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We present a determination of the isospin-1
2
elastic πK scattering amplitudes in S and P partial waves

using lattice quantum chromodynamics. The amplitudes, constrained for a large number of real-valued
energy points, are obtained as a function of light-quark mass, corresponding to four pion masses between
200 and 400 MeV, at a single lattice spacing. Below the first inelastic threshold, the P-wave scattering
amplitude is dominated by a single pole singularity that evolves from being a stable bound state at the
highest quark mass into a narrow resonance that broadens as the pion and kaon masses are reduced. As in
experiment, the S-wave amplitude does not exhibit an obviously resonant behavior, but instead shows a
slow rise from threshold, which is not inconsistent with the presence of a κ=K⋆

0ð700Þ-like resonance at the
considered quark masses. As has been found in analyses of experimental scattering data, simple analytic
continuations into the complex energy plane of precisely determined lattice QCD amplitudes on the real
energy axis are not sufficient to model-independently determine the existence and properties of this state.
The spectra and amplitudes we present will serve as an input for increasingly elaborate amplitude analysis
techniques that implement more of the analytic structure expected at complex energies.
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Introduction.—πK scattering has a long history, which
mirrors closely the ππ case, with the P wave containing
a clearly visible narrow resonance, the K⋆ð892Þ which
partners with the ρ, while the S wave features only a slow
rise with energy. Much of our experimental knowledge is
derived from the classic kaon beam experiments [1] at
SLAC where the dominance of pion exchange at small
momentum transfers to proton targets was used to access an
effective πK initial state.
In a world where SU(3) flavor symmetry were exact,

scattering amplitudes in isospin-1
2
, isospin-1, and isospin-0

would all appear in an octet and have a common resonant
content in each partial wave. Empirically, these channels
show strikingly different behavior in the Swave, indicating
a strong breaking of the SU(3) flavor symmetry. How
the experimental observations evolve towards the SU(3)

symmetric theory with varying quark mass is far from
understood, and in this Letter we will report on a study of
this evolution in the kaon sector.
We compute the elastic scattering amplitudes for πK in

isospin-1
2
in S and P partial waves, using four values of the

light-quark mass resulting in pion masses of approximately
239, 284, 329, and 391 MeV. We find clear evidence for the
vector K⋆ state for all values of the quark masses, while the
S wave appears qualitatively similar to experiment with a
broad enhancement seen across the elastic region.
Methods.—We utilize lattice quantum chromodynamics

(QCD) as the only first-principles, systematically improv-
able and generally applicable approach to QCD. The use
of a discretized Euclidean spacetime of finite volume
allows us to determine hadronic correlation functions via
Monte Carlo sampling of gauge fields. The Euclidean time
dependence of these correlation functions is controlled by
the discrete spectrum of eigenstates of QCD in the finite
volume.
This spectrum can be used to constrain the infinite-

volume scattering amplitudes via the Lüscher method
[2–18]—for a recent review see Ref. [19]. Through the
use of multiple lattice volumes and consideration of frames
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moving with respect to the lattice, sufficiently many energy
levels can be obtained to determine in detail the energy
dependence of a scattering amplitude across a large
energy region. Several previous studies have considered
πK scattering using lattice QCD [20–30].
The cubic nature of the periodic spatial boundary of the

lattice means that states are characterized by irreducible
representations (irreps) of the cubic group, and of the
relevant little groupswhen considering moving frames. The
mismatch between the cubic symmetry and the continuous
rotational symmetry of the infinite-volume theory means
that the irreps contain an infinite number of mixed partial
waves. Because near threshold only a relatively small
number of low partial waves are expected to be significant,
in practice only two or three amplitudes influence the
spectrum in the energy region we will consider.
To extract scattering amplitudes from finite-volume

spectra it is important to accurately obtain all of the energy
levels in the region of interest, and in order to do this, we
compute matrices of correlation functions using a basis of
operators, and diagonalize to obtain several excited energy
eigenstates [31,32]. A range of operators are considered,
matching expectations of the kinds of finite-volume eigen-
states in this case, consisting of ψ̄ΓD…Dψ constructions
which resemble qq̄ structures [33,34], and meson-meson-
like constructions [35]. The meson-meson operators are
built from products of variationally optimized meson
operators, themselves sums of many ψ̄ΓD…Dψ construc-
tions with the flavor and spin parity of the relevant hadron:
π, K, or η in this instance. The virtue of this method is that
excited state contaminations from the single-meson object
contained within the meson-meson object are greatly
reduced, and signals may then be obtained at earlier
Euclidean times where statistical noise is typically lower.
We make use of the distillation method [36] that allows

all of the Wick contractions specified by QCD to be
efficiently obtained. Anisotropic lattices, having a finer
spacing in time (at) than space (as ¼ atξ), are used [37,38].
One lattice spacing pair (as, at) is used at each pion mass,
and so we make no attempt to extrapolate to the continuum
limit. Symanzik-improved gauge and fermion actions are
used to reduce discretization effects. Table I provides some
details of these lattices—the heaviest and lightest pion-
mass lattices have been used previously to study many

other channels [35,39–50], while the two intermediate
pion-mass lattices are being used for the first time in this
calculation. We have previously reported on πK scattering
on the 391 MeV lattice in Refs. [26,27], and we make use
of these same spectra again.
To quote results in physical units, the Ω-baryon mass is

used to set the scale via a−1t ¼ ðmphys
Ω =atmlatt

Ω Þ, and in this
Letter, for all but the mπ ≈ 391 MeV lattice, we use a
new computation using 64 distillation vectors. For the
mπ ≈ 239 MeV lattice, this results in a more accurate value
which supersedes that presented in Ref. [48]. A more
complete description of the methods used to arrive at the
lattice QCD spectra is presented in Ref. [27].
Finite-volume spectra.—We show a representative

sample of the spectra obtained in Fig. 1, presenting two
rest-frame spectra and one moving frame spectrum from the
lightest pion mass considered [51]. In ½000�Aþ

1 , S-wave
interactions dominate and we observe large shifts
in energy away from expectations in a theory without
πK interactions—there is an energy level below threshold,
and another significantly below the next noninteracting

TABLE I. A summary of the lattices used in this study, with spatial volume L3, temporal extent T, and the masses of relevant stable
hadrons.Ncfgs denotes the number of gauge configurations used andNvecs is the number of distillation vectors [36].Ntsrc is the number of
different time slices used for source operators. Brackets denote the uncertainty on the final digit.

ðL=asÞ3 × T=at Ncfgs Nvecs Ntsrc atmπ atmK atmη atmΩ ξ mπ /MeV

f163;203;243g×128 f479; 603; 553g f64; 128; 162g 2–8 0.069 06(13) 0.096 98(9) 0.103 64(19) 0.2951(22) 3.444(6) 391
243 × 256 309 162 4–8 0.055 93(28) 0.090 27(15) 0.097 90(100) 0.2857(8) 3.456(9) 327
243 × 256 400 162 4 0.047 35(22) 0.086 59(14) 0.096 02(70) 0.2793(8) 3.455(6) 284
323 × 256 485 384 2–4 0.039 28(18) 0.083 44(7) 0.092 99(56) 0.2751(6) 3.453(6) 239
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FIG. 1. An example of the finite-volume spectra computed with
the ensemble corresponding to the smallest pion mass considered.
The black points are finite-volume QCD energy levels used in
obtaining the amplitudes. Green points indicate a level with only
a significant contribution from an ηK-like operator. Red and
green curves indicate the positions of πK and ηK energy levels
in the absence of interactions, dashed lines indicate threshold
energies. The orange points and curves show the solutions
of Eq. (1) using a two-parameter K matrix in the S wave and
a Breit-Wigner function in the P wave.
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energy, π½100�K½100�. At the ηK threshold a level appears that
has significant overlap onto only the η½000�K½000� operator,
shown in green in Fig. 1, and such a level persists across all
the light-quark masses considered.
The ½000�T−

1 irrep is dominated by the P wave with
negligibly small contributions from the F wave and higher.
An isolated level appears well below the lowest non-
interacting energy, likely indicating the presence of a
resonance which may be narrow given the relatively small
shift of the next level up in energy.
The denser spectrum in ½100�A1 reflects the contribution

of both S- and P-wave amplitudes. This commonly occurs
in unequal mass systems in moving frames since parity is
not a good quantum number.
We can estimate the size of D-wave scattering in the

elastic region, which can have an impact in many moving
frame irreps, by considering the ½000�Eþ irrep. Here a level
is obtained at atEcm ¼ 0.1699ð3Þ on the smallest mass
lattice, coincident with the expected noninteracting energy
for π½100�K½100�. This energy corresponds to a negligibly
small phase shift of δπK2 ¼ 0.26ð56Þ°, and similarly small
values apply on the other lattices, such that we may neglect
the D wave and higher partial waves hereafter.
In our analysis, we choose to consider only energies

below the first inelastic threshold, which, depending on the
irrep and pion mass, is either ππK or ηK. This results in
28, 21, 18, and 36 energy levels to constrain S- and P-wave
scattering amplitudes on lattices with pion masses of 239,
284, 329, and 391 MeV, respectively.
Analysis.—The relationship between the discrete spec-

trum in a finite volume, fEnðLÞg, and the infinite-volume
scattering matrix, tðEÞ, is given by the solutions of
Lüscher’s determinant condition [2–11,14–18,53],

det½1þ iρðEÞtðEÞð1þ iMðE; LÞÞ� ¼ 0; ð1Þ

whereMðE;LÞ is a matrix of known functions in the space
of partial waves for each irrep [54], and ρ ¼ ð2kcm=EÞ. To
overcome the dependence of each energy level on tðEÞ for
multiple partial waves, we parametrize the energy depend-
ence of the scattering amplitudes using a variety of forms
which respect unitarity and which have sufficient freedom
to describe the spectra. For a given parametrization, the
parameter values are found which upon solving the above
determinant equation give finite-volume spectra that best
describe the lattice spectra (minimizing the correlated χ2

presented in Ref. [27]). A representative example in which
the S and P wave are parametrized is shown by the orange
points and curves in Fig. 1.
To avoid bias, we consider a wide selection of scatte-

ring amplitude parametrizations that fall into four fami-
liar categories: effective-range expansions, Breit-Wigner
forms, K matrices, as given in Ref. [27] in Eqs. (9)–(13),
and unitarized chiral perturbation theory (UχPT) [59–62].
TheK matrix features the most flexibility, and we opt to use

the Chew-Mandelstam phase space in which a logarithm is
generated from the imaginary part known from unitarity
[27]. Our K-matrix forms respect s-channel unitarity, but
do not include any features from scattering in the cross
channels (no “left-hand cuts”).
The UχPT amplitudes share the logarithm mentioned

above associated with the s-channel cut, but they also
contain perturbative features associated with the cross
channels. All the masses considered here are far from
the chiral SU(3) symmetric point about which these
amplitudes are expanded. The amplitudes would break
unitarity without a unitarization step which, although not
unique, results in UχPT amplitudes that respect unitarity
perturbatively. We choose to apply the Oðp4Þ SU(3)
amplitudes specifically because they have been used in
studying the pion mass dependence of πK scattering
in Ref. [63].
The S- and P-wave phase shifts of all considered

amplitude parametrizations that can describe the finite-
volume spectra with χ2=Ndof below 2.0 are plotted in
Fig. 2; there are 14–17 per pion mass, and a complete list
can be found in the Supplemental Material [52]. The central
curves are from a four parameter fit with a Breit-Wigner
function in the P wave and a two-parameter K matrix,
linear in s ¼ E2

cm, in the S wave. This same choice is used
to produce the orange curves in Fig. 1. Very little variation
is seen between parametrizations—the amplitudes are well
determined and there is little sensitivity to the precise form
used. As the pion mass reduces we see a clear trend towards
the experimental phase shifts. The striking difference in the
P-wave amplitude between the mπ ≈ 391 and 327 MeV
lattices is caused by the K⋆ changing from a bound state
below the πK threshold to a resonant K⋆ above threshold.
The S-wave amplitude is presented in a different manner

in Fig. 3, via kcm cot δ0, the quantity which has an effective
range expansion ð1=aÞ þ 1

2
rk2cm þ � � �, where a is the

scattering length and r is the effective range. The discrete
points shown reflect the S wave for a fixed P-wave three-
parameter K-matrix amplitude, with the uncertainty includ-
ing a sampling of several amplitudes, while the curves
show scattering-length and effective-range amplitudes with
the same three-parameterK matrix in Pwave. It is clear that
for the three largest pion masses, the amplitude over the
whole elastic region is acceptably well described by just a
scattering length, while at the smallest mass an additional
effective-range term is required. A clear trend of decreasing
mπa is observed with decreasing light-quark mass, which is
qualitatively consistent with leading order chiral perturba-
tion theory. Figure 3 shows little evidence for a large
effective range parameter that might signal the presence of
a narrow resonance, nor for any strong enhancement below
threshold that would be suggestive of important effects
from an Adler zero in tðEÞ [65,66].
Poles.—The singularity content of a scattering ampli-

tude, considered as a function of complex energy, is closely
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connected to its spectroscopic content, with the presence of
a pole, t ∼ c2=ðs0 − sÞ on an unphysical Riemann sheet,
typically interpreted as being the most rigorous signal for a
resonance. The pole position can be related to the mass mR
and width ΓR,

ffiffiffiffiffi

s0
p ¼ mR � iΓR=2, and the residue gives

access to the coupling, c.
All the P-wave amplitudes that we found were able to

describe our finite-volume spectra feature a single pole
close to the real axis, and we summarize these in Fig. 4. For
the heaviest pion mass we considered, the pole is on the real
axis, corresponding to a stable bound state, but otherwise it
is off the real axis, corresponding to an unstable resonance.
A smooth evolution is seen with an approximately flat
effective coupling jcj=jkj as a function of the pion mass.
The scatter due to parametrization choice is observed to be
quite modest, comparable to the size of the statistical
uncertainty.
The S-wave amplitude presented in Figs. 2 and 3 is

superficially very simple: there is a rising phase shift, usually
attributed to an attractive system, but no sharp features that
signal the presence of a nearby pole or other singularity. This
suggests that if any resonance pole is influencing this
behavior, it must lie far into the complex plane. In order
to determine such distant poles, it is necessary to consider the

features of partial-wave amplitudes at complex s that arise
due to known properties of scattering, like crossing sym-
metry and unitarity. In elastic πK scattering, the complex
plane contains three cuts [67,68]: in addition to the s-channel
unitarity cut, which is correctly handled in the finite-volume
formalism, unitarity in the cross channels leads to a circular
cut at jsj ¼ ðm2

K −m2
πÞ and a left-hand cut that spans

−∞ < s < ðmK −mπÞ2. If these cuts are as close to the
elastic scattering region as any hypothetical resonance pole,
their effect must be accounted for if the pole is to be
accurately determined. Of the amplitudes applied here, only
UχPT has any contributions from the cross channels, and the
degree to which they are correctly handled has been debated
[62,69–71].When theUχPTamplitudes have their parameter
freedom constrained by the finite-volume spectra presented
above, a complex pole is found with a real energy around
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FIG. 2. S-wave (top) and P-wave (bottom) phase shifts. The
central line and band correspond to the 2-parameter K matrix in
the S wave and a Breit-Wigner function in the P wave described
in the text and as used in Fig. 1, the outer bands include the
uncertainty over parametrizations, mass, and anisotropy varia-
tions. The central colored error bars show the positions of the
finite volume energy levels colored by quark mass. The circles on
the x axes indicate the πK threshold at each mass. The gray points
are experimental data from LASS [1] and the gray curves are
from the phenomenological UFD parametrization of Ref. [64].
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FIG. 3. The S-wave amplitudes shown as k cot δ0. The discrete
points are as described in the text. Points in the region of the K⋆
pole appear particularly sensitive to the P-wave amplitude and
provide little constraint in the Swave; several have been removed
from this plot. Curves correspond to the S-wave scattering length
and effective range fits with a three-parameter K matrix in the P
wave. Square brackets show parameter correlations.
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mπ þmK and a large imaginary part, not dissimilar to the
experimental κ resonance. In addition, many of theK-matrix
forms we implement, which lack any explicit left-hand cut
behavior, also feature poles at similar energies; however,
some do not and many have other nearby poles. Even with
precise information about the amplitude for real energies, the
analytic continuation required to reach any pole is suffi-
ciently large that a unique result is not found.
Summary.—We have extracted S- and P-wave elastic

isospin-1
2

πK scattering amplitudes from lattice QCD
spectra using Lüscher’s formalism at four light-quark
masses, corresponding to pion masses between 239 and
391 MeV. The resulting amplitudes show a smooth evo-
lution towards experimental data as the quark mass
approaches its physical value. Continuing the P-wave
amplitude to complex values of the energy, the lowest-
lying vector K⋆ resonance appears as a pole singularity in a
way consistent with the canonical picture of a compact
quark-antiquark state that acquires a decay width by
coupling to the meson-meson continuum. The S-wave
amplitudes are well determined for real energies; however,
the analytic continuation into the complex plane does not
yield a unique result that we can interpret in terms of the κ
pole. Along with our previous study of the σ [42], this
provides motivation for future analyses that incorporate
now-standard lattice QCD analysis techniques, namely,
Lüscher-like analysis of finite-volume spectra, and those in
use in the amplitude analysis community, e.g., Roy-Steiner
equations, which account for the known singularities due to

cross-channel physics. In the current case, an input to such
a calculation would be information about ππ → KK̄ in
several partial waves, which can be obtained in a lattice
calculation using the generalization of the Lüscher formal-
ism for coupled channels [46,48].
In closing, we believe this poses a timely challenge for

the lattice QCD and amplitude-analysis communities to
address jointly. In so doing, we will not only be able to
acquire a detailed picture of the mysterious σ and κ
resonances, but an understanding of the breaking of
SU(3) flavor symmetry and thus the origin and nature of
these resonances.
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