

�
; ð17Þ

B is the Wilson term,

B ¼ −3δx;y þ
1

2

X3
μ¼1

�
UðnÞ

μ;xδxþμ̂;y þ UðnÞ†
μ;x−μ̂δx−μ̂;y

�
; ð18Þ

and mw is the Wilson fermion mass in lattice units. The
lattice fermion is coupled to the gauge fields via n-step

Stout smeared [90] gauge links, UðnÞ
μ;x, in order to reduce the

lattice artifacts coming from irrelevant UV fluctuations

[91,92], with the identificationUð0Þ
μ;x ¼ Uμ;x. We used 1-step

stout smeared links in the Wilson-Dirac operator with
optimal value ϵ ¼ 0.65 for the smearing parameter.
The lattice regulated action that is exactly invariant under
spatial parity is

Sf ¼
Xn
i¼1

ūi=Dwui −
Xn
i¼1

d̄i=D
†
wdi; ð19Þ

making the partition function,

Z ¼
Z

½dU� det ð=Dw=D
†
wÞne−Sg ; ð20Þ
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with a positive definite measure that can be simulated
with Monte Carlo algorithms. The theory only has an
SpðnÞ × SpðnÞ symmetry even when mw is tuned to the
massless point, and the full Spð2nÞ symmetry will be
recovered in the continuum limit.

A. Gauge field generation

We studied the theories with N ¼ 0, 2, 4, 8 of approx-
imately massless Wilson-Dirac (sea) quarks at a fixed
lattice spacing corresponding to β ¼ 9.3333, and using
fixed 282 × 48 lattices. We generated gauge configurations
using the standard hybrid Monte Carlo algorithm [93] using
n copies of Gaussian noise vectors to sample the determi-
nant det ð=Dw=D

†
wÞ. We tuned the value of the Wilson mass

mw to the approximate massless point such that the smallest
Dirac eigenvalue Λ1ðmwÞ has a minimum at the tuned mw
in the finite fixed volume. Since the Dirac eigenvalues
are gapped in finite volume, the eigenvalues occurring
are not zero at the massless point, and hence makes the
HMC tractable. For N ¼ 2, 4, 8, the values of sea quark
mass mw ¼ −0.06836;−0.06513;−0.06060 respectively.
The details of the tuning are given in [52]. We used
Omelyan integrator [94] for the molecular dynamics
(MD) evolution. The analytical results on the fermion
force calculation for the MD evolution are given, for
example, in [90,95]. We dynamically tuned the step size
of the integrator such that the acceptance rate was at least
85%; in practice the average acceptance was typically 90%
at the different N. For thermalization, we discarded the first
400 trajectories in each stream that were started from
random configurations. After that, gauge configurations
every 5 trajectories were stored and used for correlator
measurements. This way, we generated 24.5k, 25.2k,
27.3k, and 30.2k configurations for N ¼ 0, 2, 4, 8 flavor,
respectively. The autocorrelation time is less than 5
trajectories, and to be safe, we used jackknife blocks of
bin size larger than 20 configurations (∼100 trajectories).

B. Choice of valence quark masses
to create a massive valence pion

Using the configuration generated with near massless sea
quarks, we tuned the valence Wilson-Dirac quark mass to
produce a valence pion ground state of massMval

π ¼ 0.53g2

in units of g2, or Mval
π a ¼ 0.2265 in lattice units. We

performed this tuning for all N ¼ 0, 2, 4, 8 flavors, so that
the valence pion mass is held fixed. We performed this
analysis by scanning a set of mw and interpolating the Mval

π

dependence on mw, and zero-in on the exact tuned mass
value. This way, we found the tuned valence quark mass
corresponding to 0.53g2 pion mass to be mval

w ¼ −0.02;
−0.01875;−0.0235, and −0.051 for N ¼ 0, 2, 4, and
8 respectively. In the subsequent computations to be
described below for the structure calculation, we used
the above mass in the Wilson fermion propagators =D−1

w .

For this choice of valence pion mass, the values of
e−M

val
π ðaL3−2tsÞ ¼ 0.0043 for ts ¼ 12a, implying only a

small periodicity effect of 0.4% when operators are
temporally separated by 12 lattice units.

C. Two-point function computations

The first step is to find the ground and the excited state
contributions to the pion two-point function. Since the
leading twist formalism demands boosted pion states, we
construct pion sources that project to definite momentum
states. Namely, we construct the two-point functions,

C2ptðts;P1Þ ¼ hπSðx0; tsÞπ†SðP; 0Þi; with;

πSðP; tsÞ ¼
X
x

d̄ðx; tsÞuðx; tsÞe−iP·x; ð21Þ

using smeared source πSðP; 0Þ and smeared sink πSðP; tsÞ
that project to momentum P ¼ ðP1; 0Þ. We chose a single
source point x0 per configuration. We use the momenta,

aP1 ¼
2π

L1

n1; ð22Þ

for n1 ¼ 0, 1, 2, 3, 4. At the given fixed β, these momenta
correspond to P1=g2 ¼ 0.52; 1.05; 1.57.2.09 respectively in
units of coupling g2. In order to suppress the tower of
excited states, we use Wuppertal smeared quark sources
[96] to construct the pion source and sink. For this, we used
10 steps of two-dimensional stout smeared links to
construct the smearing kernel with smearing parameter
ϵ2d ¼ 0.3 in order to smoothen the spatial links further.
Through a set of tuning runs at P1 ¼ 0, we found the
optimal number of steps nwup of Wuppertal smearing to be
80 with Wuppertal smearing parameter δ ¼ 0.6 for N ¼ 0,
2 flavors, for N ¼ 4 we found ðnwup ¼ 120; δ ¼ 0.6Þ, and
for N ¼ 8 we found ðnwup ¼ 160; δ ¼ 0.6Þ, reflecting an
increasing effective radius of pion with increasing number
of flavors. In order to increase the overlap with the ground
state at nonzero momenta, we used boosted Wuppertal
smearing [97] built out of quark sources that are boosted
with a quark momentum k1 ¼ ζ0P1 which then are used to
construct the Wuppertal sources (with the same smearing
radius as at P1 ¼ 0). We found the optimal boost parameter
ζ0 for n1 ¼ 1, 2, 3, 4 to be 0.8, 0.8, 0.7, 0.6 respectively.
The fermion contractions to evaluate Eq. (21) are similar

to the (3þ 1) dimensional case, with the thing to remember
is hdaxd̄byi ¼ ð½−=D†

w�−1Þabxy and huaxūbyi ¼ ð½=Dw�−1Þabxy . One

can then simply use ð½−=D†
w�−1Þxy ¼ ð½−=Dw�−1Þ†csyx with A†cs

meaning a conjugate transpose of A only over color-spin
space, thereby halving the number of inversions, just like in
(3þ 1) dimensions. We used conjugate gradient algorithm
for inversion here (and also in the HMC) with a stopping
criterion of 10−10.
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D. Three-point function computations

The next important ingredient in the PDF computation is
the three-point function between the pion source, pion sink
and the bilocal operator Oσ3,

C3ptðts; τ;P1; z1Þ≡ hπSðx0; tsÞOσ3ðz1; τÞπ†SðP; 0Þi; ð23Þ

with the zero momentum projected bilocal operator that is
inserted at a time slice τ between the pion source and sink at
time slice ts,

Oσ3ðz1; τÞ ¼
X
x

ðūðxÞσ3W 1̂ðx; xþ LÞuðxþ LÞ

− d̄ðxÞσ3W1̂ðx; xþ LÞdðxþ LÞÞ;
x ¼ ðx; τÞ: ð24Þ

Here, the quark and antiquark are separated along the
x-direction by L ¼ ðz1; 0; 0Þ, and the operator is made
gauge invariant with the smeared Wilson line, W 1̂ ¼Q

x0∈½x;xþL� U
ðnÞ
1;x0 . We used only 2-level stout smeared links

Uð2Þ
1;x0 for this construction, so as to not risk the smearing

to spoil the UV physics. The pion source and sink are
smeared using the same set of parameters used for the
corresponding two-point function. It should be noted that
the u and d quark operators appearing in Oσ3 are simple
point operators.
The contractions for the above three-point function were

performed using the sequential-source trick (cf. Appendix
of [45] for details relevant to the bilocal operator) to
take care of the necessary Fourier summation over two-
dimensional time slice at the sink. It should be noted that,
similar to the u − d three-point function of the pion in
(3þ 1) dimensions, the three-point function is purely real
at all P1. Also, there are no fermion-line disconnected
pieces; this comes nontrivially at finite lattice spacing, by
the parity invariance of the action which guarantees that
hTrð=D−1

w Þi ¼ −hTrð=D†
w
−1Þi. If one used (2þ 1) dimen-

sional overlap fermions [98], the cancellation of the
disconnected piece would have been on each configuration.

E. Pion decay constant computations

We will quantify the presence of infrared scale in the
system using the pion decay constant, Fπ, defined in
Eq. (4). We extracted this matrix element using the axial
vector-pion two-point function (cf. [99]),

Cπ−AðtsÞ≡ hA3ðx0; tsÞπ†SðP ¼ 0; 0Þi;
A3ðxÞ ¼ d̄ðxÞσ3uðxÞ: ð25Þ

The pion source was optimally Wuppertal smeared,
whereas the current is constructed out of point quark

operators. We will describe the analysis of the two-point
function leading to Fπ in a subsequent section.

VI. ANALYSIS OF CORRELATOR DATA
TO OBTAIN THE PION BILOCAL

MATRIX ELEMENT & Fπ

A. The spectral content of pion correlator

The two point function in Eq. (21) gives information on
the spectrum of states contributing to the pion quantum
number, that we will use to extract the ground state boosted
bilocal matrix element. In the top panels of Fig. 1, we have
shown the effective masses for the pion at all flavors as a
function of source-sink separation ts, both in lattice units.
For each flavor, the effective masses at the five momenta
are shown by the different symbols. First, one can see that
the ground state displays a well-defined plateau for all N,
even for N ¼ 8, thereby demonstrating the effectiveness of
gapping the spectrum by finite valence quark mass and
volume even in the otherwise conformal infrared theories.
We can see that the value of the ground state mass has
been tuned well to be ≈0.227a in all the theories, which
corresponds to 0.53g2 physical mass. The smallest ts from
where one can see a well-defined plateau, at least for the
smallest three momenta, increases with momenta due to the
decreasing gap with the excited state with the boost.
However, we have tuned the Wuppertal smearing and
quark boost parameters precisely to reduce the amplitudes
of the excited state as best we could, and the any observed
deviation from the plateau at smaller ts was the best we
could reduce it to, without compromising on the noise at
larger ts. Since the range of ts that we will use to analyze the
three-point function falls in the small ts region without
the plateau, we need to understand the spectral content of
C2pt better.
We take the spectral decomposition of C2pt,

C2ptðts;P1Þ ¼
XNstate−1

i¼0

jAij2ðe−EiðP1Þts þ e−EiðP1ÞðaL3−tsÞÞ;

ð26Þ

and truncate it at Nstate ¼ 2, which is referred to as the two-
state ansatz. We found that this is enough to describe the
behavior of C2ptðtsÞ for all the P1 used, even starting from
ts ¼ 2a and be able to reproduce the value of ground state
E0, as obtained from one-state fit with the minimum
ts > 10a. The uncertainly bands for the effective mass
curves for the different P1 based on the two-state fits over
the range ts ∈ ½3a; 24a� are also shown in Fig. 1 along with
the data. The quality of the fits are seen to be good, which is
also reflected in χ2=dof ≈ 1 for the fits. We repeated the
two-point function computation using hA1ð0ÞA1ðtsÞi cor-
relators also; at P1 ¼ 0, this gives the mass of the axial-
vector meson, but at nonzero momentum the lowest mass
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comes from the pion due to the nonzero overlap ∼P1Fπ

with the lighter pion state. Thus, at nonzero momenta this
gave a cross-check on the determined ground-state values
of the pion.
In the bottom panels of Fig. 1, we have shown the best

fit values of the ground state energy E0 and the first
excited state E1 as a function of boosted momentum P1.
The different panels are again for the five different N.
We have compared the data for E0ðP1Þ with the curves
for the single particle dispersion in the continuum,
E0ðP1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þMval

π
2

p
, shown as the blue dashed curves.

There is a slight discrepancy which increases with P1, as
P1a ≈ 1 at the largest momentum used. We can understand
this by, instead comparing the data with the lattice
dispersion, coshðE0ðP1ÞaÞ¼ coshðMval

π aÞþ1−cosðP1aÞ.
This lattice single particle dispersion curve is shown
as black continuous curve in the figures. The nice
agreement tells us that there are possible lattice correc-
tions at the level of 3–4% at the highest momenta, which
can be reduced in the future by going to much finer
lattices. But this effect will persist for all the N, and
therefore, we do not expect this to affect variations as a
function of N that we are interested in. As a cross-check,
we have also shown the values of ground-state masses of
pion as extracted from the axial-vector A1 correlator at
nonzero momenta, which can be seen to agree with the
values from the simple pion correlator. While the slight
disagreement with the dispersion curve at higher
momenta are understood as lattice spacing effect, a slight
disagreement at the level of 4% is also seen at the
smallest nonzero momentum corresponding to n1 ¼ 1 for
N ¼ 4 and 8. This tells us that the valence pion mass for

the near-conformal and conformal theories mildly origi-
nate from aspect-ratio(ζ)-dependent 1=l effect that we
described in Sec. III, in spite of our effort to use
somewhat larger value of valence quark mass. As the
pion is boosted, the aspect ratio in the boosted frame
decreases, and causes the observed small discrepancy at
the smallest nonzero momentum. At the larger momen-
tum, these aspect-ratio variations are not important as
the leading E ∝ P1 relativistic dependence takes over.
Therefore, as a precaution, we will avoid using n1 ¼ 1
momentum in our analysis of three-point function to
avoid systematic effects. In a future computation, we aim
to rectify this by using lattices with ζ < 1.
In the next section, we will use the extracted energies

and amplitudes in the two-point function to determine the
ground state bilocal matrix element from the three-point
functions.

B. The extraction of the pion bilocal matrix element
from three-point function

The required ground state matrix element of the bilocal
operator can be obtained from the spectral decomposition
of the three-point function,

C3ptðts; τ;P1; z1Þ ¼
XNstate−1

i;j¼0

A�
i Ajhijðz1; P1Þe−Eiðts−τÞ−Ejτ;

ð27Þ

with the amplitudes Ai and energies Ei, being the same as
obtained from the two-point function analysis. The matrix

FIG. 1. The spectral content of pion two-point functions in N ¼ 0, 2, 4, 8 quark flavors from left to right. Top: the effective mass from
pion two-point function at different momenta (different colored symbols) shown as a function of source-sink separations ts=a in lattice
units. The bands are the expected effective mass from two-state fits to the two-point function. Bottom: the dispersion relation between
ground state (red circles) and the first excited state (purple triangle) energy on boosted momentum is shown. For comparison, the
expected single particle dispersion in the continuum (blue dashed curve) and on the lattice (black curve) are shown. The ground state
pion energy extracted from axial-vector A1 correlator are also shown at nonzero momenta.
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elements are the terms hij ¼ hEi; P1jOσ3ðz1ÞjEj; P1i.
Therefore, the leading term h0;0 is the required ground
state matrix element hπ;P1jOσ3ðz1Þjπ;P1i.
We extracted this leading term by fitting the ts; τ

dependencies of the actual C3pt data at various fixed z1
and P1 using the above spectral decomposition truncated to
Nstate ¼ 2 (since we found that Nstate ¼ 2 was able to
describe the corresponding two-point function well even
from small ts ≈ 2–3a). In practice, we constructed the ratio,

Rðts; τÞ≡ C3ptðts; τÞ
C2ptðtsÞ

; ð28Þ

with the P1 and z1 arguments being the same for both
numerator and denominator, and hence notationally sup-
pressed above. We then fitted Rðts; τÞ using the ratio of
expressions in Eq. (27) and Eq. (26), with hij as the fit
parameters. We took the values of the amplitudes jAij and
energies Ei from the two-state fit analysis of C2pt with the
fit range over ts ∈ ½3a; 24a�. We used these ðAi; EiÞ from
the same Jack-knife blocks as used for the three-point
function analysis. We performed these fits over τ ∈
½2a; ts − 2a� to reduce larger excited state effects for
insertion closer to source and sink. Further, we used all
the data for ts=a ∈ ½6; 8�; ½6; 10�; ½6; 12�; ½6; 12�; ½6; 10� for
momenta n1 ¼ 0, 1, 2, 3, 4 respectively; we skipped
ts ¼ 10a; 12a for n1 ¼ 0 in order to reduce the 0.4%
lattice periodicity effect due to the smaller E0, and similarly
we skipped only ts ¼ 12a for the larger n1 ¼ 1momentum.
We did not use ts ¼ 12a for n1 ¼ 4 as the two-point
function for ts > 10a was very noisy. While the extrapo-
lated values were insensitive to changes in fitting windows,
we kept the fit systematic fixed for allN so that even if there

is any unnoticed systematic error, it is unlikely to affect the
overall variations in the data as a function of N, which is
our interest in this paper. Such a two-state fit to the ratio R
resulted in good fits for all z1 and P1.
Some sample data for R along with the results from the

fits are shown in Fig. 2 for the case of momentum n1 ¼ 3.
The top and the bottom panels are for fixed z1 ¼ 3a and 6a
respectively, with the different N shown in the different
columns. The fits, shown as bands, agree with the data
well for all N, and the extrapolated value is shown as
the horizontal band. The ground state matrix element
MBðz1; P1Þ ¼ h00ðz1; P1Þ so extracted, are shown as a
function of z1=a in Fig. 3; with each panel for different N,
and in each panel, the data for different momenta differ-
entiated by color and symbols. The data has not been
symmetrized by hand with respect to z1 and −z1, so as to
show that the symmetry emerges automatically, which is a
simple cross-check on the computation. The local matrix
element corresponding to z1 ¼ 0 should be precisely be 1 if
we had used an exact conserved current on the lattice,
which we have not. So, one sees the matrix element at
z ¼ 0 to be slightly below 1 at z ¼ 0 and this difference
with 1 increases with larger momentum; we found this
lattice spacing effect to be of the kind ðaP1Þ2, which was
also seen in (3þ 1) dimensional computation [43]. We will
see that such effects are nicely canceled by an overall
normalization such that z ¼ 0 matrix elements are exactly
1; this is justified since the information on the PDF comes
from the variations in z1 and P1, and not by a fixed overall
normalization.

C. Determination of pion decay constant

We determined the pion decay constant through the
spectral decomposition of the correlator CA−π in Eq. (25) as,

FIG. 2. The estimation of matrix element h00ðz1; P1Þ by the two-state fits to the ratio, Rðts; τÞ. Some sample fits to the operator
insertion point, τ, and the source-sink separation, ts, dependence of R are shown in the different panels; the top panels are at z1 ¼ 3a and
the bottom ones are z1 ¼ 6a, at a momentum of n1 ¼ 3. For each z1, the panels from left to right are from different number of flavors.
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CA−πðtsÞ ¼
−Fπffiffiffiffiffiffiffiffiffiffiffi
2Mval

π

p Mval
π A0ðe−Mval

π ts − e−M
val
π ðaL3−tsÞÞ

þ A0e−E0ts þ…; ð29Þ

which follows from Eq. (4) with μ ¼ 3. The factor offfiffiffiffiffiffiffiffiffiffiffi
2Mval

π

p
is to convert the lattice normalization of state

vectors to the relativistic one used in defining Fπ . The
factor A0 is the amplitude h0jπSjπi, which we take from the
smeared-smeared pion two-point function at zero momen-
tum; we only determine the magnitude of A0, and therefore
we are assuming there is no phase in A0. The correlator is
anti-periodic in the t-direction, which can be seen by a
rotation in the xt-plane; taking ðx1; x2; x3Þ → ð−x1; x2;−x3Þ
along with u; d → σ2u; σ2d. The excited state contributions
captured by e−E

0ts. We fit the above functional form along
with a subleading excited state contribution to the CA−πðtsÞ
correlator to determine Fπ. Such fits worked well even
starting from ts ¼ 2awith the fitted value of Fπ independent
of the fit range. In Fig. 4, we show an effective Feff

π ðtsÞ
obtained by inverting right-hand side of Eq. (29) without
excited state term to get a ts dependent value of Fπ .
The curves in the plot are the expectations for Feff

π ðtsÞ from
the excited state fits, which can be seen to perform well.

From this analysis, we find Fπa0.5 ¼ 0.200ð1Þ; 0.1574ð7Þ;
0.1249ð4Þ; 0.0164ð1Þ for N ¼ 0, 2, 4, 8 in lattice units.

VII. RESULTS

Wewill present the results in the following logical order;
first, we will explain how we measure the presence of
infrared scale, by which we establish that the infrared scales
are indeed depleted as a function of number of massless
fermion flavors N. Then, we will infer the Mellin moments
of the PDF and reconstruct the PDF based on a two-
parameter model, and see how the PDF related quantities
change as a function of N. This induces a correlation
between the infrared scale and the PDF parameters, which
we look for.

A. The depletion of infrared scales

For the N ¼ 0 pure-gauge theory, the confining infrared
can simply be characterized by the string-tension, which
takes a value

ffiffiffi
σ

p ¼ 0.335g2 for the SU(2) theory [87].
For theories with nonzero N, string-tension is not a good
parameter to use; instead we use the condensate Σ and the
decay constant Fπ . In a previous study with R. Narayanan
[52], we measured the scalar condensate Σ that breaks the
SpðNÞ global flavor symmetry, as a function of N in the
massless limit of the theory. For this, we compared
the finite-size scaling (FSS) of the low-lying eigenvalues,
λi ∝ ziΣ−1l−3 behavior of the eigenvalues in an l3 box,
where the proportionality constant zi are the eigenvalues of
the random matrix model from the nonchiral Gaussian
orthogonal ensemble [100], which shares the same sym-
metries as the Dirac operator coupled to SU(2) gauge field
in (2þ 1) dimension. The coefficient Σ is the condensate
in the massless limit. We found nonzero Σ=g4 ¼
0.0152ð22Þ; 0.0038ð12Þ; 0.0025ð7Þ and 0.0ð6Þ10−6 for
N ¼ 0, 2, 4, 8 flavor respectively. The N ¼ 8 and 12
theories were instead likely to be infrared conformal with
nontrivial mass anomalous dimensions γm ¼ 0.38ð8Þ and
γm ¼ 0.48ð6Þ respectively; that is, the Dirac eigenvalues
displayed its FSS as λi ∝ l−γm−1 rather than an l−3 FSS
expected from SSB. Here, we should remark that we found

FIG. 4. The determination of pion decay constant Fπ . The data
points are the effective Feff

π ðtsÞ as determined from the hA3πiðtsÞ
correlator, and the curves are fits to Fπ þ Ae−δmts .

FIG. 3. The matrix elements at N ¼ 0, 2, 4, 8 (left to right) obtained by extrapolation are shown as a function of quark-antiquark
separation z1=a. The different colored symbols correspond to different fixed momenta P1, which are shown in the legend in units of
gauge coupling g2.
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that it was also possible to describe the eigenvalue FSS in
the N ¼ 4 theory assuming a rather large γm ¼ 0.6 along
with additional subleading 1=lFSS corrections; however,
in light of the results on Fπ in this work, it appears that the
N ¼ 4 theory indeed is more likely to be scale-broken in
the IR. The Fπ we determined here are at finite volume and
finite valence pion mass, but it cannot change the nonzero
Fπ result for N ¼ 4 because of the following. One should
notice that the very small F2

π ¼ 6 × 10−4g2 for N ¼ 8 is
most likely to arise due to finite volume and valence
quark mass, and hence it gives the typical correction to Fπ

due to these effects; the value of Fπ for N ¼ 4 theory is
F2
π ¼ 0.036g2, which is much larger than those typical

corrections, and hence justifying our inference about the IR
fate ofN ¼ 4. Thus, our current understanding about the IR
fate of many-flavor SU(2) gauge theory is that N ¼ 0, 2, 4
are likely to be scale-broken, whereas the N ≥ 8 are likely
to be conformal in the IR.
The depletion of all the infrared scales due to the

monotonic reduction in condensate is quite apparent. To
see this, we plot different mass scales, all appropriately
casted to have mass-dimension 1, one versus another. In the
top panel of Fig. 5, we plot the mass scale from condensate,ffiffiffi
Σ

p
=g2, as a function of another scale, F2

π=g2. The two
seem to be almost directly proportional. Another infrared
scale one could use is the mass gap, MA −Mval

π between
the pion and the axial-vector meson. In the bottom panel of
Fig. 5, we correlate this mass gap with F2

π . Again, it is clear
than the mass splitting also shrinks with the other dimin-
ishing, perhaps a more fundamental scale, Fπ . The mass
splitting does not go to zero even for N ¼ 8 most likely
because of the finite fixed volume and the quark mass. The
one-to-one positive correlation between the infrared scales
also suggests that we can now make the number of flavors
implicit, and simply ask for the effect of reducing one
infrared scale on another, as done in Fig. 5. As one would
have expected, a factor reduction in Fπ induces a reduction
in other scales by a similar factor. We now apply this
perspective to quark structure of pion, where the effect is
not obvious.

B. Response of the pion PDF to changes in infrared

The central object in our analysis of PDF is the equal
time bilocal matrix element M̃ðz1; P1Þ in Eq. (13), formed
by taking ratios of the matrix elementsMBðz1; P1Þ that we
obtained directly from the three-point function analysis. We
formed these ratios to remove the presence of expð−c0g2z1Þ
behavior due to the Wilson line which is present in the
definition of the bilocal operator, and hence ensure a better
description by the OPE. In Appendix, we describe features
ofMB itself, and here we proceed with using the improved
M̃. Through its OPE in Eq. (12), M̃ contains the leading
twist terms that relate to the pion PDF as well as
contribution from operators with higher-twist, which could

have interesting physics in their own right, but for our
purposes here are contaminations. We can distill the
leading-twist PDF terms in a practical lattice computation,
when z1 is small and P1 is large, so that one has a finite
range of z1P1 which can simply be described the lead-twist
part of the OPE in the analysis. Before going further, we
need to first make sure that the ratio in Eq. (13) indeed
cancels any remnant nonperturbative z1-dependent factor
from the usage of Wilson line in the operator. For this, we
performed the computations of M̃ðz1; P1Þ with 2-stout and
6-stout smeared Wilson lines for a sample case with n1 ¼ 3
momentum in the N ¼ 0 theory. The results from the two
are compared in Fig. 6, where one can see a good
agreement between the two, giving confidence that the
results are not stout smearing dependent, at least for few
steps of it. The results get less noisier when number of stout
smearing steps increases, but we use 2-stout in order to be
conservative.
We perform two types of analysis on M̃, namely, a

model-independent determination of the even moments of
the valence quark PDF, and secondly, by model-dependent

FIG. 5. The changes to the infrared scales when the number of
massless quark flavor is changed. Top panel: the quark con-
densate as a function of decay constant, both implicitly depend-
ing on the number of quark flavors. Bottom panel: a similar plot
showing how the mass gap between the pion and the axial vector
changes as a function of decay constant.
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reconstruction of x-dependent PDF (even the model-
independent determination can have additional systematic
dependences on the modeling of higher-twist effects, lattice
corrections, fit ranges, etc). For both the ways, the starting
point is the working version of the leading twist OPE in
Eq. (12) with some unknown higher-twist z21 corrections,
namely,

M̃ðz1; P1Þ ¼
1þ

hPNmax
k¼1 ð−1Þk ðz1P1Þ2k

ð2kÞ! hx2kiv
i
þ bz21

1þ bz21
:

ð30Þ

We have rewritten the leading twist part of Eq. (12) in a
different form above so that is clear that hx0i ¼ 1, M̃ is
purely real and that only even valence PDF moments hx2kiv
appear. These are very specific properties of M̃ for a pion
in (2þ 1) as well as (3þ 1) dimensions. We have modeled
the higher-twist effect in such a way that the individual
matrix elements Mðz1; P1Þ and Mðz1; 0Þ, that enter the
ratio for M̃ðz1; P1Þ, suffer from a momentum independent
leading bz21 higher-twist correction, which leads to the
presence of similar term in the numerator and denominator
of Eq. (30). Effectively, this causes a leading ðz1P1Þ2z21
correction term in the ratio. The upper-cutoff of the sum
Nmax is infinity but for practical implementation, we need
to work with smaller Nmax since the data is only sensitive to
some smaller powers k. Here, the moments of the PDF are
the unknowns we are interested it, but we will also fit the
parameter b to effectively take care any higher twist
g2z; F2

πz corrections, and also any target mass corrections.
We also tried adding lattice corrections of the form ðaP1Þ2
to the above functional form of OPE [43] for z1 > 0, but
such terms were found to be unnecessary and consistent

with zero well within errors. Therefore, we do not present
such an analysis here. Since this work is at a fixed lattice
spacing, any overall OðaÞ correction that is independent of
z1 and P1 cannot quantified, but a correction such as ðaz1Þ2
can be absorbed with the z21 correction that we have
already added.
In any method of analysis, we need to choose the range

of z1 and P1 carefully, since we will not be taking either
z1 → 0 or P1 → ∞ limits, and instead we will simply be
fitting the data which spans a finite range of z1 and P1.
First, we will work with momenta P1=g2 ≥ 1 to make sure
that for a given separation z1, a term like ðP1z1Þk is larger
than a similar order term ðg2z1Þk. This leaves the momenta
corresponding to n1 ¼ 2, 3, 4. Through this choice, we
are also guaranteed that Mval

π =P1 and F2
π=P1 corrections

would also be controlled. For the range of quark-antiquark
separation z1, we have two choices; we might want
z1g2 < 1 or z1F2

π < 1, where the first factor is simply
due to the superficial dimensional scale in the system and
the second is the natural infrared scale. We assume that the
superficial scale will arise simply due the expð−cg2zÞ-type
Wilson line term which we find to be nicely canceled in the
ratio M̃. Due to the natural infrared scales being at least a
factor 10 smaller than g2 for N ¼ 0, and even smaller for
larger N, even a usage of z ¼ 10a will only lead to F2

πz ¼
0.4 in this system. Thus, we restricted ourselves to z ∈
½a; 8a� and change the maximum z1 to 6a and 10a to check
for the robustness of results. The justifications for the used
ranges of z1, P1, will also bear out in the data.

1. Model-independent inferences

In the model independent analysis [43,101], we first
fit Eq. (30) to M̃ðz1; P1Þ data over the specified range
of z1 and P1 with the even moments hx2kiv being the fit
parameters. In addition, we also fitted the high-twist
parameter b to take care leading higher twist effects; but
their values were consistent with zero, and when we
performed the fits without the higher-twist corrections,
the results were consistent with the one including it. Here,
we keep this correction nonetheless. Since the valence
quark PDF is positive (since the anti-u quark and d quark
arises only radiatively in ud̄ pion, whereas the u quark is
present at tree-level itself), it imposes a set of inequalities to
be satisfied by the moments as discussed in [43]; with the
important one being hxkiv < hxmiv for k > m. We imposed
these constraints in the fit using the methods discussed in
[43]. With such constraints, one can add as many moments,
Nmax, in the analysis without overfitting the data, except
that it will result in many of the higher-moments, which the
data is not sensitive, to converge to zero. We found that
Nmax ¼ 5was sufficient to describe the data in the range we
fitted, as we describe below.
In Fig. 7, we show the data for M̃ðz1; P1Þ as a function

of z1P1; the data from different fixed pion momenta P1 are

FIG. 6. A cross-check that at least an application of small
number of Stout smearing to the Wilson line connecting quark-
antiquark is harmless. The pion bilocal matrix element at n1 ¼ 3
momentum in N ¼ 0 theory with 2-stout and 6-stout smeared
Wilson line insertions are compared and shown to be consistent
once the ratio is taken.
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differentiated by the colored symbols. The four different
panels show the data from N ¼ 0, 2, 4, 8 flavors. The data
can be seen to fall on almost universal curves as a function
of z1P1, which demonstrates the dominance of the lead-
twist part, as is essential for this work. As seen by the early
peeling-off of P1 ¼ 1.05g2 data from the higher momenta
data beyond P1z1 > 4 for N ¼ 4, 8 suggests that the
leading twist dominance works better for N ¼ 0 than for
N ¼ 8. This could be because the natural higher-twist scale
in the broken phase is F2

π which is smaller than the natural
scale corrections g2z, and the finite-box scale, z=l, which
could be important in the conformal phase. However,
for the range of z1 ¼ 6a; 8a; 10a, this ensuing higher twist
effect is less important even for P1 ¼ 1.05g2, and definitely
not important for higher momenta. This justifies our
choices of fit ranges and the reasoning we presented before.
The data gets increasingly precise with increasing N
because the fluctuations in the gauge field decreases
roughly as 1=

ffiffiffiffi
N

p
for larger N. The bands of various colors

in Fig. 7 are the expectations for Mðz1; P1Þ from the best
fits from the analysis; the colors match the corresponding
color for the momenta for the data. The bands cover the
range of P1z1 for each P1 for a fixed range of z1 up to 8a,
and for P1 ¼ 1.05g2 this range is within the point where the

higher twist effects start becoming visible at this lower
momentum. The quality of fits are very good with resulting
χ2=dof ≈ 0.6 to 0.8.
In Fig. 8, we have taken the results of the above model-

independent fits to M̃ðz1; P1Þ and extracted the light-front
bilocal matrix element, MðνÞ, which is the Ioffe-time
distribution (ITD). As we discussed, the variation of
infrared scales with N, induces a direct infrared scale
dependence of various quantities. Therefore, in Fig. 8, we
have shown the ITD dependence on the decay constant.
This is the main result in this paper, which we will process
further and look at from various angles. As the infrared
scale-breaking is made stronger, as reflected in Fπ , the
corresponding valence quark ITD starts peeling off from
the large-N conformal curve at shorter and shorter ν. In this
process, however, the ITD remains almost universal up
until ν ≈ 3. This tells us that the lowest nonzero u − d
moment, hx2iu−d ¼ hx2iv, must remain quite insensitive to
the scale changes. Thus, the effect of scale-breaking seems
to be encoded in the fall-off rate of the ITD for ν > 3 with
an almost fixed lowest even moment. We can infer simply
that this will reflect in the low-x behavior, which is
typically modeled as a Regge-type xα behavior, and also
in the large-x, ð1 − xÞβ behavior of the underlying valence

FIG. 7. The pion bilocal quark bilinear matrix elements, M̃ðz1; P1Þ from N ¼ 0, 2, 4 and 8 flavor theories are shown in the four
panels. In each panel, the matrix elements from P1 ¼ 1.05; 1.57; 2.09g2 are put together and shown as a function of z1P1. The color and
symbols differentiate the data at fixed P1. The bands are the expectations for M̃ðz1; P1Þ based on the fits to the leading twist expression
in Eq. (30). The bands extend over points included in the fit.
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PDF. This is because, the tail of the ITD typically carries
information on the small-x asymptotic of the PDF, whereas
given the inference that the lowest moment will be almost
fixed, will induce a variation in β as well via the implicit
relation hx2ivðα; β;…Þ, with ðα; β;…Þ being the para-
metrization of the shape of the PDF.
In the top panel of Fig. 9, we have plotted the F2

π

dependence of the first three even moments hx2iv; hx4iv;
hx6iv, as obtained directly from the model-independent
analysis discussed above, using the closed symbols. Since
we can directly get only the even valence moments, we
infer the odd moments from hx2iv and hx4iv by assuming a
two-parameter PDF ansatz,

fvðxÞ ¼ N xαð1 − xÞβ; ð31Þ

with normalization N to ensure hx0iv ¼ 1, and simply
solve for α and β through the two equations,

Γð3þ αÞΓð2þ αþ βÞ
Γð1þ αÞΓð4þ αþ βÞ ¼ hx2iv;

Γð5þ αÞΓð2þ αþ βÞ
Γð1þ αÞΓð6þ αþ βÞ ¼ hx4iv: ð32Þ

Through this we get hx2k−1ivðα; βÞ by this semi-model-
dependent analysis. As a cross-check, this procedure also
predicts the even moment hx6iðα; βÞ, which we found to
agree well with the actual value we obtained in the model-
independent analysis. These odd moments hxiv and hx3iv
are also shown in Fig. 9. The inferred value of hxiv, the
fraction of pion mass carried by a valence quark, seems
to be ≈0.35 in N ¼ 0 theory and increases to ≈0.45 as Fπ

decreases to zero. Thus, even in the strongly confined
regime of (2þ 1) dimensional SU(2) QCD, about 30% of

pion mass is carried by gluons and sea quarks, which one
might want to contrast with the (3þ 1) dimensional QCD
where this fraction is about ≈55%, at a scale of 3 GeV [28],
and decreases further as the scale approaches ΛQCD. Thus,
it might be that the scale-independent value of moments
in (2þ 1) dimensions has to be compared with PDFs in
(3þ 1) dimensions determined at typical nonperturbative
hadronic scales to serve as good analogues. We interpolated
the data with a quadratic in F2

πg−2, which are shown as the
curves in Fig. 9. It is quite striking how the individual
moments themselves weakly depend on Fπ . One should
contrast this behavior with the commensurate dependence
of other IR quantities to this decrease in Fπ . As we inferred
from the ITD itself, hx2iv seems to be the least sensitive to
changes in Fπ .
It is the observables that dictate the shape of the

full x-dependent PDF that are quite sensitive the infrared
rather than the moments themselves. One such observable

FIG. 8. The effect of reduction in F2
π on the bilocal matrix

element (Ioffe-time distribution) MðνÞ is shown. The bands are
inferred from the fits to lead-twist expression in Eq. (30) and
taking its z1 → 0; P1 → ∞ limit at fixed P1z1 ¼ ν. The matrix
element is shown as a function of ν ¼ Pþξ− (Ioffe time). The
different colored bands are at different F2

πg−2.

FIG. 9. Top: the correlation between decay constant and the
valence PDF moments. The filled symbols are obtained from
model-independent fits and the open ones from model-dependent
PDF ansatz fits. For model-independent fits only the even
moments are directly obtained, whereas the odd moments hxiv
and hx3iv were obtained indirectly by definition in Eq. (32). The
curves are quadratic fits in order to interpolate the data. Bottom:
the correlation between decay constant and the cumulants κ4 and
κ6 of u − d PDF.
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is the log-derivatives [43] of moments βeffðkÞ ¼
−1 − ∂ logðhxkivÞ=∂ logðkÞ which approaches the large-x
exponent β for k → ∞. As explained in [43], we define the
discretized version of the effective β for any k as

βeffðkÞ ¼
hxk−2iv − hxkþ2iv

hxkiv
k
4
− 1: ð33Þ

Using k ¼ 4, we find βeff for N ¼ 0, 2, 4, 8 to be 0.8(5),1.0
(4),2.1(2),3.3(2) respectively. As expected, this quantity
shows a sharp increase as the theory moves from being
strongly confined to being infrared conformal. The u − d
PDF, fu−dðxÞ being a positive quantity and having a
probabilistic interpretation, also admits the canonical shape
observables, cumulants κn,

κn ≡ ∂n

∂sn log
�Z

1

−1
fu−dðxÞesxdx

�����
s¼0

with;

κ4 ¼ hx4iv − 3hx2i2v;
κ6 ¼ hx6iv − 15hx2ivhx4iv þ 30hx2i3v: ð34Þ

Using the model independent estimates of the even
moments up to hx6iv, we find the fourth and sixth
cumulants, ½κ4; κ6�, forN ¼ 0, 2, 4, 8 flavors to be ½0.01ð3Þ;
−0.02ð2Þ�, ½0.05ð2Þ;−0.04ð1Þ�, ½0.071ð8Þ;−0.054ð4Þ�,
½0.02ð8Þ;−0.059ð4Þ� respectively. This variation is shown
in the bottom panel of Fig. 9, and it can seen to be very
sensitive to the IR changes. One could do a similar analysis
by including the nonvanishing odd valence moments,
but we specifically chose the cumulants of u − d PDF so
as to keep the analysis fully model-independent. The aim of
this exercise was to point to some good observables of the
pion PDF that seem to be sensitive about the IR, and
consequently, we were able to deduce simply from the
model independent analysis that the shape of the PDF will
show sharp changes as the theory morphs. Next, we will
see these inferences concretely arise in the reconstructed
x-dependent valence PDFs.

2. Model dependent analysis: PDF reconstruction

Now we reconstruct the x-dependent valence PDFs
that best describe the real space data for M̃ðz1; P1Þ. For
this we use the two-parameter functional form of the
PDF in Eq. (31) that was completely sufficient to describe
M̃ðz1; P1Þ at all N and in the range of z1 and P1 described
before; in fact, when we tried to make the ansatz more
complex by adding subleading small-x terms xαþ0.5 and
xαþ1, the fits became quite unstable and hence we resort to
the simpler two-parameter ansatz. Essentially, the para-
metrized PDF enters through its corresponding moments
hx2kivðα; βÞ, that is then input into the leading twist OPE
in Eq. (30) to get the best values of α and β. In the left
panels of Fig. 10, we have shown the resulting curves for

M̃ðz1; P1Þ from such two-parameter fits superimposed on
the data. The quality of fits are as good as the one from
model-independent fits shown in Fig. 7.
The valence PDFs, fvðxÞ, corresponding to the best fits

are shown in the middle panels of Fig. 10, and the rightmost
panels are simply the same data replotted as the momentum
distribution, xfvðxÞ. We checked that the reconstructed
PDFs were robust against variations in the fit ranges by
changing the maximum of the fit range from z1 ¼ 6a to
z1 ¼ 10a. These variations are shown as the bands of
different colors in the middle and right panels of Fig. 10.
Since the data points fall on universal curves well to begin
with, the reconstructed PDFs also show almost no varia-
tions; so we simply take the estimate with z1 ¼ 8a for
further discussions. It should be noted that the scales in
the different panels in Fig. 10 are different, but it is
already clear that the PDFs get narrower as N increases.
In terms of the exponents ½α; β� of the PDFs, they change
as ½0.0ð7Þ; 0.8ð8Þ�, ½0.5ð6Þ; 1.4ð8Þ�, ½2.5ð6Þ; 4.1ð8Þ�, ½9ð2Þ;
13ð3Þ� for N ¼ 0, 2, 4, 8 respectively. The values of the
large-x exponent β for the strongly broken phase for N ¼ 0
and 2, are the typical value around 1 and 2 as in (3þ 1)
dimensions. The exponent subsequently gets larger as the
theory is pushed into the near-conformal and conformal
regimes. Perhaps it is of interest to note that numerically,
β ≈ αþ 1 for these PDFs, which makes xfvðxÞ appear
almost symmetrical around their peak positions. As a cross-
check, we also plot the values of moments from this
analysis using PDF ansatz in the top panel of Fig. 9 as
the open symbols, which nicely agrees with the moments
obtained from the model-independent analysis.
We summarize the PDF determination in Fig. 11 by

putting together the PDFs from all N, and showing it as a
function of the induced dependence on the infrared scale
F2
π . The left and right panels show fvðxÞ and xfvðxÞ

respectively. The depletion of the IR scales can be seen to
have visible effect on the pion PDF. The effect of strong
scale-breaking is to broaden the pion PDF over the entire
range of x; implying indirectly, the increased importance of
gluons and the sea quarks. This is the case for F2

π ¼
9.3 × 10−2g2; 5.8 × 10−2g2. As the symmetry-breaking is
made about three-times weaker with F2

π ¼ 3.6 × 10−2g2,
we start seeing the PDF get sharper around the middle
values x ≈ 0.4 to 0.5, pointing to less important role of the
gluons, as well as of instances of valence quarks that carry
all of the pion momentum. As the theory enters a phase
with F2

π ≈ 0 which is most likely to be conformal in the
infrared, which is made gapped simply by finite quark mass
and finite box size, the PDF gets sharply peaked around
hxiv ≈ 0.42, pointing to a near dominance of the valence
quarks. This extreme case can be seen as a control in this
calculation; that is, the quark structure of an artificial
pionlike state emerging simply because of finite mass
and volume, being not consistent with the quark structure
of an actual pion state in the scale-broken theories points to
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FIG. 10. Reconstruction of valence PDF, fvðxÞ, by fits to two-parameter ansatz. The left panels show the fits (bands) to the bilocal
matrix element M̃ðz1; P1Þ (points) via leading-twist expression in Eq. (30). The middle panels show the inferred valence PDF, fvðxÞ.
The different colored bands correspond to different fit ranges ½0; z1�. The right panels show xfvðxÞ. Top to bottom are N ¼ 0, 2, 4, 8
theories respectively.
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the important causal role of the infrared vacuum structure
in shaping the valence quark structure of the Nambu-
Goldstone boson.

VIII. CONCLUSIONS AND DISCUSSION

We presented a lattice calculation of the valence quark
structure of the Nambu-Goldstone boson (which we refer to
as the pion) of the flavor symmetry breaking in (2þ 1)
dimensional SU(2) gauge theory coupled to many massless
flavors of fermions. The motivation for this work was to
first of all see if the quark structure of the pion is sensitive
to the long-distance vacuum structure, as one would expect;
and secondly to understand precisely how much this
dependence is and in what observables this shows up.
For this work, we used N ¼ 0, 2, 4 and 8 flavors of nearly
massless dynamical Wilson-Dirac fermions in the sea, and
the valence fermion mass tuned such that the pion mass
stayed the same at 0.53g2 for all flavors. We studied the
theories at a fixed lattice spacing and fixed finite box size.
We used the pion decay constant Fπ as a measure of the
strength of scale-breaking in the infrared, and correlated its
decrease as a function of N with other infrared quantities
and to the short-distance quark structure of the pion to Fπ .
We showed that as the strength of the infrared scale

breaking decreases, the pion Ioffe-time distribution (ITD)
or bilocal quark bilinear matrix element on the light-cone
becomes sensitive to this effect for Ioffe-time (or light-front
distance) ν > 3 with an almost near-universal behavior for
ν < 3; the effect is seen by a slower fall-off of the ITD
at ν > 3 as the theory gets more broken. We found that
the individual moments of the valence pion PDF them-
selves show only a weak dependence to the changes in the
infrared. However, the effect gets amplified when one
constructs observables appropriately from the moments,

such that they underlie the shape of the x-dependent
valence PDF and equivalently of the u − d PDF; we
demonstrated this in terms of the first few cumulants
of the u − d PDF and in terms of the log-derivative of
the moments with respect to the order of the moment that
determine the large-x behavior. We reconstructed the
valence PDF of the pion based on a two-parameter ansatz.
The above behavior of the ITD resulted in a broadening of
the valence PDF over small and large x regions when the
value of the Fπ increased. When the Fπ was near zero in the
near-conformal region, one could see a sharp localization of
the PDF around hxiv ≈ 0.42. The key results in this paper
are shown in Fig. 8 and Fig. 11.
As an outcome of this work, we established the (2þ 1)

dimensional QCD as a good model system to perform
computational experiments on the nonperturbative aspects
of the internal structure of hadrons using the recent
developments in leading-twist matching frameworks. The
short-coming of the present work is that we do not compare
and contrast the behavior of the pion PDF with that of
another ordinary non-Goldstone boson, such the axial-
vector or the diquark states. We intend to perform these
comparative studies in future computations, especially by
using lattices which have larger extents in the direction of
boost so as to reduce the effect of Lorentz contraction
(rather an expansion) of the lattice extent longitudinal to the
boost. Another improvement one could do is to extend this
calculation to SU(3) theory in (2þ 1) dimensions; this will
extend the range of flavor N where the theory is scale-
broken, thereby making the changes to the PDFs more
gradual and easier to study than done here. Owing to the
lower-dimension used, performing an exact massless over-
lap fermion computation to improve on this work will be
feasible. Understanding the observations made in this paper
in terms of simplistic model calculations will also shed

FIG. 11. Left: the reconstructed valence pion PDFs, fvðxÞ, and Right: their corresponding momentum distribution, xfvðxÞ are shown
as a function of pion decay constant that characterizes the vacuum of different N ¼ 0, 2, 4, 8 flavor theories.
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more light on how the UV is correlated to the IR. With the
availability of many-flavor theory computations in (3þ 1)
dimensions (e.g., [102]), performed due to its relevance to
composite Higgs models, it would be interesting to use
them to understand the evolution of quark structures with
scale depletion as Nf is changed from 2 to the near-
conformal point near 8 or 10; especially, ask how does
large-x exponent β change for (3þ 1) dimensional pion?
It would also be amusing to study the properties of the

bilocal bilinear matrix element (Ioffe time distribution) in the
long distance limit of the quark-antiquark separation when
the theory is in the conformal phase for N > 6, such that the
higher-twist effects now are actually going to be due to
operators with nontrivial infrared scaling dimensions, and
thereby shed new light into the higher-spin operators of fixed
twist in the infrared CFT and its conformal blocks, possibly
corresponding to scalar-vector-vector-scalar four point func-
tion. A recent study [103] of conformal QCD in 4 − ϵ
dimensions might be helpful in this endeavor, by carefully
extrapolating the results to ϵ ¼ 1.
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APPENDIX: THE BEHAVIOR OF P1 = 0
MATRIX ELEMENT MB

In Sec. VI B, we described the extrapolation of three-
point function to obtain the “bare” matrix element,
MBðz1; P1Þ. The nomenclature bare here simply means
the matrix element obtained before taking the ratio in
Eq. (13), as there are no truly divergent behaviors in (2þ 1)
dimensions due to its superrenormalizability, and even for
the Wilson line, we expect it to contribute only a benign
expf−c0g2zg nonperturbative higher twist effect. In this
Appendix, we look at MBðz1; P1 ¼ 0Þ itself.
From Fig. 3 in the main text, we can notice that the

P1 ¼ 0 matrix element with pion at rest shows a z1
dependence. To see why it is interesting, for argument-
sake, if we assume that the leading-twist term was the only
piece at P1 ¼ 0 OPE, then one simply does not expect any
z1 dependence. In Fig. 12, we have put together the P1 ¼ 0

data (shown as the points) for MB at all flavors N as a

function of lattice separation, z1=a. For the data shown, the
Wilson line entering the bilocal operator was smeared using
2-steps of Stout. It is quite surprising that the P1 ¼ 0matrix
element shows absolutely no dependence on the flavor or
changing Fπ equivalently. Due to the finite valence pion
mass, there can be z1 dependence from the target mass
corrections (TMC) that arises due to trace terms at leading
twist [82,83]. We expect this to be described by

MTMCðz1Þ ¼ 1 −
ðMval

π z1Þ2
8

hx2iv þOððMval
π z1Þ4Þ: ðA1Þ

To see if this arises because of the TMC, we have plotted
Eq. (A1) as the dashed black curve, using the value of
hx2i ≈ 0.2 that we observed in Fig. 9. This behavior is
definitely not sufficient to describe the data. The other z1
dependence should, of course, be from the Wilson line due
to its expð−c0g2zÞ behavior for larger jz1j with some c0.
Since it should be even with respect to z1 → −z1, we model
this behavior as

MTMC;WLðz1Þ≡ MTMCðz1Þ
coshðc0g2z1Þ

: ðA2Þ

In Fig. 12, we plot MTMC;WL as the blue dashed curve
using c0 ¼ 0.281. The value of c0 will be dependent on the
construction of the Wilson line itself, such as the steps of
smearing (in our case, the value of c0 decreases to 0.206
when 6-step stout was used). We see that MTMC;WL nicely

FIG. 12. The matrix element MBðz1; P1 ¼ 0Þ (before forming
ratios) is shown as a function of quark-antiquark separation g2z1
in units of coupling. The different colored symbols are the data
taken from N ¼ 0, 2, 4, 8 flavor theories. The black dashed line is
the expectation based on target mass corrections from leading-
twist trace terms. The blue dashed line is the behavior modeled
by Eq. (A2) to take into account the screening behavior of the
Wilson line.
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describes the data at all z1 and for all N. Thus, through this
exercise, we first understand that the nonperturbative
screening behavior of the Wilson line is important in
MB, and therefore, it is very important to form ratios,
like in (3þ 1) dimensions, to get rid of this trivial z1
dependence. In Fig. 6, we showed how this cancellation
works well by using Wilson lines with two-different

smearing parameters, thereby justifying the application
of leading twist framework to the ratio M̃. Second, due
to universal behavior of MBðP1 ¼ 0Þ at all N, the screen-
ing behavior does not care about the infrared physics at all,
pointing to the fact that it arises due to the Wilson line self-
interaction at ultraviolet scales.
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