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I. INTRODUCTION

Excited states of strongly interacting matter exhibit a
complex spectrum at low and intermediate energies. Con-
necting the underlying non-perturbative realization of
Quantum Chromodynamics (QCD) to phenomenology is
an ongoing experimental and theoretical challenge. The
quest in understanding phenomenology including the de-
cay of excited states but also unraveling the microscopic
nature of mesonic and baryonic resonances poses open
questions. Many are related to three-body dynamics.
A prime example of such a riddle in the baryon sector
(explored by CLAS@JLab [1, 2], ELSA [3], MAMI [4],
and other facilities) is the dynamical structure of the
enigmatic Roper-state N(1440)1/2+ and its mass pattern
compared to the N(1535)1/2− state. While the micro-
scopic features of the latter state can be parametrized
by, e.g., meson-baryon interactions within Chiral Unitary
approaches [5–9], the situation is more involved for the
Roper-state due to large branching ratios to the ππN chan-
nels. The ππN dynamics is included in many analyses of
the baryon spectrum with varying degrees of rigor [10–13],
with dynamical coupled-channel approaches usually re-
specting at least aspects of three-body unitarity [8, 14, 15].
The unusually large branching ratios of the Roper reso-
nance into three-body channels might explain not only
its distorted shape [11] but also its unusual signals found
in lattice QCD [16]. The present work deals with a sim-
pler mesonic resonant three-body system, thus, providing
a necessary stepping stone on the way to tackle more
complex baryonic resonances in the future.

In the meson sector, the GlueX [17] and COMPASS ex-
periments [18], and the BESIII accelerator [19] search for
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the exited states of strongly interacting matter, including
exotics, i.e., states with quantum numbers not possible to
form from two constituent quarks. Thus, it is expected
that the discovery and the understanding of such states
will be a direct indicator for gluonic degrees of freedom
in QCD at low energies. Many of such exotic states, but
also conventional mesons decay dominantly or exclusively
into three particles, which has triggered extended partial-
wave analysis (PWA) efforts, e.g., by COMPASS [20, 21],
BESIII [22, 23], in coupled channels using the PAWIAN
framework for pp̄ induced meson production [24], or us-
ing Khuri-Treiman equations and related frameworks by
the Bonn group, JPAC, and others for light meson de-
cays [25–48]. This paper extends the three-body approach
of Ref. [49] that is inspired by work of Amado et al. [50]
(see Sec. II for a detailed discussion).

Lattice QCD is the non-perturbative tool to access the
QCD Greens functions at low and intermediate energies
from first principles. In addressing three-hadron systems,
such calculations need to include a large set of opera-
tors including three-hadron operators. This leads to a
significantly increased computational effort compared to
two-body systems. However, progress has been made over
the last years in calculating lattice spectra [16, 51–55],
including the a1(1260) meson [52]. Such discrete and real-
valued spectra are inherently different from the infinite
volume ones. The so-called quantization condition allows
one to map between finite and infinite volume, and is an
active field of theoretical research [56–75]. It has been
shown in Ref. [72] that the key to the understanding of
three-body finite-volume spectra from the lattice lies in
the S-matrix principle of unitarity. There, a simpler ver-
sion of the framework underlying the present study [49]
(no spin) was adopted to the finite volume demonstrating
its feasibility to provide infinite-volume mappings. Both
finite-volume and lattice computations in the three-body
sector are now capable of addressing simple three-pion
systems [55, 76–78] and are about to be extended to more
complicated cases like axial mesons and exotics.
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FIG. 1. The decay of an unpolarized a1(1260) meson parametrized by a source (left parentheses) into a ρ-meson (double lines)
and a pion (single lines), with subsequent decay into π−π−π+ and the pertinent symmetrization (not shown). The relativistic,
unitary final-state interaction (parentheses in the middle) is parametrized in terms of the isobar-spectator amplitude T and
isobar propagator τ . The coupling of the ρ to two pions is encoded in the vertex function v.

The a1(1260) axial meson has a clean three-pion decay
as the intermediate state in τ decays in which other par-
tial waves are suppressed, in contrast to pion or photon-
induced three-pion production; it is also wide [79] indicat-
ing strong and non-trivial three-body effects which makes
the a1(1260) a prime candidate to study three-body dy-
namics. This is reflected in an increased interest in the
structure of the a1(1260) [41, 80–89] which is also the
main goal of the present manuscript.

More specifically, in view of the importance of three-body
unitarity, our goal is to extend the manifestly unitary,
relativistic three-body scattering amplitude derived in
Refs. [49, 90] to the coupled-channel case for isobars with
spin, namely the a1(1260) in which the ρπ decay channel
is known to provide the dominant contribution [79]. This
also means the development of numerical techniques for
the solution of the integral equations. Here, we restrict
the a1(1260) dynamics to the ρπ S- and D-wave channels;
a detailed partial-wave analysis of the three-pion system
in τ decays measured by CLEO [91] has shown that there
are also other channels needed for the detailed description
of Dalitz plots and related observables. Demonstrating
the feasibility of the approach, we fit the amplitude to
the experimental data on the τ− → π+π−π−ντ lineshape
measured in the ALEPH@CERN [92] experiment. Note
also other measurements of the same process [93–95] with
lower statistics.

This work is organized as follows: In Sec. II the main
definitions of the decay and three-body amplitude are
introduced and compared to other approaches in the
literature. The strategy for solving these equations is
described in Sec. III. Finally, in Sec. IV the result of a fit
to ALEPH data and the calculation of Dalitz plots from
that fit will be presented and discussed.

II. FORMALISM

The final-state interaction of the weakly induced decay
process τ− → π+π−π−ντ is given by the interaction of

three pions with a1(1260) quantum numbers. The pres-
ence of the outgoing neutrino allows the total energy
squared, s, of the three pions to vary. This allows one to
“scan” the spectrum of three pions in the final state, thus
obtaining the so-called mass spectrum or lineshape of the
a1(1260)-resonance that was measured in the ALEPH [92]
experiment and is the main experimental input of the
present work.

To access the mass spectrum theoretically, the decay
process is decomposed into the weak and strong parts
as τ− →W−ντ → (a1(1260)→ π−π−π+)ντ (see, e.g.,
Ref. [41]). The strong, final-state interaction of the three
pions is described by the process shown in Fig. 1. As
indicated in the first parentheses it contains a part de-
scribing the production of the ρπ pair in S- and D-wave.
This part consists of the direct production of the ρπ pair
as well as an intermediate propagation of a1(1260). The
ρπ system interacts then (second parentheses in the fig-
ure) and decays in the final step into three pions, such
that three-body unitarity is preserved exactly. Note that
while the picture suggests a diagrammatic expansion of
the interaction, the approach is not Lagrangian-based as
discussed below.

The final-state interaction of three pions is taken into
account non-perturbatively ensuring three-body unitarity.
This is achieved using the formalism developed in Ref. [49].
In a nutshell, the approach is based on a decomposition
of the scattering amplitude into a connected and a discon-
nected part (cf. ”connectedness structure” in Ref. [96]).
Each of these pieces is populated by the two-body sub-
system (referred to as “isobar” in the following) and a
spectator. The analytic forms of the Bethe-Salpeter ker-
nel, B, and the fully dressed isobar propagator τ are fixed
up to real functions of energy and momenta by matching
the Bethe-Salpeter equation with the three-body unitar-
ity condition [49]. This isobar-spectator amplitude is
depicted symbolically in Fig. 2.

Note that this approach relies on dispersive techniques
making advantage of unitarity and connectedness struc-
ture. As such, it does not rely on a Lagrangian formalism
for the microscopic interaction but provides a clean sep-
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FIG. 2. The isobar-spectator amplitude leading to a unitary three-pion scattering amplitude. The interaction kernel (quantity
in parentheses) is determined from unitarity and comprises a complex valued contribution shown as one-pion exchange, as well
as a real valued three-body force C.

aration between on-shell parts and short-range physics
encoded in real-valued contributions indicated as C in
Fig. 2 and referred to as “three-body force” in what fol-
lows. We will describe the implementation and numerical
applications of this approach in more detail below.

The formal decomposition of the entire amplitude into a
short-range and a long-range part (“ladders”) is discussed
in Ref. [48]. It is sometimes referred to as “two-potential
formalism” used mostly in the baryonic sector [97, 98].
This decomposition is not unique [99] but can be advanta-
geous for time-consuming fits to large data sets [98]. The
matching of different three-body formalisms, including the
current one and its mapping to Feynman-diagrammatic
expressions is discussed in Ref. [100]. In that reference,
global analytic properties of the three-to-three ampli-
tude were discussed. Comparing frameworks like the
present one to the analytic properties of the triangle di-
agram it was shown that in the sub-threshold region,
non-analyticities can occur depending, e.g., on specific
implementations of the integration over two-body sub-
energies in the three-body equation.

Early attempts to solve the three-pion problem in the
a1(1260) channel with a non-perturbative final-state in-
teraction, in a framework similar to the present one, were
carried out in Refs. [80, 101], sharing technical details like
complex-momentum integration with our approach, but
modeling the short-range πρ interaction with effective La-
grangians. We do not attempt to microscopically resolve
this dynamics which can only be done model-dependently,
anyways. The amplitude of Refs. [80, 101] is initially for-
mulated including an unstable ρ isobar, as in the present
case. However, due to problems of how to continue the
solution of the T -matrix from complex back to real specta-
tor momenta, the actual numerical results were obtained
with a stable ρ meson which violates unitarity. Indeed,
the the isobar representing the two-body sub-amplitude
must possess its proper imaginary part for the entire am-
plitude to fulfill three-body unitarity [49]. This cannot
be achieved with a stable particle propagator.

The present approach is most closely related to the one by
the EBAC collaboration (now ANL/Osaka) [86]. There,
Dalitz plots not only for the a1(1260) meson but also for
other three-body decays were predicted. Furthermore,
inelasticities in the two-body subsystems were taken into

account and the a1(1260) was allowed to decay also in
σπ and f2π, apart from the dominant ρπ S-wave channel.
On the other hand, we use here an amplitude that is
manifestly unitary, with the full proof of unitarity first de-
livered in Ref. [49], and we also provide data fits and study
the energy dependence of the amplitude by comparing
to ALEPH data. This is particularly relevant for future
extensions to finite-volume calculations for lattice QCD
in which manifest unitarity is responsible for a subtle
cancellation of unphysical singularities [72].

In the following we describe our approach to calculate
the decay process. In Sec. II A, we provide the equations
needed to describe each term shown in Fig. 1. In Sec. II B
the partial wave decomposition is discussed. Finally, in
Sec. II C, we describe how the amplitude can be related
to observables.

A. Plane-Wave Amplitudes

The amplitude Γ̂Λλ, describing the decay of the axial
a1(1260)-resonance at rest with helicity Λ measured along
the z-axis into a π− and a ρ0

λ → π+π− with helicity λ, is
given by

Γ̂Λλ(q1, q2, q3) = 1√
2
[
ΓΛλ(q1, q2, q3)− (q1 ↔ q2)

]
,

ΓΛλ(q1, q2, q3) = (1)(
DΛλ(q1) +

∑
λ′

∫
d3p

(2π)32Ep
DΛλ′(p)τ(σ(|p|))Tλ′λ(p, q1)

)
× τ(σ(|q1|))v±λ (q2, q3) ,

where q1, and q2 are outgoing π− momenta, and q3 is
the outgoing π+ momentum. In Eq. (1) the dependence
on the squared invariant mass of the three-body system
s is suppressed; isospin indices are provided below; the
squared invariant mass of the ρ, denoted by σ(|p|), de-
pends only on the size of the spectator momentum p and
is abbreviated as σ(p) ≡ σ(|p|) in the following; confusion
with four-vector notation should be excluded from the
context. Furthermore, σ(p) = (P3−p)2 = s+m2

π−2
√
sEp

with E2
p = m2

π +p2 and P3 = (
√
s,0) being the total four-

momentum of three pions. Note that throughout this
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paper we are working in the three-body center-of-mass
frame unless stated otherwise. Due to Bose symmetry,
the amplitude is symmetric under exchange of the two
π−. The process is of odd intrinsic parity and the isospin
part of the wave function contains an additional minus
sign under the exchange of the two π−, restoring the
overall Bose symmetry. Some of the terms appearing in
Eq. (1) are shown in Fig. 1 and are defined in the fol-
lowing. Note also that this three-dimensional relativistic
equation with all pions on their respective mass shells
emerges after carrying out the integration of zeroth di-
mension, applying the delta-distribution of the spectator
from the isobar-spectator propagation, see Ref. [49].

The elementary process a1 → πρ is indicated as DΛλ. It
can have scalar or derivative character,

DΛλ(q1) = εΛ,µε
∗µ
λ (q1)(−ma1gsIa1ρπ + . . . ) , (2)

i.e., the a1ρπ coupling is given by a tower of Lagrangians
which we do not aim to explicitly use in this study, in-
cluding masses (ma1) coupling constants (gs) and isospin
factors (Ia1ρπ). Instead, we know that symmetry allows
for even ρπ partial waves each with their own energy and
momentum dependence, which we simply parametrize in
the angular momentum basis, further abbreviated with
JLS basis, directly, where JLS stand for total, orbital,
and spin angular momenta, respectively. See Sec. II B for
a detailed discussion.

The vertex v±λ in Eq. (1) is an elementary part of the
ρ0-decay into a π+π− pair with four-momenta q2 and q3,

v±λ (q2, q3) = I ′vλ(q2, q3) (3)
vλ(q2, q3) = −ig1ε

µ
λ(q1) (q2 − q3)µF ((q2 + q3)2, (q2 − q3)2) ,

where g1 is the ρππ coupling, vλ is the isospin-projected
decay vertex, and I ′ describes the transition from isospin
to particle basis as needed only in the final ρ decay. Note
that the latter factor is irrelevant as long as there is only
one isobar (ρ0). Then this factor can be reabsorbed into
the overall normalization of the a1 decay. Furthermore,
due to the azimuthal symmetry of the isobar momen-
tum, the imaginary part of ελ does not contribute to the
partial-wave projected vλ(q2, q3). Thus, in this case, the
vertex is strictly real, i.e., vλ(q2, q3) = v∗λ(q2, q3). Any
additional momentum dependence of the isobar decay is
encoded in the covariant form-factor F that is introduced
to regularize ultraviolet divergences in the two- and three-
body sector. Note that three-body unitarity imposes a
consistent use of the form-factor in the self-energy τ and
exchange B, which requires it to be covariant [49]. The
choice of this real-valued functions is not unique. Explicit
expressions used in this work are discussed in Appendix 1.

The three-body unitarity underlying this formalism im-
plements two-body unitarity automatically [49]. This
constrains the imaginary part of the inverse of the isobar-
spectator propagator. The remaining freedom allows one
to pick a form of the isobar propagator τ that is suitable

τ = + τ
Σ

FIG. 3. A diagrammatic depiction of the isobar propaga-
tor from Eqs. (4) and (5), representing the re-summation of
ππ interactions within the isobar to all orders. Double and
single lines denote the isobar and stable particle propagators,
respectively.

for the problem at hand. For example, a two-body scatter-
ing amplitude motivated by Chiral Perturbation Theory
was implemented into the three-body scattering equation
in Refs. [74, 77]. This form is very useful for repulsive or
weakly attractive channels (such as, e.g., ππ scattering in
the channel of the atypical f0(500)-resonance). For the
present work, dealing exclusively with the ρ-resonance, it
is, however, justified to simply choose

τ(σ(p)) = 1
σ(p)−m2

ρ − Σ(σ(p)) (4)

as represented in Fig. 3. This particular parametrization
of the vector-isovector channel provides a sufficiently ac-
curate representation of the physical on-shell two-body
amplitude. For alternative forms of τ , e.g., with two
subtractions, see Ref. [49]. Here, mρ is a real-valued
free parameter not fixed by unitarity. We fit it, together
with the coupling g1 from Eq. (3) and the form-factor to
two-body ππ phase-shift data [102, 103]. Note that the
τ in Eq. (4) is the same as S in Ref. [49]. In Eq. (4),
Σ is referred to as the self-energy. We use the explicit
expression

Σ(σ(p)) =
∞∫

0

dkk2

(2π)3Ek

ṽ(σ(p), k)ṽ∗(σ(p), k)
σ(p)− 4E2

k + iε
. (5)

This can be evaluated in the isobar rest frame with the
two-body 4-momentum P2 = (

√
σ(p),0). The tilde on ṽ

indicates that this vertex is projected to the total angular
momentum of the ρ-meson as

ṽ(σ(p), k) =
√

16π
3 g1kF̃ (σ(p), k) , (6)

which is derived from the ρππ vertex in Eq. (3). The
form-factor F̃ used here is of the same analytic structure
as the F in Eq. (3) for the on-shell region. It is, however,
modified for technical reasons in the off-shell region, which
does not violate unitarity. See Eq. (31) in Appendix 1
for further details.

The plane wave solution for the isobar-spectator ampli-
tude is obtained as described in Ref. [49], i.e., by solving
the Bethe-Salpeter type relativistic integral equation
Tλ′λ(p, q1) = (Bλ′λ(p, q1) + C) + (7)∑
λ′′

∫
d3l

(2π)32El
(Bλ′λ′′(p, l) + C) τ(σ(l))Tλ′′λ(l,q1) ,
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where λ′, λ and λ′′ are the helicities of the in-, outgoing,
and intermediate ρ-isobar, and p, q1, and l are the in-,
outgoing and intermediate spectator momenta, respec-
tively. The diagrammatic representation of this equation
is shown in Fig.2. The first part of the driving term of
Eq. (7), the so-called B-term, can be interpreted as the
one-pion exchange process depicted in the first term inside
the parentheses in Fig. 2. In the helicity and isospin bases
it reads

Bλ′λ(p, q1) = (8)
(−1) vλ′(P3 − p− q1, q1)v∗λ(p, P3 − p− q1)

(
√
s− Ep − Eq1)2 − (m2

π + p2 + q2
1 + 2pq1z) + iε

,

with an additional minus sign from the overall isospin
factor of this process. The equation emerges from the
sum of a forward and backward (in time) pion exchange
between two ρππ vertices. We denote the angle between
the in- and outgoing isobars by θ1 and z = cos θ1. The
second part of the driving term of the integral equation (7)
is a real-valued function C of spectator momenta and s,
i.e., C ≡ C(p, q, s). It arises from the fact that only
imaginary parts of the amplitude are fixed as discussed
in Ref. [49]. Physically, this function is related to the
three-body contact term via a decay of the isobar into two
in- and outgoing pions, see e.g. Ref. [100]. To capture
the ρπ contact interaction efficiently, we will model this
function in the next section after projecting the whole
integral equation to the JLS basis.

B. Partial Wave Amplitudes

The Bethe-Salpeter type integral equation given in Eq. (7)
is part of the production amplitude given in Eq. (1).
Analytic solutions of such dynamical equations are only
known for driving terms consisting of contact interactions,
see e.g., Refs. [9, 104]. Therefore, the equation will be
solved numerically here, by discretizing momenta, and
thus, transforming the integral equation into algebraic
ones.

The technical challenge in doing so is that the B-term,
and with it T , depends on the in- and outgoing spectator
three-momenta, p and q1, making numerical inversions
computationally demanding. However, only one of the
terms of the partial wave decomposition in Eq. (10) en-
ters the production amplitude Eq. (1) for the quantum
numbers of the a1(1260)-resonance, i.e., the one for J = 1.

The implementation of physical constraints on the three-
body force induced term C in Eq. (7) can be made in the
JLS basis. The latter basis encodes the total-, relative
(between isobar and spectator) and intrinsic (spin) angular
momenta, respectively. In this basis we assume a general
form of CL′L accounting for the partial wave dependence.
Expressing the contact-term in terms of a propagating
a1(1260) connecting initial and final isobar and spectator,

C =⇒
a1(1260)

FIG. 4. Graphical representation of the isobar-spectator
contact term C via a propagation of a bare a1(1260). The
coupling to ρπ states is chosen consistently to that appearing
in Fig. 1. See Eq. (9) and text below it for more details.

as shown in Fig. 4, one may write

CL′L(p, q1) = −
(

p

mπ

)L′ (
q1

mπ

)L
m2
πgfLgfL′H(p)H(q1)

s−m2
fit

.

(9)

Here gfL, gfL′ are the bare couplings that characterize
the strength of the decay vertex and mfit is the bare
mass of the a1(1260). These parameters are fixed to
reproduce physical data on the a1(1260) lineshape. The
form-factor H is discussed in Appendix 1. Note that
factors of mπ are included such that the above contact
term is dimensionless.

The term Tλλ′ in Eq. (1) describes the isobar-spectator
interaction symbolized in Fig. 2. For the purpose of the
present paper only the part projected to total angular
momentum J = 1, the quantum number of a1(1260), is
required. Taking into account the azimuthal symmetry
the plane wave isobar-spectator amplitude is related to
the partial wave amplitudes as

Aλ′λ(p, q1) =
∑
J

2J + 1
4π dJλ′λ(z)AJλ′λ(p, q1) , (10)

where A ∈ {T,B} and dJλλ′(cos θ) denotes the small
Wigner-d function.

In the JLS basis and with in- and outgoing orbital angular
momenta, L′ and L, Eq. (7) becomes

T JL′L(p, q1) =
(
BJL′L(p, q1) + CL′L(p, q1)

)
+ (11)∑

L′′

∞∫
0

dl l2

(2π)32El
(
BJL′L′′(p, l) + CL′L′′(p, l)

)
× τ(σ(l))T JL′′L(l, q1) .

The a1(1260) is constrained by parity conservation and
conservation of angular momentum to decay into ρπ with
angular momentum L = 0 or L = 2. Thus, we work in
a basis in which the T -matrix can have two JLS states,
namely 121 and 101 for both in- and outgoing states.

To obtain the B-term in the partial wave (JLS) basis
we employ a two-step procedure. First, from the B-term
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(8) in helicity basis the relevant partial wave is extracted,
exploiting orthonormality of Wigner-d functions,

BJλ′λ(p, q1) = 2π
+1∫
−1

dz dJλ′λ(z)Bλ′λ(p, q1) . (12)

Then, the expression in partial wave basis is obtained
from a linear transformation

BJL′L(p, q1) = UL′λ′BJλ′λ(p, q1)UTLλ , (13)

where the superscript (..)T denotes the transposition op-
eration. The transformation matrix U is given by

ULλ =
√

2L+ 1
2J + 1(L01λ|Jλ)(1λ00|1λ) , (14)

expressed in usual Clebsch-Gordan coefficients [105], while
the summation over identical indices in Eq. (13) is under-
stood.

The above equations (11), (12) and (9) complete the main
part of the final-state interaction to be solved numerically
below. Ultimately, the solution of Eq. (11) in the JLS
basis needs to enter the decay amplitude (1) as follows.
First, the a1(1260)→ ρπ vertex, D is modeled to include
the correct spectator momentum dependence for each par-
tial wave, i.e., DL(p) ∼ pL. Furthermore, the production
process itself may contain first-order singularities. The
necessity of this contribution is explained at the end of
Sec. III A. Overall, the vertex is parametrized as

DL′(p) = DfL′H(p)
(

p

mπ

)L′

+ (15)

m2
πgfL′Df̃H(p)
s−m2

fit

(
p

mπ

)L′

,

where DfL′ for L′ = 0, 2 and Df̃ are free parameters that
are fit to the lineshape data as described below. The
parametrization of Eq. (15) is similar to the one used
in dynamical coupled-channel approaches for the photo-
excitation of resonances, see, e.g., Ref. [106], where it
allows to excite resonances and background independently
without spoiling Watson’s theorem.

Including the contact interactions C and D as in Eq.(9)
and (15), respectively, we construct the decay amplitude
in the JLS basis. We use the breve symbol on Γ̆ to denote
the inclusion of all terms represented diagrammatically
in Fig. 1 except the final vertex (v), i.e., the diagram to
the right of the parentheses. It can be separated into the
contribution from the connected and the disconnected
part with Γ̆ = Γ̆C + Γ̆D, where

Γ̆L(q1) = DL(q1)τ(σ(q1)) (16)

+
∫

dp p2

(2π)32Ep
DL′(p)τ(σ(p))T JL′L(p, q1)τ(σ(q1)) .

with sum over L′.

Finally, this term is related to the amplitude in Eq. (1)
by transforming into the helicity basis and multiplying
the final ρππ vertex with

ΓΛλ(q1, q2, q3) =
√

3
4πD

1∗
Λλ(φ1, θ1,−φ1) (17)

× Γ̆L(q1)ULλvλ(q2, q3)

where it is again summed over angular momentum L and
DJ

Λλ(φ1, θ1,−φ1) denotes the capital Wigner-D function
with angles θ1 and φ1 giving the polar and azimuthal an-
gles of q1. We use the convention of Jacob and Wick [107]
for the arguments of the function, DJ

Λλ(φ, θ,−φ), rather
than the alternative convention DJ

Λλ(φ, θ, 0). The latter
convention implies an additional phase-factor.

Note also that, while the small Wigner-d function may
be used for the evaluation of the angular integration ap-
pearing in the partial-wave decomposition of Eq. (10),
one must use the capital Wigner-D functions and their φ
dependence for the back-transformation to plain waves be-
cause in the symmetrized decay a1 → π+π−π− of Eq. (1)
the final ρ0 isobars can be produced in different directions.
In the next section we describe how the observables can
be obtained from the production amplitude given above.

C. Relation to Observables

After having specified the analytic expressions leading to
the production amplitude Γ we will demonstrate in the
following how it can be related to three-body observables.
In particular, this will allow us later to fix free parameters
of the framework, i.e., gfL, DfL′ ,mfit, and Df̃ . Recall
that parameters g1,Λ,mρ are already fixed to the two-
body data – the ππ phase-shifts in the isovector channel.
The three-body observables considered in this paper are
Dalitz plots, projected Dalitz plots and the lineshape.

The lineshape is a one dimensional scalar function of the
total three-body energy

√
s. It is given by integrating

over all three pion four-momenta in the final state

L(
√
s) = 1√

s

∫
d3q1

(2π)3
d3q2

(2π)3
d3q3

(2π)3
1

2Eq12Eq22Eq3

(18)

× (2π)4δ4(P3 − q1 − q2 − q3)|Γ(q1, q2, q3)|2 .

Here the bar over the production amplitude Γ de-
notes the usual summation over helicity indices, i.e.,
|Γ|2 ≡ 1/3

∑
Λ |
∑
λ ΓΛλ|2.

The Dalitz plots are calculated in a similar fashion, tak-
ing, however, the phase-space integral for fixed invariant
masses σ23 and σ13 made up of the two outgoing pions
given in the subscript, with 3 labeling the π+ and 1, 2 the
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two π−,

D(
√
s, σ23, σ13) = 1

(2π)5
1

32
√
s

3

∫
dΩq1dφ12 (19)

× |Γ(σ23, σ13,Ωq1 , φ12)|2 .

Note that the delta function, δ4(P − q1 − q2 − q3) for
energy-momentum conservation has been evaluated,
which accounts for the elimination of the differential d3q3
and one of the angles. The latter angle is chosen to be
the angle between q1 and q2, denoted by θ12. The az-
imuthal angle between the same momenta, denoted by
φ12, remains in the integration.

Finally, taking the Dalitz distribution of Eq. (19) and
integrating over one of the invariant masses, the projected
Dalitz plot is obtained with

Dp(
√
s, σ23) = 1

(2π)5
1

32
√
s

3 (20)∫
dΩq1dφ12dσ13|Γ(σ23, σ13,Ωq1 , φ12)|2 .

The numerical treatment for these integrals is discussed
in Sec. III C and results are shown in Sec. IV.

III. NUMERICAL IMPLEMENTATION

A. Inversion of the Bethe-Salpeter Equation

The Bethe-Salpeter type integral equation given in the
plane wave basis in Eq. (7) and the partial wave basis
in Eq. (11) must be solved in order to calculate the ob-
servables discussed in Sec. II C. This is done numerically
by discretizing the analytic functions of in- and outgoing
momenta in the T , τ , B- and C-terms.

We start the discretization by introducing indices p and
q1 (not to be confused with fourmomenta). They both
sample the region (0,∞) on a suitably mapped Gaussian
quadrature, consecutively for L = 0 and L = 2, see Fig. 5
for an example.

This mapping allows one to write the terms BJLL′(p, q1)
and T JLL′(p, q1) in a compact matrix form BJpq1

and T Jpq1
,

respectively, preserving the dependence on L and L′. In
this notation Eq. (11) reads

T Jpq1
=
(
BJpq1

+ Cpq1

)
+
(
BJpl + Cpl

)
τ̃lT

J
lq1
, (21)

where the summation over equal indices is understood.
To simplify the notation, factors of l2/((2π)32El) and
Gaussian integration weights are absorbed into the isobar
propagator, indicated by the diagonal expression τ̃ . The
solution of this equation reads

T Jpq1
=
([
1−

(
BJ + C

)
τ̃
]−1)

pl

(
BJlq1

+ Clq1

)
, (22)

FIG. 5. Discretized version of <BJp,q1 from Eq. (21). X- and Y-
axes correspond to the in- and outgoing combined momentum
and angular momentum index as explained in Sec. III A. Note
that the momenta are not uniformly distributed.

with 1 denoting the unit matrix in the above defined space,
i.e., the direct product of momenta and angular momenta.
We introduce a discretized version of Γ̆ following Eq. (16)

Γ̆q1 =
(
Dq1τq1 +Dpτ̃pT

J
pq1
τq1

)
. (23)

The L dependence is implicit in the q1 index.

Before proceeding to further details of the numerical
implementation we return to the discussion of the D-
term in Eq. (15) and why it is important to include
the same singularity in the D-term as in the C-term.
Consider first the three-body contact term Cpq1 that is
the discretized version of Eq. (9), which diverges for

√
s→

mfit. Following Eq. (22), in this limit T Jpq1
→ −1/τ̃q1δpq1 .

Subsequently, this yields for the production amplitude
Eq. (23), Γ̆q1 → (Dq1τq1 − Dpδpq1τq1) = 0. There is,
however, no physical reason for the amplitude to vanish
at this specific point. Adding a contribution, singular at
s = m2

fit, such as the second term in Eq. (15), solves this
issue.

B. Integration Contour

While the quantities of interest Γ̆L and T Jpq1
read quite

straightforwardly in Eqs. (22) and (23), there is a com-
plication hidden in the analytic structure of its building
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FIG. 6. Illustration of the singularity structure of the B-term.
The red and blue lines mark the integration contour for the
momentum p and the moving singularities in the B-term,
respectively. Each of the blue lines is fixed by one complex
q1 for various values cos θ ∈ (−1, 1). The former values are
representative for the problem at hand, while

√
s = 1.260 GeV.

Note that changing the integration contour affects both, the
red and blue lines.

blocks. The main issue in this respect deals with the
cuts of the B-matrix and self-energy given by Eq. (12)
and Eq. (5). Utilizing analyticity, we avoid these cuts
by deforming the integration contour, i.e., sampling all
momentum magnitudes on a line in the complex plane
as, e.g., =k/<k = −α [108]. In order to solve Eq. (21)
with respect to T , one has to choose both momenta p and
q1 along the same deformed integration contour. This
contour, used for the momentum integration in Eq. (16),
is depicted by the red line in Fig. 6. The figure also illus-
trates the singularities of the B-matrix (blue lines) which
are circumvented by the deformed integration contour.
The form-factors regularizing the T matrix, see Eqs. (3)
and (9), also develops similar poles. We have made sure
for all moving singularities appearing in the problem that
they do not cross the integration contour, and that these
singularities respect the +iε prescription of Eq. (8) for
energies

√
s above threshold.

The fact that the integration contour avoids poles guar-
anties analyticity of the three-body scattering amplitude
T . In principle, the integration contour is not unique and
other choices are possible, but there are certain constraints
on it. On the one hand, α needs to be small enough, such
that the analytic extrapolation (see below) is a good ap-
proximation of Γ̆q1 for real q1. On the other hand, it needs
to be large enough to maintain numerical stability. After
extensive exploration, we choose α = 0.2 fulfilling the
above constraints. Recall that the pole-structure of the
self-energy in Eq. (5) is not as intricate. For simplicity,
we choose the same integration contour for it as for the
B-term. This also ensures that the correct Riemann sheet
for the self-energy is picked.

The integration for the self-energy and the integration

over the internal spectator momentum, p in Eq. (1), are
taken over all momentum. Thus, integration on our chosen
contour is identical to integration along the real axis. This
is ensured by the form-factors which cause the integrand to
vanish at large momenta. However, the outgoing spectator
momentum, q1 is real. Because q1 can be observed, Γ̆
is integrated to the physical limit determined by

√
s in

the calculation of observables. In order to relate the
results for momenta on the chosen contour to those on
the real axis we fit a Padé-approximant to the numerically
obtained values of Γ̆ at complex q1. We then extrapolate
this function to the real axis. Note that this is possible
because there are no further non-analyticities between the
complex contour and the real q1 axis. Furthermore, the
incoming momentum p of the T -matrix is always complex
and we never encounter the situation with both p and
q1 real, which could induce further singularities into the
B-matrix [108].

To parametrize Γ̆, its known asymptotic (q1 → 0, q1 →∞)
behaviour can be explicitly incorporated into the Pade-
approximant as

Γ̆L(q1) =
(
q1

mπ

)L
H(q1)

∑m
j=0 a

L
j (q1/mπ)j∑n

k=0 b
L
k (q1/mπ)k

, (24)

which approximates the right-hand side of Eq. (16). The
complex coefficients, aLj and bLk are fit to the values of Γ̆q1

of Eq. (23), that is calculated only for discrete, complex q1.
The Padé-approximant is then extrapolated to real values
of q1. The inclusion of the asymptotic behavior ensures
that one only needs a small number of free parameters to
accurately fit Γ̆q1 .

We have extensively checked the validity of this procedure,
e.g., by ensuring that the extrapolated function is inde-
pendent of the choice for α with sufficient precision. The
numerical precision also depends on the the number of
Gauss points used for the discretization of Eq. (23). Tests
have shown that with 30 Gauss points for each partial
wave one achieves a discretization error of similar size as
the extrapolation error, which is the number employed in
this study.

C. Monte Carlo Integration

After having calculated the production amplitude Γ we
need to perform the phase-space integrations of Eqs. (18),
(19) and (20), leading to the lineshape and Dalitz plots.
We do this numerically using Monte Carlo (MC) inte-
gration which involves summation over the function for
randomly generated values of relevant kinematic variables.

The number of integration variables in Eq. (18) is re-
duced from nine to five, accounting for conservation
of 4-momentum encoded in the delta function. In do-
ing so, we replace the differential from d3q1d

3q2d
3q3 to
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dq1dq2dφ1d cos θ1dφ12. The angles φ1 and θ1 are the an-
gles, which q1 forms with the z-direction. The angle φ12
is the azimuthal angle between q1 and q2.

The integral is then calculated using the Monte Carlo
method, implemented similarly to Ref. [109]. This in-
volves N randomly generated sets each consisting in the
corresponding integration variables. Each value is de-
noted with a subscript, for example, the i-th value of φ12
is denoted φ12i. Furthermore, the allowed values for q1
and q2 must satisfy the condition | cos θ12| < 1, where
cos θ12 is fixed by the delta function to be

cos θ12(q1, q2) = (
√
s− Eq1 − Eq2)2 −m2

π − q2
1 − q2

2
2q1q2

.

(25)
The explicit formula for the MC integration of the line-
shape reads

L(
√
s) = 1

(2π)4
PL
N

1
8
√
s

(26)

×
N∑
i=1

q1iq2i

Eq1iEq2i

|Γ(q1i, q2i, cos θ1i, φ1i, φ12i)|
2
,

where N is the number of MC points and Ps is the phase
space factor, given by integration over the volume. For
the lineshape it is

PL =
∫
dq1dq2d cos θ1 dφ1dφ12 Θ(1− cos2 θ12(q1, q2)) ,

(27)
where Θ is the Heaviside function. In a similar way the
Dalitz plot

D(
√
s, σ23, σ13) = 1

(2π)4
PD
N

1
32
√
s

3 (28)

×
∑
i

|Γ(σ23, σ13, cos θ1i, φ1i, φ12i)|
2

and the projected Dalitz plot

DP (
√
s, σ23) = 1

(2π)4
PP
N

1
32
√
s

3 (29)

×
∑
i

|Γ(σ23, σ13i, cos θ1i, φ1i, φ12i)|
2

are calculated. The phase space factor for the Dalitz plot
and projected Dalitz plots are PD =

∫
d cos θ1dφ1dφ12

and PP =
∫
dσ13d cos θ1 dφ1dφ12 Θ(1− cos2 θ12(σ13, σ23))

respectively.

IV. RESULTS

In the following we present the results of the approach
in terms of Dalitz plot, projections thereof, and line-
shape, i.e., D, Dp, and L calculated from Eqs. (28), (29),
and (26), respectively.

0.6 0.8 1.0 1.2 1.4

0.05

0.10

0.15

0.20

0.25

FIG. 7. Three-pion lineshape from the decay τ− → π−π−π+ντ
(data from Ref. [92]). The solid blue line shows the fit result.
We also include the component of the fit that comes only
from the S-wave (red line). As expected, the S-wave channel
dominates. We also see that the D-wave provides a larger
contribution at higher values of

√
s.

The free parameters of the framework are mρ, g1, Λ, gfL,
DfL, Df̃ , mfit, where three former are fixed by a fit to the
two-body data, i.e., isovector ππ phase-shifts. They read:
mρ = 1.38 GeV, g1 = 7.26, and Λ = 1.04. As discussed
below, there is not much sense in determining statistical
uncertainties for these quantities for the present purpose.
Note that Λ, appearing in form-factor F in the ρππ vertex
of Eq. (3), regularizes not only the isovector two-body
amplitude but also the three-body amplitude through
the appearance in the B-term of Eq. (8). This induces
the usual and unavoidable regulator dependence in the
three-body amplitude which is absorbed in the contact
term (9), that by itself contains a form-factor to render
the three-body equation well-defined.

The remaining six parameters (note the index L = 0, 2
above) are determined from a fit to the lines-shape from
the ALEPH [92] experiment. The best fit parameters read:
Df0 = 3.4 × 10−4 GeV−1/2, Df2 = 4.9 × 10−4 GeV−1/2

for the non-resonant ρπ production vertices of Eq. (15),
Df̃ = 1.7× 10−3 GeV−1/2 for the strength of the bare a1
component in the production process in Eq. (15), gf0 =
5.3 × 102, gf2 = 1.2, and mfit = 0.51 GeV for the bare
a1 decays into S- and D-wave ρπ and the a1 bare mass
of Eqs. (9) and (15), respectively. The result of the fit is
presented in Fig. 7 together with the experimental data.

According to the PDG [79], the a1(1260) mostly decays
into the ρπ and σπ channels. The σπ branching ratio
is determined in Ref. [91] to be Γ(σπ)/Γtotal = 0.1876,
whereas relative to the ρπ channel it is quoted in Ref. [110]
as Γ(σπ)/Γ(ρπ) = 0.06. Both, these results show that
the ρπ channel is largely dominant, but the σπ channel
is non-negligible. Since the present analysis does not
include the σπ channel, a χ2 close to 1 would only indicate
that the free parameters are capable of accounting for
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FIG. 8. Upper Row: Dalitz plots for various three-body invariant masses. Each Dalitz plot has been re-scaled separately to
emphasize qualitative features. The blue/red colors represent higher/lower values, respectively. The dark bands at σ.. ∼ 0.59 GeV2

are the outline of the ρ-meson. Middle Row: Projected Dalitz plots. An effect of this integration is the kinematic reflection of
the peak from the ρ meson at a value of σ13 lower than the mass of the ρ. Lower Row: The ratio between Dp and D′p, the
equivalent projected Dalitz plots calculated without the rescattering terms normalized to the integral over Dp.

effects that are probably not due to the physical processes
they describe. Therefore, we do not preform a statistical
analysis on our fit of the lineshape data and accept that
the fit starts diverging from the lineshape data at at
high energies as shown in Fig. 7. Furthermore, at higher
energies the ρ channel itself exhibits structures that are
not included in our parametrization of the ππ amplitude,
in terms of increasing inelasticty and resonances such as
the ρ(1450).

We can make a very rough estimate of the D-wave branch-
ing ratio (BR) from the lineshape at the resonance posi-
tion

√
s ≈ 1.26 GeV. We obtain Γ(ρπ)D/Γtot ≈ 1.5 %.

This is comparable to the PDG value [79], i.e.,
Γ(ρπ)D/Γtot = (1.30± 0.60± 0.22) %.

Also, comparing to other determinations of BRs is diffi-
cult because in BRs for sequential decays, integrals are
often performed over the mother and/or daughter reso-
nances. This contribution depends on integration limits,

the non-resonant background and the parametrization
of the lineshapes of mother and daughter resonances.
A unique and background-independent definition is pro-
vided by the residue at the pole [8, 99], which for unstable
daughter resonances will be a function of the spectator
momentum; the analytic continuation of the amplitude
to the a1 pole, as performed in Ref. [41], is beyond the
scope of this work because the moving three-body singu-
larities appearing in our unitary formalism require special
attention for complex energies [8].

In the upper row of Fig. 8 we show the result of our
calculation of the Dalitz plots using the parameters from
the fit to the lineshape. In those, we note the clear outline
of the ρ-meson at σ ∼ 0.59 GeV2 for the plots with large
enough available phase-space. The maxima of the plots
lie at the intersection of the bands, meaning that the
amplitudes exhibit a constructive interference. As such,
this is consistent with the symmetry of the amplitude
Γ̂Λλ(q1, q2, q3) under the exchange of the two π− due to
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Bose symmetry, see Eq. (1) and discussion below it.

The central row of Fig. 8 shows the projected Dalitz plots.
We once again see peaks in each plot at the ρ-mass as well
as its kinematic reflections. To understand the importance
of the connected contributions, we show in the bottom
row of the figure the quotient of the full and disconnected
contributions, cf., Eq. (1). We observe a contribution
from rescattering at the order of ∼ 5%. We note that this
contribution is small but of similar order as the branching
ratios to some inelastic channels (not included in this
analysis), see Ref. [79]. Thus, the incomplete inclusion
of rescattering might lead to incorrect extraction of the
resonance parameters in these channels.

V. SUMMARY

In this paper, we have adopted a relativistic unitary for-
malism for three-to-three scattering to address the decay
of the a1(1260)-resonance to three pions. The free parame-
ters of the approach, related to the production mechanism,
two-body sub-channel interaction and the three-body con-
tact term were fixed to the two- and three-body data.

The key technical part of the approach is the relativistic
Bethe-Salpeter type equation, which depends on the mo-
menta of the in- and outgoing pions. First, this integral
equation was reduced by a partial-wave decomposition.
This coupled-channel equation has then been discretized
for momenta on a complex contour, leading to an algebraic
equation. Solutions of the latter have been extrapolated

to real momenta, for which the amplitudes were then
related to observables. These include lineshape, Dalitz
plots, and projected Dalitz plots.

Fitting the free parameters of the approach to the line-
shape from the ALEPH experiment, we observe a domi-
nant S-wave contribution. The Dalitz plots and projected
Dalitz plots show the outline of the ρ-meson and its kine-
matic reflections. The rescattering effects are small but
non-negligible for this particular system, and could affect
the extraction of resonance parameters in a more complete
description. The inclusion of σπ and other channels, the
direct analysis of Dalitz plots is work in progress. This
would allow for an accurate determination of the pole
position of the a1(1260) through analytic continuation to
the complex energy plane.
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[109] M. Döring, E. Oset, and U.-G. Meißner, Eur. Phys. J.
A46, 315 (2010), arXiv:1003.0097 [nucl-th].

[110] P. Salvini et al. (OBELIX), Eur. Phys. J. C35, 21 (2004).
[111] D. Sadasivan, in preparation, Ph.D. thesis, GWU, Wash-

ington (2020).

1. Form-Factors

The integral equations, appearing in the main text, are regularized using form-factors. Apart from suppressing large
spectator or loop momenta, the requirements on the form-factor in the ρ→ ππ decay v are

1. As a consequence of three-body unitarity, the ρππ decay v in the self-energy of Eq. (5), in the π exchange of
Eq. (8), and in the final decay of Eq. (1) must be consistent [49]. In particular, the form-factor must be Lorentz
invariant because it is evaluated in the three-body rest frame but also the isobar rest frames.

2. To preserve unitarity, the previous requirement must be fulfilled if the pions of the ρ decay are on-shell, but may
be dropped if they are off-shell.

3. For the B-term, it cannot have poles on the chosen integration contour; this requirement needs to be fulfilled for
all scattering angles, spectator momenta, and three-body energies

√
s. Also, it cannot contain poles in the region

around the contour and the real-momentum axis, due to the extrapolation procedure to obtain the amplitude for
real outgoing momenta from complex ones described in Sec. III B.
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Obviously, the above requirements do not fix the form-factor uniquely. Various analytic forms are studied and discussed
in [111]. For the B-term and the final ρ→ ππ decay, we choose a form-factor for Eq. (3) that reads

F (σ,Q2) = Λ4

Λ4 + e1+(Q2/4−(σ−4m2
π))/(1GeV2) (30)

for σ = (q2 + q3)2, Q2 = (q2 − q3)2. As demanded by condition 1 in the above list, a consistent choice needs to be
made for the form-factor in the self-energy (5). However, since the latter only includes vertices projected to P -wave,
the form-factor will have a different momentum dependence. It reads

F̃ (σ, k) = Λ4

Λ4 + e1+((4(
√
σ−2Ek)2−4k2)/4−(σ−4m2

π))/(1GeV2) . (31)

Note, that the term (
√
σ − 2Ek)2 vanishes for the on-shell momentum, k =

√
σ −m2

π/2, which is the value leading to
an imaginary part of the self-energy integral (5). Therefore, we can multiply this term by an arbitrary factor and still
satisfy condition 1 for the form-factors. We multiply it by a factor of four to allow the form-factor to suppress large
momenta k for the case when σ(p) = 0.

Another form-factor appears in the three-body term C of Eq. (9) and similarly in the a1(1260)→ ρπ vertex of Eq. (15).
Both these contributions are real-valued and thus respect the unitarity requirement and furthermore enter only in a
fixed (center-of-mass) reference frame. Hence, they do not have to follow the above constraints, and are chosen for
simplicity as

H(p) = Λ′4
Λ′4 + p4 . (32)

In principle this factor allows for an additional parameter Λ′. We varied it but found no significant improvement of
the fits. Thus, we choose the cutoff Λ′ = 1.0 GeV.

2. Polarization Vectors and Kinematics

The ρ→ ππ vertex in Eq. (3) includes the four-product εµλ(q1) (q2−q3)µ with λ indicating the helicity of the isobar. The
polarization vector or its complex conjugate is assigned to a given in- or outgoing isobar. Explicitly, the corresponding
polarization vectors read,

ε0 = 1
m

 p
0
0
Ep

 , ε±1 = 1√
2

 0
∓1
−i
0

 , ε∗0 = 1
m

 k
Eq1 sin θ1 cosφ1
Eq1 sin θ1 sinφ1
Eq1 cos θ1

 , ε∗±1 = 1√
2

 0
∓ cos θ1 cosφ1 + i sinφ1
−i cosφ1 ∓ cos θ1 sinφ1

± sin θ1

 , (33)

where the ingoing isobar with momentum p points in the z-direction, see, e.g., Eq. (7). In order to simplify the
partial-wave projection of Eq. (12), azimuthal symmetry allows us to choose a reference frame, in which the outgoing
isobar at momentum q1 lies in the xz-plane with scattering angle θ1 and φ1 = 0.

The polarization vectors are also used for the calculation of the final vertex in Eq. (1). In this case, we work with a
more general expression of the momenta in the phase space as defined in the integral of Eq. (19). We choose to define
the angles of q2 relative to q1, i.e., the angle θ12 and the azimuthal angle φ12. Thus, one defines the explicit components
of q2 in terms of θ12, φ12, and the angles of the rotation of q1 from the z-axis in its actual direction. We introduce
the rotation matrices Rq1(φ12) and Rq1⊥(θ12), where the subscript specifies the vector about which they are rotated
and the argument gives the angle by which they are rotated. The vector q1⊥ is calculated by Rz(φ1)Ry(θ1)Rz(−φ1)ŷ.
Explicitly, one has

q1 = −q1
(
Rz(φ1)Ry(θ1)Rz(−φ1)ẑ

)
, q2 = q2

(
Rq1(φ12)Rq1⊥(θ12)Rq1(−φ12)q̂1

)
, (34)

whereas q3 is fixed to be −q3 = q1 + q2 in the overall center of mass frame. The labeling of momenta changes through
the symmetrization of the two π− indicated in Eq. (1). The components of the polarization vectors change depending
on whether q1 or q2 is designated to be the spectator. If q1 is the spectator, the polarization vectors will have the
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same components as the right two equations (33), whereas if q2 is the spectator, the equations read

ε0 = 1
m


k

Rq1(φ12)Rq1⊥(θ12)Rq1(−φ12)Rz(φ1)Ry(θ1)Rz(−φ1)

 0
0
Ep


 , (35)

and

ε±1 = 1√
2


0

Rq1(φ12)Rq1⊥(θ12)Rq1(−φ12)Rz(φ1)Ry(θ1)Rz(−φ1)

∓1
−i
0


 . (36)
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