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The energy-momentum tensor form factors furnish information on the mechanics of the proton. It is essential to 
compute the generalized isovector-vector form factors to examine the flavor structure of the energy-momentum 
tensor form factors. The flavor-decomposed form factors reveal the internal structure of the proton. The up quark 
dominates over the down quark for the mass and spin of the proton, whereas the down quark takes over the up 
quark for the 𝐷-term form factor. We investigate for the first time the isovector 𝑐(𝑡) form factor of the proton 
and its physical implications. The flavor-decomposed 𝑐(𝑡) form factors of the proton unveil how the up-quark 
contribution is exactly canceled by the down-quark contribution inside a proton within the framework of the 
pion mean-field approach. While the proton 𝑐(𝑡) form factor does not contribute to the proton mass, its flavor 
structure sheds light on how the strong force fields due to the 𝑐(𝑡) form factor characterize the stability of the 
proton.
1. Introduction

The cosmological constant term (CCT) in Einstein’s equation in gen-
eral relativity encodes the vacuum energy density of the universe, aris-
ing from the quantum fluctuations [1–3]. The cosmological constant 
(CC) is also known to be connected to the dark energy [4,5]. In non-
perturbative quantum chromodynamics (QCD), the gluon condensate 
gives the energy of the QCD vacuum [6,7], which can be identified as 
the QCD CC. If we decompose the proton matrix element of the energy-
momentum tensor (EMT) operator in terms of the EMT form factors, 
one term is proportional to the metric tensor. Its coefficient is called 
the proton 𝑐 form factor, which has a similar structure as the CCT in 
Einstein’s equation, Λ𝑔𝜇𝜈 . The proton 𝑐 form factor furnishes critical in-
formation on understanding the mechanics of the proton [8,9]. Since 
the 𝑐 form factors arise only when EMT current is not conserved, they 
are naturally scale-dependent [10,11]. When both the quark and gluon 
degrees of freedom are considered, the proton 𝑐 form factor disappears, 
because of conservation of the EMT current. However, the proton 𝑐
form factor comes into play when the flavor structure of the proton 
energy-momentum tensor form factors (EMTFFs) as well as the pro-
ton mass decomposition is explored. The proton mass is decomposed 
in terms of 𝜋𝑁 sigma terms, the quark and gluon energies, and the 

* Corresponding authors.

trace anomaly [12,13]. On the other hand, the proton 𝑐 form factor 
was recently interpreted as the isotropic pressure-volume work [14,15]
by using the relation between the EMTFFs in the forward limit and the 
terminologies of perfect fluid in general relativity. It also gives a clue 
in understanding the partial internal energy inside a proton. When one 
investigates the flavor structure of the proton EMTFFs, the effects of 
the 𝑐 form factor emerge. To carry out the flavor decomposition of the 
EMTFFs, one has to compute the generalized isovector-vector form fac-
tors (GIVFFs). Since there is no physical reason for conservation of the 
isovector EMT-like current, the isovector 𝑐 form factor survives.

In this Letter, we investigate the proton 𝑐 form factors that arise 
from the GIVFFs, which we currently have no empirical information 
about. To calculate the proton EMTFFs and GIVFFs, we use the pion 
mean-field approach, also known as the chiral quark-soliton model 
(𝜒QSM) [16,17]. The 𝜒QSM is built on an effective chiral action that 
is solely composed of the quark degrees of freedom. This effective chi-
ral action is obtained by integrating out the gluon degrees of freedom 
from the instanton vacuum, and established in Refs. [18,7]. This pro-
cess can be broken down into several steps: first, after the gluon degrees 
of freedom have been integrated out, the quark-quark interaction with 
a 2𝑁𝑓 vertex is derived, where 𝑁𝑓 denotes the number of flavors. This 
leads to the spontaneous breakdown of chiral symmetry, which results 
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in the emergence of Nambu-Goldstone bosons and the dynamical quark 
mass. Next, the 2𝑁𝑓 interaction is bosonized by incorporating pseudo-
Nambu-Goldstone fields. Then we have integrated over the dressed 
quark fields to obtain the one-loop effective chiral action. The influ-
ence of gluons is effectively accounted for through the dynamical quark 
mass in a renormalization sense. Consequently, the quark EMT current 
alone is conserved in this framework, resulting in a vanishing proton 
𝑐 form factor from the quark EMT. Interestingly, the zero value of the 
proton 𝑐 form factor [19] is deeply linked to the von Laue condition for 
proton stability. Ref. [20] showed that both quark and gluon contribu-
tions were insignificant.

The large 𝑁𝑐 behaviors of the 𝑐 form factors in flavor SU(2) symme-
try are rather subtle. While the isovector 𝑐 form factor is proportional 
to 𝑁−1

𝑐 , the isoscalar 𝑐 form factor is of 𝑁0
𝑐 order. On the other hand, 

the conservation of the EMT current forces the isoscalar 𝑐 form factors 
to vanish. It imposes a strong constraint on the isovector 𝑐 form factor: 
The down-quark component should always be the same as the negative 
up-quark component in the present framework.

2. Energy-momentum tensor form factors of the proton

The matrix element of the bilocal quark and gluon vector opera-
tors on the light cone is parametrized in terms of the vector GPDs 
𝐻𝑞,𝑔(𝑥, 𝜉, 𝑡) and 𝐸𝑞,𝑔(𝑥, 𝜉, 𝑡), where 𝑞 and 𝑔 denote the quarks and gluon 
degrees of freedom, respectively. They are given as functions of the 
longitudinal momentum fraction carried by partons 𝑥, the skewedness 
variable 𝜉, and the momentum transfer squared 𝑡. Here we consider 
quark contributions to them only. In the leading-twist accuracy, this 
matrix element can be expressed in terms of the unpolarized GPDs as 
follows [21]:

∫
𝑑𝜆

2𝜋
𝑒𝑖𝜆𝑥

⟨
𝑝(𝑝′, 𝐽 ′

3)
|||𝜓̄𝑞 (−𝜆𝑛2 )

∕𝑛𝜓𝑞
(
𝜆𝑛

2

)|||𝑝(𝑝, 𝐽3)⟩
= 𝑢̄(𝑝′, 𝐽 ′

3)

[
𝐻𝑞(𝑥, 𝜉, 𝑡)∕𝑛 +𝐸𝑞(𝑥, 𝜉, 𝑡)

𝑖𝜎𝜇𝜈𝑛𝜇Δ𝜈
2𝑀𝑝

]
𝑢(𝑝, 𝐽3), (1)

where 𝜓𝑞 is the quark field with flavor 𝑞 and 𝑀𝑝 represents the proton 
mass. 𝑝 and 𝑝′ denote the initial and final momenta. Their average and 
difference are defined by 𝑃 =

(
𝑝′ + 𝑝

)
∕2 and Δ = 𝑝′ − 𝑝 with Δ2 = 𝑡, 

respectively. 𝑛 stands for a light-cone vector satisfying 𝑛 ⋅
(
𝑝′ + 𝑝

)
= 2. 

The longitudinal momentum fraction of a proton carried by a parton is 
denoted by 𝑥 and the skewedness is expressed as 𝜉, which is defined as 
𝑛 ⋅ Δ = −2𝜉. The first and second Mellin moments of the vector GPDs 
are identified as the electromagnetic (EM) form factors and EMTFFs, 
respectively. Note that the Mellin moments of GPDs must satisfy the 
polynomiality, of which the maximal order is given as 𝑛 + 1 due to 
Lorentz invariance [21,22]. Thus, the proton generalized form factors 
are defined by the (𝑛 +1)th Mellin moments of the GPDs as follows [23]:

1

∫
−1

𝑑𝑥 𝑥𝑛𝐻𝑞(𝑥, 𝜉, 𝑡) =

𝑛∑
𝑖=0,even

(2𝜉)𝑖𝐴𝑞
𝑛+1𝑖(𝑡) + (2𝜉)𝑛+1𝐶𝑞

𝑛+10(𝑡)|𝑛,odd,
1

∫
−1

𝑑𝑥 𝑥𝑛𝐸𝑞(𝑥, 𝜉, 𝑡) =

𝑛∑
𝑖=0,even

(2𝜉)𝑖𝐵𝑞
𝑛+1𝑖(𝑡) − (2𝜉)𝑛+1𝐶𝑞

𝑛+10(𝑡)|𝑛,odd, (2)

where 𝐴𝑞
𝑛+1𝑖, 𝐵

𝑞

𝑛+1𝑖 and 𝐶𝑞
𝑛+10 stand for the generalized form factors of 

the quark part in QCD. The first Mellin moments 𝐴𝑞10(𝑡) and 𝐵𝑞10(𝑡) are 
identified as the Dirac and Pauli form factors of the proton, 𝐹𝑞1 (𝑡) and 
2

𝐹
𝑞

2 (𝑡), respectively.
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The second Mellin moments are derived as

1

∫
−1

𝑑𝑥𝑥𝐻𝑞(𝑥, 𝜉, 𝑡) =𝐴𝑞20(𝑡) + 4𝐶𝑞20(𝑡)𝜉
2,

1

∫
−1

𝑑𝑥𝑥𝐸𝑞(𝑥, 𝜉, 𝑡) =𝐵𝑞20(𝑡) − 4𝐶𝑞20(𝑡)𝜉
2. (3)

The EMTFFs are given by the linear combinations of the second Mellin 
moments. The matrix element of the symmetric EMT current 𝑇̂ 𝜇𝜈,𝑞 =
1
4 𝜓̄𝑞𝑖

⃖⃖⃗D{𝜇𝛾𝜈}𝜓𝑞 [24,25] with the covariant derivative ⃖⃖⃗D𝜈 = ⃖⃗𝜕𝜈 − 2𝑖𝑔𝐴𝜈

and ⃖⃗𝜕𝜈 = ⃖⃗𝜕𝜈 − ⃖⃖𝜕𝜈 is parametrized in terms of the four different EMTFFs 
𝐴𝑞 , 𝐽𝑞 , 𝐷𝑞 , and 𝑐𝑞 :⟨
𝑝(𝑝′, 𝐽 ′

3)
|||𝑇̂ 𝑞𝜇𝜈(0)|||𝑝(𝑝, 𝐽3)⟩

= 𝑢̄(𝑝′, 𝐽 ′
3)

[
𝐴𝑞(𝑡)

𝑃𝜇𝑃𝜈

𝑀𝑝

+ 𝐽𝑞(𝑡)
𝑖(𝑃𝜇𝜎𝜈𝜌 + 𝑃𝜈𝜎𝜇𝜌)Δ𝜌

2𝑀𝑝

+𝐷𝑞(𝑡)
Δ𝜇Δ𝜈 − 𝑔𝜇𝜈Δ2

4𝑀𝑝

+ 𝑐𝑞(𝑡)𝑀𝑝𝑔𝜇𝜈

]
𝑢(𝑝, 𝐽3), (4)

where 𝐴𝑞 , 𝐽𝑞 , 𝐷𝑞 , and 𝑐𝑞 are called the flavor-decomposed light-
front (LF) momentum, spin, 𝐷-term, and 𝑐 form factors, respectively. 
As mentioned above, the second Mellin moments of the vector GPDs 
are related to the EMTFFs as follows

𝐴
𝑞

20(𝑡) =𝐴
𝑞(𝑡), 1

2

[
𝐴
𝑞

20(𝑡) +𝐵
𝑞

20(𝑡)
]
= 𝐽𝑞(𝑡),

4𝐶𝑞20(𝑡) =𝐷
𝑞(𝑡). (5)

As we observe from Eqs. (3) and (5), the leading-twist GPDs do not 
provide the proton 𝑐 form factors. Higher-twist GPDs are required to 
define them [26,24].

Note that the symmetric EMT current is conserved only when both 
the quark and gluon parts are considered:

𝜕𝜇𝑇̂𝜇𝜈 = 0, 𝑇̂𝜇𝜈 = 𝑇̂ 𝑢+𝑑𝜇𝜈 + 𝑇̂ 𝑔𝜇𝜈 . (6)

At the zero momentum transfer 𝑡, thus, the EMTFFs 𝐴𝑢+𝑑 and 𝐽𝑢+𝑑 (or 
proton EMTFFs) are normalized as 𝐴𝑝 = 𝐴𝑢+𝑑 (0) +𝐴𝑔(0) = 1 and 𝐽𝑝 =
𝐽𝑢+𝑑 (0) + 𝐽𝑔(0) = 1

2 together with the gluon contributions. However, 
there is no such constraint on the GIVFFs as well as the 𝐷-term. Note 
that the GIVFFs are derived from the isovector EMT-like current that 
is not conserved. The non-conserved isovector EMT-like current implies 
that 𝑐𝑞 form factors with a specific flavor 𝑞 do not need to vanish. Thus, 
the flavor-decomposed 𝑐 form factors of the proton should be finite. 
In the current work, we will scrutinize the physical implications of the 
flavor-decomposed 𝑐𝑞 .

3. Pion mean-field approach

Since the 𝜒QSM has already been used for deriving the EMTFFs [19,
27,28], we will mainly present the main results for the EMTFFs and 
GIVFFs within the framework of 𝜒QSM in flavor SU(2) symmetry. The 
𝜒QSM is characterized by the low-energy QCD effective partition func-
tion in Euclidean space [18,16,17,7]

Zeff = ∫ D𝜋𝑎 exp
[
−𝑆eff (𝜋𝑎)

]
, (7)

where 𝜋𝑎 is the pseudo-Nambu-Goldstone boson fields and 𝑆eff denotes 
the effective chiral action expressed as

𝑆eff = −𝑁𝑐Tr log
[
𝑖∕𝜕 + 𝑖𝑀𝑒𝑖𝛾5𝜋

𝑎𝜏𝑎 + 𝑖𝑚̂
]
. (8)

𝑁𝑐 designates the number of colors, 𝑀 denotes the dynamical quark 
mass, and 𝑚̂ is the current-quark mass matrix diag(𝑚u, 𝑚d). The Dirac 

Hamiltonian ℎ(𝑈 ) is defined by ℎ(𝑈 ) = 𝛾4𝛾𝑖𝜕𝑖+𝛾4𝑀𝑒𝑖𝛾5𝜋

𝑎𝜏𝑎 +𝛾4𝑚̄𝟏 with 
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the average value of the current-quark masses 𝑚̄ =
(
𝑚𝑢 +𝑚𝑑

)
∕2. We 

assume isospin symmetry (𝑚u = 𝑚d). Introducing the hedgehog ansatz 
𝜋𝑎 = 𝑃 (𝑟)𝑛𝑎, we can determine the profile function 𝑃 (𝑟) by solving the 
classical equation of motion self-consistently. Since the pion-loop cor-
rections are of 1∕𝑁𝑐 , we suppress them and carry out the functional 
integration over 𝜋𝑎, considering the rotational and translational zero 
modes, which is called the zero-mode quantization. Introducing the ex-
ternal tensor source field, we can compute the matrix element of the 
EMT current.

The proton matrix element of the symmetrized EMT current in Eu-
clidean space can be calculated as follows:⟨
𝑝(𝑝′, 𝐽 ′

3)
|||𝑇̂ 𝜒𝜇𝜈(0)|||𝑝(𝑝, 𝐽3)⟩

= lim
𝑇→∞

1
𝑍eff

N∗(𝑝′)N(𝑝)𝑒𝑖𝑝4
𝑇
2 −𝑖𝑝

′
4
𝑇
2 ∫ 𝑑3𝒙𝑑3𝒚 𝑒(−𝑖𝒑

′⋅𝒚+𝑖𝒑⋅𝒙)

× ∫ D𝑈 ∫ D𝜓D𝜓†𝐽𝑝(𝒚, 𝑇 ∕2)𝑇̂ 𝜒𝜇𝜈(0)𝐽
†
𝑝 (𝒙,−𝑇 ∕2)

× exp
[
−𝑆eff

]
, (9)

where 𝐽𝑝 represents the Ioffe-type current consisting of the 𝑁𝑐 va-

lence quarks [29] and 𝑇̂ 𝜒𝜇𝜈(0) denotes the symmetrized EMT current 
derived from effective chiral theory in the Euclidean space. Note that 
the normalization factor N∗(𝑝′)N(𝑝′) is reduced to the static normaliza-
tion 2𝑀𝑝, and the proton state implicitly carries the spin and isospin 
quantum numbers, i.e., 𝐽 , 𝐽3, 𝑇 , and 𝑇3.

The temporal, mixed, and spatial components of the EMT current 
are expressed as

𝑇̂
𝜒

00 =
𝑖

2
𝜓†

(
𝛾4 ⃖⃗𝜕4 − 𝛾4⃖⃖𝜕4

)
𝜏𝜒𝜓,

𝑇̂
𝜒

0𝑘 = −1
4
𝜓†

(
𝛾4 ⃖⃗𝜕𝑘 + 𝛾𝑘 ⃖⃗𝜕4 − 𝛾4⃖⃖𝜕𝑘 − 𝛾𝑘⃖⃖𝜕4

)
𝜏𝜒𝜓,

𝑇̂
𝜒
𝑖𝑗
= − 𝑖

4
𝜓†

(
𝛾𝑖 ⃖⃗𝜕𝑗 + 𝛾𝑗 ⃖⃗𝜕𝑖 − 𝛾𝑖⃖⃖𝜕𝑗 − 𝛾𝑗 ⃖⃖𝜕𝑖

)
𝜏𝜒𝜓, (10)

where we introduce the superscripts 𝜒 = 0, 3 that represent respectively 
the isoscalar 𝜒 = 0 = 𝑢 + 𝑑 and isovector 𝜒 = 3 = 𝑢 − 𝑑 components of 
the EMT current.

Defining the static symmetric EMT distributions in a Wigner 
sense [30,31]

𝑇 𝜒𝜇𝜈,𝑝(𝒓) = ∫
𝑑3Δ

2𝑀𝑝(2𝜋)3
𝑒−𝑖𝚫⋅𝒓

⟨
𝑝(𝑝′, 𝐽 ′

3)
|||𝑇̂ 𝜒𝜇𝜈|||𝑝(𝑝, 𝐽3)⟩ , (11)

we obtain the expressions for the flavor-decomposed EMTFFs in the 
large 𝑁𝑐 limit. The isoscalar components are expressed as[
𝐴𝑢+𝑑 (𝑡) − 𝑡

4𝑀2
𝑝

𝐷𝑢+𝑑 (𝑡)

]
𝛿𝐽 ′3𝐽3

= 1
𝑀𝑝 ∫ 𝑑3𝑟 𝑗0(𝑟

√
−𝑡)𝜀𝑢+𝑑𝑝 (𝑟),

𝑡

6𝑀2
𝑝

𝐷𝑢+𝑑 (𝑡)𝛿𝐽 ′3𝐽3 =
1
𝑀𝑝 ∫ 𝑑3𝑟 𝑗0(𝑟

√
−𝑡)𝑝𝑢+𝑑𝑝 (𝑟),

𝐷𝑢+𝑑 (𝑡)𝛿𝐽 ′3𝐽3 = 4𝑀𝑁 ∫ 𝑑3𝑟
𝑗2(𝑟

√
−𝑡)

𝑡
𝑠𝑢+𝑑𝑝 (𝑟),

2𝑆3
𝐽 ′3𝐽3

𝐽𝑢+𝑑 (𝑡) = 3∫ 𝑑3𝑟
𝑗1(𝑟

√
−𝑡)

𝑟
√
−𝑡

𝜌𝑢+𝑑
𝐽 ,𝑝

(𝑟), (12)

whereas the isovector components are written as[
𝐴𝑢−𝑑 (𝑡) + 𝑐𝑢−𝑑 (𝑡) − 𝑡

4𝑀2
𝑝

(
𝐷𝑢−𝑑 (𝑡) − 2𝐽𝑢−𝑑 (𝑡)

)]
𝛿𝐽 ′3𝐽3

= 1
𝑀𝑝 ∫ 𝑑3𝑟 𝑗0(𝑟

√
−𝑡)𝜀𝑢−𝑑𝑝 (𝑟),[

𝑐𝑢−𝑑 (𝑡) − 𝑡
𝐷𝑢−𝑑 (𝑡)

]
𝛿 ′ = − 1

𝑑3𝑟 𝑗 (𝑟
√
−𝑡)𝑝𝑢−𝑑 (𝑟),
3

6𝑀2
𝑝

𝐽3𝐽3 𝑀𝑝 ∫ 0 𝑝
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𝐷𝑢−𝑑 (𝑡)𝛿𝐽 ′3𝐽3 = 4𝑀𝑝 ∫ 𝑑3𝑟
𝑗2(𝑟

√
−𝑡)

𝑡
𝑠𝑢−𝑑𝑝 (𝑟),

2𝑆3
𝐽 ′3𝐽3

𝐽𝑢−𝑑 (𝑡) = 3∫ 𝑑3𝑟
𝑗1(𝑟

√
−𝑡)

𝑟
√
−𝑡

𝜌𝑢−𝑑
𝐽 ,𝑝

(𝑟), (13)

where 𝜀𝑝, 𝑝𝑝, 𝑠𝑝, and 𝜌𝐽,𝑝 denote the mass, pressure, shear force, and 
angular momentum distributions for the isoscalar and isovector compo-
nents, respectively. For the explicit expressions for these EMT distribu-
tions are given in Appendix A. Note that they depend on the quantum 
numbers of the proton.

Before we proceed to compute the EMTFFs, it is worthwhile to men-
tion about the polynomiality given in Eq. (2). Since the EMTFFs are 
regarded as the second Mellin moments, it is of great importance to ex-
amine whether this polynomiality satisfies within the framework of the 
𝜒QSM. Noticeably, it was proven that the polynomiality of the GPDs in 
Eq. (2) is preserved within the 𝜒QSM [32–34].

Once we take the forward limit (𝑡 → 0) and 𝐽 ′
3 = 𝐽3 = 1∕2, we get the 

flavor-decomposed mass, spin, 𝐷-term, and 𝑐 form factors as follows: 
For the isoscalar components, we have

𝐴𝑢+𝑑 (0) = 1
𝑀𝑝 ∫ 𝑑3𝑟 𝜀𝑢+𝑑𝑝 (𝑟) ,

𝐷𝑢+𝑑 (0) = −
4𝑀𝑝

15 ∫ 𝑑3𝑟 𝑟2𝑠𝑢+𝑑𝑝 (𝑟) ,

𝑐𝑢+𝑑 (0) = − 1
𝑀𝑝 ∫ 𝑑3𝑟 𝑝𝑢+𝑑𝑝 (𝑟) = 0,

𝐽 𝑢+𝑑 (0) = ∫ 𝑑3𝑟 𝜌𝑢+𝑑
𝐽 ,𝑝

(𝑟) , (14)

whereas for the isovector components, we obtain

𝐴𝑢−𝑑 (0) + 𝑐𝑢−𝑑 (0) = 1
𝑀𝑝 ∫ 𝑑3𝑟 𝜀𝑢−𝑑𝑝 (𝑟) .

𝐷𝑢−𝑑 (0) = −
4𝑀𝑝

15 ∫ 𝑑3𝑟 𝑟2𝑠𝑢−𝑑𝑝 (𝑟) ,

𝑐𝑢−𝑑 (0) = − 1
𝑀𝑝 ∫ 𝑑3𝑟 𝑝𝑢−𝑑𝑝 (𝑟) ,

𝐽 𝑢−𝑑 (0) = ∫ 𝑑3𝑟 𝜌𝑢−𝑑
𝐽 ,𝑝

(𝑟) . (15)

The first and third relations in Eq. (14) resemble the thermodynamic 
potentials for the partial internal energy and isotropic pressure [14,
15]. Thus, the flavor-decomposed 𝑐(0) form factors contribute to the 
decomposition of the proton mass.

Finally, we want to mention the 𝑁𝑐 counting of the EMTFFs and 
GIVFFs, which are given as

𝐴𝑢+𝑑 (𝑡) ∼𝑂(𝑁0
𝑐 ), 𝐴𝑢−𝑑 (𝑡) ∼𝑂(𝑁−1

𝑐 ),

𝐽 𝑢+𝑑 (𝑡) ∼𝑂(𝑁0
𝑐 ), 𝐽 𝑢−𝑑 (𝑡) ∼𝑂(𝑁1

𝑐 ),

𝐷𝑢+𝑑 (𝑡) ∼𝑂(𝑁2
𝑐 ), 𝐷𝑢−𝑑 (𝑡) ∼𝑂(𝑁1

𝑐 ),

𝑐𝑢+𝑑 (𝑡) ∼𝑂(𝑁0
𝑐 ), 𝑐𝑢−𝑑 (𝑡) ∼𝑂(𝑁−1

𝑐 ). (16)

We observe that 𝐴𝑢+𝑑 and 𝐴𝑢−𝑑 have the same 𝑁𝑐 orders as the 
isoscalar and isovector 𝑐 form factors, respectively.

4. Results and discussion

Concerning the fixing of the parameters for the 𝜒QSM, we refer to 
Refs. [17,28].

The solid curves in Fig. 1 present the numerical results for the 
EMTFFs, i.e. the 𝐴(𝑡) form factor, spin form factor, and the 𝐷-term form 
factor in the upper, middle, and lower panels, respectively. The results 
are the same as those in Refs. [19,28,35]. The GIVFFs 𝐴𝑢−𝑑 , 𝐽𝑢−𝑑 , and 
𝐷𝑢−𝑑 can be considered as the isovector partners corresponding to the 

EMTFFs. Decomposing the EMTFFs into the up-quark and down-quark 
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Fig. 1. The flavor decompositions of the LF momentum, spin, and 𝐷-term form 
factors are drawn in the upper, middle, and lower panels, respectively. The 
solid curves draw the corresponding EMTFFs and the dot-dashed ones depict 
the corresponding GIVFFs. The dashed and dotted ones represent the up-quark 
and down-quark contributions to the corresponding EMTFFs.

form factors, we find a very interesting feature. The up quarks domi-
nate over the down quarks for the LF momentum and spin form factors. 
On the other hand, for the 𝐷-term form factor, the down-quark contri-
bution turns out slightly larger than the up-quark one, both of which 
have negative values.

Fig. 2 depicts the flavor decomposition of the proton 𝑐 form factor. 
4

As mentioned in the Introduction, the quark EMT current is conserved 
Physics Letters B 850 (2024) 138489

Fig. 2. The flavor decomposition of the proton 𝑐 form factor is drawn. The solid 
curve draws proton 𝑐 form factor and the dot-dashed ones depict 𝑐𝑢−𝑑 . The 
dashed and dotted ones represent the up-quark and down-quark contributions 
to the proton 𝑐 form factor.

in the present work. As expected, thus, 𝑐𝑢+𝑑 vanishes, which is also 
related to the Von Laue condition. However, the 𝑐𝑢−𝑑 remains finite be-
cause the isovector tensor current is in general not conserved. The solid 
and dot-dashed curves in Fig. 2 indicate this feature of the proton 𝑐 form 
factor. When we decompose it into the up- and down-quark contribu-
tions, their magnitudes are exactly the same but their signs are opposite 
each other, so that they are canceled each other. So, while the flavor-
decomposed proton 𝑐 form factors do not contribute to the proton mass, 
they play a certain role in describing the isotropic pressure-volume 
work inside a proton [14,9]. In Table 1, we summarize the values of 
the flavor-decomposed EMTFFs at zero momentum transfer, comparing 
them with the lattice data [36,37]. Note that the normalization scale 
of the 𝜒QSM is determined to be around 0.6 GeV [38], whereas the 
lattice data [36,37] are derived at 𝜇 = 2 GeV. The present work and 
Refs. [19,39] demonstrate that while the results for the isoscalar form 
factors are comparable to those obtained from lattice calculations, that 
for the 𝑐 form factor is at variance with the lattice results [9]. When the 
𝜒QSM was constructed from the instanton vacuum, the gluon degrees 
of freedom were integrated out via instantons. This means that we have 
only quark degrees of freedom and the effects of the gluons are effec-
tively absorbed in the dynamical quark mass and pion mean fields. Thus 
we have correctly obtained the zero value of the 𝑐 form factor, which 
effectively contains gluon contributions.

We also found that the results for the isovector mass and angular 
momentum form factors are in line with those from lattice calculations. 
The comparison of the current results with the lattice QCD requires an 
adjustment of the pion mass, and accordingly the associated low-energy 
constants will be varied. In addition, the scale evolution should be car-
ried out. The comparison of the isoscalar component has been done in 
Ref. [39], and that of the isovector component will appear elsewhere.

The form factor 𝐴𝑞 in the forward limit is equivalent to the mo-
mentum fraction of the proton: 𝐴𝑞 = ⟨𝑥⟩𝑞 . While the total value of 𝐴𝑞
becomes 

∑
𝑞 𝐴

𝑞 =
∑
𝑞⟨𝑥⟩𝑞 = 1, 𝐴𝑞 can not be identified as the flavor-

decomposed mass. The reason can be found in the fact that each flavor 
component of the 𝑐𝑞(0) form factors has a finite value, though the to-
tal 𝑐 form factor vanishes. Thus, the flavor-decomposed mass can be 
expressed as

𝑀𝑝 =
∑
𝑞

𝑀𝑞
𝑝 =

∑
𝑞

(𝐴𝑞(0) + 𝑐𝑞(0))𝑀𝑝 (17)

which indicates 
∑
𝑞 (𝐴𝑞(0) + 𝑐𝑞(0)) = 1. Using Eq. (17), we find the fol-

lowing inequalities between 𝑀𝑞
𝑝 and ⟨𝑥⟩𝑞 :
𝑀𝑢
𝑝∕𝑀𝑝 = 62% < ⟨𝑥⟩𝑢 = 66%
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Table 1

We list the flavor-decomposed proton EMTFFs at 𝑡 = 0 and compare them with results from 
lattice QCD [36,37], which are obtained from the chiral extrapolation at 𝑡 = 0 and 𝑚𝜋,phys.

This work (𝜇 ≈ 0.6 GeV) Lattice QCD (𝜇 = 2 GeV) [36] Lattice QCD (𝜇 = 2 GeV) [37]

𝐴𝑢(0) 0.66 0.34 0.40
𝐴𝑑 (0) 0.34 0.18 0.15
𝐽𝑢(0) 0.53 0.21 0.37
𝐽𝑑 (0) -0.03 -0.00 -0.04
𝐷𝑢(0) -1.12 -0.57 -0.54
𝐷𝑑 (0) -1.41 -0.50
𝑐𝑢(0) -0.04 −
𝑐𝑑 (0) 0.04 −
𝑀𝑑
𝑝 ∕𝑀𝑝 = 38% > ⟨𝑥⟩𝑑 = 34%. (18)

The flavor-decomposed mass differs from the corresponding component 
of the momentum fraction by about 4% for both the up- and down-
quark contributions. In addition, we obtain the following relations: if 
𝑐𝑞(0) > 0, then 𝑀𝑞

𝑝∕𝑀𝑝 > ⟨𝑥⟩𝑞 . If the flavor-decomposed 𝑐𝑞(0) form 
factor is zero, then 𝑀𝑞

𝑝 ∕𝑀𝑝 = ⟨𝑥⟩𝑞 .
Note that the isovector component has a much weaker scale depen-

dence compared to the isoscalar or individual quark flavor components, 
since there is no gluon contribution to the isovector component. So, it 
implies that even though we consider the scale dependence of 𝑐 form 
factor the results would not be much changed. Regarding the 𝐷-terms, 
we observed a significant difference between our predicted 𝐷-term 
form factor and the lattice result. However, the numerical uncertainties 
associated with both the isovector and isoscalar 𝐷-term form factors 
obtained from lattice QCD are substantial. These uncertainties can even 
affect the sign of the form factors.

As mentioned previously, the proton 𝑐 form factor contributes to 
the isotropic pressure-volume work and force fields. As secured by the 
global stability condition for the proton [40], the pressure distribution 
of the proton is balanced between the level-quark and Dirac-continuum 
(pion-cloud) contributions [19] in the 𝜒QSM. When it comes to the 
proton 𝑐 form factor, the cancelation takes place between the up- and 
down-quark contributions. To demonstrate it, we first derive the con-
tributions of the flavor-decomposed 𝑐 form factors by the Fourier trans-
forms. In doing so, we parametrize 𝑐𝑢−𝑑 in terms of the dipole-type 
parametrization with the parameters Λ𝑢−𝑑 = 1.5 GeV. The conservation 
of the EMT current yields 𝜕𝑖𝑇 𝑢+𝑑

𝑖𝑗
= 𝑓𝑢

𝑗
+ 𝑓𝑑

𝑗
= 0, which can be consid-

ered as an equilibrium equation for the internal forces between the 𝑢-
and 𝑑-quark subsystems. A similar interpretation of the internal forces 
between the quark and gluon subsystem was conducted in Ref. [20]. 
The force-field vectors 𝑓𝑞

𝑗
and their magnitudes 𝑓𝑞 are derived from 

the 𝑐 form factors as follows:

𝑓
𝑞
𝑗
= −𝑀𝑝

𝜕

𝜕𝑟𝑗 ∫
𝑑3Δ
(2𝜋)3

𝑒−𝑖𝚫⋅𝒓𝑐𝑞(𝑡),

𝑓 𝑞 = −𝑀𝑝
𝜕

𝜕𝑟 ∫
𝑑3Δ
(2𝜋)3

𝑒−𝑖𝚫⋅𝒓𝑐𝑞(𝑡), (19)

where the spherical symmetry is imposed as 𝑓𝑞
𝑗
= 𝑛̂𝑗𝑓 𝑞 . In Fig. 3, we 

illustrate 𝑓𝑞(𝑟). As already shown in Fig. 2, 𝑓𝑢 is exactly canceled by 
𝑓𝑑 . Interestingly, the up-quark force field directs toward the center of 
the proton, whereas the down-quark on pushes outward. As a result, the 
force field from the 𝑐 form factor vanishes.

In Fig. 4 we visualize the flavor-decomposed force fields from the 
proton 𝑐 form factor, which portrays how 𝑓𝑢(𝑟) and 𝑓𝑑 (𝑟) are dis-
tributed inside a proton. They are canceled each other at each point, 
so that the effects of the 𝑐 form factor completely vanish for the proton.

5. Conclusions

The general isovector-vector form factors of the proton enable us 
to perform the flavor decomposition of the proton energy-momentum 
5

tensor form factors, which reveal novel features for the mechanical 
-0.28
−
−

Fig. 3. Contribution of the 𝑐 form factors to the internal force fields inside a 
proton. Notations are the same as in Fig. 2.

Fig. 4. Visualization of the flavor-decomposed force fields from the proton 𝑐
form factor. In the upper (lower) panel, the up-quark (down-quark) force field 

is illustrated.
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properties of the proton. While the up-quark contributions dominate 
the proton light-front momentum and spin form factors, the up- and 
down-quark contributions to the 𝐷 term form factor are rather well bal-
anced. However, in contrast to the light-front momentum and spin form 
factors, the magnitude of the down-quark contribution is slightly larger 
than that of the up-quark contribution. The proton isovector 𝑐 form fac-
tor arises from the nonconservation of the isovector energy-momentum 
tensor-like current. This yields the flavor-decomposed the 𝑐 form factors 
that do not vanish. They exhibit partial internal pressure and energy in-
side a proton, which are canceled each other. It results in vanishing the 
proton 𝑐 form factor. In conclusion, the flavor-decomposed 𝑐 form fac-
tors shed light on how the quarks describe the mechanics in the proton.
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Appendix A. Expressions of the 3D EMT distributions in the 𝝌QSM

In this Appendix A, we compile the explicit expressions of the 3D 
EMT distributions. The Dirac Hamiltonian is diagonalized by the corre-
sponding eigenenergies and eigenfunctions

ℎ(𝑈 )𝜓𝑛(𝑟) =𝐸𝑛𝜓(𝑟), (A.1)

where 𝐸𝑛 and 𝜓𝑛 stand for the eigenenergies and eigenfunctions of the 
Dirac Hamiltonian ℎ(𝑈 ), respectively. In the 𝜒QSM, the explicit expres-
sions for the distributions are provided by

𝜀𝜒𝑝 (𝑟) = E(𝑟)𝛿𝜒0 − 2
𝐼1

⟨
𝐷𝜒𝑖𝐽𝑖

⟩
𝑝
J1(𝑟)𝛿𝜒3,

𝜌
𝜒

𝐽,𝑝
(𝑟) =

⟨
𝐷𝜒3

⟩
𝑝

(
Q0(𝑟) +

1
𝐼1

Q1(𝑟)
)
𝛿𝜒3 − ⟨𝐽3⟩𝑝 1

𝐼1
I1(𝑟)𝛿𝜒0,

𝑠𝜒𝑝 (𝑟) =N1(𝑟)𝛿𝜒0 −
2
𝐼1

⟨
𝐷𝜒𝑖𝐽𝑖

⟩
𝑝
J3(𝑟)𝛿𝜒3,

𝑝𝜒𝑝 (𝑟) =N3(𝑟)𝛿𝜒0 −
2
𝐼1

⟨
𝐷𝜒𝑖𝐽𝑖

⟩
𝑝
J5(𝑟)𝛿𝜒3, (A.2)

where 𝐼1 is the moment of inertia (see Ref. [17]). The ⟨⋯⟩𝑝 represents 
6

the matrix element of the collective operators of the proton as follows:
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⟨⋯⟩𝑝 = ∫ 𝑑𝑅Ψ∗
(𝑇 ′𝑇 ′

3 )(𝐽
′𝐽 ′3)

(𝑅) ...Ψ(𝑇𝑇3)(𝐽𝐽3)
(𝑅). (A.3)

The collective wave function of the proton Ψ(𝑇𝑇3)(𝐽𝐽3)
(𝑅) is given by 

the SU(2) Wigner 𝐷 function

Ψ(𝑇𝑇3)(𝐽𝐽3)
(𝑅) ∶=

√
2𝑇 + 1(−1)𝑇+𝑇3𝐷𝐽=𝑇−𝑇3 ,𝐽3

(𝑅). (A.4)

The distributions for the LF momentum form factors are expressed as

E(𝑟) =𝑁𝑐

[
𝐸𝑣𝜓

†
𝑣 (𝑟)𝜓𝑣(𝑟) +

∑
𝑛

𝜓†
𝑛 (𝑟)𝜓𝑛(𝑟)𝑅0𝑛

]
,

J1(𝑟) =
𝑁𝑐

4

[∑
𝑛≠𝑣

𝐸𝑛 +𝐸𝑣
𝐸𝑛 −𝐸𝑣

⟨𝑛|𝜏3|𝑣⟩𝜓†
𝑣 (𝑟)𝜏3𝜓𝑛(𝑟)

+ 1
2
∑
𝑛,𝑚

(𝐸𝑛 +𝐸𝑚) ⟨𝑛|𝜏3|𝑚⟩𝜓†
𝑚(𝑟)𝜏3𝜓𝑛(𝑟)𝑅3𝑛𝑚

]
, (A.5)

those for the spin form factors are given as

Q0(𝑟) =
𝑁𝑐

4

[
𝜓†
𝑣 (𝑟)Γ

𝐽
𝑣𝑣3𝜏3𝜓𝑣(𝑟)

− 1
2
∑
𝑛

sign(𝐸𝑛)𝜓†
𝑛 (𝑟)Γ

𝐽
𝑛𝑛3𝜏3𝜓𝑛(𝑟)

]
,

Q1(𝑟) =
𝑁𝑐

4
𝑖𝜖𝑖𝑗3

[∑
𝑛≠𝑣

sign(𝐸𝑛)
𝐸𝑛 −𝐸𝑣

⟨𝑛|𝜏𝑖|𝑣⟩𝜓†
𝑣 (𝑟)𝜏𝑗Γ

𝐽
𝑣𝑛3𝜓𝑛(𝑟)

+ 1
2
∑
𝑛,𝑚

⟨𝑛|𝜏𝑖|𝑚⟩𝜓†
𝑚(𝑟)𝜏𝑗Γ

𝐽
𝑚𝑛3𝜓𝑛(𝑟)𝑅6𝑛𝑚

]
,

I1(𝑟) =
1
4
∑
𝑛≠𝑣

1
𝐸𝑛 −𝐸𝑣

⟨𝑛|𝜏3|𝑣⟩𝜓†
𝑣 (𝑟)Γ

𝐽
𝑛𝑣3𝜓𝑛(𝑟)

+ 1
8

∑
𝑛=all
𝑚=all

⟨𝑛|𝜏3|𝑚⟩𝜓†
𝑚(𝑟)Γ

𝐽
𝑚𝑛3𝜓𝑛(𝑟)𝑅3(𝐸𝑛,𝐸𝑚), (A.6)

those for the 𝐷-term form factors and 𝑐 form factors are respectively 
written as

N1(𝑟) =
3
2
𝑁𝑐

[
𝜓†
𝑣 (𝑟)Γ

𝑠𝜓𝑣(𝑟) +
∑
𝑛

𝜓†
𝑛 (𝑟)Γ

𝑠𝜓𝑛(𝑟)𝑅1𝑛

]
,

J3(𝑟) =
3
4
𝑁𝑐

[∑
𝑛≠𝑣

⟨𝑛|𝜏3|𝑣⟩
𝐸𝑛 −𝐸𝑣

𝜓†
𝑣 (𝑟)𝜏3Γ

𝑠𝜓𝑛(𝑟)

+ 1
2
∑
𝑛,𝑚

⟨𝑛|𝜏3|𝑚⟩𝜓†
𝑚(𝑟)𝜏3Γ

𝑠𝜓𝑛(𝑟)𝑅5𝑛𝑚

]
, (A.7)

and

N3(𝑟) =
𝑁𝑐

3

[
𝜓†
𝑣 (𝑟)Γ

𝑝𝜓𝑣(𝑟) +
∑
𝑛

𝜓†
𝑛 (𝑟)Γ

𝑝𝜓𝑛(𝑟)𝑅1𝑛

]
,

J5(𝑟) =
𝑁𝑐

6

[∑
𝑛≠𝑣

⟨𝑛|𝜏3|𝑣⟩
𝐸𝑛 −𝐸𝑣

𝜓†
𝑣 (𝑟)𝜏3Γ

𝑝𝜓𝑛(𝑟)

+ 1
2
∑
𝑛,𝑚

⟨𝑛|𝜏3|𝑚⟩𝜓†
𝑚(𝑟)𝜏3Γ

𝑝𝜓𝑛(𝑟)𝑅5𝑛𝑚

]
. (A.8)

Note that 𝜓𝑣(𝑟) ∶= ⟨𝑟|𝑣⟩ and 𝜓𝑛(𝑟) ∶= ⟨𝑟|𝑛⟩. The total angular momen-
tum Γ𝐽

𝑚𝑛3, shear force Γ𝑠, and pressure Γ𝑝 operators are respectively 
expressed by

Γ𝐽
𝑛𝑚3 =

[
2𝐿̂3 +

(
𝐸𝑛 +𝐸𝑚

)
𝛾5(𝑟 × 𝝈)3

]
,

Γ𝑠 = 𝛾0 (𝒏̂ ⋅ 𝒑) − 1
3
𝛾0 (𝜸 ⋅ 𝒑) ,

𝑝 0
Γ = 𝛾 (𝜸 ⋅ 𝒑), (A.9)
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where the orbital angular momentum is defined by

𝑳̂ =
[
𝑟 × 𝑖

2

(
⃖⃖𝛁⃖− ⃖⃖⃗𝛁

)]
. (A.10)

The regularization functions for the distributions are expressed as

𝑅0𝑛 =
1

4
√
𝜋 ∫
Λ−2

𝑑𝑢

𝑢3∕2
𝑒−𝑢𝐸

2
𝑛 ,

𝑅1𝑛 = −
𝐸𝑛

2
√
𝜋 ∫
Λ−2

𝑑𝑢√
𝑢
𝑒−𝑢𝐸

2
𝑛 ,

𝑅3𝑛𝑚 = 1
2
√
𝜋 ∫
Λ−2

𝑑𝑢√
𝑢

[
1
𝑢

𝑒−𝑢𝐸
2
𝑛 − 𝑒−𝑢𝐸2

𝑚

𝐸2
𝑚 −𝐸2

𝑛

−
𝐸𝑛𝑒

−𝑢𝐸2
𝑛 +𝐸𝑚𝑒−𝑢𝐸

2
𝑚

𝐸𝑛 +𝐸𝑚

]
,

𝑅5𝑛𝑚 = 1
2
sign(𝐸𝑛) − sign(𝐸𝑚)

𝐸𝑛 −𝐸𝑚
,

𝑅6𝑛𝑚 =
1 − sign(𝐸𝑛)sign(𝐸𝑚)

𝐸𝑛 −𝐸𝑚
. (A.11)
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