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Strange quark helicity in the proton from chiral effective theory
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We compute the helicity-dependent strange quark distribution in the proton in the framework of chiral
effective theory. Starting from the most general chiral SU(3) Lagrangian that respects Lorentz and gauge
invariance, we derive the complete set of hadronic splitting functions at the one meson loop level, including
the octet and decuplet rainbow, tadpole, Kroll-Ruderman and octet-decuplet transition configurations.
By matching hadronic and quark level operators, we obtain generalized convolution formulas for the quark
distributions in the proton in terms of hadronic splitting functions and quark distributions in the hadronic
configurations, and from these derive model-independent relations for the leading nonanalytic
behavior of their moments. Within the limits of parameters of the Pauli-Villars regulators derived from
inclusive hyperon production, we find that the polarized strange quark distribution is rather small and

mostly negative.
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I. INTRODUCTION

In 1987 the measurement by the European Muon
Collaboration of the spin-dependent g; structure function
of the proton led to the surprising conclusion that the
sum of quark spins constituted a very small fraction of the
spin of the proton [1]. The early polarized deep-inelastic
scattering (DIS) measurements also suggested that a large
fraction of the proton’s spin may be carried by strange
quarks [2], in stark contrast with simple quark model
expectations (see Ref. [3] for a review). Subsequent
polarized DIS experiments with increasing precision and
kinematic reach have been performed at SLAC [4-10],
HERMES [11-13], SMC [14,15], COMPASS [16,17] and
Jefferson Lab [18-27], and have provided a richer picture
of the spin decomposition of the proton.

Data from these and other polarized high-energy scatter-
ing processes, such as jet and W boson production in
polarized pp collisions at RHIC [28-30], have been
utilized in global QCD analyses of spin-dependent parton
distribution functions (PDFs) by a number of groups [31—
42]. The latest results from the JAM Collaboration’s
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simultaneous analysis [42] of helicity PDFs and fragmen-
tation functions give a fraction AX = 0.36 £ 0.09 of the
proton’s spin carried by quarks and antiquarks at a scale of
0? = 1 GeV?2. Parallel efforts from lattice QCD have also
been made on calculations of moments of PDFs through the
matrix elements of appropriate quark and gluon local
operators within nucleon states [43—47], and more recently
first studies have been explored of the feasibility of
extracting information on the dependence of PDFs on
the parton momentum fraction x from quasi-PDF and
pseudo-PDF lattice calculations [48,49].

Among the three light quark flavors, the contribution to
the proton spin from the strange quark is the least well
determined, and phenomenological studies often rely on
assumptions such as SU(3) flavor symmetry and equiv-
alence of the strange and antistrange polarizations,
As = A§, to simplify the analyses. In many of the studies
which have made these assumptions the strange quark
polarization has typically been found to be in the vicinity of
Ast = As 4+ A5 ~ —0.1. Recent direct lattice simulations
of disconnected loop contributions have yielded slightly
smaller magnitudes for the strange quark polarization,
As), = —0.046(8) [47], while an analysis of the spin
problem taking into account the angular momentum carried
by the meson cloud [50-52], suggests a value of order
—0.01 [53,54]. The recent JAM global QCD analysis,
which used inclusive and semi-inclusive DIS data in order
to relax the SU(3) symmetry constraint, also supports a
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smaller magnitude for the strange polarization, Asjyy =
—0.03(10) [42] at a scale of Q? = 1 GeV?, but with a larger
uncertainty. A review of the status and results from the
global QCD analysis and lattice QCD communities can be
found in Ref. [55]. In an interesting recent analysis, the role
of polarized nucleon strangeness in core-collapse super-
nova evolution was explored by Hobbs et al. [56].

It was shown recently by de Florian and Vogelsang [57]
that a nonzero integrated asymmetry between As and A5
can arise from perturbative QCD evolution at three-loop
order. The effect was found to be small, however, with the
difference As — A¥ predicted to be negative and around 1%
of the sum As + A5. This is in contrast to the unpolarized
case, where the total number of strange and antistrange
quarks must be equal, even though the shape of their
momentum fraction distributions in x need not be the same
at three loops [58].

On the other hand, meson cloud models, in which the
proton’s strangeness content is generated by fluctuations
to kaon-hyperon states such as p — AK™, naturally predict
zero polarization for antistrange quarks. In the limit in
which the kaon mass is much smaller than the baryon
masses, the P-wave nature of the kaon emission would
require the A to be polarized in the opposite direction to the
proton. Since in a nonrelativistic quark model picture the
strange quark carries all of the spin of the A, the expectation
would be for the strange quark polarization to be negative.
On the other hand, inclusion of relativistic effects [59,60],
as well as Fock states with higher-mass hyperons and K*
mesons [61-63], can significantly affect the shape and even
the sign of the As distribution.

A more systematic approach to computing the effects
of pseudoscalar meson loops lies in the framework of
chiral effective field theory, which establishes a more direct
connection between the meson cloud of the nucleon and
the underlying QCD theory. This methodology has been
applied recently in studies of the unpolarized light quark
asymmetry d — i and the strange-antistrange asymmetry
s — 5 in the proton, using both local [64-66] and nonlocal
[67,68] formulations. Here, we extend our previous analy-
sis [66] of the chiral loop contributions to the nonpertur-
bative strange quark PDF to the polarized sector. We work
within the local formulation of the chiral effective theory,
using Pauli-Villars to regularize the integrals and consider
both the SU(3) octet and decuplet hadronic states.

In Sec. II, we begin by presenting the lowest order
meson-baryon chiral effective Lagrangian, consistent with
Lorentz and gauge invariance. The convolution formalism
for the nucleon PDFs in the framework of chiral effective
theory is discussed in Sec. III, including the effective
twist-2 operators relevant for the spin-dependent distribu-
tions. Hadronic splitting functions are derived in Sec. IV,
including for the octet and decuplet rainbow diagrams,
Kroll-Ruderman, tadpole, and octet-decuplet transition
contributions, and from these the model-independent

leading nonanalytic (LNA) behavior of the loop contribu-
tions to the moments of the PDFs is deduced in Sec. V. The
regularization procedures dealing with the divergent loop
integrals are discussed in Sec. VIA, and the detailed
numerical results for the polarized strange quark distribu-
tions in the proton are shown in Sec. VIB. Finally, we
summarize our analysis and discuss future possible exten-
sions of this work in Sec. VII. In the Appendix, we present
some details about the derivation of the decuplet rainbow
splitting function and the octet-decuplet splitting function.

II. EFFECTIVE LAGRANGIAN

In this section we review the basic effective chiral SU(3)
Lagrangian describing the relativistic interactions of pseu-
doscalar mesons (¢) and SU(3) octet (B) and decuplet (T)
baryons [69-71]. To lowest order, this can be written as

% |
L = i(By"[Dy. B]) =5 D{(Br*rs{u,. B})
1_ - | - -
- EF(B;/”%[M”, B]) — EC[Tﬂ(B””uDB + Bu,0"T,]
1.

- EHTJ”VSMMT”, (1)
where D and F are the meson-octet baryon coupling
constants, and C and H are the meson-octet-decuplet and
meson-decuplet-decuplet baryon couplings, respectively.
In the meson sector the operator u,, is defined as

u, = i(u'du —ud,u’), (2)

with u given in terms of the pseudoscalar fields ¢,

"= exp <IZTZ> 3)

and f, is the pseudoscalar meson decay constant. The
pseudoscalar pion, kaon and # meson fields can be
collected in the matrix ¢,

b= n —kﬁ+%n K° (4)
- 74\ 2

The covariant derivative D* in Eq. (1) is defined by
[D,.B] = 0,B + [[,, B], (5)
where I'* is the link operator,

1
r, zi[uT,aﬂu]. (6)

The SU(3) octet baryon fields B are given by
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150 1
ﬁ2+%A
B = P

[1]

V2

>t p
0 1
—*2 +%A n s (7)
=0 2
= \/gA

while the decuplet baryons may be included by way of a Rarita-Schwinger field, represented by the tensor 7%,

\/§A++ AT Das AT
1 + 0 1 v*0
T = % A A EZ , AO
Tt Lz*o =0 Lz*o
V2 . V2

The octet-decuplet transition tensor operator O is
defined as

o (0

where Z is the decuplet off-shell parameter. To simplify the
calculations, in this analysis we will choose Z = 1/2 [72],
although the physical results should be independent of the
value of Z chosen. The octet-decuplet-meson interaction
term in Eq. (1) can be written explicitly in component
form as [73]
T"u,B = (Tﬂ)ijk<uu)ii’(B)jj’ei’j’k- (10)
Expanding the effective Lagrangian (1) up to
O((¢/f4)?), we can write this in more explicit fashion
as a sum of specific meson-baryon interactions,

L= EquB’ + £¢¢33 + E(]}BT + L¢TT’7 (11)
where the first two terms, representing the meson-octet
baryon interaction and the Weinberg-Tomozawa term,
are given in Ref. [66]. The third term involves the
meson-octet-decuplet vertex and is given by

C { 1 = 1 = —
Lypr =——1 =L 0”0, K p+—=X;70"9,Kp
$BT \/z f,/, \/— w \/g {7
_ 2
+ A0 0,ntp - \/;A;”@"”@,,ﬂop
1 —
—— A0, n p + H.c.}. 12
Nt p (12)
The final term in Eq. (11) involving the meson-decuplet-
decuplet baryon vertices is not shown as it is not relevant to

the matrix elements at the one-loop level when the initial
and final states are both nucleons.

0 1 $0 *+ _1 50 =0

A 752 z \/EZ =B
V3AT T || 5T T BT . (8)
> = E*O = \/§Q_

III. PARTON DISTRIBUTIONS
IN THE NUCLEON

In this section, we derive the polarized PDFs in the
nucleon within the convolution formalism by matching the
spin-dependent twist-2 quark operators to hadronic operators
with the same quantum numbers. We identify the complete
set of hadronic operators contributing to the polarized quark
distributions, and relate the matching coefficients to the
moments of PDFs in the hadronic configurations.

A. Convolution formalism

The nth Mellin moment of the spin-dependent quark
distribution Ag(x) is defined as

<xn—1 >Aq

1
/ dx x""'Ag(x)

1

— [are gl + (-1 age). (13)
0
where we have used the crossing symmetry relation
Ag(—x) = +Ag(x) between the quark and antiquark dis-
tributions. (Note that spin-averaged PDFs, in contrast, have
the opposite crossing symmetry property [66].) From the
operator product expansion these moments can be related
to the matrix elements of local twist-2 operators Oy, ™"

between nucleon states,

(N(p.5)|Og,™

N(p,S>> = 2<x”_1>Aqu{ﬂ1pﬂz .. 'P””},
(14)

where p* is the four-momentum of the nucleon and s* is its
polarization vector, with s> = —1, and the braces {---}
represent total symmetrization of Lorentz indices. The spin-
dependent twist-2 operators are defined as

o ou)
O, = i1gysyD” - D" g,

(15)

<~ - -
with D =1(D = D). In an effective field theory, these
quark operators are matched to hadronic operators with the
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same quantum numbers (but not necessarily with the same
twist) [74],

Oﬁlé-'ﬂn — Zc(Anfj/hOl;llmﬂna (16)
h

where the subscript £ labels different types of hadronic

(n)
Ag/h

through the nth moments of the spin-dependent PDFs
Ag,(x) in the hadronic configuration #,

operators. The c-number coefficients ¢ can be defined

(n)
cAnq/h

<xn_1>Aq/h

- / L Agy(x) + (<11 A, ()] (17)

Matrix elements of the hadronic operators (N’)ﬁ""” " are used
to define the moments of the hadronic splitting functions
Af, by taking the “4” components of the Lorentz indices,

J(jdyym*Afhoa

1

= o (N(p, )| O

2Ms* (p*)" IN(p.s)).  (18)

O = [ (ByysBi) +

+p
+ [@" (By"1 BAL) + B

)(BytysAlB) + 6
)(By*124B) + o'

In analogy with the unpolarized case [66], the operator
relation in Eq. (16) then gives rise to a convolution form for
the spin-dependent PDFs in the nucleon,

Aq(x) =) _[Af,®Aq)](x)
h

EZ/jdYAldz5(x—yZ)Afh(y)AqZ(z), (19)
h

where Ag; = Ag;, + Ag, is the spin-dependent quark
distribution for quark flavor ¢ in the hadronic configuration
h. The convolution expression (19) is the basis for the
calculation of the contributions to the quark helicity
distributions from the chiral loop corrections generated
from the Lagrangian (1).

B. Twist-2 operators

The spin-dependent quark operators in Eq. (15) can be
matched to hadronic operators derived from the lowest
order Lagrangian in Eq. (11) [68,75],

" (ByttysB)Trad | pe.... pto
") (By* B)TrAd] pta .. pho

_ 3 _ _
4 7<'1>(Tv7,/41y5,13]"y) — \/;(;)(n) (T, 0129 B) + (BALO&MT,)]| p...p"

+ permutations — Tr,

where the trace “Tr” here is over the Lorentz indices.
The a priori unknown coefficients {a), 5", 5"} and
{a", p" "} correspond to the octet baryonic pseudo-
vector and vector operators, respectively, while 7*) and
@ correspond to decuplet-decuplet and octet-decuplet
transition operators, respectively. Note that only those
operators that contribute to matrix elements with initial
and final nucleon states are listed in Eq. (20).

Writing the spin-1/2 octet baryon operator 3 in a three-
index tensor representation, one can relate this to the octet
baryon field matrix B by

1 ! ’
Bijx = % (eijk’Blli + Gikk’Bf ), (21)

with the corresponding conjugate representation giving

Bkji: z,k’B +€zkk’B ., (22)

v

(20)

|
where €, is the antisymmetric tensor. In Eq. (20) the flavor
operator A% is defined as

2 == (ulu’ £+ u'2u), (23)

| =

with A7 = diag(8,,. 8,4 8,,) being diagonal 3 x 3 matrices.
Expanding A1 up to O(¢?), one has

_ 1 _ _ -
M =21+ vl (2pA9¢p — §?29 = 29¢%) + O(¢*),  (24a)
¢
VERES (27 = 1) + O(¢*). (24b)
f 2fy
Finally, the combinations of operators (B---B),

(T,AT,) and (T,AB) in Eq. (20) involving the three-index
tensors are given by [73]
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(BB) = Tr[BB, (25a)  and
) 2 1 1 (T,AT,) =T,/ AT/, (26a)
(BBA) = gTr[BAB] + gTr[BB]Tr[A} - 6Tr[BBA],
_ 2— - sy
(25b) (T,AB) = — §T;,JkA” B 'k, (26b)
_ j 2 .- 2. ) . . .
(BAB) = — gTr [BAB] + §Tr[BB]Tr[A] - gTr[BBA], With these relations we can write the hadronic operators

explicitly for each of the spin-dependent u, d and s quark

(25¢) distributions as

3 6

> 1 = 12 _

Oilu.,ﬂn — <ga(n) + _ﬁ(n) + 5(n)> O;;)lwu,, + (_&(n) 4 gﬂ(”) + 5(")> O;:l]...””
: al") 2 B 4 G ) Oy Hn 1 (1) ! 2(n) 4 =(n) | (1

+ 6 + _ﬂ +o0o 0’;0 + [ —a\ + Eﬂ 45 0/14\
<i

3 4

=(n l_n ~(n) \ (1 Hn S—n l_n —(n) | Y1 Hn
a()+6ﬂ<>+g( ))O’Z‘O H +<6a()+§ﬁ()+g< ))(’)’é”
1

PO N, T ™G (@™ — 2B (Ot + Oyt

1 _ — N gt —(n 0 —(n ()N P (n I
+E [(_4a<n> B0 (50 4 BN 4 (4gn) — 2BM)OFI e _ (Fn) 4+ 4B ))Olrflan/inKi}

pprt T ppK K~ anxt o

V3a) ~ (@) + 45)

(2™ — pm) -
w'=r’ , @I;\IP n

3v2
1 ~ ~ ~ ~ ~ ~ .
+§}7(n) [30!21++#u+20l21+ i +O/210 ﬂn+20/;1*+”n_~_oglw ﬂn_’_olél*oﬂn}

o VB e
oy — O — Ot . (27)

Ot Oyt V205 e )

- 12 (Oxtp

1 _ ~ . ~ ~ 1~
+ _3a)(n) [0/2+pﬂ + Oglony - Og]wg + EO@

(,)th.lsﬂn — <é&(n) +_B(ﬂ) + 5(11))6/]471;4,, + (%a(n) +%B(n) + 6(,,))6,:[1...”’1
+

& + 2500 4 5<n)) Ot G an % B 4 5<n>> ot

(n) + lB(”) + 5(”)) (5’;{)'”’% + (g &(Vl) + %B(Vl) + 6(}1)) 6;[_’"/4"

+ 5(11)((5%1"#:: + 6/;10'“/4,1) _ (a(n) - ZB(n))(@l‘l"-ﬂn + (Ngﬂl"'ﬂn)

1
4\/§ AX0 0A
1 N o~ o~ o~
+3 [(45(:1) — 2RO (Gln) 1 4B Ee  (4n) — 2B (5g(n) 1 2Ok }

pprta ppK°K° finn o inK°K°

— _(Za(n) — ﬂ(n)) (5”1'“&!7 — éa(ﬂ)@‘lr:”n + (a(n) + 4ﬂ(n))
3\/§ npn 4 Ank® 12

J—/(Vl) [3(5’217/’% + 2(5/210“'/"11 + (5’21;'/471 + 2(5:;1*_/'% + @;I*Oﬂn + (5%1:':”11}

~ ~ — 1~ . 3~ ~
@(n) |:Ol£]+pﬂn 4 Oﬂl Hn Olzl;l**gf _70/41 Hn f(’)/‘l Hn O/él*éln] , (28)

(O, 55 = V20L )
+

An 2 z0x0 2 =OA
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17"Hn
O

1
(5 & 4 50

6

n)) ((A/j;lJr,un + 6;5"'/4“ + 6;17’"/‘11)

5 1 e e
+ <_(_x(n)+3ﬂ( +671><O”1 ﬂn_|_0/‘l ””)—FG (OI;] l"n_‘_Oﬁl Mn)

+ % {(5@(@ + 25("))((9’:,;1(M+"k- + (f)l‘l v+ (@ (n) 4 45(:1))((7)/;1,;-1-(/3” Oﬁ:lklinl( )}

Yl @+ D)+ (0 + 4ﬂ<">><<9';e o+ V200
12( ")+ 4B0)) (O s — V20 ) + 7 [(5’;;:'”" + Oy ™ + O 4 208 M 4 204 + 304" ”"}
}@w (Ot - Bty - O + ~Ea;;;f o], (29)

The hadronic operators appearing in Eqgs. (27)-(29) are
given by

I

and octet-decuplet transition splitting functions, as illustrated
by the diagrams in Fig. 1. The convolution representation
(19) then gives the strange quark PDF in terms of the explicit

(7)!;31"'/": = (By"1ysB)pt2...phn, (30a)  hadronic configurations as
-7 = 2(rbw (KR KR
Ot = (B'y"ysB)p' .. ph. (B0b)  As(x) = > (a7 ® Asy + ATSY @ A5y
B
1 - (tad) (tad)
Doy = 73 BB (30¢) + ZAf ® As,
- _ _ + Afrrb,w ® Asy+ > Afrpy ® Asyg,
Oy’ = fL (B'y"1Bp — By Bp)p...p*.  (30d) %: ’ ;
¢
(32)
for octet baryon operators, and
where for notational convenience we define the splitting
@l;l"'ﬂn = (Tvy*ysT,) p*...p*, (31a)  functions fi(y) = f;(5), with y = 1 — y the baryon momen-
tum fraction when the meson carries momentum fraction y.
@%--ﬂn = (T, B + BOMT,)p ... ph, (31b) For strange quarks the hadron labels span the mesons

for operators involving decuplet baryon fields.

In the present work we will focus on the polarized strange
quark distributions in the proton, As(x). Correspondingly,
the matrix elements of the hadronic operators give rise to the
octet rainbow, tadpole, Kroll-Ruderman, decuplet rainbow,

¢ = K, K*; octet baryons B = A,X% X*; and decuplet
baryons 7' = X0, ¥** The strange quark distributions in the
various hadronic configurations include the strange quark
PDFs in the octet and decuplet baryons, Asp or Asp
[Figs. 1(a) and 1(d)], the transition decuplet-octet PDF,

Asyp [Fig. 1(e)], the tadpole distributions, Asqgad [Fig. 1(b)],

//_\\ { \/ //_\\ //_\\
| R | \®/ ® \ l ®
(a) (b) (c)
//_\\ //_\\ //_\\
®_\ | ®_\ ﬁ—@ |

FIG. 1. One-loop contributions to the spin-dependent PDFs of the nucleon from (a) octet rainbow, (b) tadpole, (c) Kroll-Ruderman,
(d) decuplet rainbow, and (e) octet-decuplet transition diagrams. The octet baryons, decuplet baryons and pseudoscalar mesons are
represented by the solid, double-solid and dashed lines, respectively, while the symbol @ denotes insertion of the hadronic operators
defined in Egs. (27)—(29).
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and the Kroll-Ruderman distributions, AsB [Flg 1(0)].
Note that while the convolution result in Eq. (32) involves
the As}L distribution in the hadronic configuration, in our
calculations we shall assume that all of the antiquarks reside
in the pseudoscalar meson loops, so that the antiquark
polarization is zero, As; = 0. In the next section we discuss
the calculation of these PDFs in more detail.

C. PDFs in hadronic configurations

The spin-dependent strange quark distributions in the
hadronic configurations as appearing in Eq. (32) can be
computed by relating their moments to the coefficients of
the various terms in the twist-2 operator for the strange
quark in Eq. (29). Starting with the PDFs in the bare octet
baryons, Asp [Fig. 1(a)], the moments can be expressed in
terms of the coefficients @™, g and ("),

1 1
/ dx X" Asp(x) = 3 (@™ +251), (33a)
-1
1 1 _
/ dx X"~ Asy+ (x) :8<5‘(n) + 4B +65")  (33b)
-1
1
:/ dx x" " Asso(x). (33c¢)
-1

For the kaon tadpole distributions As\® X
moments are given by

[F1g 1(b)], the

1 _
/ dx X"~ lAs“ad)( ):E(5a<n>+2ﬂ<n>), (34a)
-1
bl g (ad) [ 5
dxx" ' AsSY (x) = — (@™ + 4p™). (34b)
1 K 12

For the distributions associated with the Kroll-Ruderman
diagram [Fig. 1(c)], the presence of the additional pion
at the interaction vertex means that the moments of AséKR)
are given in terms of the coefficients a™, ") and (in

principle) ¢,

1 3
/ dxx”‘lAsf\KR) (x) = %a("), (35a)
-1
/ L a1 AsKR () = L (g 4 ag)y (35b)
-1 x 62
|
5 / dx = AsKV(x). (35¢)
-1

Using SU(3) flavor symmetry, the axial-vector and
vector coefficients can also be written in terms of the
spin-dependent and spin-averaged PDFs in the proton [66],

=3 / X (4Au(x) — 2Ad(x)),  (36a)
5 :% / ¥ (5Ad(x) - Au(x),  (36)
5 =, (36¢)
and
o) — % / 1 dxx" (4u(x) - 2d(x)),  (37a)
pr = %/ dxx"\(5d(x) = u(x)),  (37b)
oM =0, (37¢)

respectively. From the relations in Egs. (33)—(37) one can

then write the spin-dependent strange quark PDFs Asp and

Asgad) in the strange octet baryons in terms of the polarized

nonstrange PDFs in the proton,

As(¥) = 5 (2Bu() - Ad(x)),  (38)
Asse (x) = Asgo(x) = Ad(x), (38b)
and
As\ (x) = %Au(x), (39a)
Asta (x) = %Ad(x), (39b)

and the spin-dependent strange Kroll-Ruderman PDFs

As%KR) in terms of the unpolarized nonstrange PDFs in
the proton,

(KR) 1

Asy ™ (x) = 5 \/§(2u() d(x)), (40a)
(KR), \ KR), 1 .

Asg> (x) = V2As (x)——\/zd( ). (40b)

For the PDFs involving decuplet baryons, the moments
of the spin-dependent distributions As; [Fig. 1(d)] are
related to the coefficient 7 in Eq. (29),

1 1 1
/1 dx x"'Asg (x) = —57(’0 = /1 dx x" ' Asgo(x),

(41)

while for the octet-decuplet transitions [Fig. 1(e)] the
moments of Asyp are expressed in terms of the
coefficient cb(”),
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1 1
dx x" 'Asgiigi (x) = ——a™
/_1 pAaD ( ) \/g

1
= —/ dx x" ' Assoso(x).  (42)
-1

From SU(6) symmetry the coefficient 7(!) can be related to the
meson-baryon coupling constant D [75],

7y = 3D, (43)

from which the decuplet spin-dependent strange PDFs can be
expressed as

Ass+(x) = Asgo(x) = = (Au(x) — 2Ad(x)). (44)

N =

For the coefficient of the octet-decuplet transition operators in
Eq. (29), SU(3) symmetry gives the relation

1 _
B == a + j, (45)

which allows the spin-dependent strange transition PDFs to
be written as

Assiigs (x) =—Asgogo(x) = % (Au(x)—2Ad(x)). (46)

With these relations, we have expressed all of the
necessary strange quark distributions in the hadronic
configurations in Fig. 1 in terms of PDFs in the bare
proton, which, together with the hadronic splitting func-
tions, constitute the input to the convolution formula in
Eq. (19). In the next section we will derive the complete set
of the hadronic splitting functions necessary to complete
the evaluation of the PDFs.

IV. HADRONIC SPLITTING FUNCTIONS

The spin-dependent hadronic splitting functions Af;
defined in Eq. (18) can be evaluated from the matrix
elements of the hadronic operators in Eqs. (30)—(31), which
correspond to the one meson loop diagrams in Fig. 1. In this
section we derive each of the splitting functions for the
octet rainbow, tadpole, octet Kroll-Ruderman, decuplet
rainbow, and octet-decuplet transition contributions as a
function of the light-cone variable y = k*/p*, where k* is
the four-momentum of the kaon and p* is the four-
momentum of the external proton. The octet rainbow
splitting functions have previously been computed in the
literature [59,61], while the spin-dependent splitting func-
tions for the tadpole and Kroll-Ruderman diagrams are
computed here for the first time.

A. Octet baryon rainbow

For the meson-octet baryon rainbow diagram of
Fig. 1(a), the splitting function is given by

1 Chy [ dk
e RELOe

X —i(ﬂ_gz MB)7+75
(P =¥+ Mp)

i
X
Dg

rbw
Afgr” (v)

(rsku(p) Di(ﬁé(w ).
(47)

where D, and Dp are the meson and octet baryon
virtualities,

Dy = k> — mj + ie, (48a)

Dy = (p —k)> — M3 + ie, (48b)
with my and Mp the kaon and octet baryon masses,
respectively. The spinor u(p) is normalized such that
i(p)u(p) =2M, and st is the “+” component of the
external proton spin vector s*. The coefficients C% ,» can be
obtained from the effective Lagrangian (1), and for the AK
and 2K configurations are explicitly given in terms of the D
and F couplings as

D +3F F-D
2V3 V2
Using the Dirac equation, the integrand in Eq. (47) can be

decomposed into several terms with different combinations
of meson and octet baryon propagators,

Csigo = V2Csop+ = (49)

CAK+ -

] C2 d4k NB NB NB
A rbw l B
f(B¢ )<y) ¢/ |: l 2 2

“2Ms* f3 ] (2n)* DD, DpDy Dy
k+
<o(v-1). (50)

where

NB = 2M3[MALs™ +2A5(k - pst —k-sp™)

+ M(K*st =2k - skT)], (51a)

NE = —4aMp[MAps™ + (k- psT™ —k-sp™)], (51b)

NE = —2Ms+, (51c)
with

Ap=Myz—M, My=Mz+M.  (52)
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In a frame of reference in which p, = 0, the two combi-
nations (k- ps* —k-sp*) and (k*s* —2k-sk™) appearing in
Egs. (51a)—(51c) become independent of k™. After integra-
tion over k*, these two terms take the forms yM?s™ and
(y2M? — k3 )s™, respectively. It is convenient, therefore, to

write the total octet baryon rainbow function A fg;w) as a

sum of three splitting functions associated with the on-shell,
off-shell and é-function contributions,

b C2 M2
(53)

Integrating over the k= component in Eq. (50) and using the
residue theorem, one can write the individual functions in
Eq. (53) in terms of integrals over k2. In particular, for the
on-shell function one has

on —k% + (Ap +yM)?
Af;; )(Y):)’/dkzl[ = —(2DBz 1]
YUy

F (v.k2).
(54)
where

K+ yM% + ym? — yyM?
Dyy =TT (ss)
’ y

and F gm)(y, k%) is a function that represents the regulari-
zation of the ki integration (see Sec. VI A below).

The result in Eq. (54) for the on-shell splitting function is
in agreement with that in Refs. [59,61]. On the other hand,
the new off-shell splitting function in Eq. (53) is given by

(off) 2 (Ap +yM) (o
A =g [ S BRI i), (s

where here F ](;ff) (y,k%) is the corresponding regulating
function for the k% integration [which can in practice be

different from the on-shell regulating function F gm)

in
Eq. (54)]. For the §-function term, Af’ f;), which arises from

meson loops with zero light-cone momentum (k* = 0),
one has

I
AfE () = ‘W‘S(y)/dki log @ Fy) (v, kD). (57)
B

where Q; = k7 4 mj, and F Ef) (y, k%) is the corresponding
regulating function.

A7)+ AL )+ A1 0)].

Compared with the splitting functions for the spin-
averaged case derived in Ref. [66], the spin-dependent
on-shell function A fgm) in Eq. (54) differs from the
spin-averaged analog by a change in sign of the k% term

in the numerator of the integrand. On the other hand, the

off-shell function Af$™ and the 5-function term AfY are

identical to the corresponding spin-averaged counterparts.

B. Tadpole

The distribution functions associated with the meson
tadpole diagram in Fig. 1(b), with an operator insertion at
the two nucleon—two meson vertex, can be written as

ta 1 d*k
A0 = 537577 | G )

x —8(k* = yp). (58)
D,

The tadpole splitting functions for the charged and neutral
kaon loop contributions are then given by

My
(4rf, ¢)2

A () = arBd(y) = - AP (B),  (59)

where the generic tadpole function A f((/f) related to the
o-function term in the rainbow diagram in Eq. (57) is

ALY () = =AF (). (60)

C. Kroll-Ruderman

The light-cone momentum distribution associated with
the Kroll-Ruderman diagrams in Fig. 1(c), which arise from
the derivative coupling in the pseudovector chiral effective
theory, is given by

i Cpy [ d*k _
s 7 | e
ARl
i(f— K+ Mp)

+y* D—BWs] u(p)

AfS () =

X Lé(kJr

b, K =0), (61)

Straightforward calculation gives
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Afg () =~

. C 4 M . +— . + - : - 2 N
R ™

2ms* f3 ) (2n)? DyDy

The Kroll-Ruderman splitting function can then be written in terms of the off-shell and S-function contributions as

CB¢MB [

A3 0) = = Gaaf

AL ) + 2878 0)] (63)

(off)

with the off-shell function A f 5 as in Eq. (56) and the §-function component A fﬁf’ in Eq. (57).

D. Decuplet baryon rainbow

For the decuplet intermediate states, because of the higher spin of the baryon the polarized splitting functions are
somewhat more complicated. The splitting function associated with the decuplet rainbow diagram in Fig. 1(d) can be
written as

rbw
A (y) =

1 C2T¢ d*k Ji(p=K+Mr) i(f =¥+ Mry)
2Ms+f§5/( 27) u(p )k GWD—TP/ (P—k)7’+7’5D—T

x P%(p — k)®"k,u(p) DLcS(k+ —yph), (64)
¢
where the usual spin-3/2 Rarita-Schwinger energy projector is

2
P“ﬁ(p)=9“”—— 7”——(7 P =) =5 PP (65)
T

This expression for the decuplet propagator corresponds to the particular choice Z = 1/2 in Eq. (9), for which the octet-
decuplet transition tensor operator ®* takes the simple form ¢*” — y*y*. The coefficients CZT(/) can be derived from the

effective Lagrangian (12), and for the *°K and X** K configurations are explicitly given by

C

Cseigo = —V2Cs05s = 7 (66)

In our analysis, we will take C = —2D from SU(6) symmetry. Straightforward but tedious calculation then allows A f Tr;,’w

be written in a form similar to the octet baryon result in Eq. (50),
e dk [ NT NI NT Kkt
(rbw) l T¢ 1 2 3

A = —|6ly——]). 67
10 =530 7 | Gy 5ib, 51y 0 ) o

as a sum of three terms involving different numbers of decuplet baryon propagator, D7. In analogy with the octet baryon
splitting function in Eqs. (50) and (51a)~(51c¢), the numerators N7 in Eq. (67) can be written as linear combinations of the
structures 2Ms™, (p - kst —k-sp™) and (kK*s* — 2k - skT),

NIT = - (3M7)2 [(2MM —i—M%)(p . k) —|—M( 4MM2 —TM*M — 2M3)p k — M*M?3 My +MT)AT]2MS+
+7(3M )2 [(Mr +MT)P “k(p- k_MMT) - MZM%ATKP kst —k-sp™)
T
4M 2 277 2+ +
- GM )2 [(p-k)*+M(Ar —M)p -k —M*Mr(My + Ap)](k*s™ =2k - sk™), (68a)
T
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o _
N3 = Gy WM (M My)(p - k) = 2M(AME + 12M°M .+ TMMG + M) p - k
T

+ M*(AM* + 12M3 M7 + SM*M% — 6MM3 — 3M3)]2M s ™

4 —

+2M*(2M? + 3M*My — MM% = 2M3)|(p - ks™ — k- sp™)

2M
+ G O = p 7~ MM 2k k), (68b)

1 —
NT = ETE (Mg +2M )2k — MP(4M? + 12MM 7 + TM3)2Ms*
T

+ (M7 +2M7)(M? — p-k)|(p-ks™ —k-sp™), (68¢c)

(3M7)?
where we define the difference and sum of the masses for the decuplet baryons as in Eq. (52),
ATEMT—M, MTEMT+M (69)

This structure then allows the decuplet rainbow splitting function to be decomposed into decuplet on-shell, off-shell and
S-function terms,

2 772
CroM7

Af(TrZW) )= W

on off
AF0) + AFP0) + AFP ). (70)
Details of the derivations of the individual functions in Eq. (70) are given in the Appendix. After the £~ integration we

therefore obtain

(on) 1 2 ) 2 5 21114 5 2 2 S2002\2 (on) 2
1 (y) 2(3MTM )2/ LJ—74D% {[ ( T ) H Y 7 ( T ) ]} T (y ) ( )

and

(off) 1 >
A = — dk
fr0) (3M7Mr)? / * ¥*Dr,

— [3M7 + 2YMM3. + 45*M> M3 + 65> M> My + y*M*|k3.

— — — off
— (M3 = 25MM3 + M| (My + MY (3,02, (72)

{k$ = [M7 +33MM 7 — MK

for the decuplet on-shell and off-shell functions, respectively, where F (To " and F (TO ) are the corresponding regulating

functions, and in analogy with Eq. (55) we have

K+ yM7 + ym3, — yyM?
: .

Dry = - (73)

For the 6-function contribution, we have

1

)y —
AfT (y) - (3MTMT)2

(1M + 20,2 = M2(4M2 + 12007+ TMR)]ALD () = M (M +2W)]AFS ()},
(74)

where the two functions proportional to §(y) are given by
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1

A () =003 / di2 Tog @, FYV (v, k2), (75a)
T
1

AfP0) = 60) 1z / di Q1og Q,F) (v, K2), (75b)
T

with regulating functions F (T(s l)()’,ki) and F gsz) (v, k%), respectively. Explicit expressions for each of the regulating

functions are given in Sec. VI A for Pauli-Villars regularization.

E. Octet-decuplet baryon transition

For the octet-decuplet rainbow transition diagrams in Fig. 1(e), the splitting function can be written as

rbw 1 C ,C d4k B : — ¥+ M . — ¥+ M
Af(Tngb) (y) = - IMs+ T;/% B(/)/ (2”)4 u(p) |:kﬂ®l‘/’ W'pfw(p _ k)®v+ W%’S
i(P—f+Mg) i(f—F+Myp) . 3 i K
+ ks Dy efH D, Pre(p —k)© k,,] u(p) D, 6<y - p*) , (76)

for the TB¢p = £VL°K™ and T*"E£K" configurations, with Cp, and Cr, given by Eqs. (49) and (66), respectively.
The two terms in the brackets of Eq. (76) correspond to the two orderings of BT and 7B in Fig. 1(e). Also note that there
are no Kroll-Ruderman type diagrams with decuplet intermediate states contributing to spin-dependent splitting functions.
In analogy with the splitting functions for the octet and decuplet baryon intermediate states in Eqs. (50) and (67),
we write the octet-baryon transition rainbow splitting function as a sum of three terms with different numbers of baryon
propagators,

AfE () = L CreChe / dh [N NP NP K (77)
B¢ 2Mst [} (2z)* |DrDgD, DDy Dy pt)’

where the numerators of the terms in the brackets are given by

MM _ o _ -
NP = 3TM2TB {2(MF —MM7)p -k +M(M + M7)MpA7]2Ms™ — [4(M + M7)p - k+8MMyA7|(p - ks™ — k- sp™)
T
F[AMp -k + 2M2(Ap — M) (K25t — 2k - k)1, (78a)
B 1 2 v ) 2 3 2 7 ) 2 2 n
N3P = o [2(A%y = MMy = MP)p -k + 3My MMy = M3 + M2My) + MMy (4M7 = 203, + M7)2Ms
T
4 o
+W[(MB_ATB)(I7'k_M2)+2M3_2M(M%B_MBMT)_3M%MT](p'ks+_k'Sp+)
T
M 7 20 (12t +
T
NTB — ! 2p -k —=2MM AMaM72Ms™ 4 M M kst —k + 78
3 —m[l" - 8 — 3MpM7|2Ms —m[ r+2M7](p kst —k-sp™), (78¢)

and we define
ATB EMT—MB, MTBEMT—’_MB' (79)

Finally, as with the octet-only and decuplet-only intermediate state contributions, the octet-decuplet transition splitting
function can be written in terms of on-shell, off-shell and J-function terms,
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CryCpyMrMrp

Aftap 0) = = G

[AFSS () + AL () + AFT () (80)

Following the steps given in the Appendix, the on-shell octet-decuplet transition function in Eq. (80) can be

written as

AFSR () =
— (A +yM)(Ap + yM) (M7

(1)

B
1 / K2 <F<TB) F
3MTMTBATB 32 DT{/ DB(/)

- yM)?], (81)

) (k4 — M Arg + YM(3My — Mp))k:

where the regulator functions Fyz; and F ;’2 are given in Sec. VIA below. The off-shell transition function is

given by

1 dar’ _ o
Af°ff( ):T/ _ { TB [M;(2M7 + yM)K% — Mp(Ap + yM)(My — yM)?]
TB 3M%MTMTB yz DT¢ T T T\=T T
FB)
+DTB [kt + (My(Mp —2A7g) + y(3M? + 4MM g + 3M pM7)k3
B¢

— (Ap + yM)(M} + M3 + (1 + y)MM7 Ay + yIM*(4M7 + M)

My ¥y (B + 5M) = 3yM M (M +me}, (82)

in terms of the same regulators F (Tl? and F (77; as in the on-
shell function (81). Finally, for the d-function contribution
to the octet-decuplet transition, we find

3MpMy

TB

1
AFS(Y) = = <2M +

(v ). e

where the function Af 55) is given by Eq. (75a).

V. NONANALYTIC BEHAVIOR

In the chiral expansion of moments of PDFs, the
coefficients of the LNA terms in the pseudoscalar meson
mass, my, are model independent and can only arise
from meson loops. Within the convolution framework of
Sec. III A, the LNA behavior of the nucleon PDF moments
is determined by the LNA behavior of the moments of the
splitting functions describing the transitions to the meson-
baryon intermediate states. In the unpolarized case, the
LNA terms were previously found to have a characteristic
mj log mj dependence [74,76-78].

To begin with, we define the nth moment of the spin-

dependent splitting function A}E:gz) in the hadronic con-

figuration h = B, T or TB by

~(n 1 i
a7 = [avyano) (84)

[

for the i = {on, off, 6} contribution. From the convolution
expression for the As PDF in the nucleon in Egs. (19)
and (32), and the definition of the nucleon PDF moment in
Eq. (13), we can write the nth moment of the strange PDF
in the nucleon as

Eapn

> klAfh ASnl)

(85)

where

1
ASI"D = / dx x"~ Asy (x) (86)
0

is the nth moment of the strange quark PDF As;, in the
hadronic configuration /4. The binomial symbol in Eq. (85)
arises from the splitting functions in Eq. (32) being
evaluated at y. From the relations in Sec. III C, the moments

ASEI"_I) are given in terms of the coefficients a\m, ,B<">, 5",
7, @™ o and ). Writing the contributions from the
different types of splitting functions in Fig. 1 explicitly, we
can compute the LNA behavior of the strange PDF
moments as
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e M3 —~(n-1 _ ~(k ~(k +(k n—1
(Rt = Z—BZ< >(_1)k I{C%za& [Afl(_’?()on) + Afg;(iff) + Afg_?({s)LNAASI(B )

B (4nfy)? i\ k— 1
0 0 (n-1) (n-1)
—ch,b[AfBoff 28750 | asyia + (a7 ]  ashedl
- e [aF® 2(0) (1) (n-1)
%; 477f »)? ;( > {C [AfT("“) A 7o A T@}LNAAST }

MiMrp - (k) (k) (k) (n—1)
Z (4nfy)? Z( > D1 CoCry [AfTB(on) + Afrp(om) T AfrB((s)LNAASTB } (87)

BT k=1

In the following we focus specifically on the n = 1 moment of the strange quark PDF, (x0){NA = ASSZI > Which requires
computing the LNA behavior of the n = 1 moments of the splitting functions, Afg(z) These are expanded in powers of

my/M, Ag/M, and Ar/M, and consider the nonanalytic (NA) behavior, which includes LNA and also higher powers, of
the individual on-shell, off-shell and d-function contributions. For the octet baryons, the NA behavior of the n = 1 moment
of the on-shell function is given for the cases when Ap > my or Ap < my,

2A% log m}, — 2RpAg log 242, [Ap > my]

72 A 71
M3AFy,

= _ (88)
n) |NA 2A% logmj — 2R A (7[ - Zarctang—[f), [Ap < m,)]

where Ry = |/A} —mj and Ry = ,/mj — Ap. The spin-dependent off-shell and 5-function terms are equivalent to the
corresponding unpolarized splitting functions, and for the n = 1 moments have the NA behavior [67],

2R}, Ap—R
—2m3 log m3 — 72 log RE=2E [Ap > my]
¢ ¢ Mg Ap+Rp @
M3 Ty = ’ (89)

VIna —2m¢logm¢+M (m— 2arctan ) [Ap < my)

2 A (1
M%Af}(_?()a) lina = mé log mé (90)

respectively.
For the decuplet rainbow splitting functions, the NA behavior of the n» = 1 moments of the on-shell and off-shell
functions is given by

L % [m?s - % (M + 27 )} log md) ZI;T <M + %AT) log 2:;2:, [Ar > m¢]
TEITOmINa Y a2 4 21 A 4 2Ry 21 Ay
§[m¢—?<M+7 )}logm(p 9 <M+7AT) (ﬂ—2arctan§—r), [Ar < my)
and
—% [mgs —% (M +1Ar } logmé, —2% (M +%AT> logﬁigT, [Ar > my)
eI = o (92)
T=VT(off) |ya 4l 2 A N 1 2 2Ry N ) Ar A
—§[m¢—7(M+§ T>] Ogmd)—T(M—i—i T)(]T— arctanﬁ—), [ T<m¢]

respectively, where Ry = | /A7 — mj and Ry = /mj — A7. Note that while the results for the individual on-shell and off-

shell contributions in Egs. (91) and (92) depend on the choice of the decomposition into the two pieces, the sum of the on-
shell and off-shell contributions is independent of the separation, and gives rise to
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Ar—Ry

8 [m?/) - %A%] log mi + 20ATRT log 357 [Ar > my)
W (AT oy + AT )., = (93)
8 [mg5 3N} ] log m3 + ZOATRT (ﬂ' - Zarctan%—:). [Ar < my)
The LNA contribution arising from the §-function term is given by
s 23
MEATY lixa = 5 m3 log m, (94)

9

For the octet-decuplet transition splitting functions, the NA behavior is slightly more involved because of the presence of
two baryon mass differences, Ap and A7. For the on-shell and off-shell splitting functions, the first moments are given by

. ~ 1 25 13 34
M MypA f;;;(m) - [—4m§, +2M (5 Ap + AT> + 3A§ +5 ApAr+ EA%] log 3,
— 1 16R? A — 16R? A
— Ry (MB - §MT + 9AT§) (7: - 2arctanF—§) - Ry <2MT - 9ATIT3> (7: - 2arctanR—:), (95)
8 > 1 2 ] 2 2
M MrpAF o ’NA = |3m3 —2M (585 + A7 ) — A3+ 8587 — 203 | logm}
_ 1 Ap Ar
+Rp(Mp—=-My )| x—2arctan=2 | + 2R My | = — 2 arctan =~ (96)
3 Ry Rr

for Ap < my and Ay < my. There is strong cancellation between the on-shell and off-shell pieces, resulting in a sum given
by

— ~(1 ~(1 4
MMy (Afg"l;(on) + Af(n);(ofﬁ)NA = [‘gm(p o (A2 + ApAr + A )] log m3;
16 |- Ap A
- Ry n—2arctan=2 ) — R} 7 —2arctan=" ) |. [Ap < My, Ar < my)
975 Ry Ry
(97)
In the chiral limit, one has Ap < my while Ay > m, and the corresponding NA behavior is given by
MiMypp (AJN((I) +AFy, ) - (-3 st 16(A2 +ApAr+ A7) | logmy
TB(on) TB(off) NA 3 ¢ 9 B T ¢
16 [ Ag —R
- Ry m—2arctan=" | + R} log T} Ag <my Ap>my) (98
9A7p [ ( RB) AT"'RT (g <my-Ar>my] - (98)
Finally, for the 5-function contribution the LNA behavior is
M MppAFY ’ = _sz log m? (99)
PHIBZITB() | A 379 ¢

In the chiral limit, m, — 0, the mass difference Az ~ (’)(mé) approaches zero first, while A7 remains a constant. Further
expanding Ry = Ay — mj /2A7 4 O(my), the LNA behavior in Egs. (93) and (98) can be evaluated as

2
m¢logm¢, (100)

NV #(1) #(1)
M% (AfT(on) + Af’l’(off )LNA 9
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4
e +—m§,logm(2p,

T 7(1) #(1)
MMy (AfTB(on) + AfTB(off)) 3

LN
(101)

for the 7 and TB contributions, respectively.

Finally, combining the derived LNA behaviors for the
splitting function moments with Eq. (87), the LNA con-
tribution to the » =1 moment of the spin-dependent
strange quark PDF in the nucleon is given by

0 _ ! ( 2 A5 L A5O)
ASRA =Y 7y (G5, ASY) + A
LNA BT¢(4”f¢)2 Bp2OB b(tad)
7
+3ChyASy CB¢CT¢AS$;> m3 log m3.

(102)

Summing over all the relevant octet B and decuplet 7 states,
and using the expressions for the couplings in Eqgs. (49)

and (66) and the moments ASS» in Sec. III C, we arrive at
the final result for the LNA behavior of the n = 1 strange
PDF moment,

1 5 1
ASO) =—— (2D*+3DF(D—F)+-(3F-D
LNA ( 4]1_ f¢)2 9 ( ) 2 ( )
x mg log my. (103)
We stress that any calculation of the strange quark PDFs in
the nucleon or its moments must obtain this behavior, if it is
to be consistent with the chiral symmetry properties of
QCD, which provides an important, model-independent
constraint on nonperturbative models of the nucleon.

VI. NUMERICAL RESULTS

Combining the results derived in Secs. III and IV for the
splitting functions and the PDFs in the hadronic configura-
tions, in this section we present the results for the numerical
computation of the spin-dependent strange quark distribu-
tions in the proton. We begin by discussing the regularization
procedure for the splitting functions, and then compare the
computed PDFs with some recent phenomenological para-
metrizations from global QCD analyses.

A. Regularization of splitting functions

The hadronic splitting functions computed in Sec. IV in the
framework of chiral effective theory generally involve
loop integrals that are ultraviolet divergent. A regularization
prescription is therefore required to regulate the high-energy
behavior and render the loop integrals finite. Various pre-
scriptions have been utilized in previous analyses, including
dimensional regularization [79], finite momentum cutoffs,
Pauli-Villars [65,66], as well as finite-range regularization

within local [80-82] and nonlocal [83,84] formulations.
Following our earlier analysis of spin-averaged strange-
antistrange quark asymmetries [65,66], we adopt here the
Pauli-Villars regularization scheme, which has the advantage
of preserving the Lorentz invariance, gauge invariance, and
chiral symmetry of the effective theory. It allows us to use the
same phenomenological parameters as those determined in
the unpolarized strange analysis [60].

As discussed in Refs. [65,66], the Pauli-Villars method
regularizes divergent integrals by subtracting from the
pointlike expressions in which the propagator masses are
replaced by finite cutoff masses, such that in the high-
energy limit the difference between them vanishes. For the

on-shell baryon octet splitting function, Af™, we employ
the subtraction

1 1 1 1
R N _
Dy K—my K —-my K —pj’

(104)

which corresponds to using a regulating function in Eq. (54)
given by

(105)

where y is the subtraction mass parameter, and Dp is given
in Eq. (55), and Dg, is given by an analogous expression
with my — p;. A similar replacement to that in Eq. (104) is
made for the off-shell baryon octet function, A fg)ff>, in
Eq. (56), in which case the off-shell regulating function
becomes

F(y,k2) =1 -

(106)

For the §-function term, A fg), in Eq. (57), two subtractions
are necessary to take into account the divergences in both the
k= and k% integrations,

1 1 a ar

- - - )
D, Em @ g

(107)

where u; and yu, are the mass parameters for the subtraction
terms, whose coefficients a; and a, must satisfy the relation

2 2 2 2

Hy —my Hy—my
01:—2_ 5 a, = — 2 _ 2 (108)

Hy — Hy — I

This leads to an effective regulating function in Eq. (57)
given by
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a;logQ, + alogQ,

FY(y.k3) =1- . (109)

log Q,

with Q, = k3 + p?.

In the decuplet sector, the loop integrals associated with
the on-shell and off-shell functions are more divergent than
those of the octet contributions due to the presence of
derivative couplings. Regularizing the integrals for the
decuplet splitting functions, therefore, requires several
subtractions, which we take to have the form

1 1 b, b, by b,

_) - - - - b
Dy K—my K—pi K- K- kK—j
(110)

where the coefficients b; satisfy

4 m2_ﬂ2
¢ J .
b, = — —-, i=1,...,4. (111)
’ gu?—ﬂf
Vil

1
FOV0 ) =1-—— {1oggﬂ+

log Q,

5 1
Fy >(y,ki):1—m{

for the two functions in Egs. (75a) and (75b), respectively.
Finally, for the octet-decuplet transition splitting functions,
the regulators in the on-shell and off-shell functions in
Egs. (81) and (82) are given by

(mz —M2>4
Fry(y. k) = == (116)
Bu
(mz —M2)4
Fry(y.k1) =~ (117)
Ty

In our previous analysis of meson loop contributions to
the spin-averaged strange quark PDFs in the proton
[65,60], the cutoff parameter u; was fixed by fitting the
pp — AX differential cross section data, and an upper limit
was set on p, by requiring that the calculated total s + 5
distributions do not exceed the phenomenological values,
within the experimental uncertainties, for any value of x.
The best fit gave {u;,u,} = {545,600} MeV, while the
set {py, up} = {526,894} MeV resulted in two standard
deviations below the best fit. For the cutoff parameter y
in the decuplet sector, a good fit to the pp — T**X

203 - 9Q3Q, + 18Q,02 — 110}

To reduce the number of free parameters, in our
numerical analysis we take fi; = ji, = jiz = jiy = u for
the decuplet baryon contributions, in which case we have
the replacement

b e\t
D, kz—mg5 K — u?

For the on-shell and off-shell decuplet splitting functions
in Egs. (71) and (72), the regulating functions can be
written as,

(112)

2 _ 24
(on) o oy _ (Mg —#) 4D,
FPV (v k%) = 1+ . (113)
T 1 Dz}ﬂ Dy,
2 _ 24
ff (m¢ —u)
F(TO >()’7k2¢):D747 (114)
Tu
respectively. For the decuplet é-function contributions,
Eq. (74), Pauli-Villars regularization gives the regulating
functions

11
60} } ’ (1152)

Q,logQ, —

Q- 6Q5Q, + (5Q, + 24* — 2mé)9ﬁ]

(115b)
602

differential cross section data [85] was achieved with
u=762(21) MeV. In the present analysis of spin-
dependent PDFs we use the same parameters, along with
SU(3) symmetric values of the couplings Cpy and Cry, to
compute the splitting functions numerically.

The spin-dependent splitting functions for the strange
octet, decuplet and octet-decuplet baryon interference inter-
mediate states are shown in Fig. 2, for the on-shell and off-
shell contributions. For the octet baryon splitting functions

[Fig. 2(a)], both the on-shell Af{™ and off-shell Af™
polarized functions are negative for all values of y, peaking
at y~0.1-0.2. Interestingly, the off-shell function has a
magnitude that is several times larger than the on-shell
function. Compared with the analogous spin-averaged
results [66], the (negative) spin-dependent on-shell function
is about 4-5 times smaller in magnitude, while the off-shell
function is identical in both cases (there is a small difference
arising from the different baryon masses between A and X°).
The uncertainties on the on-shell and off-shell distributions
arising from the choice of cutoffs x; and u,, indicated by the
bands, is smaller than the difference between the respective
on-shell and off-shell results.
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FIG. 2. Momentum dependence of the spin-dependent splitting functions for (a) octet baryon Afp and (b) decuplet baryon Afr
(dashed lines) and octet-decuplet interference A f7 (solid lines) intermediate states for the on-shell (red bands and curves) and off-shell
(blue bands and curves) contributions. The octet results are computed for the Z°K ™ intermediate state with the cutoffs in the range
{u1, po} = {545,600} to {526,894} MeV for the upper (dashed) and lower (solid) edges of the bands, respectively, while the decuplet
results are computed for the TOX°K~ intermediate state with a cutoff u = 762 MeV.

For the splitting functions that involve decuplet baryons
in the intermediate state [Fig. 2(b)], the on-shell contribu-
tions vanish at y =0, while the off-shell contributions
remain nonzero. The decuplet on-shell and off-shell split-
ting functions are both positive, while there is strong
cancellation between these two pieces for the octet-
decuplet interference splitting function. Note that since

Afs) and Afiy) are multiplied by the couplings Cr,,Cpy
in Eq. (80), which for the XX0K* case is negative
[Egs. (66) and (49)], the sign of the overall contribution
of these terms can be opposite to that shown in Fig. 2.

B. Polarized strange quark distributions

With the hadronic splitting functions thus determined,
the remaining ingredients needed to proceed with the
evaluation of the polarized strange quark PDF in the proton
are the PDFs in the hadronic configurations in Sec. III C.
Specifically, the SU(3) relations in Egs. (38)—(40), (44)
and (46) connect the strange quark PDFs for the various
|

intermediate states with the spin-dependent and spin-
averaged u and d quark PDFs in the proton. The PDFs
in the proton are relatively well determined from global
analyses of high-energy polarized [39,42,86] and unpolar-
ized [87,88] cross section data. For the spin-averaged u and
d quark distributions in the proton, for convenience we
use the recent CJ15 parametrization [89] at Q% = 1 GeV?,
while the polarized PDFs, Au and Ad, are taken from the
JAM analysis [42] at the same scale. We have also
performed the analysis with other unpolarized [90] and
polarized [37] PDF sets, and found the dependence on the
choice of input parametrization relatively mild.

For representing the contributions to the polarized
strange PDF from the various terms in Eq. (32), it is
convenient to express the total distribution in terms of the
diagrams in Fig. 1. Decomposing each diagram into on-
shell, off-shell and S-function contributions, in analogy
with the unpolarized case in Ref. [66], one can write the
total As PDF as

As(x) = (As© + AsC) 4 As@)p 0+ (As©T + As@)p + (As®)

+ (As©M 4 As©) 4 As@)) 4 (As©O) 4 A 4 AG@) (118a)
on on on off off off off
- Asl(_’? rb)w + Asgl‘rb>w + As;‘szw + ASI(B rblv + AS;’rblv + AS(TBrz)w + As%(R)
on—shell off—shell
+ Ay + AST iy + Asp, + Asig + Asyg. (118b)
o-function

Note that the on-shell contributions arise only from the
(octet, decuplet and octet-decuplet interference) baryon
rainbow diagrams [Figs. 1(a), 1(d), and 1(e)], the off-shell
terms come from rainbow and Kroll-Ruderman diagrams

|
[Fig. 1(c)], while all diagrams, including the tadpole
[Fig. 1(b)], contribute to the S-function terms.

The contributions to the polarized strange PDF xAs
from the various terms in Egs. (118a)—(118b) are shown in
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FIG. 3.

Contributions to the xAs distribution in the proton at 9> = 1 GeV? from various meson loop diagrams with octet intermediate

states [panels (a) and (b)] and decuplet (and decuplet-octet interference) states [panels (c) and (d)]. The bands for the octet contributions
correspond to the range of parameters {u, 4, } = {545,600} MeV to {526,894} MeV for the dashed and solid edges of the bands,
respectively, while the decuplet results use y = 762 MeV. The left column [panels (a) and (c)] corresponds to the decomposition
according to the diagram type [Fig. 1 and Eq. (118a)], while the right column [panels (b) and (d)] corresponds to the decomposition

according to the function type [Eq. (118b)].

Fig. 3, for both the decompositions in terms of types of
diagrams [Eq. (118a)] and types of functions [Eq. (118b)].
For the octet baryon states, we find [Fig. 3(a)] large
cancellations between the negative rainbow and positive
KR diagrams, with the tadpole diagram making a smaller
and positive contribution. The result is a negative total octet
baryon contribution to xAs that is about 1/3 of the size of
the rainbow, peaking at x ~ 0.2.

A somewhat clearer picture of the cancellations is revealed
when we look at the total on-shell, off-shell, and é-function
contributions in Fig. 3(b) from all octet baryon diagrams. At
intermediate values of x, the negative on-shell and off-shell
components give comparable contributions, with the off-
shell dominating at smaller x. In contrast, the d-function
piece is positive, with a broad shape peaking at x ~ 0.3-0.4.
Its overall magnitude is smaller than the other contributions,
so that it only partially cancels the negative on-shell and off-
shell terms, leaving the total xAs distribution peaking at
around —0.002 to —0.003 for x ~ 0.2.

For the diagrams involving intermediate states with
decuplet baryons, shown in Figs. 3(c) and 3(d), there are
again large cancellations between positive decuplet rain-
bow and negative octet-decuplet transition contributions,
whose overall magnitude is smaller than those from the
octet states. Furthermore, in contrast to the octet case, the
off-shell contribution is positive, but canceled somewhat by
the negative on-shell and J-function terms, which turn out
to have a very similar shape and magnitude. The net result

is a total positive effect, with about 1/5 of the magnitude of
the octet contribution.

Comparing the calculated polarized strange distribution
with phenomenological PDFs obtained from global QCD
analyses, in Fig. 4 we show the total xAs from the
chiral theory together with parametrizations from the

0.002 __— NNPDF

B0

N—
+

w

4 —0.002

8 meson loops

—0.004 Q* =1 GeV?
0 0.2 0.4 0.6 0.8 1
T

FIG. 4. Comparison of the calculated total meson loop con-
tribution to the polarized strange quark PDF (dark red band) with
xAs™T = xAs + xA5 from the phenomenological NNPDF [39,86]
(orange band) and JAM [42] (yellow band, spanning most of the
graph) global QCD analyses at Q> = 1 GeV2. The band for the
meson loop contributions corresponds to the range of cutoff
parameters {u, yy } = {545,600} MeV to {526,894} MeV for
octet baryons and p = 762 MeV for decuplet baryons.
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TABLE L

Individual contributions to the first moment of As(x) at Q> = 1 GeV?, in units of 102, summed over the appropriate octet

and decuplet hyperon states. The contributions from octet, decuplet and octet-decuplet interference intermediate states, as in Eq. (118b)

are listed separately. The sum of all contributions to the total moment is in the range (As) = [-0.50,—0.25] x 1072.
fr s ff s s
(i} MeV)  (As)in), (A5) ion (AS) T (As)ii) (As) (As)) total
{545,600} —-0.40 -1.62 0.07 1.43 —0.15 0.08 —-0.59
{526,894} —-0.23 —0.98 0.15 0.86 —0.31 0.17 -0.34
ff 5 fif s
H (MCV) <As>(Tornb)w <AS>§?rb1v <As>§"2bw <As>;f}?ibw <As>;?Br>bw <As>;"52rbw total
762 0.10 0.05 0.10 —0.25 0.26 -0.17 +0.09

NNPDF [39] and JAM [42] analyses at Q> = 1 GeV?. The
most striking observation is the small magnitude of the
calculated strange polarization compared with the uncer-
tainty bands of the global parametrizations, which reflects
the relatively weak constraints on As that exist from current
experiments. The JAM study [42], in particular, performed
a dedicated analysis of the strange quark PDF using data
from inclusive and semi-inclusive DIS, without imposing
the commonly used assumption about SU(3) flavor sym-
metry for the axial charges extracted from hyperon decays
[91]. This leads to a significantly larger uncertainty on As
than that obtained in analyses that do impose SU(3)
symmetry on the axial charges [31-40].

Furthermore, since existing data cannot discriminate
between the strange quark and antiquark polarizations,
all of the global QCD analyses assume that As = AS, so
that in practice As™ = As + A5 — 2As. In contrast, in the
chiral theory calculation, assuming valence dominance of
the bare hadronic state wave functions, the only source of
strangeness in the proton is the coupling to the strange
meson—baryon intermediate states. Since all strange anti-
quarks reside in the spin-O kaon, in this framework the
antistrange polarization AS is identically zero. One may
therefore expect the determinations of the strange polari-
zation in the global QCD analyses to overestimate the As
contribution from the chiral calculation.

Integrating the calculated distribution over all x, in
Table I we list the contributions of the various terms in
Eq. (118b) to the lowest (n = 1) moment of As(x), which
from Eq. (13) we denote by (x°),, = (As). Numerically, a
large degree of cancellation is seen between the various on-
shell and off-shell terms, with the §-function terms being
somewhat smaller. Within the range of cutoff parameters
considered in this analysis, the octet baryon intermediate
state contributions to (As) are found to be in the range
—0.006 to —0.003, while the contribution from decuplet
baryon intermediate states is & + 0.003 and from octet-
decuplet interference ~ — 0.002. The net polarization in the
proton carried by strange quarks is then predicted to be in
the range (As) = [—0.0050, —0.0025] within the uncertain-
ties of the cutoff parameters.

This can be compared with the value determined
from the JAM global QCD analysis [42] of (Ast)jay =
—0.03(10). While our central values are about an order of

magnitude smaller than the phenomenological results,
they are in good agreement within the relatively large
uncertainty. Future data on semi-inclusive DIS and parity-
violating inclusive DIS from the planned Electron-Ion
Collider [92] should reduce the uncertainty on the extracted
(As™) and allow a better discrimination between the As
and A§ distributions.

VII. CONCLUSION

In summary, we have performed a comprehensive study
of the polarized strange quark distribution in the proton
within chiral effective field theory at the one meson loop
level. The full set of spin-dependent proton — meson +
baryon splitting functions was computed, including con-
tributions from octet and decuplet rainbow diagrams, as
well as tadpole, Kroll-Ruderman and octet-decuplet tran-
sition diagrams. From these we derived the leading non-
analytic behavior of the lowest moment of the polarized
strange quark PDF, finding the characteristic mj logm}
form with a coefficient depending on low-energy baryon
properties.

We have used the Pauli-Villars regularization scheme to
regularize the ultraviolet divergences in the loop integrals,
with cutoff parameters determined from comparison of the
spin-averaged distributions with semi-inclusive hyperon
production in pp collisions. With these parameters the
octet intermediate state contributions are dominated by the
negative on-shell term, with further enhancement from
the off-shell term at low x, and partial cancellation from the
positive -function component. Some cancellation also
exists between the positive decuplet rainbow and the
negative octet-decuplet contributions, with both on-shell
and off-shell terms playing an important role.

The result is that the octet contributions are mostly
responsible for the polarized strange PDF As(x) being
negative at small x, with the lowest moment, (As), lying
in the range (—5.0,—2.5) x 1073, In comparison with the
recent JAM global QCD analysis, (As™*);,u = —0.03(10)
[42], or the latest lattice QCD calculation from the ETM
Collaboration, (As™),,, = —0.046(8) [47], the chiral con-
tribution is relatively small, although consistent with the
phenomenological values within the uncertainties.

In the future it will be important to compare the current
work with calculations within a nonlocal chiral theory, such
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as that used for the unpolarized sea quark asymmetries in ~ under which Jefferson Science Associates, LLC operates
Refs. [67,68]. Furthermore, extending the analysis to the Jefferson Lab, DOE Contract No. DE-FG02-03ER41260,
nonstrange (valence quark) distributions Au(x) and Ad(x)  and by the NSFC under Grant No. 11975241.

using the relativistic formalism presented here should

provide robust estimates of the effect of the chiral effects APPENDIX: DERIVATION OF DECUPLET AND

on the axial charges g, and gg and total helicity AX carried OCTET-DECUPLET SPLITTING FUNCTIONS

by quarks. . . .
In this Appendix we present some details about the

ACKNOWLEDGMENTS derivation of the decuplet rainbow splitting function

(rbw) .
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Discovery Projects DP151103101 and DP180100497  as discussed in Sec. VI A. After performing &k~ integration
(AWT), the DOE Contract No. DE-AC05-060R23177, in Eq. (67), the first term gives rise to

|
B %/ 'k NT (my—p)! ( E)
2Ms* f3 ) (27)*DiD, (K —u2) p*
Gy (’“55_”2)4/61;(2 YKL + (My + 3M)*|[k{ - 8FMM ki — (M7 — 3°M*)’] | 4 4Dy
(47sz/))2 (3MT)2 2)_’4D%¢DA}M DTM
| KL= SYMM I — (M + SM)* (M7 + SMMy + izMz)}
)_)3DT¢D471‘M ’

(A1)

where Dy, is given by Eq. (73), and Dy, is given by an analogous expression with m,, — u. The second term in Eq. (67) can
be written as

- %/ Ik _N; (mé_”2>45<y—ﬁ) _ iy (mé_ﬂ2)4/dk2 K = SBMM, - MR

2Ms* fy, J (22)* DDy (K — u?)? pt)  (4nfy) (3M3)? S ¥ DryDY, *
— [3M% + TYMM3. + 45*M> M3 + 6> M> M7 + y*M*]k%

- 2M7 = Y MPM; + P MMy + 7MY (M +3M)*}. (A2)

The term proportional to 1/ D%(p in Eq. (A1) is identified as the on-shell splitting function, consistent with the result in
Ref. [61], which gives rise to Eq. (71) and the regulating function in Eq. (113). The sum of the terms proportional to 1/Dr,,
in Egs. (A1) and (A2) gives rise to the decuplet baryon off-shell function in Egs. (72) and (114). Finally, the 1/ Dy, term in
Eq. (67) that gives rise to the J-function term involves the integral,

| #5, %‘5(%16_) _4('”3‘“2>4/d4%]"Z[z<k2—u2+ie>+<1Z3—z><k2—m?/,+ie>]55<y_z_:>

1o [ 1 Kt
LA R RN I S | 2
689‘% “/ K —Q+ ie) (y p+>

i 0" /ld */de log(k3 + Q)8(y)
=— = zz
6 OQ4 0 L €

. ! z
:—lﬂ'z/dki/) dZmﬁ(y)

Q, 2 -902Q +18Q,Q ]
_iﬂ2/dk2l|:10g_’/’ 4 P="n ¢ ﬂ+€:|5(y),

Q, 6Q;

where
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Q:zﬂz—l—(l—z)mi, Q¢:ki+mé, Q, =k + 4. (A4)

Similarly, we can compute the integral

3 2
Q, Q

2yp -k (my —p?)* K\ / Q, 5\ 1 7
d*k Sly—"2) =ir® | di3|Qy(log—L+2) == (m3 —u?) + —2 ——2|5(y). (A5
/ D(f? (k2 _ ﬂ2)4 y p+ i L P 0g Qﬂ + 6 3 (m(/) H ) + 69124 Q}l (y) ( )

Combining the results in Egs. (A1)-(AS5), we then arrive at the expressions for the on-shell, off-shell and J-function
decuplet splitting functions in Egs. (71), (72) and (74), respectively.

For the octet-decuplet transition splitting function A f;rg;z), following the same procedure we have for the first term in
Eq. (77),

i CryCg, / dk  NTE (my—p)* ( k*
(

2Mst £ 2n)* DrDpDy (K* — p?)* pt
 CryCpyMpMypy (mj —p?)? /dk2 {i [ 11 }
(4nfy)*  3MIMppArp 152 DT¢DL}M DB¢D%,,

x [k — 2MrArs + IM(3My — Mg))ki — (Ap + yM)(Ar + yM) (M7 — yM)?]

A _ N
+ o s (M + 3M)RE = (Ap + yM) (M = yM )]
Y Uty Tu
A B _ _ _ —
~op - [(Arg + 3M)K + M2 (M7 + 3M) + Mp(MG + 5MM 7 + 5°M?)] } (A6)
y Bp™ Bu

For the second term in Eq. (77), we can write
i CryCpy [ dk NI¥ (mG =)' (k"
Mt T / (22 DyDy (K = )* <y p+>
_ CT¢CB¢MTMTB (mé ) / di2 1
(4nf4)*  3MIM My + 2Dy, D},
x {k} — [M} —2MMp + MMp — y(4M* + MMy + 3MyMp + 4MMp)]k3
= My — Miy(My = 3yM7) — My[M7 = 252M? + (1 + 3y — 6y*)MM]
+ YM[M3My + 3yMM3. + 37°M*My — Y3 M3] + MM p[M% + (1 + 35*)MMy + 35M?]}. (A7)

As for the decuplet rainbow diagram, the first term in the braces of Eq. (A6) is defined as the on-shell octet-decuplet
splitting function, Eq. (81), consistent with the result of Ref. [61], and the remaining part is combined with Eq. (A6) to give

the off-shell octet-decuplet splitting function, Eq. (82).
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