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We outline an approach to calculate the transverse-momentum-dependent distribution of linearly
polarized gluons inside an unpolarized hadron on the lattice with the help of large momentum effective
theory. To achieve this purpose, we propose calculating a Euclidean version of the degree of polarization for
a fast-moving hadron on the lattice, which is ultraviolet finite, and no soft function subtraction is needed. It
indicates a practical way to explore the distribution of the linearly polarized gluons in a proton and the
linearly polarized gluon effects in hadron collisions on the lattice.

DOI: 10.1103/PhysRevD.109.014002

It has been widely accepted that hadrons are constructed
by quarks and gluons. Due to the nonperturbative nature of
strong interaction, it is hard to explore how those building
blocks combine a hadron. In high-energy processes, the
parton information is encoded in the parton distribution
functions (PDFs), which are one-dimensional distribution
functions that describe the longitudinal momentum distri-
bution of partons. If the partons are not collinear to the
mother hadron but carry transverse momenta, then the
parton structure should be described by the transverse
momentum dependent distributions (TMDs) [1]. The
TMDs can describe much richer partonic structures of a
hadron.
Gluon plays an important role in a proton. Analog to a

photon, a gluon can be unpolarized but also linearly
polarized inside an unpolarized proton, if the transverse
motion of gluon is considered [2]. The TMD for unpolar-
ized gluon is denoted as fg1ðx; k2TÞ, while the TMD of
linearly polarized gluon is denoted as h⊥g

1 ðx; k2TÞ, which
can be regarded as the gluonic analog of the Boer-Mulders
function [3] for quark. The T-even function h⊥g

1 describes
how the þ1 and −1 helicity gluon states are correlated in a
hadron.
The linearly polarized gluon TMD has caused lots of

attention recently. It has been pointed out that the linearly
polarized gluons can modify the transverse spectrum of
Higgs bosons and can be utilized to determine the parity of

Higgs boson at the LHC [4]. In the past, the distribution of
linearly polarized gluons inside an unpolarized hadron has
been discussed in a model context in Refs. [5,6], and many
approaches based on experimental observables are pro-
posed to extract the gluon TMDs, e.g., heavy quark pair
or dijet [7–10], γγ [11], back-to-back quarkonium and
photon productions [12], quarkonium and dilepton asso-
ciated productions [13], single and double heavy quarko-
nium production at hadron colliders [14–17], etc. The
effect of linearly polarized gluon TMD can be found in
azimuthal asymmetries, and also in total cross sections.
Other previous studies are devoted to the linearly polarized
gluons at small-x region [18–22]. Although the gluon
TMDs can be probed at the high-energy electron-ion
colliders, e.g., EICs in the US and China, however, the
linearly polarized gluon TMD has never been extracted so
far, either from the experiment or from lattice QCD.
Measuring TMDs inside a hadron has been indicated

possible due to the development of parton physics on the
lattice in the past few years, which includes but is not
limited to quasi-PDFs and large momentum effective
theory (LaMET) [23,24], pseudo-PDFs [25,26], lattice
cross sections [27]. These approaches have made signifi-
cant progress on PDFs, meson distribution amplitudes,
generalized parton distributions, etc (see, e.g., [28,29]
for recent reviews of LaMET). Especially, the TMDs
defined with staple-shaped Wilson line operators have been
considered recently within the framework of LaMET,
see [30–35] and references therein. The gluon-TMDs have
also been considered very recently [36,37].
In this work, we will show that evaluating the linearly

polarized gluons inside an unpolarized hadron is feasible
on the lattice with the help of LaMET. Our unambitious but
practical idea is to calculate the ratio of h⊥g

1 and the
unpolarized gluon TMD fg1 in ðx; bTÞ-space so that future
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lattice simulations can help to reveal the scale of the
linearly polarized gluons. To achieve this purpose, we
define the Euclidean version of this ratio, which can be
simulated on the lattice. In the large hadron momentum
limit the degree of polarization can be recovered with
this ratio.
To start with, let us first review the gluon TMDs. In

QCD, the TMDs of the gluon in an unpolarized hadron with
momentum P are defined with the matrix element of the
gluon field strength correlator [2]

Z
dξd2bT
ð2πÞ3Pþ e−ixξP

þþikT ·bT

×
�
P

����Fþμ
a

�
ξnþ bT

2

�
W−

abF
þν
b

�
−
ξnþ bT

2

�����P
�

¼ −
x
2

�
gμνT fg1ðx; k2TÞ −

�
kμTk

ν
T

k2T
þ 1

2
gμνT

�
h⊥g
1 ðx; k2TÞ

�
; ð1Þ

where Fμν
a is the gluon field strength tensor in adjoint

representation with a being the color index, kT is the
transverse momentum of the gluon in the proton, ξ and bT
are the displacements of fields along the n and transverse
directions, respectively. fg1 is the TMD for unpolarized
gluons, while h⊥g

1 is the TMD for linearly polarized gluons,
k2T ¼ −k2T and gμνT ¼ gμν − nμn̄ν − nνn̄μ is the transverse
metric, n and n̄ are two unit light-cone vectors. For any
vector a, n · a ¼ aþ and n̄ · a ¼ a−. The Wilson line is
generally process dependent; hereby we assume Wilson
line W−

ab connects ∓ ξnþbT
2

via −∞ along the n direction.
There are rapidity singularities in TMDs, and they can be
renormalized by introducing the soft factors [1]. There are
no model-independent calculation for h⊥g

1 except its upper
limit: jh⊥g

1 ðx; k2TÞj ≤ fg1ðx; k2TÞ [2].
In this work, we prefer to study the correlator in the

ðx; bTÞ-space, in which one can parameterize the corre-
lator as

Z
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The TMDs in ðx; bTÞ-space can be converted into TMDs
in ðx; kTÞ-space through Fourier-Bessel transforms. The
matrix element in Eq. (2) contains correlations along the
light-cone, which is hard to simulate on the Euclidean
lattice.
Instead, one can define a similar correlation matrix

element but calculable on the lattice,

P3

P2
0

Z
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2π

eixξP3
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where nz ¼ ð0; 0; 0; 1Þ is the unit vector of the third
Cartesian direction, i, j ¼ 1, 2 denote the transverse
components and Ei⊥ ¼ F0i (i ¼ 1, 2) is the color electric
field along the transverse directions. The quasi-TMDs
Fg
1 and H⊥g

1 are the Euclidean versions of fg1 and h⊥g
1 ,

respectively. Corresponding to the Wilson line structure in
Eq. (2), the Wilson line W̃−

ab is chosen as staple-shaped:
from − ξ

2
nz −

bT
2
to ð−L − ξ=2Þnz − bT

2
along −nz direction,

then from ð−L − ξ=2Þnz − bT
2
to ð−L − ξ=2Þnz þ bT

2
along

the transverse direction, then return to ξ
2
nz þ bT

2
along nz.

The UV singularities from the Wilson line self-interaction
can be removed by a factor

ffiffiffiffiffiffi
ZE

p
in the large P3 (or small-ξ)

limit. For the Wilson line structure described above, ZE can
be chosen as a rectangular Euclidean Wilson-loop with
length 2L and jbT j (see Refs. [31,37]).
On the lattice, one can adopt the clover definition of field

strength tensor in terms of plaquette which has been
adopted in previous calculations, e.g., Refs. [38–42]. In
our work only the color electric field E is involved and can
be expressed as Ei ¼ F0i. It is related to the Euclidean
operator Fel

4i via Fel
4i ¼ −iF0i. The Wilson line in adjoint

representation can be expressed in terms of the Wilson lines
in fundamental representation, through

F0i
a

�
ξnþ bT

2

�
W̃−

abF
0j
b

�
−
ξnþ bT

2

�

¼ 2Tr

�
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�
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2

�
Ũ−F0j

�
−
ξnþ bT

2

�
Ũ−†

�
; ð4Þ

where Ũ− is the Wilson line sharing the same path with
W̃−

ab but in the fundamental representation.
In the infinite momentum frame, i.e., P3 → ∞, the

operator in Eq. (3) becomes a “light-cone” operator
Eq. (2), in which the third direction dependence becomes
a light-cone dependence, and the color electric field Ei

becomes Fþi. According to LaMET, the two matrix
elements can be connected by perturbative matching,
because P3 ≫ ΛQCD provides a hard scale.
Before moving on, we add some remarks on quasi-

TMDs. First, the choice of Euclidean correlation function is
not unique. Any operator that approaches the operator
in Eq. (2) under large Lorentz boost can be used to
define a quasidistribution. Second, there are UV diver-
gences in Eq. (3), which may cause trouble for lattice
calculations. There is no rapidity divergence in quasi-
TMDs; however, a reduced soft factor should also be
subtracted for a correct perturbative matching between
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TMDs and quasi-TMDs [30,31]. One may need some
nonperturbative approaches to renormalize the UV singu-
larities. In the case of quasi PDFs, DAs, and GPDs, several
nonperturbative subtraction schemes have been employed,
and have been applied to quark quasi-TMDs, such as
RI=MOM scheme [43–45], ratio scheme [25,35], hybrid
scheme [46], etc. For the gluon TMD case, however,
the large offshellness of the gluon in RI=MOM raises
the risk of gauge invariance violation. The ratio scheme

may work [37], but calls for more nonperturbative inputs
from the lattice.
On the other hand, we will not be troubled by the

renormalization and soft factor subtraction issues, when we
are studying the ratio of H⊥g

1 and Fg
1: R≡H⊥g

1 =Fg
1, as we

will discuss below. Various ratios have been constructed on
the lattice for quark TMDs [47–50] before. Our ratio
Rðx; b2T; P3Þ can be expressed in terms of operator matrix
elements as

1

2
þ 1

4
R
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� ¼
R dξ

2π e
ixξP3
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ξ
2
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2
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− ξ

2
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bT
2

���P�R dξ
2π e

ixξP3b2T
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2
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2

�
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2
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2

���P� : ð5Þ

Its light-cone partner, h⊥g
1 =fg1, is the relative strength of

the linearly polarized gluons over the unpolarized gluons,
which is a reflection of the degree of polarization. In the in-
finite momentum limit, one can expect that Rðx; b2T; P3Þ →
h⊥g
1 ðx; b2TÞ=fg1ðx; b2TÞ. According to Eq. (5), R is a ratio of

Euclidean correlation functions and there is no time-
dependence, thus it can be simulated on the lattice.
For a practical calculation on the lattice, one has to

renormalize the quantities properly, because the UV sin-
gularities prevent taking the continuum limit of the lattice
data. The renormalization of gluonic Wilson line operators
has been studied a long time ago [51], and recently has
been revisited in the context of quasi-PDF by using the
auxiliary field formalism [52] and also the pseudo-PDF
approach [53–55]. There is no essential difference between
the “staple-shaped” operators here and the “straight line”
operators in quasi-PDF on the renormalization of UV
singularities.
There are three sources of UV singularities: the self-

energy of gluon, the self-interaction of the Wilson line,
and the interaction between the Wilson-line and the field
operator located at the endpoint. The gluon self-energy is
canceled in the ratio. The UV singularities from the self-
interaction of the Wilson line are multiplicatively renor-
malized, even if there are cusps in the Wilson line. For the
Wilson line described in the last paragraph, in the large
P3 limit, the UV singularities from the Wilson line self
interaction can be removed by the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEð2L; b⊥Þ

p
,

where ZE is a rectangular Euclidean Wilson-loop with
length 2L and jbT j (see Refs. [31,37]). This factor cancels
between the numerator and denominator. The interaction
between the Wilson line and the field located at the end-
point may lead to operator mixing; however, the operator is
multiplicatively renormalizable if the field operator located
at the endpoint is F0i, F3i, or F3μ, where i ¼ 1, 2 and
μ ¼ 0, 1, 2 [52]. In addition, the renormalization factor
is independent of the location of the operator, which
means that the Fourier transform does not modify the

multiplicative renormalizability. In Eq. (5), the UV diver-
gences in the denominator and numerator are multiplica-
tive, and the renormalization factors are equal because the
operators in both the denominator and numerator are of the
F0iF0j (i, j ¼ 1, 2) type and the Wilson line structures
are the same. For the above reasons, the ratio Eq. (5) is UV
finite, because all UV singularities, including cusp and
pinched pole singularities, as well as the endpoint UV
singularities, are canceled in the ratio. So, the continuum
limit of Rðx; bT; P3Þ can be approached without a renorm-
alization procedure on the lattice.
In LaMET, the Euclidean and light-cone quantities are

linked by a matching relation, while the matching coef-
ficient can be calculated in perturbation theory because it is
associated with a hard scale P3. It has been shown that the
TMD matching in LaMET has the type of multiplication
instead of a convolution. This is confirmed in the case of
gluon TMD [36,37], where the matching for gluon TMD
was derived as

Fg
1ðx;b2T;μ; ζzÞS

1
2
rðb2T;μÞ ¼H

�
ζz
μ2

�
eln

ζz
ζKðb2T ;μÞfg1ðx;b2T;μ; ζÞ;

ð6Þ
where Sr is the reduced soft factor, K is the Collins-Soper
kernel andH is the hard function, ζz ¼ ð2xP3Þ2 and ζ is the
Collins-Soper scale. The matching relation for H⊥

1 is the
same but the hard function may differ. Generally, we have
the matching relation

Rðx; b2T; P3Þ ¼
Hh

�
ζz
μ2

�

Hf

�
ζz
μ2

� h⊥g
1



x; b2T; μ; ζ

�
fg1


x; b2T; μ; ζ

� ; ð7Þ

where Hh and Hf are matching coefficients for fg1 and h
⊥g
1 ,

respectively. The Sr and K terms cancel in the matching
formula. Thus we do not need to worry about these
quantities, which makes the evaluation simpler.
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The matching for the denominator in Eq. (5) has already
been studied and Hf has been calculated at the one-loop
level. Now we will derive the matching relation for the
numerator. To perform the matching calculation in pertur-
bation theory, one can replace the hadron state with a parton
state because the hard function is independent of external
states. In previous works, the external states are always
chosen as unpolarized gluons. It was shown in [15] that h⊥g

1

in unpolarized gluon target is xh⊥g
1 ðx;k2TÞ ¼ 2αsCAð1− xÞ=

ðπ2k2TÞ þOðα2sÞ, in which the nonzero result starts at one-
loop level, and only box diagram [see Fig. 1(a)] has
nonzero contribution. So, if the external gluon is unpolar-
ized, one can only work out the matching coefficient by
calculating at least two-loop diagrams, which will be a
rather tough task.
Instead, we assume that the external gluons are emitted

from an unpolarized hadron and they are polarized, then
extract h⊥g

1 and H⊥g
1 by calculating the helicity-flip matrix

element, i.e., hp;−j � � � jp;þi − hp;þj � � � jp;−i, where
þ=− denotes the gluon helicity þ1 or −1. The amplitude
for general gluon helicities can be expressed as Mijϵ

i
1ϵ

�j
2 ,

then the hecility-flip contribution we needed is
Mijðϵiþϵ�j− − ϵj−ϵ

�iþÞ. One can replace the gluon density

matrix ϵi1ϵ
�j
2 with 1

2
ðbiTbjT=b2T þ 1

2
gijT Þ to simplify the

calculation. The tree-level result is no longer zero but
δð1 − xÞ. At one-loop, one can perform a one-loop calcu-
lation in dimensional regularization, in which the dimen-
sions of spacetime are d ¼ 4 − 2ϵ. The decomposition of
correlator in Eqs. (2) and (3) in d-dimensions then becomes

−
1

d − 2

�
gijT f

g
1 −

�
biTb

j
T

b2T
þ 1

d − 2
gijT

�
h⊥g
1

�
:

In Fig. 1, we list three typical Feynman diagrams in the
Feynman gauge at the one-loop level. Here we adopt the
procedure in Ref. [37]. All the Feynman diagrams are
categorized into three classes: (a) No Wilson line inter-
action; (b) Involving gluon-Wilson line interactions; and
(c) Wilson line self-interaction. For (a), we find that the
TMD and quasi-TMD have the same results, and thus have
no contribution to the matching coefficient; (c) has no

contribution if the reduced soft factor is subtracted.
Because we are discussing the ratio, we do not need to
consider the soft factor at hand because they are canceled in
the ratio. (b) involves rapidity singularities and contributes
to the matching. After some tedious but straightforward
calculation, we find that the total result for both H⊥g

1 at
large P3 and h⊥g

1 have the structure

−
αs
2π

CAθð0 < x ≤ 1Þ
�

2x
ð1 − xÞþ

þ β0
2CA

δð1 − xÞ
�

×
�

1

ϵIR
þ ln

μ2b2Te
2γE

4

�
þ δð1 − xÞC; ð8Þ

where “þ” denotes the plus distribution, β0 ¼
11
3
CA − 4

3
TFnf. Note that the above expression is defined

in the support [0, 1]. The values of constant C are

CH ¼ αs
2π

CA

��
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ϵUV
þ ln

μ2b2Te
2γE
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��
β0
2CA

− 1
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−
1

2
ln2
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2γE
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Ch ¼
αs
2π

CA

�
1

ϵ2UV
þ
�

1

ϵUV
þ ln

μ2b2Te
2γE

4

�

×
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β0
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þ ln
μ2

ζ

�
−
1

2
ln2

μ2b2Te
2γE

4
−
π2

12

�
ð9bÞ

for quasi-TMD and TMD, respectively. The result for TMD
here is subtracted by the soft factor; however, subtracting
the soft factor or not does not affect the matching of the
ratio. Because the IR structure of the normal and quasi-
TMDs are the same, their differences are only related to UV
and the matching coefficients read

Hh

�
ζz
μ2

�
¼ Hf

�
ζz
μ2

�

¼ 1þ αs
2π

CA

�
−
1

2
ln2

ζz
μ2

þ 2 ln
ζz
μ2

þ π2

12
− 4

�

þOðα2sÞ; ð10Þ

where ζz ¼ ð2xP3Þ2. The matching coefficients for
fg1ðx; b2TÞ and h⊥g

1 ðx; b2TÞ are equal at one-loop accuracy.
It was shown in a previous work [37] that the matching
coefficient for the helicity gluon TMD is also equal to the
one in Eq. (10), and it is likely that the matching coefficient
might be equal for all of the right gluon TMDs at one-loop.
It is different from the one-dimensional distributions, for
example, the matching kernel for unpolarized and helicity
gluon PDFs are not equal. Additionally, it is not clear
whether Eq. (10) holds at all orders of αs. The differences

FIG. 1. The typical Feynman diagrams for one-loop correction
of the operators in Eqs. (2) and (3) in Feynman gauge. The other
Feynman diagrams are not shown.
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between the matching of TMDs and one-dimensional PDFs
require further explorations.
According to Eqs. (7) and (10), one can conclude that

Hh=Hf ¼ 1þOðα2sÞ, and

h⊥g
1 ðx; b2T; μ; ζÞ=fg1ðx; b2T; μ; ζÞ

≃ Rðx; b2T; P3Þ þOðα2sÞ þO
�
ΛQCD

xP3

�
: ð11Þ

We note that the matching coefficient in Eq. (10) is
derived in the MS scheme. In our proposal, we do not need
lattice renormalization schemes because the ratio is UV
finite, and although different results for hard functions Hh
and Hf may be derived in different schemes, their ratio
should be equal.
The determination of ratio R on the lattice is helpful in

phenomenology at the hadron colliders. We take the
production of scalar (or pseudoscalar) boson H at low
transverse momentum as an example. By converting the
factorization formula in ðx; pTÞ-space in Ref. [4] to ðx; bTÞ
space, the differential cross section at low jqT j can be
expressed in terms of fg1 and R. To get rid of the f

g
1 part, one

can further introduce the ratio with the differential cross
section of J=Ψþ γ [12]:

R d2qT
ð2πÞ2 e

iqT ·bT dσðAþB→HþXÞ
dxdyd2qTR d2qT

ð2πÞ2 e
iqT ·bT dσðAþB→J=ΨþγþXÞ

dxdyd2qT

∝ 1� 1

4
Rðx; b2T; P3ÞRðy; b2T; P3Þ; ð12Þ

where in the denominator qT is the transverse momentum
of the J=Ψγ pair, and differential cross sections should be
measured at low qT. þ=− corresponds to the scalar and
pseudo scalar, respectively. Thus the effect of linearly
polarized gluon on the Higgs boson production could be
determined with lattice QCD calculations. With similar
discussions in [4], our ratio can also be used to determine
the parity of the Higgs boson.
To summarize, we have explored the feasibility of

calculating the TMD of linearly polarized gluons in an
unpolarized hadron on the lattice, in the framework of large
momentum effective theory. We propose to calculate the
ratio of linearly polarized gluon TMD over the unpolarized
gluon TMD, which characterizes the degree of gluon
polarization. We define a Euclidean version of this ratio,
which is UV finite. Therefore, no renormalization and soft
factor subtraction are necessary. Furthermore, we evaluate
the perturbative matching that connects the ratio and its
light-cone partner and find that the perturbative matching
coefficient is zero at one-loop. Thus the ratio discussed
in this work is a good approximation of the ratio of h⊥g

1

and fg1. Future lattice simulations will shed light on the
distribution of linearly polarized gluons in a hadron, and
could provide useful information for phenomenology at the
hadron colliders.
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