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Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state
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We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear
fragmentation region (“‘spectator tagging”) as a method for extracting the free neutron structure functions and
studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider
(EIC) with suitable forward detectors. The measured proton recoil momentum (<100 MeV in the deuteron rest
frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical
treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum
mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which
can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil
momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSIs arise predominantly
from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest
frame momenta <1 GeV, target fragmentation region). We construct a schematic model describing this effect,
using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering
amplitudes. We investigate the magnitude of FSIs, their dependence on the recoil momentum (angular dependence,
forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment
on the prospects for neutron structure extraction in tagged DIS with an EIC. We discuss possible extensions of the
FSI model to other kinematic regions (large/small x). In tagged DIS at x < 0.1 FSIs resulting from diffractive

scattering on the nucleons become important and require separate treatment.
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I. INTRODUCTION

Measurements of deep-inelastic lepton scattering (DIS)
from nuclei with mass number A > 1 address several key
topics in short-range nuclear structure and quantum chromo-
dynamics (QCD). One is the partonic structure of the neutron,
which is needed for the flavor decomposition of the nucleon’s
valence and sea quark densities and for the separation of
singlet and nonsinglet nucleon structure functions in studies
of the scale dependence (QCD evolution, higher-twist effects).
Another topic is the modifications of the nucleon’s partonic
structure in the nucleus and their dependence on the scaling
variable x (EMC effect at x > 0.3, antishadowing at x ~ 0.1),
which attest to the presence of non-nucleonic degrees of
freedom in nuclei and reveal the QCD structure of nucleon-
nucleon interactions [1,2]. Yet another topic is coherence
phenomena at x < 0.1 such as nuclear shadowing, which
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arise from the participation of multiple nucleons in the DIS
process and govern the approach to the unitarity limit at high
energies [3]. Experiments in nuclear DIS have been carried out
in fixed-target eA /A scattering at several facilities (SLAC,
HERMES, CERN EMC and COMPASS, FNAL E665, JLab;
see Ref. [4] for a review) and will be extended further with the
Jefferson Lab 12 GeV upgrade. A much wider kinematic range
would become accessible in colliding-beam experiments with a
future electron-ion collider (EIC) [5-7]. A medium-energy EIC
with a squared electron-nucleon center-of-mass (CM) energy
SeN = Sea/A ~ 200-2000 GeV? would be ideally suited for
nuclear DIS measurements in the region x > 10~3 and enable
detailed studies of sea quarks and gluons in the nucleon and
their nuclear modifications [8,9]. Complementary information
is provided by measurements of hard processes in high-energy
hadron and photon scattering on nuclei (RHIC, LHC) [10].
The main challenge in the analysis of nuclear DIS experi-
ments is to account for the multitude of nuclear configurations
that can be present in the initial state of the high-energy scatter-
ing process and affect its outcome [11]. The scattering can take
place on any of the constituent protons and neutrons (p and n),
in different states of their quantum-mechanical motion in the
nucleus (momentum, spin). In addition, non-nucleonic degrees
of freedom such as A isobars are excited by the nuclear binding.
In the extraction of neutron structure one needs to isolate
the DIS cross section arising from scattering on the neutrons
and eliminate the effects of nuclear binding (Fermi motion,
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non-nucleonic degrees of freedom). For neutron spin structure
one must also infer the effective polarization of the neutron
in the polarized nucleus and account for the polarization of
non-nucleonic degrees of freedom, particularly intrinsic A’s in
polarized *He [12-14]. In the study of nuclear modifications
at x > 0.1 (EMC effect, antishadowing) one wants to relate
the modifications to the nucleon interactions taking place
in particular nuclear configurations (short-range correlations,
exchange mechanisms). In traditional inclusive nuclear DIS
measurements ¢ + A — ¢’ + X these issues are addressed by
modeling the nuclear effects for typical nuclear configurations
and averaging over all possible configurations. The result-
ing theoretical uncertainty usually represents the dominant
systematic error in neutron structure extraction. Likewise,
this method provides limited possibilities for unraveling the
dynamical origin of nuclear modifications. Major progress
could come from experiments that provide information on the
nuclear configurations present during the high-energy process
through measurements of the nuclear final state.

Deep-inelastic scattering on the deuteron (d,A = 2) with
detection of a nucleon (N = p or n) in the nuclear fragmenta-
tionregion,e + d — ¢ + N + X, represents a unique method
for performing DIS measurements in controlled nuclear con-
figurations (“spectator tagging”). The nucleon emerges with
a typical recoil momentum |p,| ~ few 10-100 MeV in the
deuteron rest frame.! At such momenta the deuteron’s non-
relativistic pn wave function is well known from low-energy
measurements and can be used to construct the pn light-front
(LF) wave function entering in high-energy processes (see
below). Because the deuteron has isospin / = 0, A isobars
in the wave function are strongly suppressed (they can occur
only in AA configurations), so that the deuteron can be treated
as a pn system for most of the configurations relevant to
DIS [11]. Under these conditions the detection of the recoil
nucleon and the measurement of its momentum positively
identify the active nucleon and control its momentum during
the DIS process. By measuring DIS with a tagged proton and
extrapolating the measured recoil momentum dependence to
the on-shell point near |p,| = 0 (in the deuteron rest frame)
one can eliminate nuclear binding effects and extract free
neutron structure in a model-independent manner [15]. DIS
on the deuteron with proton tagging was measured in the JLab
CLAS BONuS experiment at 6 GeV beam energy [16,17] and
will be explored further at 11 GeV [18]. This setup covers
recoil momenta |p,| 2, 70 MeV, which are larger than the
typical nucleon momenta in the deuteron (the median of the
nonrelativistic momentum distribution is ~70 MeV). In such
fixed-target experiments it is difficult to get slow protons (or
neutrons) out of the target and measure their momenta with
sufficient resolution, which restricts the measurements to large
recoil momenta and prevents on-shell extrapolation.

Much more suitable for tagged DIS measurements are
colliding-beam experiments, where the spectator nucleon
moves on with approximately half the deuteron beam mo-
mentum and can be detected using forward detectors. Both

"We use units in which /i = ¢ = 1 and quote momenta in MeV/GeV.

EIC designs presently discussed include capabilities for for-
ward nucleon detection [9,19-21]. The JLab EIC detector
is designed to provide full coverage for spectator protons
down to zero transverse momentum, and with a momentum
resolution corresponding to |p,| ~ 20 MeV in the rest frame,
as well as forward neutron detection. This setup would enable
measurements of deuteron DIS with spectator tagging over
the entire (x,(0?) range covered by the collider and thus
permit extraction of neutron structure and study of nuclear
modifications with control of the nuclear configuration. It
would also allow for tagged measurements on the polarized
deuteron, which is potentially the most precise method for
determining neutron spin structure.

The theoretical analysis of tagged DIS on the deuteron
relies essentially on the analytic properties of the scattering
amplitude (and cross section) in the recoil proton momentum.
As a function of the invariant four-momentum transfer between
the deuteron and the recoiling proton, ¢t = (p; — pp)z, the
cross section has a pole at tr = Mlz\, (we assume isospin
symmetry and denote the common nucleon mass by My =
M, ). The pole is contained in the impulse approximation (IA)
amplitude and corresponds to the scattering from an on-shell
neutron in the deuteron in unphysical kinematics. According
to the general principles of scattering theory, the residue at
the pole is given by the structure function of the free neutron.
Nuclear binding and final-state interactions (FSIs) affect only
the tagged deuteron structure functions away from the pole, at
t — M% # 0,not the residue at the pole. This makes it possible
to extract the free neutron structure function, by measuring
the proton-tagged DIS cross section as a function of ¢ and
extrapolating to the on-shell point t — MIZV. In terms of the

recoil momentum in the rest frame, t — M} = —2|p,|* +
t'., where . = —Myes = —0.0041 GeV? (¢4 = 2.2 MeV

is the deuteron binding energy), so that the on-shell point
corresponds to unphysical values of the recoil momentum
extremely close to zero, | p ,|* = —1, . /2. The method is model
independent and relies only on general properties of the tagged
DIS cross section (analyticity, position of singularities). It has
considerable theoretical appeal and can be turned into a practi-
cal tool, given sufficiently precise data at small recoil momenta.

Away from the nucleon pole, at ¢t — M,%, # 0, the recoil
momentum dependence of the tagged DIS cross section is
modified by FSIs. They result from amplitudes in which
the final state produced in the DIS process on the active
nucleon rescatters from the spectator nucleon and changes its
momentum. They exhibit a complex dependence on the recoil
momentum angle and magnitude, dictated by the kinematics of
the rescattering process, and on x, because the character of the
nucleon DIS final state changes as a function of the latter. The
FSI effects in the tagged cross section need to be estimated
quantitatively in order to assess the feasibility of neutron
structure extraction through on-shell extrapolation. The same
is needed in order to explore the possibility of separating
initial-state nuclear modifications from final-state interactions
in tagged DIS. Such an estimate requires a theoretical model
of FSIs appropriate to the region of x explored in the tagged
DIS experiments.

In this article we develop the theoretical framework for
tagged DIS measurements on the deuteron in the kinematic
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FIG. 1. Physical picture of FSI in electron-deuteron DIS with
proton tagging, e + d — ¢’ + p(p,) + X, in the deuteron rest frame.
A slow hadron in the final state produced by DIS on the active neutron
scatters from the spectator proton, changing its momentum compared
to the IA. The fast component of the DIS final state does not interact
strongly with the spectator.

region explored with a medium-energy EIC. We use methods
of LF quantum mechanics to separate nuclear and nucleonic
structure in the high-energy process and enable dynamical
calculations of the deuteron structure elements. We derive the
tagged structure functions in the IA and study their symmetries
and analytic properties in the recoil momentum. We then
develop a dynamical model of nuclear FSI at “intermediate”
x, defined as the region between the extreme valence quark
regime at x 2> 0.5 and the coherent regime at x < 0.1 (the role
of coherent phenomena in FSI at x < 0.1 will be considered
in a separate study [22]). This intermediate region is of prime
interest for the study of sea quarks and gluons and their nuclear
modifications. We use our model to estimate the magnitude
and kinematic dependence of the FSI effects, demonstrate
their analytic properties, and study the implications for neutron
structure extraction through on-shell extrapolation.

Our treatment is based on a definite physical picture of
FSI at intermediate x. The DIS process on the nucleon
with momentum transfers |g| > 1 GeV (in the deuteron rest
frame) produces a broad spectrum of hadrons, ranging in
momenta from |p,| ~ |q| to |p,] < 1 GeV. The “fast” part
of the nucleon DIS final state does not interact strongly
with the spectator nucleons in the nucleus. This assertion is
supported by empirical and theoretical arguments. Nuclear
DIS data show that fast hadrons with |p,| > 1 GeV are not
substantially attenuated in nuclei [23-28]; the soft neutron
spectra produced by nuclear breakup in DIS likewise indicate
the absence of strong FSIs [26,29]. Theoretical estimates of
the hadron formation time show that such fast hadrons form
mainly outside of the nucleus and cannot interact with hadronic
cross sections; see Sec. 5.10 of Ref. [5] for an overview. The
dominant FSI in tagged DIS on the deuteron therefore comes
from “slow” hadrons with |p,| < 1 GeV in the nucleon DIS
final state. Such hadrons are formed inside the nucleus and
can interact with the spectator with hadronic cross sections
(see Fig. 1). In the terminology of DIS, the “fast” and “slow”
parts of the final state of DIS on the nucleon correspond to
the current and target fragmentation regions (see Sec. V).
We note that the physical picture of FSIs proposed here is
consistent with the general QCD factorization theorem for
target fragmentation in DIS, which is a rigorous asymptotic

result and holds irrespective of the type of target (nucleon or
nucleus) [30,31]. FSI of the “fast” DIS hadrons with the nuclear
remnant would amount to a violation of factorization for the
nuclear target in the asymptotic regime. In contrast, FSI of
the “slow” DIS hadrons with the nuclear remnant represent a
particular soft-interaction contribution to the nuclear fracture
function that is allowed by the factorization theorem.

We express this physical picture of FSI in a schematic
model. We calculate the tagged DIS cross section on the
deuteron using LF quantum mechanics, including the IA
and FSI amplitudes. We use empirical hadron distributions,
measured in ep/ed DIS, to describe the slow part of the
hadronic final state produced on the nucleon in the deuteron.
The interactions of the slow hadrons with the spectator are
treated as on-shell scattering with an effective cross section.
Off-shell effects can be absorbed into the effective cross
section and the slow hadron distribution; they are physically
indistinguishable from effects of the finite hadron formation
time and can consistently be accounted for in this way. This
model amounts to a minimal description of FSIs based on the
space-time evolution of the DIS process and empirical hadron
distributions.

In the present study we use the apparatus of LF quantum
mechanics to describe the initial-state nuclear structure and
final-state interactions in tagged DIS. High-energy processes
such as DIS effectively probe a strongly interacting system
at fixed LF time x* = x% 4 x3, along the direction defined
by the reaction axis. In LF quantization one follows the time
evolution of the system in x* and describes its structure
by wave functions and densities at x* = const [32-36]. The
scheme is unique in that it permits a composite description in
which effects of the off-shellness of the constituents remain
finite as the scattering energy becomes large [11]. It makes
possible a composite description of nuclear structure in DIS
in terms of nucleon degrees of freedom, which exhibits a
close correspondence with nonrelativistic nuclear structure
(NN interactions, wave functions), satisfies sum rules (baryon
number, LF momentum), and enables a smooth matching with
nucleon structure (parton picture, QCD degrees of freedom)
[1,11]. It is important to understand that the structure thus
described is “low-energy” nuclear structure, governed by
interactions and degrees of freedom on the nuclear scale; it is
only presented in a way that is appropriate for the initial state
of high-energy processes. The application of LF quantum me-
chanics to nuclear high-energy processes is described in detail
in Refs. [1,11]; the elements used in the present calculation are
summarized below.

Conservation of baryon number and LF momentum is
an important consideration in describing nuclear DIS. The
LF TA for the inclusive DIS structure functions correctly
implements the baryon number and momentum sum rules for
the deuteron, i.e., the baryon numbers of the p and n add up
to the total baryon number of the deuteron when integrating
over all configurations in the wave function, and the LF “plus”
momenta of the p and n add up to the total momentum of
the deuteron [11]. It means that at this level there are no
non-nucleonic degrees of freedom and ensures that, when the
nucleons are resolved into partons, the partonic sum rules
for the deuteron are satisfied. In the tagged DIS structure
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functions one recovers these sum rules when integrating
over the spectator recoil momentum. FSIs in tagged DIS
may distort the recoil momentum distribution but should not
modify the sum rules for the recoil momentum-integrated
structure functions. In our picture this can be accomplished
by modeling the slow hadron-nucleon rescattering process as
elastic scattering (no additional hadrons are produced) and
implementing unitarity of the rescattering amplitude. In this
sense our model of FSIs in tagged DIS preserves the baryon
number and momentum sum rules and is consistent with the
standard LF treatment of the inclusive DIS structure functions.

The plan of the article is as follows. In Sec. II we present the
kinematic variables and invariant structure functions in tagged
DIS, introduce the collinear frame used in the LF description,
and discuss the recoil momentum variables. In Sec. III we
summarize the elements of LF quantum mechanics used in
our calculations—the single-nucleon states, the deuteron LF
wave function, its rotationally symmetric representation, and
the treatment of spin degrees of freedom. In Sec. IV we
calculate the tagged DIS cross section in the TA and study its
properties. We discuss the LF current components, compute
the TA current and structure functions, introduce the LF
spectral function, and discuss the nonrelativistic limit and
the analytic properties in ¢. In Sec. V we discuss the slow
hadron distribution in DIS on the nucleon—the kinematic
variables, structure functions, and the features of empirical
distributions. In Sec. VI we calculate the FSI effects in tagged
DIS in LF quantum mechanics and study their properties.
The FSI effects are expressed in terms of a distorted spectral
function. We include the spin degrees of freedom and formulate
a nonrelativistic approximation for evaluating the rescattering
integral. We demonstrate the positivity of the cross section,
investigate the recoil momentum dependence of the FSI effects,
and discuss the analytic properties of the distorted spectral
function. We also comment on the role of unitarity of the
rescattering process and the implementation of sum rules for
the LF spectral function with FSI. In Sec. VII we discuss the
strategy for neutron structure measurements in tagged DIS with
EIC. A summary and outlook are given in Sec. VIIIL.

Technical material needed to reproduce the calculations
is summarized in the appendixes. Appendix A describes the
nonrelativistic deuteron wave function used in constructing
the deuteron LF wave function and evaluating the TA and FSI
expressions. Appendix B contains the projection formulas for
extracting the tagged structure functions from the deuteron
tensor in the IA and with FSIs. Appendix C summarizes our
parametrization of the nucleon-nucleon cross section used in
the numerical estimates of FSI effects. Appendix D describes
the evaluation of the rescattering phase space integral in the
FSI amplitude.

The physical picture of FSIs in tagged DIS proposed here
is specific to the region of intermediate x as defined above,
and our model should be used in this context only. In tagged
DIS in the limit x — 1, the minimal rest-frame momentum of
the “slow” hadrons produced on the nucleon becomes large, as
their LF momentum fractions are bounded by 1 — x, and the
interactions are suppressed by the hadron formation time (see
Fig. 1). The framework developed in the present work could be
extended to this region when supplied with empirical informa-

tion about the formation time effects. (The work of Refs. [37—
39] considers tagged DIS at large x in a subasymptotic domain
of fixed energy and momentum transfer, where the limitx — 1
corresponds to a small inelasticity W? — M3, and the DIS final
state is modeled as a superposition of baryonic resonances; this
formulation is different from the asymptotic one presented here
and not appropriate for collider energies.) In tagged DIS at
small x («0.1), diffractive scattering on the nucleon becomes
significant and gives rise to a new mechanism of FSI. In
diffractive scattering the nucleon appears intact in the final state
and recoils with a momentum of ~ few 100 MeV. Because
the diffractive nucleon retains its quantum numbers (“vacuum
exchange”) and emerges with a small recoil momentum, there
is a significant amplitude for the final-state pn system to
revert back to a deuteron bound state. In tagged DIS in this
kinematics the outgoing pn scattering state must be properly
orthogonalized to the deuteron bound state, which results in
significant distortion. This new mechanism of FSI in tagged
DIS on the deuteron at small x is closely related to shadowing
in inclusive DIS and will be discussed elsewhere [22].

In the present work we consider unpolarized electron-
deuteron DIS and calculate the FSI effects in the tagged
cross section integrated over the azimuthal angle of the recoil
momentum, as relevant for the extraction of the neutron
structure functions F,, and Fp,. The extension to polarized
electron-deuteron DIS with spectator tagging and azimuthal
angle-dependent response functions will be left to a future
study, as the number of structures in the cross section becomes
very considerable [40]. A proper treatment of FSIs in the
polarized deuteron would require also empirical information
on the spin dependence of the slow DIS hadron distributions,
which is not available at present. We note that the schematic
model of FSIs proposed here could be applied also to the
time-reversal-odd (7-odd) response functions in tagged DIS,
which are zero in the IA and can be used for sensitive tests of
the FSI dynamics.

The internal spin structure of the deuteron plays an im-
portant role in tagged DIS. The nonrelativistic deuteron wave
function has S- and D-wave components, in which the nucleon
spins are effectively polarized along and opposite to the
deuteron spin; the D wave dominates the momentum density
at nucleon momenta |py| 2 300 MeV. This structure can be
incorporated in the LF description using the correspondence
between the nonrelativistic and LF wave functions [41]. In the
LF formulation the nucleon spin states are chosen as LF helicity
states, which are obtained from the rest-frame spin states by a
sequence of LF boosts and differ from ordinary helicity states
by a spin rotation [33-36]. In this work we include both the
S- and the D-wave component in the LF calculation of the
tagged DIS cross section in the IA and the FSI correction.
Our treatment is simplified by two circumstances: (a) There
is little theoretical or experimental evidence for polarization
of the slow hadrons emerging from the DIS process. We
therefore treat these hadrons as unpolarized and neglect the
dependence of the rescattering process on the spectator spin.
This avoids the need of dealing with spin rotation effects
and results in the absence of S-D-wave mixing in the lin-
ear FSI correction (interference of IA and FSI amplitudes).
(b) Our interest here is in the tagged DIS cross section at small
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recoil momenta |p,| < 200 MeV, where the IA amplitude is
dominated by the S wave. The main FSI correction results
from the S-wave A interfering with the S-wave FSI amplitude,
in which the rescattering integral is dominated by proton
momenta <300 MeV. The rescattering integral with the D
wave, which involves larger momenta, appears in the final
result only together with the D-wave IA amplitude, which is
itself small. We therefore do not need an accurate treatment of
the high-momentum contributions in the D-wave rescattering
integral. We use a nonrelativistic approximation to the LF wave
function, accurate up to terms O(p*/ M%), to calculate both S-
and D-wave contributions to the IA and the FSI amplitudes.
Together, these assumptions permit an efficient description of
the spin degrees of freedom that is adequate for the purpose of
our study.

In order to simplify the presentation, we initially suppress
the spin degrees of freedom and derive the LF expressions
for the IA and FSI amplitudes for a bound state of spinless
nucleons. This allows us to focus on the aspects essential to
the LF formulation (flux factors) without the complications
resulting from spin. We then include the spin degrees of
freedom in the LF expressions by way of generalization.
Finally, we derive the nonrelativistic approximation to the LF
quantities of interest here (IA spectral function, FSI correction)
and use it for numerical evaluation.

FSI effects in DIS from nuclei and their kinematic de-
pendence were studied in Refs. [42-45] using a detailed
microscopic model of hadron production in DIS (string break-
ing, gluon radiation). In contrast to these studies we use a
simple generic description of hadron production and consider
specifically the region of intermediate x. FSI effects have also
been studied extensively in quasielastic scattering from nuclei,
including deuteron electrodisintegration e +d — ¢’ + p +n
[46]; see Ref. [47] for a review. There is an interesting formal
analogy between FSIs in quasielastic deuteron breakup at
~1-2 GeV incident momenta and our picture of slow-hadron
rescattering in DIS, and one can establish the correspondence
between the formulas.

II. TAGGED DIS KINEMATICS

A. Kinematic variables

We begin by summarizing the kinematic variables and
cross section formulas for inclusive electron scattering on the
deuteron with an identified nucleon in the final state (“tagged
DIS”). The kinematic factors are given in their exact form (no
simplifications are made using the DIS limit) and expressed
in terms of relativistic invariants, as suitable for collider ex-
periments. The cross section formulas given in this section are
general and make no assumption regarding composite nuclear
structure; particular results based on such approximations will
be presented in Secs. IV and VI. To be specific we consider the
case that the identified nucleon is a proton; equivalent formulas
can be written for the case of an identified neutron. Thus, we
consider the scattering process (see Fig. 2)

e(pe) +d(py) — € (pe) + p(pp) + X,

where X denotes an unresolved hadronic final state. Here p,
and p, are the four-momenta of the initial and final electron,

2.1

Q

p p

X

Py d
N

FIG. 2. Inclusive electron scattering from the deuteron with an
identified proton in the deuteron fragmentation region, e + d — ¢’ +
p + X (“tagged DIS”).

pa is the four-momentum of the deuteron, and p, is the
four-momentum of the identified proton. The four-momentum
transfer to the nuclear system, calculated from the initial and
final electron four-momenta, is

q=pe—pe. O° = —¢q* > 0. (2.2)

Invariants formed from the electron and deuteron

four-momenta are

2.3)
(2.4)

s€d = (pe + pd)zs
Wi =(q+ pa)’,
which describe, respectively, the electron-deuteron and the

virtual photon-deuteron squared CM energies. Useful scaling
variables are

2 2
—q 0
= = , 2.5
T Apag) T WI—M2+ Q2 2-5)
2
_ (paq) 0 2.6)

- (pape) B xd(sed - Mﬁ)

The variable x,; is the Bjorken variable for the nuclear target
(0 < x4 < 1)and will be used in the kinematic formulas for the
cross section, to facilitate comparison with the standard expres-
sions for electron-proton scattering. In the description of com-
posite deuteron structure we shall use the alternative variable

x=2x5 0<x<?2), 2.7

which corresponds to the effective Bjorken variable for
scattering from a nucleon in the unbound nucleus (deuteron).
The variable y describes the electron’s fractional energy loss
(or inelasticity) in the deuteron rest frame. The invariants and
scaling variables formed with the recoil nucleon momentum
pp will be presented in Sec. IID below.

B. Cross section and structure functions

The invariant amplitude for the electroproduction of a final
state p + X, including the detected proton p and a specified
set of hadrons X, is in leading order of the electromagnetic
coupling given by

Mled — € pX]

2

= S TF O p)(p.p XITHO)d, pg), (2.8)

S
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where e is the elementary charge, and the brackets denote
the transition matrix elements of the electromagnetic four-
vector current J*(0) between the initial and final electron and
nuclear/hadronic states. All particle states (electron, deuteron,
nucleon) are normalized according to the relativistic conven-
tion

(e.Peale.Per) = 1) 2Ee(per) 8% (P = Po). ete. (2.9)
The spin quantum numbers of the states are suppressed for
brevity and will be specified below. The differential cross
section for production of the specified hadronic state is [48]

doled — ¢'pX] = )8 (pe + pa — pe — Py — 1)
IM|?
41

The invariant incident particle current is defined as (we neglect
the electron mass)

I =\(pepa)® = 3(sea — M).

The invariant phase space elements of the scattered electron
and the identified proton are

x dT, dT', dT. (2.10)

@2.11)

3
Pe'
dl, = GrE” Eo=|p,|, (2.12)
d*p [ o
de = m, Ep = |pp|2 + M12V (213)

The phase space element of the multi-hadron state X can be
defined analogously in terms of the hadron momenta, but its
explicit form is not needed in the following. The cross section
for tagged inclusive scattering is then given by integrating
Eq. (2.10) over the phase space of the unidentified hadron state
X and summing over all such states (we denote both operations
together symbolically by > "),

doled — ¢ pX1 =) Qu)*8¥(pe+ pa = pe = pp — Px)
X

M|?

x| 41I dT, dT, (2.14)
drret

= rgz)z wWWg’f” dFe/ de (215)

The leptonic tensor is defined as

w"" = w"(per, pe)

= (¢/,p | 7" (O)le,p,)* (¢/,p.1T"(0)le.p,). (2.16)

In the case of scattering of an unpolarized electron beam
(average over initial helicities) and unspecified polarization of
the final electron (sum over final helicities) its explicit form is

wh’ = 4php! 4 q*g" + terms « " ,q". (2.17)

The deuteron tensor is defined as (using ¢ = p, — pe’)
W, =W, (pa.q.pp)

=@m)"' Y @) 89(g + pa — pp — Px)
X

x (pX|J*(0)|d)* (pX|J"(0)|d) (2.18)

= @m)™ " @)t 89 + pa — pp — Px)
X

x (d|J*(0) pX)(pX|J"(0)]d), (2.19)

in which J#! = J# (hermiticity of the electromagnetic current
operator). We consider the case of scattering from an unpo-
larized deuteron (average over deuteron spin) and unspecified
polarization of the final proton (sum over final proton spin); the
spin sums will be shown explicitly in the calculations below.
The tensor obeys the transversality conditions g, W)" =0
and W)"g, = 0 and can be expanded in tensors constructed
from the four-vectors p,,q and p,, and the invariant tensor
g™ Tt is convenient to introduce the auxiliary four-vectors

"
Lt = pl — %, (L)=0, L? > 0, (2.20)
q
_ (ppg)g"  (ppL)L*
TH = pg — q2 — 2 ,

(qT)=0, (LT)=0, T? < 0. (2.21)

Their particular meaning in a frame where p,; and g are
collinear is explained in Sec. II C. We decompose the deuteron
tensor as

Wy = (glw _ _qﬂqv>@ + (LMLU i . guv)@

7 ) 12 PP )
THLY + L*TY Frr4
V=T2J1? 2
, LMLY  q*q" 2TH*TV\ Frra
+ (g“ B R ) 5 (2.22)

Here Fr4, Frq, Frr4, and Frpy are invariant structure
functions, depending on the kinematic invariants formed from
the vectors g, p; and p,,. The first and second tensor structures
in Eq. (2.22) do not involve the identified proton momentum
pp and are present also in untagged (fully inclusive) scattering.
Our definition of the longitudinal and transverse structure
functions, Fr4 and Fry, is identical to that of Ref. [49]. Their
relation to the conventional functions Fj; and F», is

—g¢HL? F 4x2M2\ F.

Td:% 24 <1_|_ xd2d> 24 2.23)
(Paq)* X4 0 Xd
_ 2 LZ F

FLd:—( q)2 2 —2Fy
(Paq)*  xa
1 4x§M§
=—|(1+ 5 ) F2a — 2xaFia |, (2.24)

X4 0

Frq—Frg =2Fy. (2.25)

The third and fourth tensor structures in Eq. (2.22) vanish
when averaging over the orientation of the vector 7 in the
plane orthogonal to L and ¢ and are present only for fixed
momentum p,.
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The contraction of the leptonic and deuteron tensors can be
expressed in terms of the parameter

i x2y2 M2
v 2yIM3
Wy 12 - y = 0?2
€ = - =
LELY "¢ _ x2y2M2°
wlw( =+ 2 8 ) 1—y+y2/2+ dQZd

(2.26)

which can be interpreted as the ratio of the probabilities of lon-
gitudinal and transverse polarization of the virtual photon. To
express the contractions of the p,-dependent tensor structures
in invariant form we expand the initial electron momentum as

The particular meaning of the angle ¢, in a collinear frame is
described in Sec. IIC. We obtain

Q2 1+€ yZ
l—€e|l—€ 2—y)?

w W = Frqg — (1 =€) Frq

+ v2e(1 +e€)cosp, Frrqa+e cos(2¢p)FTT,d]
(2.29)

2
1%6[@ —(l—e FLd+~--}. (2.30)

Xd

The scattered electron phase space element can easily be ex-

_ (p.L)L | (peq)q _ _ pressed in terms of the invariants x;, and Q2 and the azimuthal
Pe = L? * q* +4, (AD =0, (A9)=0, angle around the incident electron momentum direction ¢, .
(2.27) Altogether, the differential cross section for tagged inclu-
' sive scattering with unpolarized beams and recoil nucleon,
(peT) = (AT) = —A*/=T? cos . (2.28)  Eq. (2.15), becomes
|
2 2 2 do.
doled — ¢ pX] = 229”4 q0? L
041 —¢) 2
F,
X |:x—2d — (1 =e)Frqa+2e(1+€)coso,Frrq+e€ cos(2¢p)FTT’d] dar,, (2.31)
d

where o = €%/(4m) & 1/137 is the fine structure constant.
The last two terms in the bracket drop out when the cross
section is integrated over the recoil azimuthal angle ¢,.
Specific forms of the recoil momentum phase space element
are described in Sec. IID.

C. Collinear frames

In the theoretical description of tagged DIS we consider the
process Eq. (2.1) in a frame where the deuteron momentum
p, and the momentum transfer ¢ are collinear and define the
z-axis of the coordinate system. This condition does not specify
a unique frame, but rather a class of frames that are related by
boosts along the z-axis (“collinear frames”). We specify the
four-momenta in this frame by their LF components

pr=p"£p° pr=0"p). (2.32)
The LF components of p; and g in the collinear frame are

2

p:[ > 0 (arbitrary), p; = —f, Par =0
Pa
2 2
+_ + __a _ 9 _
q = _Sdp ’ q =T ="> qr = 0
¢ gt &y
(2.33)
The parameter &, is fixed by the condition
Q2
2paa =pia +ria" =" (2.34)
d
the solution of which is
2xd
&= (choose +). (2.35)

1£,/14+4M)x3/0?

[
We select the solution with the plus sign, which has the property
that in the scaling limit Q% > Mﬁ

4= x4+ O(M37/Q%). (2.36)

With this choice the momentum transfer vector g points in the
negative z direction (see Fig. 3),

2

Eipy

2¢° =q* —q~ =—&ip; — <0. (2.37)

FIG. 3. Tagged DIS in the collinear frame, Eq. (2.33). The
deuteron momentum p, and the vector ¢ are collinear and define
the z axis, with ¢ pointing in the negative z direction. The initial
and final electron momenta lie in the xz plane and have positive x
component. ¢, is the angle of the transverse (xy) component of the
recoil momentum, measured relative to the positive x axis.
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The LF components of the longitudinal auxiliary four-
vectors L and T', Egs. (2.20) and (2.21), are obtained as

— 13 - _ 2\ 1 _

LY = (1= &)pf L= M3+ L)k Lr=0 |

T+ =0, T- =0, Tr=pyr
(2.38)

The vector L has only collinear components, while 7" has only
transverse components and coincides with the recoil hadron
transverse momentum in the collinear frame. Because the
momentum transfer ¢ is along the (negative) z direction, the
initial and final electron momenta have the same transverse
components,

Por = Por (collinear frame), (2.39)

such that they define a plane together with the z axis (electron
scattering plane). The recoil angle ¢,, defined in terms of
invariants in Eq. (2.28), then is the azimuthal angle of p,,,
measured relative to the electron scattering plane. It is con-
ventional to choose the electron transverse momenta in the x
direction, such that the electron scattering plane is the x z plane.
In this case the angle ¢, becomes the conventional azimuthal
angle of p,, in the xy plane, cos ¢, = p,/|p,r| (see Fig. 3).
The deuteron plus momentum p;; > 0in the above formulas
remains arbitrary and defines a particular member of the
class of collinear frames. Longitudinal boosts (along the z
axis) can be performed simply by changing the value of
P in the above formulas. Note that the class of collinear
frames contains several special cases of interest: (a) the target
rest frame, pj = My; (b) the Breit frame, pj = \/@ /&4, 10
which ¢° = (g7 + ¢7)/2 = 0; (c) the CM frame of the virtual
photon and the deuteron, p = v Q% + ;M2 //E4(T — &7),in
which ¢ = (¢t —¢7)/2=—-p; = —(p; — p;)/2 and thus
q = —p,. For reference we note that the collinear frames used
here are equivalent to the covariant formulation of the collinear
expansion in terms of lightlike vectors of Ref. [49].

D. Recoil momentum variables

The tagged structure functions of the deuteron in Eq. (2.22)
depend on the usual DIS variables (e.g., W; and 0?) as well as
the recoil nucleon momentum. The latter dependence involves
two independent variables formed from p,, related to the
two invariants (p,pg) and (p,q); the dependence on the third
invariant (p,p,.) is encoded in the explicit ¢, dependence
of the cross section. Here we describe several physically
interesting choices of recoil momentum variables that are used
in the subsequent calculations. We present their relation to
the rest-frame recoil momentum, their kinematic limits, and
the corresponding phase space elements. We assume isospin
symmetry and define the nucleon mass as the average of the

proton and neutron masses
My = (M, + M,)/2 = 0.9389 GeV. (2.40)

The deuteron binding energy and mass are taken at their exact
values

€ =2.2MeV,
My=M,+ M, —e; =2My —€; =1.8756 GeV. (2.41)

Note that the relation between the deuteron binding energy and
mass is not affected when replacing the proton and neutron
masses by their average.

In a collinear frame defined by Egs. (2.33) the tagged
structure functions can be regarded as functions of the LF
plus momentum fraction of the recoil proton and the transverse
momentum modulus of the recoil momentum,

2pt 2 0 + p?
=22 = M, (2.42)
Pa Dy + Dy
Pyl = (P))" + (). (2.43)

The definition of «, in Eq. (2.42), as the fraction relative to
P /2, is natural and leads to simple expressions in the nuclear
structure calculations below. The kinematic limits of «, are
dictated by LF plus momentum conservation in the scattering
process and given by

@2 < 1—&. (2.44)

The invariant phase space element in terms of &, and |p 7|
takes the form
d*p p da,

= d2p T.
E, ap, P

(2.45)

An important variable is the invariant momentum transfer
between the initial-state deuteron and the final-state nucleon
(see Fig. 2),

t=(pp— pa), (2.46)

or the reduced variable

=t— M. (2.47)

The theoretical analysis of tagged DIS, Eq. (2.1), relies
essentially on the analytic properties of the cross section in
t'; see Secs. IV and VI below. The invariant ¢ is related in a
simple manner to the energy of the recoiling nucleon in the
deuteron rest frame (we use “RF” to denote rest-frame energy
and momentum),

t' = M3 — 2M,E ,(RF),

[E,(RF) = \/|p,(RF)|> + M%].

The kinematic limit of ¢ is attained at p ,(RF) = 0,

(2.48)

/

<t =M} —2M;My = —Myeq = —0.0041 GeV?.

t min
(2.49)

Inside the physical region the rest-frame momentum is ob-
tained from ¢’ as

5 t ¢ M3 5
p, RO = —=(1- +—4 M} (250)

2 2M3 4

A simpler relation is obtained if we neglect the t' /(2M3) term in
the parentheses; this approximation is well justified for typical
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values |¢'| ~ 0.1 GeV? and becomes exact in the limit ¢ — 0.
Namely,

1 2
CoMi e

t/ /
RF)|? ~ —= =——+2 (@51
|p,(RE)| >+ N ) (2.51)
M2 62
#h=—"2_2M}=—-Mse, — 2
0 ) N d€d )

2
— 2Myes + %d =1+ 0(3). (252)
The difference between #; and the exact 7, ; ., Eq. (2.49), is of the
order 107® GeV? and is negligible for all practical purposes.
In this approximation the invariant 7’ is the negative of twice
the squared rest frame recoil momentum, minus a fixed small
amount proportional to the deuteron binding energy,

t'~=2|p,RF)* + 1. (2.53)

The relation of the invariant ¢’ to the collinear variables
ap and |p 7| can easily be established using the fact that the
deuteron rest frame is a special collinear frame ( pj = M,).
The rest-frame energy and z momentum can be calculated in
terms of the plus and minus LF components as

Ep(RF)} _PrEPy _ oMy IPyrl® M 2.54)

P(RF)[ = - o, M,

2 4
and ¢’ can be obtained from the above rest-frame formulas.
Specifically, with Eq. (2.53) we obtain

t' = =2[|PXRE)|” + 1p,r ] + 1.

In the theoretical analysis below we use a representation in
which «,, and ¢’ are independent variables. The physical region
in these variables can easily be established from Eq. (2.55).
For a given &, the kinematic limit in ¢’ is found by minimizing
Eq. (2.55) with respect to |ppT| and is given by (see Fig. 4)

2
t < —2M§ <oc_p - M—ZZV> + 1.

2
a,z, 4 M;

(2.55)

(2.56)

One sees that the minimum value of —¢’ increases quadratically
as a, moves away from2My /M, ~ 1. Conversely, for a given
t" < t; the allowed values of «,, are

) < ap <o,

(2.57)

2
o = E[EP(RF) Flp,(RE)]

2 \/té—t’ \/t/—t"
= M3 U . (258
Md|: 2 +MyF 5 J (2.58)

The invariant phase space element in this representation is
given by [cf. Eq. (2.48)]

d3pp M,
= d(—tYda,dp,, (2.59)
E,  8E,(RF) pEre
th—t'
E,(RF) = /|p,RF)2 + M3 =,/ + M?%. (2.60)

Another physically interesting variable is the angle between
the recoil momentum p, and the momentum transfer ¢ in the

0.05 —ypy—T—TT"—"—T—TT——"—
Physical region
0.04 -
Op — 0y
L 0.03
Q
©
T o002}
0.01 |
0 I | |
0.8 0.9 1 1.1 1.2
%

FIG. 4. Physical region of recoil proton momentum phase space
in the variables «,, and ¢'.

deuteron rest frame, 6,,. In our convention g points in the

negative z direction (see Fig. 3), so that

_ PRP)
p,RE)|

For a given modulus |p p(RF)| the angle is related to the LF
fraction «, as

2
@, = E( |p,(RE)]2 + M} — |p,(RF)| cos 6,). (2.62)

The physical region for the angle 6, is determined by the
condition that 0 < «, < 2, which implies

V1P, REP + My, — M,

|p,(RE)]

The lower limit becomes larger than —1 only at |p ,(RF)| >
(Mj — MIZV)/(ZM,;) ~ 3My /4, which is much larger than the
recoil momenta considered here, so that effectively all angles
are allowed in our kinematics. The regions cos 8,, > Oand < 0
are traditionally referred to as the “forward” and “backward”
regions.

cos by, = (2.61)

< cosf,, < 1. (2.63)

III. LIGHT-FRONT QUANTUM MECHANICS

A. Single-nucleon states

In our theoretical calculations of the tagged DIS cross
section we use methods of LF quantum mechanics. They
permit a composite description of nuclear structure in high-
energy processes in terms of nucleon degrees of freedom,
which can be matched with deep-inelastic nucleon structure
and preserves the partonic sum rules [1,11]. In this section
we summarize the description of nucleon single-particle states
and the deuteron bound state in LF quantum mechanics and the
correspondence with the nonrelativistic theory of the deuteron.
The LF quantization axis is chosen as the z axis in the collinear
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frame of Sec. I C. The specific dynamical considerations in the
application to tagged DIS will be described in Sec. IV B.

In LF quantum mechanics plane-wave nucleon states are
characterized by their LF plus and transverse momenta,

pr=p% + py and pyr = (pY,py) [cf. Eq. (2.32)], while

Py = P — Py plays the role of energy and is fixed by the
mass-shell condition p%, = pypy — |pyrl? = M3,
__ Py + My
IN.pN) = IN-pi-pyr). Py = G
N

To simplify the notation we label the states by the four-
momentum py and display the individual plus and transverse
components only if necessary. The relativistic normalization
condition for the states is [cf. Eq. (2.9)]

(N,pyIN,py) = 2r)* 2pi 8(p)/ Par)-

(3.2)

- P;)S(P/NT -

The invariant phase space integral over the nucleon LF mo-
mentum is

d4
/drN(...)=f(2p;jzn5(p,2v

M)

dPNdZPNT

anyapt O 0PI
[Py = (lpnr)* + M3) /Py ] (3.3)
/[dPN (3.4)

The condition p; > 0 is satisfied for all physical nucleon
momenta. The completeness of single-nucleon states can then
be stated in the form

/ [dpn1IN. px) (N, o] = Ly, (3.3)

which is the unit operator in the single-nucleon space. For
reference we note that for a general four-momentum p
(not on mass shell), the four-dimensional integral and the
four-dimensional delta function in LF components take the

form
1 o0 o0
/d4p<...>=§/ dp+f dp—/dsz<,,,),

8D (p) =28(pHH8(p )P (py).

The description of the nucleon’s spin degrees of freedom in
LF quantum mechanics is summarized in Sec. IIID. Other
hadronic states are described in a similar fashion.

(3.6)

B. Deuteron wave function

In the LF description of high-energy processes nuclei
are described as bound states of nucleons and, possibly,
non-nucleonic degrees of freedom (A isobars, pions) [1,11].
Theoretical arguments show that for the deuteron the nucleonic
(pn) component dominates over a wide range of excitation
energies [11] (see also Sec. I), and we limit ourselves to this
component in the present study. The deuteron is described as a
bound state with relativistic normalization of the CM motion

n +
d [r—p— 0(npd/z’prrT

p;:pdT \Vd

p
—— 0, 0,/2,P,;

FIG. 5. Deuteron pn LF wave function.

[cf. Eq. (3.2)]

|parl* + M3
ld.pa), p; = ——F——1, (3.7)
Pd
(d.pyld,pa) = @n)’ 2p; 8(pt — p) 8PPl — Par)-
(3.8)

The expansion of the deuteron state in plane-wave nu-
cleon states is described by the LF wave function
(see Fig. 5)

(p.ppin.pald.pa) = 2m)’ 2p} 8(p} + pif — b))
x8P(p,r + Pur — Par)
x 2m) Wy, pyrlPar). (3.9)

2pt 2pt
ap= 22 g, =n (3.10)
Pq Da

The factor (2m)*? is conventional. The function W, depends
on the LF momentum fraction and the transverse momentum of
the proton, o, and p pT> and the deuteron transverse momentum
Pgr; itis independent of the total plus momentum p; because
of longitudinal boost invariance [11,35]. The delta functions
in Eq. (3.9) require that

oap+an =2, p,r+ Pur = Par (3.11)
which in particular implies that
O<ap,<2, O<a, <2 (3.12)

The matrix element Eq. (3.9) is symmetric with respect to
interchange of the proton and neutron, and the wave function
satisfies

lI’d(Ol,mI7pT|I7gZT) =¥,(2 - Ap,Par — PpT|PdT)

= \yd(anvpnT“]dT)' (313)

The normalization of the deuteron wave function follows
from the normalization condition for the deuteron state
Eq. (3.8) and the completeness relation for the single-nucleon
states Eq. (3.5). Inserting complete sets of single-nucleon
intermediate states into Eq. (3.8) and integrating out the delta
functions one obtains

/ dayd 2 DpT
ap(2—ap)
In the calculations of deuteron structure in the collinear frame

of Sec. IIC we need the wave function at zero deuteron
transverse momentum, which we denote by

\Walety, pprlPar)l” = 1. (3.14)

Wa(@p, P pr) = Wa(@p Py | Par = 0). (3.15)
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The symmetry relation Eq. (3.13) for this function takes the
simple form

‘*I’d(Olp,PpT) = \I’[d(z - O[pv_ppT) = \I'[d(an?pnT)’
(3.16)

The inclusion of the nucleon’s and deuteron’s spin degrees of
freedom is described in Sec. IIID.

For modeling the actual form of the deuteron LF wave
function it is natural to consider the connection of the LF
formulation with the nonrelativistic description of deuteron
structure. In general this connection is rather complicated,
because of the different symmetry groups of the dynamics
in the two formulations. However, a simple connection can
be established in the approximation where the deuteron’s
LF structure is restricted to the pn component, which we
adopt here [1,11]. One starts with the LF version of the
Lippmann-Schwinger equation for the two-body wave func-
tion (or Weinberg equation [50]) and imposes the condition
that the scattering-state solutions give rotationally invariant
on-shell NN scattering amplitudes (angular conditions) [1,11].
The resulting equation for bound states has a simple connection
with the Schrodinger equation for the nonrelativistic deuteron
wave function, which one can use to construct an approxima-
tion of the LF wave function in terms of the nonrelativistic
wave function (see Sec. III C). Methods for direct solution of
the LF two-body bound-state equation have been described
in Refs. [51,52]. For attempts to model deuteron LF structure
beyond the pn component, and for approximation methods for
heavier nuclei, we refer to Refs. [53,54] and references therein.

C. Rotationally invariant representation

The LF wave function of a two-body bound state such
as the deuteron can be expressed in a form that exhibits
three-dimensional rotational invariance [1,11,55]. This repre-
sentation can be motivated by group-theoretical or dynamical
considerations (see above) and is useful for several purposes:
(a) itexplains how rotational invariance is dynamically realized
in LF quantum mechanics, where it is not manifest (angular
conditions); (b) it enables an approximation of the LF wave
function in terms of the three-dimensional nonrelativistic wave
function; (c) it brings out the analytic properties of the LF wave
function in the nucleon momentum.

The rotationally invariant momentum variable for the two-
nucleon system can be introduced through an intuitive pro-
cedure, by identifying the pn configurations in the deuteron
LF wave function with a free pn system in its CM frame
[11]. One starts from a pn configuration in its CM frame,
with the proton having LF momentum «,, and p 7, calculates
the invariant mass of the pn configuration, and equates the
invariant mass with the squared energy of a free pn system
with relative three-momentum

k= (kr,k%), kr =pyr. (3.17)
This leads to the equation

PiT +M12v

!
Spn = w =4Ey(k)* = 4(lk* + My). (3.18)
2 2

One then determines the component k* as function of o, and
|pPT| by solving Eq. (3.18),

) 5 172
+ M
p”T—N:| (3.19)

ap(2—cap)

k* = (o) — 1)|:

Equations (3.17) and (3.19) define the equivalent three-
momentum k in terms of the LF variables of the two-body
system. The inverse relation is

k' 2(Ey +k9)
— = T Env= k2 + M.
+EN 2EN N | | + N

(3.20)

a, =1

Note that in this parametrization the nucleon plus momentum
fraction is obtained by dividing Ey + k* by the internal energy
of the pn system, 2Ey, not by the external mass of the bound
state, as in the kinematic variable Eq. (2.43). The invariant
phase space elements in the two sets of variables are related as

da,d®p,r  dk &’k

a,(2 —ap) B /|k|2+M12v - En(k)

The rotationally invariant form of the deuteron LF wave
function is then obtained by demanding that

(3.21)

\Ild(a,,,ppT) = function(|k|). (3.22)

It was shown in Ref. [11] that this condition is sufficient
to guarantee rotational invariance in two-body bound state
calculations.

The rotationally symmetric form Eq. (3.22) implies a
connection of the rest-frame deuteron LF wave function with
the nonrelativistic wave function [11]:

Wy(ap.p,r) = VMyBak) + O(Ip,*/M3).

where \AI;d denotes the nonrelativistic wave function and the
arguments are related by Eqs. (3.17) and (3.19). Rotational
symmetry-breaking corrections of linear order O(|p,|/Mn)
are accounted for by the argument k, so that the relation is
accurate to quadratic order in the proton momentum. The factor
/My accounts for the different normalization of the LF and
nonrelativistic wave functions.

The rotationally invariant representation Eq. (3.22) is also
sufficient for ensuring the correct analytic properties of the LF
wave function at small relative momenta (nucleon pole). We
can demonstrate this using the approximation Eq. (3.23), which
becomes exact at small recoil momenta. On general grounds
the nonrelativistic deuteron wave function has a pole at small
unphysical momenta,

(3.23)

U, (k) ~ (k> > —d?), (3.24)

r

|k|*> + a?

2
€

(12 =M N€qd — Zd
The pole results from the free propagation of the nucleons
outside the range of the pn interaction and controls the large-
distance behavior of the coordinate-space wave function. [In
the Bethe-Peierls approximation the entire deuteron wave func-
tion is given by Eq. (3.24).] By expressing |k?| in Eq. (3.24)

(3.25)
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in terms of the LF momentum variables using Eq. (3.18), one
easily sees that the pole corresponds to a pole in the invariant
mass sp, of the LF wave function,

4/MyT

\de(ap’PpT) ~ Spm — M(% . (326)
The singularity Eq. (3.24) viz. Eq. (3.26) gives rise to the
nucleon pole in the deuteron spectral function and plays an
essential role in the theory of tagged DIS (see below).

The above results can be used to derive an approximate
expression for the LF wave function directly in terms of the
rest-frame proton momentum p ,. Expanding the variable k in
powers of

P,/ My, p,/My,

and counting the binding energy as e;My = O(pf,), one
obtains

(3.27)

z

|k|2+a2=(|p,,|2+a2)<1+ P
My

>+ 0(p;) (@ =eMy).

(3.28)

In the region where the nonrelativistic deuteron wave function
is dominated by the nucleon pole, Eq. (3.24), one can therefore
approximate the LF wave function Eq. (3.23) as

\de((x[?’ppT) = MN(I - ]{; )lrld(Pp)
N

The breaking of rotational invariance is now explicit in the
p*-dependent prefactor. Numerical studies show that Eq. (3.29)
approximates the LF wave function well up to momenta p,, ~
200 MeV. We use this approximation in the following studies,
including also the spin degrees of freedom.

(3.29)

D. Spin degrees of freedom

In LF quantum mechanics the spin-1/2 nucleon is described
by LF helicity states

|PN’GN> = |p;7pNTfo'N)s

= 2n) 2py 8(py — Py)
X 8(pyr — Pnr)S(0N,0n). (3.31)

They are obtained by preparing states quantized in the z direc-
tion in the nucleon rest frame, then performing a longitudinal
boost to the desired plus momentum p;, then a transverse
boost to the desired transverse momentum p y, [33-36]. The
states thus defined are invariant under longitudinal boosts and
transform kinematically under transverse boosts, and coincide
with the usual z-quantized spin states in the nonrelativistic
limit. Likewise, the spin-1 deuteron is described by LF helicity
states

<N7p;\]’O-1IV|N1pN’O—N)

|pS Parsra)s ra = (—1,0,1), (3.32)

which are obtained in a similar fashion. The expansion of the
deuteron state in nucleon states, Eq. (3.9), now takes the form

(P9Pp70p;n,PmUn|d1Pda)\d>
=[...127 )Y Wa(@p. P 1 0p:Oul Parha). (3.33)

where [...] stands for the momentum delta functions of
Eq. (3.9). The LF wave function depends on the LF helicities
of the proton and neutron as well as the deuteron, and is
normalized such that

da,d*p,r
Z/ — P TP \I—’;((ZI;,PPT;Up»UdeT’)‘;)
a2 —a,

X Wa(etp, P13 0p.0nl Parsha) = (kg ha).  (3.34)

The spin structure of the deuteron is well understood in the
nonrelativistic theory. The deuteron wave function in the rest
frame depends on the spin projections of the nucleons and the
deuteron,

\I’d(PPQUp,UnMd)- (335)

The wave function has S- and D-wave components (orbital
angular momentum L = 0 and 2); in both components the
nucleon spins are in the spin-triplet state (total nucleon spin
S = 1), and the total nucleon spin is coupled with the orbital
angular momentum to deuteron spin 1. An explicit expression
for the nonrelativistic wave function is given in Appendix A.
The S wave has a total probability ~95%, contains the nucleon
pole Eq. (3.24) at small momenta, and dominates at momenta
up to [p,| ~ 200 MeV; the D wave has total probability ~5%
and becomes important at larger momenta.

The nonrelativistic approximation to the LF wave function
in the rest frame, Eq. (3.29), now takes the form

Z U(O’p,U[,,)U(O'n,O'I;)\/MN

I
0,.0,
. (

Here U are the spin rotation matrices, which describe the
transformation between the nonrelativistic spin and the LF
helicity to first order in the momentum; their explicit form
is given in Ref. [35]. In the following applications the spin
rotations drop out because of summation over the spins and
do not need to be considered explicitly. We can therefore
effectively identify the LF helicity with the z projection of
the nonrelativistic spin, and write Eq. (3.36) in the form

"I'[d(ap’ppT;O'p’O'np"d) =

pz I e
MN)\I'd(pp;ap,onMd).

(3.36)

\pd(apappT;Up,Un|)\d)

P\
= ‘/MN<1 — M—N>\L’d(pp;ap,o,,|)»d). (3.37)

For practical calculations we use Eq. (3.37) with the nonrel-
ativistic deuteron wave function obtained from the AV18 NN
potential [56] (see Appendix A).

IV. IMPULSE APPROXIMATION

A. LF current components

We now compute the cross section for tagged DIS on the
deuteron using LF quantum mechanics. The basic consider-
ations in treating nuclear structure in high-energy scattering
are described in Refs. [1,11] and summarized in Sec. I. In LF
quantization the effects of the off-shellness of the constituents
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in a bound state remain finite as the scattering energy tends to
infinity, which makes possible a composite description of the
nucleus in terms of nucleon degrees of freedom (see below).
We use the collinear frame of Sec. IIC (p,;r = 0,97 = 0), in
which the initial nucleus and the DIS final state evolve along the
same z-direction, as this permits a natural description of FSIs
with rotational invariance in the transverse plane. Noncollinear
frames with ¢ # 0 can be used for LF calculations of the
inclusive DIS cross section but are not suitable for FSIs [1]. In
the collinear frame the momentum transfer to the nucleus has
LF component g™ < 0, Eq. (2.33), so that the current cannot
produce physical hadron states out of the vacuum, but can only
couple to nucleons in the nuclear LF wave function.

In order to extract the tagged deuteron structure functions of
Eq. (2.22) in the collinear frame we must calculate both 4 and
T components of the nuclear tensor. It is well known that in LF
quantization the different components of the current operator
have a different status as to how they involve the interactions
of the system. This is seen explicitly in the LF quantization
of quantum field theories, where only two components of
the spin-1/2 Dirac field are independent canonical degrees of
freedom, while the other two are dependent and must be elim-
inated through the equations of motion [57,58]. The “good”
current JT is formed out of canonical degrees of freedom
and free of interactions; the “bad” current Jr is formed out
of canonical and dependent degrees of freedom and involves
explicit interactions; the “worst” current J ~ is formed entirely
out of dependent degrees of freedom.? Following Refs. [1,11]
we calculate the J* and J7 matrix elements in our approach
(IA and FSI); the J~ component can be eliminated through
the transversality condition in the collinear frame (current
conservation) and does not need to be considered explicitly,

+ -
q - q

q" (B|Ju|A) = = (BITT1A) + T(BIJ+|A) =0. 4D

The use of the component J; for structure function calcu-

lations represents an approximation whose accuracy cannot

J

(pX| O d)[IA] = / [dpp] / [dpa (X1 O, pu) (PP P por) (PPt 1 Pald Pa)

JF
14 A~
= (2n>3/2p—i<X|J“(0>|n,pn>wd(ap,pﬂ) (P =Pl — Py Par = —Por)-

The deuteron tensor Eq. (2.19) then becomes

+

2
v p
WY (pasqs pp) = (p—i) Q) |Walety. p )l

n

%qN

HEp

_._jp

Py

i

Py

FIG. 6. Current matrix element of tagged DIS on the deuteron in
the TA.

be established from first principles in our phenomenological
approach. In inclusive DIS, comparison between a good-
current calculation in a noncollinear frame and the good-
and-bad-current calculation in the collinear frame shows that
the two schemes give the same results in the DIS limit
(mass?) / W2 — 0[1]. This indicates that the collinear method
should be reliable for the leading-twist tagged structure func-
tions F,; and Fp, calculated in this work. A further test of
the method will be performed in Sec. IV C. The applicability
to higher-twist structure functions, which represent power-
suppressed structures in the tagged cross section, remains to
be investigated.

B. IA current

The starting point of the nuclear structure calculation is the
IA. Its physical assumptions are (a) the current operator is
the sum of one-body nucleon currents, and (b) the final state
produced by the one-body nucleon current evolves indepen-
dently of a nuclear remnant (see Fig. 6) [59]. In the A we
consider the nuclear current matrix element in Eq. (2.19) in
the collinear frame (p,; = 0) and insert plane-wave proton
and neutron states between the deuteron state and the current
operator. Taking the proton as the spectator, and the neutron as
coupling to the current, we obtain (see Fig. 6)

4.2)

4.3)

x @)™ Y 2m)*8 (g + pa — pp — P, pal JHOIXNX|T Oln, i)

X

(p:_ = p(Jlr - pz_!pnT = _ppT)'

(4.4)

2In the equivalent formulation based on equal-time quantization in the infinite-momentum frame |p| — oo, the “good” components are those
that tend to a finite limit as | p| — oo (in the noncovariant normalization of states), while the other components vanish.
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The expression on the second line has a form suggestive of
the scattering tensor for inclusive scattering on the neutron.
However, we must take into account that in LF quantum
mechanics four-momenta are not conserved, and that

Pa — Pp # pu (four-vectors) 4.5)

in the argument of the four-dimensional delta function. This
is because the LF energy of the neutron is determined by the
mass shell condition

- _ |pnT|2 + M]%/
n p;zL

£ pg — Py (4.6)
The expression in Eq. (4.4) can therefore not be regarded as
the neutron scattering tensor with the original four-momentum
transfer g, which is fixed kinematically by the electron four-
momenta. To write it as a proper scattering tensor we define
an effective four-momentum transfer as

§=q+Dpi—Pn—Pp O Put+qd=q+pa—pp

[p;:r = [7; - p;’pnT = _p[’T’p; = (|pnT|2 + Mlz\’)/p:]
(4.7)

The vector ¢ has the same plus and transverse components as
the original ¢ and differs only in its minus component, which
is not conserved in LF quantum mechanics. The difference
accounts for the fact that the pn configurations in the deuteron
are off the LF energy shell and participate in the scattering
process with shifted kinematics. With the effective momentum
transfer Eq. (4.7) the deuteron tensor Eq. (4.4) can then be
expressed in terms of the effective neutron tensor [we use

pj/p;:_ = 2/(2 - ap)]’

+
Pa
+

n

2
W, (pa.q.pp) = < ) Q) Wiy, p )W (pa,q)
4.8)
20y, )l
2 —ap)?

Wi (p@) = (4m)™" Y @m)* 8@ + pu — px)
X

=2(27) W (pn.q), (4.9)

x (1, pu| JHO0) XY (X T (0, pn).
(4.10)

Equation (4.9) represents the “master formula” for tagged DIS
in the LF TA and expresses the factorization of deuteron and
nucleon structure.

The assignment of the active nucleon four-momentum p,
as in Eq. (4.6) and of the four-momentum transfer g as in
Eq. (4.7) are dictated by LF quantum mechanics, in which the
LF + and T momenta are conserved and the particles are on
mass shell, but the total LF energy of the intermediate states is
different from that of the initial and final states. A crucial point
is that in this scheme the nonconservation of four-momentum
does not give rise to any large invariants in the DIS limit
W? — o0, Q% — oo, 0>/ W?fixed. The off-shellness of the
minus component of the nucleon four-momentum implied by

Eq. (4.6) is
byt — pprP+ My MG |pyrl® + M}
none Pl Py Py
@.11)
1[4 4 My,
- — Hlpprl* + M3) M2, @12
P ap(2—ap)

where we have used the explicit expressions for the LF
momentum components in the collinear frame of Sec. II C. The
plus component of the momentum transferis g™ = —&, pj, cf.
Eq. (2.33). The variables a,|p ,r| and &, remain finite in the
DIS limit, and p; is a finite boost parameter. One therefore

has

2q(pn — pa+pp) =4 (py — pg +P,)

= O{|p,r|*.(mass)’},  (4.13)
i.e., the invariant remains finite and does not grow as W2 or
Q2. (Note that individually gp; ~ W? and gp, ~ W?, because
pa and p, have nonzero plus components.) It implies that
the effects caused by the LF energy off-shellness are power
suppressed as ~|p ,r |2/ W2 or ~(mass)?>/ W2 in the DIS limit.
This circumstance is unique about LF quantization and is the
reason for the use of this approach in high-energy scattering.

C. Structure functions

Expressions for the tagged deuteron structure functions are
obtained from Eq. (4.9) by substituting the specific form of
the neutron tensor and projecting the tensor equation on the
structures of Eq. (2.22). The decomposition of the neutron
tensor is analogous to that of the deuteron tensor Eq. (2.22),
but with the target four-momentum given by p,, and the
four-momentum transfer given by ¢,

SUV ~ N2
Wi (pu) = (g“” - q;]f )FL"(;’Q )

Ly g Fra(%,0?
+< v 9 _g,w> (.0

L2 7> 2
(4.14)
—gHL? P, 452 M2\ Fo,

Fro= CO D _ (1 SO Py s
(Pnq)?* X Q? x
ZMEPN—M X= 7 QZE—ZIQ.

o @ 2(pnq)’
(4.16)

Equations for the structure functions can then be derived by
considering the + and T tensor components in the collinear
frame (see Appendix B). They take on a simple form in the
DIS limit, where one can neglect terms of the order | p 7 12/ w?
and (mass)?/ W2, so that off-shell effects are suppressed [cf.
Eq. (4.13)]. In particular, in this limit

~ X

0*’=0 Y=

, 4.17
e 4.17)
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up to power corrections, i.e., the nucleon structure functions
are evaluated at the kinematically given Q2, and at an effective
value of x that accounts for the longitudinal motion of the
nucleons in the bound state. Altogether we obtain

(Waletp, p o)l

Fa(x, Q% ap,ppr) = ——— = (3,07, (4.18)
p
21, ppr)l*
Fra(x,Q% ). ppr) = #FM(X,Q2)- (4.19)
P

These formulas express the deuteron DIS structure functions
with tagged proton in terms of the deuteron LF momentum
density and the active neutron inclusive structure functions.
The case of tagged neutron and active proton is described by the
same formulas with the proton and neutron labels interchanged.

Our calculation in the collinear frame uses both good and
bad LF current components to identify the structure functions
(cf. Sec. IV A). The results for the bad current component in
the LF IA are generally sensitive to the energy off-shellness
(four-momentum nonconservation) in the intermediate state.
These effects are related to those of explicit interactions in
the bad current component operators. In a complete dynam-
ical theory both could be treated consistently starting from
the microscopic interaction. To assess their influence within
our phenomenological approach we perform a simple test,
following Ref. [1]. We evaluate Eq. (4.9) with the neutron
tensor W, taken at the off-mass-shell four-momentum p, =
pd — pp With P2 # M3, as would by obtained from the
external four-momenta using four-momentum conservation,
and at the original momentum transfer g (“virtual nucleon”).
We compare the results with those of the LF prescription,
where W,'" is evaluated at p, and g, Eqs. (4.6) and (4.7). The
differences in the leading-twist tagged structure functions F,,
and F 4 turn out to be of the order | p ,|*/ W and (mass)*/ W*
and are thus power-suppressed in the DIS limit [cf. Eq. (4.13)].
This suggests that our collinear LF calculation is safe in the
DIS limit.

In addition to the kinematic off-shell effects discussed so
far, nuclear binding causes dynamical modifications of the
structure of the nucleon, which manifest themselves, e.g., in
the suppression of the nuclear structure functions at x > 0.3
compared to the sum of the corresponding nucleon structure
functions (EMC effect). Theoretical analysis shows that to
first order in the nuclear binding these modifications are
proportional to the LF energy off-shellness of the nuclear
configurations (or the nucleon virtuality in the virtual nucleon
formulation), which in turn is proportional to the nonrelativistic
kinetic energy of the nucleons [1,60]. The modifications are
therefore much smaller in the deuteron than in heavy nuclei.
Simple scaling arguments suggest that in average configura-
tions in the deuteron the EMC-like modifications should be at
the level of ~3—4%. They are reduced further when selecting
configurations with proton recoil momenta less than the typical
nucleon momentum in the deuteron (the median momentum is
~70MeV; see Fig. 17 and Appendix A). The modifications can
be eliminated entirely by performing on-shell extrapolation in
the recoil momentum, which effectively turns the deuteron into
a free pn system (see Sec. IV G).

D. Spectral function

The IA for the deuteron tensor in tagged DIS, Eq. (4.9),
is conveniently expressed in terms of the deuteron spectral
function, defined as

Wy, p )l

4.20
e (4.20)

Sd(ap9ppT) =

It is a function of the LF momentum variables of the recoil
proton and satisfies the sum rules

2 day, 2
- d ppTSd(apappT)
0o o

do‘pdszR 2
= LT , =1, 4.21
/ e ) (421)
2 day, 2
— | d ppT(2 - ap)Sd(O(pappT)
0o o
dapdzppT 2
= ——2- v ,
/ O ¥ )
dapdzppT 2
= [ 2222 00T Wy,
/ ap(z — ap)ap| d(ap pPT)|
dapdzppr 2
= ——— v , =1. 4.22
fap(z_ap)| (@7 4.22)

The first sum rule, Eq. (4.21), follows from the normalization
condition of the deuteron LF wave function, Eq. (3.14), and
reflects the total number of nucleons in the bound state
(nucleon number sum rule). The second sum rule, Eq. (4.22),
follows from the symmetry of the two-body LF wave function
in the transverse rest frame, Eq. (3.16), and expresses the
conservation of the LF plus momentum (momentum sum rule).
The physical implications of these sum rules will be explained
in the following. In terms of the spectral function the IA result
for the tagged structure functions, Eqs. (4.18) and (4.19), are
now expressed as

Faa(x,0% 0. ppr) = Salatp. P yr) Fau(X, 0%,

2 Sd(ap9ppT)
2—a,

(4.23)

Fra(x,0%a,,ppr) = Fr,(%,0%). (4.24)

It is instructive to consider the integral of the tagged
deuteron structure function over the recoil momentum

int [P da, 2 2.
Fp(x,0%) = o d°pprF(x,0% 0, ppr).
0 p

(4.25)

The restriction o, < 2 — x results because the recoil proton
plus momentum cannot exceed the total plus momentum of the
DIS final state. Notice that this integral over the LF variables
corresponds to the integral over the invariant recoil momentum
phase space, Eq. (2.45). With the IA expression Eq. (4.23) the
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integrated structure function becomes
F3(x,0%)

2—x dOlp ) ~ 2
= a_ d ppTSd(apyppT)FZn(va ) (426)
0 p

2—x d
:f #fdzppT|‘l’d(O‘p’PpT)|2F2n(3€’QZ)
0 Olp(z - ap)

X =x/2—apl.

Equation (4.28) has several interesting properties. First, using
the symmetry of the LF wave function, Eq. (3.16), the integral
can equivalently be expressed as an integral over the active
neutron fraction o, = 2 — «,, whereupon it takes the form of
a standard partonic convolution formula,

int 2 g day 2 2
Foy(x,07) = o) d” par Walon, p,r)l
X Fo(¥,0%) (¥ = x/a).

Second, using the momentum sum rule for the spectral func-
tion, Eq. (4.22), and changing the order of the integrations, one
easily shows that

4.27)

(4.28)

2 1
/ dxF¥(x,0%) = / dX Fo, (X, 0%). (4.29)
0 0

A similar formula applies to the case of tagged neutron and
active proton. Together, they imply that the LF momentum
sum rule for the deuteron is satisfied exactly in the IA if one
adds the contributions from proton and neutron tagging, i.e.,
from scattering on the active neutron and proton,

2
f dx[F)} (p tagged) + F,y) (n tagged)](x, Q%)
0

1
= [ dwtr+ R0 (4.30)
0
Third, for nonexceptional values of x the integral over o,
in Eq. (4.28) is dominated by the region «, ~ 1, so that
one can neglect the variation of X = x/(2 — «,) under the
integral and evaluate the structure function at o, = 1 (peaking
approximation),

) 2 da
Fyi(x,0%) ~ Fy(x,07%) / - / d*pprSa(ep.p,r)
0 P

= Fa,(x,0%). (4.31)

J

In the second step we have used the number sum rule for the
spectral function, Eq. (4.21). Again a similar formula applies
to the case of tagged neutron and active proton. Thus the sum of
proton-tagged and neutron-tagged deuteron structure functions
in the peaking approximation reduces to the sum of the free
neutron and proton structure functions, as it should be.

Some comments are in order regarding our definition of the
spectral function Eq. (4.20). In the IA for a complex nucleus
(A > 2) the spectral function describes the probability for
removing a nucleon, leaving the A — 1 remnant system R
in a state with given momentum pj, and total energy Eg,
which includes the energy of the excitation and/or internal
motion of the system. In the IA for the deuteron (A = 2),
assuming that it can be described as a pn system (neglecting
NN and AA components), the recoiling system is a single
nucleon, and its energy is fixed by the energy-momentum
relation (there is no excitation or internal motion), so that the
spectral function depends on the momentum variables only. In
fact, the proton-tagged spectral function defined by Eq. (4.20)
isrelated in a simple way to the neutron LF momentum density
in the deuteron [11], cf. Eq. (3.16),

(07
Sd(apvppT) = Ol_ppd(anvpnT)s (4‘32)
|Walan, p,p))? [Walep, p o)l
Pa(Cn, Pyy) = d2 LA st
— oy o
(@ =2 —ap.Pur = —Ppr). (4.33)

The density is regarded as a function of the neutron LF
momentum variables and satisfies the normalization condition

day,,
f d? pur pa(, por) = 1. (4.34)

&7

In this sense we could express the IA result (and the distortion
effects due to FSI considered below) as well in terms of the
active neutron density. We choose to express them in terms of
the spectral function Eq. (4.20), as this function depends on
the observable recoil proton momentum.

E. Spin degrees of freedom

It is straightforward to include the deuteron and nucleon
spin degrees of freedom in the LF IA. The deuteron tensor in
the IA, Eq. (4.4), now becomes

v l ¥ ? 3
Wi paair) =333 > <—i> QY Wy P pri 002l 2a)Wa(@p. P 1 0. Out [1a)
A

P
Pn

Op Onl,0n2

x (4m) ™Y @)*89(q + pa — pp — Px). Pa.0w2] THO) XY (X[ TV O, a0t

X

(Pf =ps =P} Pur = —Ppr)s

(4.35)

where we average over the initial deuteron LF helicity A4, sum over the final proton LF helicity o, and sum over the LF helicities
of the intermediate neutron states, o,,; and o,,;. Note that a priori the neutrons in the two current matrix elements have different
spin quantum numbers, which need to be summed over independently. A simplification arises from the fact that the hadronic
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tensor for inclusive scattering on the neutron is diagonal in the neutron LF helicity,

W (PG 0n2.0m) = (4m) ™" Y @) 8DG + pa — px) (1, pas0ual T O) X)X T O, puson)

X

= 8(0,2,0,1) X function(oy,1).

Off-diagonal elements would imply a transverse spin depen-
dence of the inclusive neutron cross section, which is forbidden
by the combination of P and T invariance and the hermiticity
of the electromagnetic current operator (Christ-Lee theorem)
[61,62]. Moreover, we retain only the unpolarized part of the
neutron tensor, which is independent of the diagonal spin
variable 0,1 and involves the unpolarized neutron structure
functions, Eq. (4.14). The spectral function can then be
computed as in the spinless case, and we obtain

Z Z |‘I’d(01p,Ppr, o'p,o'nl)td”

Sd(apvaT) z_a
P

Ad Op.On
(4.37)
which generalizes the spinless result Eq. (4.20).

F. Nonrelativistic approximation

We now derive the nonrelativistic approximation to the
LF spectral function Eq. (4.37), using the nonrelativistic
approximation to the deuteron LF wave function, Eq. (3.37),
and the corresponding approximation to the LF flux factors.
This exercise leads to a practical formula for evaluating the LF
spectral function, and explains the correspondence between
the LF and nonrelativistic formulation at proton momenta
P, I « MI%,. We consider the function

Sd(ap,p,,r) _1 Z 5 |Wa(@tp, P pri 0p.Oulra)l?
2—a,)?

Ad Op,On

(4.38)

in the deuteron rest frame and expand in powers of the
proton momentum, |p,|/My and p},/My, cf. Sec. IlIC and

Eq. (3.27). The expansion of the squared wave function is given
by Eq. (3.29) (the spin rotations drop out),

. 2
|\Ild(apvppTa0'p»Un|)¥d)|

— w1 -

2p*\ ~
MN)wd(pp,a,,,on)F +0(Ip, I’/ My);

(4.39)
the expansion of the flux factor in Eq. (4.38) is
;=1+2p;+0(|p */M3,) (4.40)
2 —ap) My rem '
and Eq. (4.38) becomes
Sd(apvppT)
2—a,
1 ~
=My 32 3 1%u(p,0p.001 + O(Ip, 1/ M7)
Ai Op,On
4.41)

(4.36)
[
= My pa(p,.p,) + O(Ip,I/My) (4.42)
= My [U*(p,) + W2 (p)l + O(Ip, I /My).  (4.43)

Here pi(p P p) is the diagonal, spin-averaged, nonrelativistic
momentum density in the deuteron, which involves the sum
of S- and D-wave densities and is given in Eq. (A10). Notice
that both the LF wave function and the flux factor involve
corrections linear in p7,, which refer explicitly to the LF direc-
tion and break rotational symmetry. In the function Eq. (4.43),
however, the linear corrections cancel, and the first corrections
are quadratic in the recoil momentum components. This shows
that rotational invariance is effectively restored in the LF
formulation at small recoil momenta. It implies that the results
of the LF IA are numerically close to those of the conventional
nonrelativistic IA at recoil momenta |p,| < My. Equation
(4.43) also ensures proper analyticity of the LF expressions in
the invariant momentum transfer #’ (see Sec. IV G). Finally, it
can be used for numerical evaluation of the LF spectral function
at small proton momenta |p, | < 300MeV.

G. Analytic properties

We now want to study the analytic properties of the IA
spectral function in the invariant momentum transfer ¢'. For
this purpose it is natural to use as independent variables ¢’ and
the proton LF fraction «; the relation of these variables to
ap and p,; is given by Eq. (2.55). The analytic properties of
the spectral function are governed by the nucleon pole of the
deuteron LF wave function, Eq. (3.26), which occurs in the S
wave. The invariant mass difference in Eq. (3.26) is expressed
in terms of o/, and ¢’ as

-2t

2—a,

(4.44)

One sees that the LF spectral function Eq. (4.20) in the limit
t" — 0 at fixed ), behaves as

Sa(ap,p,r) ~ ({e)z +terms O(t'™") (t' — 0,a,fixed),
(4.45)
R = R(ay) = 4My T?Q2 — ). (4.46)

The spectral function has a pole at ¢ = 0, whose residue
depends on o, and is calculable in terms of the residue of
the pole of the three-dimensional deuteron wave function, I.
We note that (a) the nucleon pole is a general feature and
relies only on rotational invariance and the analytic properties
of the rest-frame wave function; (b) the pole occurs in the
S-wave contribution to the spectral function in Eq. (4.43);
the D-wave contribution is regular at ¢' = 0; (c) the pole
in the spectral function is reproduced by the relativistically
invariant formulation of high-energy scattering on the deuteron
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(Feynman diagrams, virtual nucleon approximation), where it
corresponds to “nucleon exchange” between the deuteron and
the electromagnetic current; (d) the pole Eq. (4.45) represents
the leading singularity in the limit #/ — and is contained in the
IA cross section; FSIs modify only subleading singularities
in ¢/, as was proven in general in Ref. [15] and will be
demonstrated explicitly using the specific model of FSIs
derived in Sec. VI.

In the limit ¢/ — O the invariant mass difference in the
deuteron LF wave function tends to zero, Eq. (4.44). This
implies that the LF energy off-shellness of the pn system in
the TA vanishes [cf. Egs. (4.6) and (4.7)],

Pi@ —q7)=pi(p; =Py —P;)
= —(spn —4My) = 0.  (4.47)
The kinematic shift in the four-momentum transfer, § — g,
Eq. (4.7), therefore disappears at the pole, and the IA effec-
tively describes the scattering from a free on-shell neutron.

The analytic properties of the LF spectral function suggest
a natural method for extracting the free neutron structure func-
tions from proton-tagged DIS measurements on the deuteron.
One measures the proton-tagged structure function at fixed
Q? as a function of x and the recoil proton momentum |p pl
One then tabulates the tagged structure function data in «,
and ¢, which extends over the physical region t' < 7, . . The
free neutron structure function is then obtained by multiplying
the tagged structure function data by (¢')?>/R (i.e., extracting
the pole factor of the spectral function) and extrapolating
the resulting data to 7 — O (on-shell extrapolation). The
procedure gives the residue of the tagged structure function
at the pole (with the residue of the spectral function removed),
which by definition is the free neutron structure function.
Nuclear binding and FSI only modify the tagged structure
function at ¢’ #£ 0 but drop out at the pole, so that the procedure
is exact in principle. In practice its accuracy is determined by
the variation of the tagged structure function in t’ away from the
pole. This question will be addressed with the specific model
of FSIs developed in Sec. VI.

The on-shell extrapolation also practically eliminates the
D-wave contribution to the deuteron spectral function. The D
wave does not contain the nucleon pole and is regular at ¢’ = 0.
At the same time, because of the angular momentum L = 2, its
wave function is proportional to | p » |> at small |p p|. Because
t' =0 corresponds to small unphysical momenta |p p|2 =
—a? = —e;My, cf. Eq. (3.25), the D-wave contribution to the
spectral function is O(a*) at ¢’ = 0 and thus extremely small.

We evaluate the IA spectral function numerically, using
the nonrelativistic approximation Eq. (4.43) and the AV18
deuteron wave function [56]. Figure 7 shows the ¢’ dependence
of the IA spectral function after extraction of the pole factor
R/(t"). [t' is obtained from the proton rest-frame momentum
|p,| through Eq. (2.53).] One sees that the dependence is
smooth over a broad region |t'| < 0.1 GeV?, suggesting that
a polynomial fit would permit accurate extrapolation to ¢’ = 0.
(The minimum value |7/ .| is indicated on the graph.) The plot
shows the S-wave contribution and the sum of S and D waves
(total). One sees that the S wave dominates at small |¢’|, and

—
S wave — — —

S+D waves

0.6 |

Sy, 1) @Y/ R

04

0.2

0 0.05 0.1 0.15 0.2
-t [GeVH

FIG. 7. The deuteron spectral function in the IA, S,;[IA], with the
pole factor R/(t')? extracted, as function of ', for « » = 1. The spectral
function is evaluated in the nonrelativistic approximation Eq. (4.43)
using the AV18 deuteron wave function [56]. Dashed line: S-wave
contribution only. Solid line: Sum of S and D waves.

that the D wave disappears in the limit ¢ — 0, as expected on
general grounds.

V. FINAL-STATE HADRON DISTRIBUTIONS
A. Kinematic variables

FSIs in tagged DIS arise from interactions of the spectator
nucleon with “slow” hadrons produced by the DIS process
on the active nucleon (rest frame momenta |p,| < 1 GeV, or
target fragmentation region; see Sec. I). In order to calculate
these effects we need to study the properties of the slow hadron
distributions in DIS on the nucleon and parametrize them
for our purposes. In this section we discuss the kinematic
variables characterizing the final-state hadron distributions,
the conditional structure functions, and the basic features of
experimental distributions.

For the theoretical description of DIS on the nucleon (N =
p,n) we use a frame where the nucleon momentum p,; and
the momentum transfer ¢ are collinear and define the z-axis
of the coordinate system (cf. Sec. IIC).? In such a frame the
LF components of the nucleon four-momentum py and the
four-momentum transfer g are

. . - M _
py > O(arbitrary), py = —x Pnr = 0
Pn
0 , (5.1
gt = —&py, ¢ =% 4qr=0
Epn

3In the calculation of FSIs in tagged DIS on the deuteron below we
shall neglect the effect of the active nucleon’s transverse momentum
on the final-state hadron spectrum, so that the z axis axis of the
virtual photon-nucleon frame coincides with that of the virtual photon-
deuteron frame.
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N _._h Chp;

FIG. 8. Current matrix element in DIS on the nucleon with an
identified hadron % in the nucleon fragmentation region, eN —
¢ + h + X'. The LF plus momenta of the final state are expressed
as fractions of pj.

where p}; is arbitrary and defines the particular frame, and the
variable & is determined by

2x

14 ,/1+4M%x2/0?
=x+0(My/0Q%) (Q°>» M}).

With this choice of components the momentum transfer vector
q points in the negative z direction, 2¢* = gt — q~ < 0.

An identified hadron /4 in the DIS final state is characterized
by its LF momentum p;” = ¢, p}; and transverse momentum
p,r (see Fig. 8). Because the hadron LF momentum cannot
exceed the total LF momentum of the DIS final state, p; +
g = (1 — &)p};, the hadron fraction ¢, is restricted to

&=

(5.2)

O0<g<1-6. 5.3)

In particular, values ¢, ~ 1 become kinematically accessible
only forx ~ &£ « 1.

It is instructive to consider the hadron momentum dis-
tribution in the nucleon rest frame in terms of the ordinary
momentum variables. The connection with the LF momentum
distribution can be established easily, because the nucleon
rest frame is a special collinear frame with py; = My. The
fraction ¢, is related to the z-component of the hadron rest
frame momentum p;, by

2
i) + 1P + M3 + pi

= 5.4
Ch My 5.4
. purlP + M -2 M3,
Py =— : (5.5)
2é-h]MN

One observes the following: (a) If M), > My (e.g., if the
identified hadron is a nucleon) the hadron z-momentum is
negative, i.e., along the direction of the g-vector. Such hadrons
always go “forward” in the rest frame, meaning in the direction
of the g-vector. The momentum distribution is a cone opening
in the negative z direction. (b) If M; < My (e.g., if the
identified hadron is a pion) the hadron z-momentum can
be positive for sufficiently small |p, |, i.e., opposite to the
direction of the g-vector. Such hadrons can go “backwards” in
the nucleon rest frame.

Figure 9 shows the momentum distribution of nucleons
(M, = My) in the nucleon fragmentation region for fixed
values of £;,. One sees that small longitudinal momenta p;, — 0
correspond to LF fractions ¢, — 1, and that the cones are
shifted to larger longitudinal momenta as ¢, deviates from

%3 T - T
06 .-~ 04
03 .
‘/
_/
— ,/
g /
S \,
\~
\~
~.
~~
| o L
1 L5 2
—pj, [GeV]

FIG. 9. Momentum distributions of nucleons (M), = My) in the
nucleon fragmentation region in DIS, eN — ¢’ 4+ h + X. The con-
tours show the allowed values of p; and pi (with p; = 0, so that
|pnr| = |p;]) for given constant values of ¢,. The contours thus
describe the intersection of the allowed three-momentum cones with
the transverse x plane.

unity. Note that ¢, is kinematically restricted by Eq. (5.3).
Figure 10 shows the minimal three-momentum of nucleons
in the nucleon fragmentation region as a function of &. The
minimal value of the three-momentum is attained for p,; =0
[see Eq. (5.5) and Fig. 9] and is given by

§(1—&/2)My
1-£

One sees that nucleons with |p,| < 1GeV? appear only if
x ~ & « 1. Note that Eq. (5.6) gives only the kinematic limit,

|pj,|(min) = (h = N). (5.6)

ST T T
h =N (nucleons)
— 2r k
>
[0
<
=
g
S
1_ -
0 | | - | |
0 0.2 0.4 0.6 0.8 1

&

FIG. 10. Minimal three-momentum | p,,|(min) of nucleons (M) =
My) in the nucleon fragmentation region in DIS, Eq. (5.6), as a
function of the variable § = x + O(M%/0?%), Eq. (5.2).
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and that the average values of the nucleon momenta in the
fragmentation region are substantially larger, because the phase
space opens up with the transverse momentum.

The LF variables ¢, and p,; can be related to other variables
used to characterize experimental hadron distributions in DIS.
One commonly used variable is the fraction of the rest-frame
energy transfer carried by the hadron,

Ej 0’ 0’
ph=—, V= =

EZM2
p = = (1 — N). (5.7)
v 2MN)C 2MN%' Q2

Using Eq. (5.4) and setting

pi =~ Er = My, Mip=IpyrP+M;,  (58)
one obtains
Wy (2v)? — Mf% My XMy M
&n = My N oMy 202 (zv>> Myr),
5.9
2M2 + M2
= M—W_ (5.10)

Zé‘hMNl)

One sees that LF fractions ¢, = O(1) correspond to para-
metrically small energy fractions z = O(Myr/v) < 1 in the
nucleon rest frame (slow hadrons). Another commonly used
variable is the hadron’s longitudinal momentum in the CM
frame of the virtual photon-nucleon collision, in which g +
py = 0.Itisusually expressed in terms of the Feynman scaling
variable*
Z

_Ph

Y
ph,max

Xp = (5.11)

The connection with the LF variables is established by noting
that the CM frame is the special collinear frame with

L _ | HEMY
Pv=yTea—e

(5.12)
The hadron longitudinal CM momentum is

2 200 py

The maximum (positive) value is attained for ¢, = 1 — & and
pur =0,

: (1=&P(py) — M;

i max = e —— (5.14)
21 =8&)py
The scaling variable is thus obtained as
(1-5)[5i(py)* — Miy | & .

- _ - nDy > Mir).
XF ;h[(l—g)z(p;)z _ le] 1 _E (gl pN hT)
(5.15)

“The variable x in electroproduction is conventionally defined such
that hadrons moving in the virtual photon direction have xg > 0, and
hadrons moving in the target direction have xg < 0. In our convention
q° < 0and pj, > 0, hence the minus sign in Eq. (5.11).

The latter condition is fulfilled if Q% > M7, (DIS limit) and
¢n = O(1). One concludes that —xp in the nucleon fragmenta-
tion region (from —1 to approximately —0.5) can be identified
directly with the normalized hadron LF fraction ¢;, /(1 — ). We
use this relation in our analysis of experimental slow hadron
spectra below.

B. Multiplicity distributions

The hadronic tensor and differential cross section for DIS on
the nucleon with an identified final-state hadron % are described
by expressions analogous to those for DIS on the deuteron with
an identified nucleon in Sec. IIB; see Eqgs. (2.19) and (2.31).
The hadronic tensor is parametrized by conditional nucleon
structure functions

Fon (X, 0% 8, pyr),  ete., (5.16)

which depend on the identified hadron’s LF momentum frac-
tion ¢, and transverse momentum p,,r. It is convenient to ex-
tract the inclusive structure functions and write the conditional
structure functions in the form

Fon 1n(x, Q% 80, prr) = Fan(x, 01Dy (x, 0% &npur)s et
(5.17)

The function D,, describes the normalized differential multi-
plicity distribution of the hadron 4, i.e., the differential number
of hadrons dN; per DIS event observed in a phase space
element dI'y:

dN, depd?

" pudTy, dTy = “—f”.

Nincl 2127 ) g
As such it can be directly extracted from the experimental
multiplicity distributions. In particular, the p,r-integrated LF
momentum distribution of the hadron is

1 dN, 1 "
= d Dy.
Ninet & 2(2n>3;h/ Prrn

It can be identified with the xg distribution in the nucleon
fragmentation region, cf. Eq. (5.15). Note the factor 1/¢;, on
the right-hand side, which results from the definition of the
invariant phase space element Eq. (5.18).

(5.18)

(5.19)

C. Experimental distributions

Measurements of hadron multiplicity distributions in the
target fragmentation region in DIS on the nucleon have been
reported by several fixed-target experiments using electron
beams (Cornell Synchrotron [63]) and muon beams (CERN
EMC [64-66], FNAL E665 [25]), as well as at the HERA
electron-proton collider [67-70]. Slow hadron distributions
were also measured in neutrino-proton DIS experiments [71—
73]. While the kinematic coverage is far from complete, these
data roughly cover the x region of interest for our study
and allow us to infer the basic features of the multiplicity
distributions. Unfortunately many data are not separated ac-
cording to hadron species, as few dedicated studies of the target
fragmentation region have been performed so far. We now
briefly review the main features of the data and their theoretical
interpretation.
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The multiplicity distributions of hadrons with xg < —0.2
are approximately independent of Q2 for fixed x. Scaling
of the distributions is observed in all quoted electron and
muon experiments, covering the valence region x > 0.2 [63],
the region x < 0.1 [25,64-66], and the small-x region x <
10~2 [67=70]. This behavior is consistent with theoretical
expectations based on QCD factorization of the conditional
DIS cross sections in the target fragmentation region [30,31].
The multiplicity distributions in the target fragmentation region
show only weak variation with x in the region x < 0.1.
This indicates that the hadronization of the target remnant
is largely independent of the dynamics producing the parton
distributions in the nucleon in this region of x (sea quarks,
gluons).

The xp distributions of protons (integrated over transverse
momentum) in DIS on the proton are approximately flat for
xp < —0.3. A value of (1/Niy1) dNp/dxg ~ 0.5-0.6 at xg =
(—0.7,—0.3) was measured by EMC at (x) = 0.1 [65]. A value
(1/Ninc) AN, /dxg ~ 0.4 at xp = (—0.8,—0.4) was obtained
by the HERA experiments at x < 0.01 [67,70]. (At larger
negative xp diffraction gives rise to a distinct contribution to
the proton spectrum at HERA; this mechanism is marginal
in the kinematic region considered here.) The xg distribution
of neutrons measured in DIS on the proton at HERA [68,69]
is also flat and has a value of (1/Njn)dN,/dxg ~ 0.2 at
xg = (—0.8,—0.4). The sum of proton and neutron multiplic-
ity distributions is thus (1/Ninc)) dNpqpn/dxg ~ 0.6 at xp =
(—0.8,—0.4). That this value is significantly less than 1 shows
that part of the baryon number is transported to smaller xg and
materializes outside the target region. We note that both the
flatness of the distributions and the baryon number transport are
reproduced by string models of the fragmentation mechanism.

The transverse momentum distributions of protons and
neutrons in the target fragmentation region drop steeply with
pr., and can be approximated by Gaussian distributions
~exp(—By, pﬁT)(h = p,n), where the slope Bj; determines
the average squared transverse momentum as {p?,) = B, .
The empirical slope for protons is B, ~ 4GeV2atx > 02
(Cornell) [63] and B, = 6-8 GeV 2 at x < 1072 (HERA)
[67,70]. A value of B, ~ 6GeV~2 was also observed in
neutrino DIS at W? < 50 GeV? [71].

The multiplicity distribution of charged pions shows very
different behavior from that of protons and neutrons. The xg
distribution of pions are significantly smaller than those of
protons at xg < —0.3 butrise strongly at xg > —0.3 [65]. Pion
production thus happens mainly in the central region of the DIS
process and is governed by other dynamical mechanisms than
target fragmentation.

D. Implications for FSI

The experimental results described in Sec. V C characterize
the slow hadron distributions causing FSI in tagged DIS on
the deuteron. We now want to summarize the implications
and formulate a simple parametrization of the slow hadron
distribution for our subsequent calculations.

The dominant hadrons produced in electron-nucleon DIS
at ¢, > 0.2 are protons and neutrons emerging from the

hadronization of the remnant of the active nucleon. These
protons and neutrons can interact with the spectator nucleon
with the large NN cross section of ~40 mb at momenta |p, | ~
1-2 GeV (see Fig. 9 and Appendix C). We therefore suppose
that the dominant FSIin tagged DIS at x ~ 0.1-0.5 arises from
such protons and neutrons in the target fragmentation region
of the active nucleon. FSIs induced by pions could in principle
be treated within the same picture but are expected to be small.

If the active nucleon in the deuteron is the proton (i.e., if
the neutron is tagged), the multiplicity distributions of slow
nucleons (protons plus neutrons) can be inferred directly from
the proton DIS data. If the active nucleon is a neutron (proton
tagged), we suppose that at x ~ 0.1 the distribution of slow
nucleons (protons plus neutrons) is approximately the same as
in DIS on the proton, because the deep-inelastic process occurs
mainly on singlet sea quarks produced by gluon radiation and
does not change the flavor structure of the baryon remnant
system (we neglect the effect of the flavor asymmetry of sea
quarks in this context). Since furthermore the nucleon-nucleon
cross section atmomenta ~ few GeV is approximately the same
for pp, pn, and nn scattering (see Appendix C), the FSI effectis
the same for deuteron DIS with active proton or active neutron.
These approximations permit a model-independent estimate
of FSI effects at x ~ 0.1 and will be used in our subsequent
calculations. The physical picture of FSIs and the formulas
derived in the following are valid also at larger x (<0.5), where
the scattering primarily occurs mainly on valence quarks; in
this region they should be evaluated with a detailed model of
the quark flavor dependence of the slow hadron multiplicity
distributions.

In our numerical studies of FSI in tagged deuteron DIS we
use a simple parametrization of the multiplicity distribution
of slow protons and neutrons at x ~ 0.1, D;(h = p,n), which
reflects the basic features of the experimental distributions and
offers sufficient flexibility to study the dependence of FSIs on
the slow hadron distribution. We parametrize the distribution
in the form

Dy(x,0% ¢ pir)
= 2718 fuG)gn(prr) (h = p,nyx ~0.1). (5.20)

The function f,(¢,) describes the ¢ distribution and can
be identified with the p,r—integrated multiplicity distribution
Eq. (5.19). We choose it such that

(5.21)
(5.22)

Su(@p) ~cp =const (1> & 2 &),
Ju(n) = 0 (& — 0).

The constant ¢, can be inferred from the experimental pro-
ton/neutron & (or xg) distributions in the “flat” region. For the
sum of proton and neutron distributions it is

> cn=cp+cy =06-08.

h=p,n

(5.23)

The cutoff at ¢, — 0 limits the distribution to slow hadrons
in the nucleon rest frame, which are fully formed inside the
deuteron and interact with the spectator with the NN cross
section. A value ¢y ~ 0.2 corresponds to rest-frame momenta
[Pyl < 2 GeV (see Fig. 9). The simplest choice for f;,(¢,) is a
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step function

Tn(Gn) = cn®(G > §o)s (5.24)

the results are not sensitive to the details of the cutoff. The
function g;,(py7) describes the normalized pyr distribution of
the protons/neutrons and is modeled by a Gaussian,

By, 2 2
gn(pir) = — exp (=Bupir). | d*purgn(pnr) =1,
(5.25)
with an empirical slope

B, = 6-8GeV~2 (h = p,n). (5.26)

As explained above, the model distribution is used for the
slow protons/neutrons in DIS on either the proton or neutron
in the deuteron. It applies to DIS at x ~ 0.1; for larger x it
should be replaced by a more detailed model that includes
flavor dependence and the dynamical effect of x on the ¢,
distribution.

In our treatment of FSIs we describe the interactions of
the slow protons/neutrons with the spectator nucleon as on-
shell rescattering with an effective interaction. Off-shell effects
are physically related to effects of the finite hadron formation
time and can be modeled as a modification of the on-shell
effective interaction and the slow proton/neutron distribution.
The on-shell effective interaction (scattering amplitude) can
be determined from the NN total and elastic cross section data.
The main features of the data and a simple parametrization of
the amplitude at incident momenta |p,| < 2GeV are described
in Appendix C.

Little is known about the dependence of the slow hadron
spectrum on the nucleon spin, and about the effective po-
larization of the slow protons/neutrons. In the present study
we neglect the dependence of the slow-hadron distribution on
the nucleon spin, and regard the slow hadrons as effectively
unpolarized. Both effects could be included in the calculation
without changes in the theoretical framework. Information
about the dependence of the slow hadron spectrum on the
nucleon spin could come from measurements of target frag-
mentation in polarized DIS with a future EIC.

VI. FINAL-STATE INTERACTIONS
A. FSI and IA currents

We now proceed to calculate the tagged DIS cross section
including FSIs between the spectator nucleon and the slow
hadrons (protons/neutrons) emerging from the fragmentation
of the active nucleon, in the physical picture described in
Secs. I and VD. The calculation is performed in LF quantum
mechanics in the collinear frame p,; = 0 as in Sec. IVB and
identifies corrections to the IA current and the deuteron tensor
resulting from FSIs.

To properly account for the configurations in which FSIs
can and cannot occur, we separate the multihadron states X
produced in DIS on the nucleon into two classes:

(a) Multihadron states not containing a slow hadron capable
of inducing FSIs, which we denote by Xj.

(b) Multihadron states containing a slow hadron 4 capable
of inducing FSIs, which we denote by X . Their state vectors

are of the form
1X1) = |h,X') = |h)|X'), (6.1

where X’ is the product state of the remaining hadrons. The
summation over these states is performed as

lez/dr‘h;.

By construction the classes X and X | then exhaust all possible
multihadron states, and the summation over all states becomes

XX:=Z+Z.

Xo Xi

6.2)

6.3)

The separation is possible because the average slow hadron
multiplicity is <1 (cf. Sec. VD), i.e., we can assume that the
final state contains zero or one slow hadrons, but not more.

We now consider tagged DIS on the deuteron separately for
final states Xo and X1,

e+d— e+ p+(XyorXy). (6.4)

For final states of type X FSIs cannot occur, and the transition
current is identical to that obtained in the IA, Eqgs. (4.2) and
(4.3),

(pXolJ*(O)ld) = (pXo|J*(0)|d)[1A]. (6.5)

For final states of type X the transition current is computed
by inserting plane-wave nucleon and slow hadron intermediate
states into the current matrix element (cf. Fig. 11),

(pX11J*(0)|d) = (phX'|J*(0)|d)

= /[dpn]/[dpp1]/[dph1]

xAp,ppsh,prlp,ppi;h, pr1)
x (X', pui | J*O)n, py)

X Ap,Pp1;1, pald, pa). (6.6)

FSIs between the slow hadron and the spectator are now
incorporated by taking the hadron-spectator final state not as
a product state (as is done in the IA) but as the scattering
state generated by interactions between them. The boundary
conditions for the scattering state correspond to the incoming-
wave solution [74],

(DsPpshy PRl = P Pps b, Dl (6.7)

Following standard practice in nuclear physics we can express
the wave function of this scattering state in terms of the
effective interaction operator 7' (or T matrix) corresponding
to the interaction,

P, Pps hoPrlPPp1; iy PR1)
={p,ppih,prlp,pp1; h, put)
_ (pppshpal T, pp1s by i)

N ()
5(Pp + Py — Py — Py +10)
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é q
}X ’ J|: }X ’ FIG. 11. Current matrix elements in tagged
b, b, > DIS on the deuteron. (a) IA current. (b) FSI

v, v,
p, a p ¢ P . P between a slow DIS hadron k& and the spectator.
—— ] P P > | p
, Py p,
(a) (b)
Equation (6.8) represents the LF analog of the Lippmann- xT — 400 (when the interactions are switched off),
Schwinger equation in nonrelativistic quantum mechanics. The A T h
denominator is the difference of LF energies between the P Pp3 1Pl Pp1s s pan)
%nmAal andlﬁpﬁl states (the LF Hamiltonian in our convention = (p,pp; h,pul U(00,0) |p,pp1ih,pir).  (6.9)
is HLp = 5 Py see Appendix 1 of Ref. [75]). In the context

This representation makes it obvious that the scattering state
obeys incoming-wave boundary conditions.’

The effective interaction operator in Eq. (6.8) conserves
the total LF momentum of the states. Using translational
invariance, we can write the matrix element in the numerator
of Eq. (6.8) in the form

of a time-dependent formulation Eq. (6.8) can be regarded
as the matrix element of the LF time evolution operator
corresponding to the hadron-spectator interaction between
LF time x* = 0 (when the current creates the state /) and

J

(p.ppih.pulT1p.pprshopm) = @QE)8(p) + pif — Py — P8P P yr + Pur — Poir — Piit)T(Pp-Pii Pp1-pan). (6.10)

where no assumption is made about the LF energies of the initial and final states. The on-shell part of the scattering term in
Eq. (6.8), in which the total final LF energy is equal to the initial one, is obtained by retaining the pole term of the energy
denominator,

(PP b Pl T 1P pp1 by pit)
5Py + Py — Ppy — Piy — i0)

=i Qm)8(p, + Py — Py — Pi)P-Pps hpn TP, pp1s i pat) (6.11)

on-shell
=i m)* 8(p, + py — Py — Pa)S(P) + Py — P — Pl
X 5(2)(Ppr + Pur — Ppir — Piit)T(PpsPis Pp1sPa1) (6.12)

) 1
=i Q) 8Y(p, + pn— pp1 — a3 T(PpsPas Pp1sPin)- (6.13)

Here T is the on-shell matrix element of the effective interaction, which describes the amplitude of the physical ph — ph
scattering process and can be determined from experimental data; it is normalized such that, up to spin structures, it coincides
with the invariant amplitude (see Appendix C). Equations (6.8)—(6.13) allow us to express the FSI matrix element in terms of
the physical ph — ph amplitude within our scheme of approximations. The factor 1/2 in Eq. (6.13) accounts for the fact that
the interaction in the matrix element is present only from x™ = 0 to oo (i.e., “half the time”), while in the scattering process it is
present from xT = —o0 to 0o. We note that the same factor 1/2 is obtained in an equivalent calculation of the FSI effect in the
current matrix element using invariant perturbation theory, where it appears from the Cutkosky rules for the on-shell part of the
Feynman diagram.

We can now derive from Eq. (6.6) the explicit expressions for the transition current to X states. The d — pn matrix element
in Eq. (6.6) is expressed in terms of the deuteron LF wave function Eq. (3.9). The FSI matrix element is substituted by Eq. (6.8).
The noninteraction term on the right-hand side results in an expression of the same form as the IA result, Eq. (4.3). The interaction
term is expressed in terms of the on-shell scattering amplitude using Eqs. (6.13). Altogether the transition current to X states,
Eqg. (6.6), can be written as the sum of an IA and an FSI term,

(pX11J*0)|d) = (phX'|J*O)|d) = (...) [IA] + (...) [FSI], (6.14)
JF
(phX'|J*(0)|d) [1A] = i—im,ph;xwf“(onn, P)2r) 2 Wa(ap,p,r) [P =Py — P oPar = —Pprl, (6.15)

The formal operator generating a two-body scattering state from the product states [cf. Eq. (6.8)] is known as the Mgller operator and can be
defined in a general context. Its representation as the limit of a time evolution operator depends on asymptotic conditions; for a discussion see
Refs. [76-78].
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Py

(phX'|J*(0)|d) [FSI] = f [dpp1] =% (b pu1: X' | T (0)|n, pa) 2 )* Wa(atpr, p pir)

p

2 _ _ _ _ i
X —8(p, +p, =Py — 17;,1)5 T(pp,Pn; Pp1sPh1)

Pri

(P = pd = PjisPur = —Ppirs Pii = Pi + P — PiisPiir = Pur + Ppr — Ppir)- (6.16)

B. Distorted spectral function

The deuteron tensor for tagged DIS in the presence of FSIs
is obtained as the product of the current matrix element and its
complex conjugate, summed over all final states X, Eq. (2.19).
In accordance with the distinction between final states with
zero and one slow hadron, X and X;, we now write this sum
as

Wi =3 (dl IO pXo)(pXol ' (0)ld)

Xo

+ > (dITHO)pX1)(pX1| T (0)|d),

Xy

6.17)

and substitute the expressions Egs. (6.5) and (6.14)—(6.16) for
the different current matrix elements. It is easy to see that in
Eq. (6.17) the sum over states X, (for which the current is
always of IA form), and the part of the sum over states X
involving the IA term of the currents (in which no FSI takes
place), reproduce the original IA result for the deuteron tensor,
Eq. (4.4),

> x, (dIT*(0)| pXo)[IAI(pXo|J " (0)|d)[IA]
+ Xk, [dIJ*O)pX )AL pX,1| ¥ (0)|d)[1A]
= Yy (dIJ“O)pX)[IAI(pX|J"(0)|d)[IA] = W/ [IA].
(6.18)

Here we have used that the sum over states X and X; exhausts
the full set of inclusive final states X, Eq. (6.3).

Corrections to the IA tensor arise from the FSI terms in
the currents in the sum over states X; in Eq. (6.17). These
corrections come in two types: (a) the products of the FSI term
of one current and the IA term of the other (linear FSIs); (b) the
product of the FSI terms from both currents (quadratic FSIs).

Consider the linear FSI correction arising from the product
of the FSI current, Eq. (6.16), and the complex conjugate IA
current, Eq. (6.15). Because of the momentum integral in the
FSI current, the momentum of the active neutron in the FSI
current, p; and p,;, is generally different from that in the IA
current. The corresponding neutron current matrix elements
can therefore not generally be combined to form the neutron
tensor (which is diagonal in the neutron momentum), as was
done for the IA in Eq. (4.4). An important simplification arises
from the fact that the characteristic momenta in the deuteron
wave function are much smaller than in the nucleon current
matrix element. The latter is therefore not affected by the
small shift of the active neutron momentum caused by the FSI
integral and can be evaluated at the nominal active neutron
momentum defined by the IA.

(

A similar simplification can be made regarding the slow
hadron momentum in the neutron current matrix element.
Under the FSIintegral the slow hadron produced by the nucleon
current has momentum pj; and p,,, which differs from the
momentum it has in the IA, p;lL and p,, by the momentum
transfer through the rescattering process. Assuming that this
momentum transfer is much smaller than the typical slow
hadron momentum, we can evaluate the nucleon current at the
nominal slow hadron momentum defined by the IA. Together,
the two approximations imply that the nucleon current matrix
elements are evaluated at the same nucleon and slow hadron
momenta in both the FSI and IA, so that their product can be
replaced by the nucleon tensor.

With these simplifications we can write the FSI term of the
current matrix element, Eq. (6.16), in the form

(phX'|J*(0)|d) [FST]
Py R
= p—i<h, pi: X'|J4O)n, pa) @) %1y,
n

(P = Pi = PyPur = —Pprl, (6.19)

Id = Id(ap’PpT’al’wphT)

2 _ _
= [ ldppil—48(p, +p, —
Pni

Pp1 = Pp1)

1
X E\de(ap]app1T)T(pp,ph;ppl,phl)

(pifi = pif + Py = PhPiar = Pur + Por — Ppir):
(6.20)

The function I; represents the integral of the deuteron LF
wave function and the rescattering amplitude over the phase
space available for the rescattering process, defined by the
LF momenta of the final-state particles. Note that we have
extracted the factor of i from the rescattering integral and
exhibit it explicitly in Eq. (6.19). The complete deuteron
tensor emerging from the IA and FSI current matrix elements,
Egs. (6.14) and (6.19), including the pure IA contribution
Eq. (6.18), is then obtained as

Wi = Wi (pa.q.pp)

= W/ [IA] + W} [FSI] + W} [FSI*],  (6.21)
2%
Wy 1Al = (2n)3<—i> (Wal W (pa ), (6.22)

4N\ 2
WA [FSI] :(2n)3<§—i) Z/ dT(=2)Im [W,1,]
n 0 phas

X W (pasds pi)s (6.23)
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has

+ 2
v P v ~
W, [FSI*] = <2n>3<p—i) > / AT 14> W, (pasq )
n h p!

(p,} = pg — P} pur =0l (6.24)

The linear and quadratic FSI terms include integration over
the phase space of the unobserved slow hadron #; the physical
limits of the phase space are denoted by “phas” and will be
specified below. In addition, they include the summation over
the relevant slow hadron species 4. From Egs. (6.22)—(6.24)
expressions for the tagged deuteron structure functions can be
obtained by performing suitable projections (see Appendix B).
The operations are the same as in the IA calculation in
Sec. IVD. When applying the projections, the conditional
neutron tensor produces the conditional neutron structure
functions,

,on) = Foun(X,0% & pir)
= Fp, (%, 0)Dy(X, 0% &, pir), ete.
[ = x/@2 — a,)]. (6.25)

The tagged deuteron structure functions can be expressed in a
form analogous to the IA, Eq. (4.20), in terms of a “distorted”
spectral function,

Fa(x,Q% ap. ppr) = Salety, p ,p)ldist] Fou (X, 0),

h([?n,

(6.26)
Sy[dist] = S,[IA] + S4[FSI] + S,[FSI?].
6.27)
The explicit expressions of the terms are
715
Sy[1A] = , (6.28)
2—ap
1
S4[FSI] = Z / dTy Dp(=2)Im [V, 1], (6.29)
2-— Ap h phas
S4[FSI?] = (6.30)

1 /‘ )
dTy, Dy |12
2 — O[p ; phas

It remains to determine the kinematic limits of the phase
space integral over the final-state slow hadron LF momentum
in Egs. (6.29) and (6.30), or Egs. (6.23) and (6.24). We work
in a collinear frame (cf. Sec. IIC) and parametrize the LF
plus momentum of the slow hadron and the recoil nucleon

J

v 1 vV
WEIAT =105 D000 D Wiy, 0mlha) Ya@y,0m ) Wi (@0,0m),

Ai  Op On1On2

as fractions of py +/2,

L_opy L %Py
ph - 2 » P P 2 .
On general grounds the plus momentum fractions of the slow
hadron and the recoil nucleon in the final state of DIS on
the deuteron are bounded by [cf. Sec. VA and Eq. (5.3); we
approximate &§; ~ x; and set x; = x/2, cf. Eq. (2.7)]

6.31)

O<oap+ap, <21 —x9)=2—x. (6.32)

For given «,, the phase space integral over the slow hadron

momentum is therefore restricted to
ap <2—o,—x. (6.33)

The LF momentum fraction of the slow hadron with respect to
the active nucleon is

+
Ph o
= = . (6.34)
pi—pr 2-@p
From Eq. (6.33) it follows that
oy X ~
o = <1- =1-x, (6.35)
—Op —ap

as it should be for the DIS final state on the nucleon, cf.
Eq. (5.3). Thus ¢, has the correct kinematic limits within our
scheme of approximations.

Equation (6.34) describes the effect of the longitudinal
motion of the active neutron on the slow hadron distribution
emerging from the DIS process. Note that we neglect the
effect of the transverse motion of the active neutron on
the slow hadron distribution, consistently with our treatment
of the transverse momentum dependence of the neutron tensor
in the IA (see Sec. IVC) and our definition of the distorted
spectral function (see Sec. VIB). These effects are small
because the average neutron momentum in the deuteron is
much smaller than the typical transverse momentum of the
DIS hadrons, |p,7|* < 1/By (see Sec. VC).

C. Spin degrees of freedom

We now include the internal spin degrees of freedom in the
FSI current matrix element and the deuteron tensor, following
the same approach as in the IA in Sec. IV E. The expressions
for the deuteron tensor Egs. (6.22)—(6.24) take the form (we
show only the spin quantum numbers and suppress all other
arguments)

(6.36)

WU IFST] = [.. ]—ZZ >y / AT [ (07,00 %) a(0 .01 |ha) = i 13(0 1,002 ha) Wa(0 1, 0ut |2 )IW' (02, 0n1 ),

Op On1On2 h

(6.37)

WU IFSP] = .. ]—ZZ >y f AT 150,002 |1a)1a(0p,0nt ) Wi (002,0m1),

Op On1On2 h

[...]= Q) (p)/phH*

(6.38)
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The deuteron tensor is averaged over the initial deuteron helicity A; and summed over the final proton spin o, and involves the

summation over the internal neutron spins o,,; and o,,. Here

kI/d(odpvo'nl Md) =

is the spin-dependent deuteron LF wave function Eq. (3.33), and

Li(op,0n1|2a) = Li(cp, P 1 0 Pz Ops Ot |Aa)

2w _ _ _
= Z/[dppl]—+8(p,, +p, —Pp

o P
is the spin-dependent rescattering integral, which involves
summation over the internal proton spin o,1. These expressions
represent the general result for FSIs in tagged DIS on the
deuteron within our picture.

In Egs. (6.36)—(6.38) the LF helicities of the neutrons, o,
and o,,,, are summed over independently in the current matrix
element and its complex conjugate, and the neutron tensors
generally depend on both spin variables. In the IA cross section
Eq. (6.36) the neutron tensor is the one for inclusive scattering
(no identified hadron in the final state), W/"”. This tensor is
diagonal in the neutron LF helicity, since off-diagonal terms
would amount to a transverse spin dependence of the inclusive
cross section, which is forbidden by symmetries [see Eq. (4.36)
and Sec. IVE],

W#V(Pn va; 0}1270n1) o8 8(0}1210111)' (642)

In the FSI cross sections Egs. (6.37) and (6.38) the neutron
tensor is the one for conditional scattering (identified hadron A
in the final state), W!",. This tensor could in principle have
off-diagonal elements through a correlation of the neutron
transverse spin with the hadron transverse momentum. In the
following we neglect such correlations and assume that the
conditional neutron scattering tensor is diagonal in the neutron
LF helicity in the same way as the inclusive one,

W,ﬁZ(Pnﬁ,PhQUnz,Unl) X 8(Un250-n1)- (643)

This approximation is consistent with our neglecting other
transverse-momentum dependent structures in the conditional
neutron tensor. The effects of these structures under the
rescattering integral are suppressed because they average out,
particularly for small external recoil momenta p ,. Moreover,
we retain only the unpolarized part of the neutron tensor, which
is independent of the diagonal spin quantum number o;,; and
involves the unpolarized neutron structure functions Eq. (4.14).
With these approximations we can again express the tagged
deuteron structure functions with FSIs in terms of a distorted
spectral function, Eq. (6.27), which is now obtained as

Sq[IA] = 1(0p,0u|Aa)Wa(0p,00|2a),
Ad OpOn
(6.44)
Sq[FSI] = / ary
Ad Opon h phas
X [iw;(gpsgrl|)‘«d)ld(opsalll)\d)
—i13(0p,001 ) Va(0p,0411a)], (6.45)

\I’d(apvppT;Uva'11|)Vd) (639)
(6.40)
1
—Phl)z‘l’d(apl,P,,lT;Upl,GnlMd)T(Pp,Ph;Ppl,Phl;Gpl,Gp) (6.41)
[
S,[FSI?] = [ dry,
A Opo, h ¢Phas
X 17(0,04|A)14(0),04|1a). (6.46)

These expressions generalize the spinless result of Egs. (6.28)—
(6.30).

D. Nonrelativistic approximation

We evaluate the FSI correction using the nonrelativistic
approximation for the deuteron LF wave function and a
corresponding approximation for the rescattering integral. This
approximation will be justified a posteriori, by verifying that
the dominant momenta in the rescattering integral are | p | > «
M3

To derive the nonrelativistic approximation we convert the
rescattering integral Eq. (6.41) to a manifestly rotationally
invariant form. Here we use the fact that the integral over
the LF momentum of the intermediate proton, together with
the LF-energy conserving delta function, is an invariant phase
space integral and does not depend on the LF direction; only
the integrand depends on LF direction. Using the condition of
four-momentum conservation

Ppl + Pl = Pp+ Da (6.47)
one easily shows that
53 8(pp1 + Py — Py — Pp)
i1
=[Py (P + Py — Py — P)]
=8[(pn + pp = Pp1)* = Mj], (6.48)

i.e., the LF energy-conserving delta function can be expressed
as the mass shell delta function for the four-vector sum of
three of the momenta in the scattering process. The integral in
Eq. (6.41) can therefore be written in the form

/ dpp 12251, + P71 — P — )L ]
phl

__@Pm 2
(2m)32EN(p))

= /[dppl]shell[- -l

The integral Eq. (6.49) can now be evaluated in a nonrela-
tivistic approximation. In the phase space element we replace
Enx(p pl) — M. The mass-shell delta function in Eq. (6.49)

8[(pn + pp — Pp)* = Mi][.. ]

(6.49)
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isresolved assuming proton momenta |p ,,|,|p,| < My (non-
relativistic dispersion), but placing no restriction on the hadron
momenta |p,,|,|p,| (relativistic dispersion); the procedure is
described in Appendix D.

In the integrand of Eq. (6.41) we replace the LF wave
function by the nonrelativistic approximation Eq. (3.29). The
rescattering integral becomes

La(p P 0ps0n)

— Poi\1~
= Z/[dppl]shell MN<1 - M_’t])E d(ppl;aplvan)

opi

X T(Pp,Ph;Pp1aPhl;Upl,Up)~ (650)

We neglect the spin rotations resulting from the fact that proton
and neutron momentum in FSI amplitude are not the same
as in the TA. Such effects represent relativistic corrections to
the integrand of the FSI integral, which become noticeable
only at large integration momenta |p,|. Our studies below
show that the rescattering integral is dominated by momenta
[Py |> « M?%, sothatitis justified to neglect these corrections.

To proceed further we need to model the spin dependence
of the rescattering amplitude. Here we assume that the hadron-
proton scattering amplitude preserves the proton spin

TP, Pys Pp1sPu1s0p1,0p) = T(spn,11)3(0p1,0)),

nh=—(p,—p> (650

where T (s,,11) is the invariant amplitude described in Ap-
pendix C. Recall that we regard the slow hadron beam as
spinless, so that spin-spin interactions are excluded. A depen-
dence of the rescattering amplitude on the proton spin could
in principle arise from spin-orbit interactions; such effects are
suppressed at small proton momenta and of the same order as
other spin-orbit effects which we neglect.

With these simplifications it is straightforward to perform
the summation over internal spin variables and compute the
distorted spectral function in the nonrelativistic approximation.
The result is

S,[dist] = S,[IA] + S,[FSI] + S,[ESI?]. (6.52)
Sa[TA]
SdlAl oy, ). 6.53
2~ N PPy, Pp) (6.53)
S,[FSI] / / Py — Py
—_— = ar,D dp, 1+ ——F
2—, Xh: "~ wDn | [dpp1lshen| 1 + My

X My pa(p 1, Pp)[=IM T (spp,11)], (6.54)

S,[FSI2] / / ( P, — pi',z)
i dr,Dy, | 1dpolgen( 1 + —2—-22
7 _ o, ; s hDhn P p2lshell My

Py — Py
X /[dppl]shell<1 + pM—Np>

1
x My /Od(P,,z,P,,l)ZT*(Sph,l‘z)T(Spth)- (6.55)

These results generalize the IA result in the nonrelativistic ap-
proximation, Eq. (4.43). We quote the expressions for spectral
function divided by 2 — «,, which in the IA coincides with the

nonrelativistic momentum density. The function pa(p,,p,)
in Eq. (6.54) is the nondiagonal spin-averaged momentum
density of the unpolarized deuteron

= éz Z MN‘Zd(pI,];O'p’O'nI)Ld)

Ad Op,On

pd(pp]spp)

X ‘T/,}‘(pp; Op,Onlha) (6.56)

1| 3(p,ip,)*
U(pp)U(py) + 5[;’;; ~1
plpp

x W(p,)W(p,);

Pa(P 15 P p2) in Eq. (6.55) is defined analogously. The factors
depending on the z components of the proton momenta
arise from the nonrelativistic approximation to the LF wave
function, cf. Eq. (3.37), and the flux factors, and represent the
ratios

2— P — p; 2
ST D ey 0(%), etc.  (6.58)
2—a, My My

The FSI corrections Egs. (6.54) and (6.55) are diagonal in
the S and D waves, i.e., they involve terms quadratic in the
S- and D-wave functions but no interference terms. This
is a consequence of the spin structure of the nonrelativistic
deuteron, where S and D waves do not mix in the momentum
density (see Appendix A), and of our assumption regarding
the spin dependence of the rescattering process, Eq. (6.51).
The dominant FSI effect at small proton momenta |p,| <
200 MeV therefore comes from the S-wave IA interfering
with the S-wave FSI amplitude in Egs. (6.54); this contribution
could be calculated also without recourse to the nonrelativistic
approximation, using the expressions of Sec. VIB. At larger
proton momenta the quadratic FSI correction Egs. (6.55)
becomes comparable to the linear one, with the dominant
contribution coming from the product of the S-wave integrals.
Numerical results are presented in Sec. VIF below.

We now want to quantify what values of intermediate
proton momenta | p ,; | effectively contribute to the rescattering
integrals, and how the integrals converge at large |p,;|. The
integration over the two-dimensional phase space defined by
Eq. (6.49) results in radial integrals of the type

(6.57)

/dpplppl U(pp), /dpplppl W(pp1); (6.59)
the actual integration limits resulting from energy conservation
are given in Appendix D. The convergence of the integrals at
large pp; is ensured by the rapid fall-off of the radial wave
functions. Additional suppression at large p, results from the
t; dependence of the rescattering amplitude,

t=—(p, —p,)° Tlpmt)oxe . (6.60)

Figure 12 shows the radial integrands in Eq. (6.59) as functions
of p,1, both with and without the exponential factor resulting
from the rescattering amplitude (here the external proton
momentum is chosen as p, = 0, such that r, = — pi). One
sees that the integrands decrease rapidly at large p,; for both
S and D waves, and that the effective contributions arise
from momenta p,; < 500 MeV, where the nonrelativistic
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FIG. 12. Momentum distributions in the radial integrals in the
rescattering integral, Eq. (6.59). Shown are the integrands as functions
of the intermediate proton momentum p = |p |, evaluated with the
AV18 wave functions. Red and blue lines: S and D waves. Solid
and dashed lines: Momentum dependence without and with the #,
dependence of the rescattering amplitude.

approximation is well justified. Similar behavior is obtained
for nonzero external proton momenta |p,| < 200 MeV, which
are the values we consider in the present study.

E. Positivity properties

Some comments are in order regarding the sign of the
FSI correction and the positivity of the spectral function. The
imaginary part of the elastic rescattering amplitude is related to
the total proton-hadron cross section at the given energy by the
optical theorem (cf. Appendix C for the case that the hadron is
anucleon, h = p,n), and therefore satisfies

Im T (spn, 1 = 0) > 0. 6.61)

As aresult, the contribution to the spectral function that arises
from the interference of the S-wave FSI and the S-wave IA
amplitudes, Eq. (6.54), is explicitly negative,

S4[FSI] < 0; (6.62)

this holds at proton momenta |p,| < 300MeV, where the
S-wave radial function is positive. In contrast, the contribution
that arises from the square of the S-wave FSI amplitudes,
Eq. (6.55), is explicitly positive,

S,[FSI?] > 0. (6.63)

These findings have a simple interpretation in terms of
conventional quantum-mechanical scattering theory. The lin-
ear term in the FSI amplitude represents the loss of flux
due to absorption of the outgoing hadron-nucleon wave at a
given value of the final nucleon momentum. The quadratic
term represents the gain in cross section due to scattering of
the outgoing wave into a configuration with the given value
of the final nucleon momentum. In the language of wave

optics, the two effects can be referred to as “absorption” and
“refraction.” One expects that absorption is the dominant effect
at low recoil momenta, while refraction becomes dominant at
large recoil momenta. This expectation is borne out by the
numerical results described below.

The total distorted spectral function must be positive,

Sgldist] > 0, (6.64)

as it represents the physical cross section for tagged DIS on
the deuteron. In our scheme this is ensured by the fact that
the hadronic tensor (i.e., the cross section) is calculated as the
square of the current matrix element with the outgoing dis-
torted wave. The further approximations made in the distorted
spectral function do not change this basic property. Because
the linear term in the FST amplitude is negative, Eq. (6.62), both
the linear and quadratic terms are needed to ensure positivity
of the overall spectral function. This is again demonstrated by
the numerical results.

F. Recoil momentum dependence

We now evaluate the distorted spectral function numeri-
cally, using the nonrelativistic approximation of Sec. VID,
and study the magnitude of the distortion and its kinematic
dependence on the recoil proton momentum. The parameters
of the slow-hadron distribution and the rescattering amplitude
are described in Sec. VD and Appendix C. Throughout we
consider a value of x ~ & ~ 0.1, which is so small that it does
not significantly restrict the slow hadron momentum, so that
the integration can be carried out over the full range 0 < ¢ < 1
[cf. Eq. (5.3) and Figs. 9 and 10]; the calculations can easily
be extended to larger values of x.

The spectral function can be studied as a function of any of
the recoil momentum variables described in Sec. II D. The most
transparent representation is obtained using as independent
variables the modulus of the recoil momentum in the deuteron
rest frame and its angle relative to the g vector, Eq. (2.61),

P (RF)
P, (RF)|’

Their relation to the variables ¢’ and «), is given by Egs. (2.53)
and (2.62).

Figure 13 shows the ratio of the linear FSI term in the
distorted spectral function, S;[FSI], Eq. (6.54), to the IA term,
Sq[IA], Eq. (6.53), as a function of cos 8,,, for several values
of p,. This ratio describes the relative correction to the IA
arising from the linear FSI term. The plot shows the S;[FSI]
obtained from the S-wave only and the total from S + D waves;
the Sy[IA] in the denominator is always the total from S + D
waves. The following features are apparent:

(i) The correction from the linear FSI term is negative and
increases in magnitude with the recoil momentum, from about
—5% at p, ~ 100 MeV to about —20% at ~200 MeV.

(ii)) At small p, the correction is isotropic. At p, >
200 MeV it develops a peak at sideways angles, cos6,, ~ 0,
and a forward-backward asymmetry.

(iii) The S wave completely dominates the linear FSI term
up to p, ~ 200 MeV; the D wave becomes noticeable only at
larger momenta.

pp =|p,RE), cosb,, = — (6.65)
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FIG. 13. The ratio of the linear FSI and IA deuteron spectral
functions, S,[FSI]/S,[IA], Egs. (6.53) and (6.54), as a function
of the cosine of the recoil momentum angle in the deuteron rest
frame, cos 6,,, for several values of the recoil momentum modulus
Pp =|p,|, as indicated on the plot. The plot shows the S,4[FSI]
obtained from the S wave only and the total from S + D waves;
the S,;[IA] in the denominator is always the total from S + D waves.
Note that the ratio shown here includes only the term linear in the FSI
amplitude, not the quadratic one.

Figure 14 shows the ratio of the entire distorted spectral
function, S, [dist], Eqs. (6.52), including the IA, FSI, and FSI?
terms, Eqgs. (6.53)—(6.55), to the IA spectral function S,[IA].
In other words, it shows the factor by which the IA spectral
function is modified by the entire FSI effect. The following
features are apparent:

(i) At low recoil momenta p, < 300MeV the linear FSI
term dominates and the FSI effect is mainly absorptive,
reducing the spectral function relative to the IA. In this region
the distorted spectral function has a minimum at cos 6, ~ 0.

(ii) At higher recoil momenta p,, 2 300 MeV the FSI? term
takes over at forward and sideways angles, cos6,, > —0.7,
resulting in a large positive correction relative to the IA. The
distorted spectral function now shows a maximum at slightly
forward angles cos 8, ~ 0.2. The transition between the low-
and high-momentum regimes is rather sudden.

(iii) At backward angles cos6,, < —0.7 the FSI* term is
suppressed, so that the FSI remains absorptive even at large
recoil momenta. The spectral function in this region shows
little variation with the recoil momentum at p, 2 300 MeV.
Overall this results in a forward-backward asymmetry of the
spectral function at large momenta.

(iv) The distorted spectral function is positive for all recoil
momenta p ,, as required on general grounds, cf. Eq. (6.64).

The observed dependencies are naturally explained by con-
sidering the kinematics of the scattering process in the deuteron
rest frame. At low recoil momenta the main rescattering effect
is always at 6,, ~ 90°, because the only way in which the
forward-moving DIS hadron with momentum ~1 GeV could
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FIG. 14. The ratio of the distorted spectral function to the IA
spectral function, S,[dist]/S,[IA], Egs. (6.52)—(6.55), as a function
of the cosine of the recoil momentum angle in the deuteron rest frame,
cos B, for several values of the recoil momentum modulus p, =
|p,|- The distorted spectral function includes the IA, FSI, and FSI?
terms.

transfer a momentum of the order p, ~ 100MeV to the
spectator proton is by pushing it sideways. At larger recoil
momenta p, 2 300 MeV it becomes increasingly possible for
the DIS hadron to push the spectator forward, resulting in an
enhancement of the spectral function in the forward region.
In contrast, the backward region is protected from this effect,
as it is kinematically impossible for the forward-moving DIS
hadron to push the spectator backwards.

The results shown in Figs. 13 and 14 are close to those
obtained in Ref. [46] for the distorted spectral function of
quasielastic deuteron breakup d(e,e’ p)n at intermediate ener-
gies ~few GeV in the Glauber approximation. This is natural,
as our distorted spectral function also describes quasielastic
breakup, if the tagged DIS structure function of the nucleon is
replaced by its elastic structure function, i.e., by the square of
the nucleon elastic form factor at the corresponding momentum
transfer Q2.

Figure 15 shows the distorted spectral function as a function
of the invariant momentum transfer ¢’ and the recoil LF
fraction «,, as used in neutron structure extraction and on-shell
extrapolation. The plot again shows the ratio S;[dist]/S;[IA],
Egs. (6.52)—(6.55), and gives separately the results for the IA,
the sum IA + FSI, and the sum IA + FSI + FSI? (total). One
sees the following:

(i) For |t'] < 0.1 GeV? the correction arises mainly from
the linear FSI term and is negative.

(ii) For || > 0.2 GeV? the FSI? term dominates and causes
a steep rise of the ratio.

(iii) The distorted spectral function is again positive for all ¢’

The approximations made in our calculation of FSI are
reliable at moderate recoil momenta | p ,| < 200 MeV, or |¢'| <
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FIG. 15. The ratio of the distorted spectral function to the IA
spectral function, S,[dist]/S,[IA], Egs. (6.52)—(6.55), as a function
of —¢', for a fixed value o, = 1. The plot shows separately the IA,
IA + FSI, and TA + FSI + FSI? results.

0.1 GeV?, where the dominant correction comes from the
S-wave IA interfering with the S-wave rescattering integral
(see Sec. VID). The results for higher momenta in Figs. 14 and
15 are estimates and shown for illustration only. Our objectives
in the present study are to calculate the dominant linear FSI
correction at low recoil momenta, and to estimate roughly at
what recoil momenta the quadratic FSI correction becomes
comparable to the linear one. This information is sufficient for
assessing the prospects for neutron structure extraction from
future tagged DIS measurements with EIC (see below). An
accurate description of FSIs in tagged DIS at recoil momenta
[P, Z 300 MeV would require more accurate construction of
the deuteron LF wave function at large relative momenta, as
well as more detailed modeling of the slow hadron distribution
and the rescattering process.

G. Analytic properties

We must also investigate the effect of FSIs on the analytic
properties of the spectral function in ¢. The IA current matrix
element contains the nucleon pole of the deuteron wave
function at ¢/ = 0, which causes the TA spectral function to
behave as ~R/(¢')? inthe limit# — 0 (see Sec. IV G). Itis easy
to see that the FSI contribution to the current matrix element is
nonsingular in the limit ¢ — 0. This follows from the fact that
the rescattering integral I;, Eq. (6.20), or the corresponding
nonrelativistic approximation Eq. (6.50), is a smooth function
of the recoil momentum in the physical region |p ,(RF)| > 0
(or ¢’ < t}), remains regular at |p p(RF)| =0, and can thus
be continued to the unphysical point |p p(RF)|2 =1)/2 =
—Myey + €%/4 (or t' = 0) without encountering singularities
of the deuteron wave function. In the invariant formulation
using Feynman graphs, it follows from the fact that the nucleon
pole arises from the nucleon tree graph, while the loop graphs

T T 1

IA + FSI— — —
IA + FSI +FSI?

0.8 f

0.4

S, (@, 7) [dist] () /R

0.2

0 0.0 0.1 0.15 0.2
-’ [GeVH

FIG. 16. The distorted spectral function S,[dist], Eqs. (6.52)—
(6.55), with the pole factor R/(t')* extracted, as function of ¢, for
a, = 1 (cf. Fig. 7). The plot shows separately the IA, IA 4 FSI, and
IA + FSI + FST? results.

describing FSIs can at most modify the subleading behavior. A
formal proof of this “no-loop theorem” was given in Ref. [15].

Figure 16 shows the distorted deuteron spectral function
with the pole factor removed. The plot shows separately the
IA, the sum IA + FSI, and the sum IA + FSI + FSI? (total).
One sees the following:

(1) The FSI correction vanishes when approaching the pole.

(ii) The FSI? correction vanishes even faster than the FSI
one.

(iii) The magnitude of the FSI correction is ~30% of the
IA at |¢'| ~ 0.1 GeV? and decreases approximately linearly in
|t'| as || — O.

The fact that FSI does not modify the nucleon pole singu-
larity of the IA spectral function is of central importance for
the extraction of neutron structure from DIS on the deuteron
with proton tagging. It implies that FSIs can be eliminated in a
model-independent manner through the on-shell extrapolation
procedure described in Sec. IV G. The FSI modifies the mea-
sured tagged structure at ' < ¢, but drops out when performing
the extrapolation to ¢’ = 0 [15].

H. Sum rules and unitarity

Important physical requirements of the deuteron spectral
function are the nucleon number and LF momentum sum
rules, Egs. (4.21) and (4.22). They express the fact that the
initial state consists of two nucleons and does not involve non-
nucleonic degrees of freedom. The interactions summarized
by the deuteron wave function distribute the LF momentum
among the two nucleons but do not change the baryon number
or the overall LF momentum of the system. The IA result for
the spectral function satisfies both sum rules, and we would like
them to be satisfied in the presence of FSI as well. We want to
comment briefly how this is realized within our model of FSIs.
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The nucleon number sum rule Eq. (4.21) demands that the
integral of the distorted spectral function over the recoil proton
momentum (&, p ) satisfy

da .
/a_p/dzppTSd(apvppT)[dISt]
p

=202n)} f dT ), Sa(ep, p,p)ldist] = 1. (6.66)

Since the IA spectral function alone already satisfies the sum
rule, Eq. (6.66) requires that the integral over the total FSI
correction (linear and quadratic) be zero,

/ dT ,Sq(atp, p ,7)[FSI + FSI’] = 0. (6.67)
Equations (6.66) viz. (6.67) are realized in our formulation if
the scattering process between the slow hadron and the specta-
tor proton is elastic, i.e., if it only redistributes the momentum
between the particles but preserves the overall flux. This could
be achieved by constructing an effective interaction such that
the operator converting the plane-wave state into the scattering
state [the time evolution operator of Eq. (6.9)] is explicitly
unitary when restricted to the space of states with fixed energy,
i.e., when considering the energy-conserving matrix elements
only. How such an operator could be constructed explicitly is
an interesting problem for further study.

With the present approximations we can describe the rescat-
tering process quantitatively only at recoil momenta |p|, <
300 MeV, which are not sufficient to verify the condition
Eq. (6.67) explicitly. However, we can at least observe the
tendencies that could lead to the condition Eq. (6.67) being sat-
isfied in a more complete treatment. At small recoil momenta
[plp < 300MeV the linear FSIterm dominates and contributes
negatively to Eq. (6.67), while at larger momenta |p|, >
300 MeV the quadratic FSI term takes over and contributes
positively (see Fig. 14). It is thus apparent how Eq. (6.67)
could be satisfied by way of cancellation between the low-
and high-momentum regions, even if we presently cannot
compute the high-momentum contributions accurately within
our scheme. In this sense we have focused on modeling
the low-momentum rescattering using empirical interactions,
and trust that Eq. (6.67) will be restored by high-momentum
contributions outside of the present approximations.

The LF momentum sum rule Eq. (4.22) follows from
the nucleon number sum rule Eq. (4.21) if the function
2 - otp)Sd(ap,ppT) is symmetric under o, — 2 — a,, which
amounts to interchange of the LF momenta of the active nu-
cleon and the spectator. The IA result embodies this symmetry
exactly thanks to the symmetry of the deuteron LF wave
function. The FSI correction does not satisfy it exactly, as the
rescattering integral I; in Eqgs. (6.29) and (6.30) is generally
not symmetric under o, — 2 — ot,,. However, the symmetry
of the spectral function is still approximately realized within
our scheme, as the variation of /; in ), around @, = 1is much
slower than that of y4, so that I; can effectively be regarded
as a constant for the purpose of the reflection symmetry, and
the symmetry of Egs. (6.29) is again brought about by that of
the deuteron wave function. In this sense also the momentum
sum rule of the spectral function is preserved by the FSI within

our scheme of approximations. Note that our physical picture
of FSIs applies only in a limited range of x, so that it is
not possible to test the momentum sum rule for the deuteron
structure function, Eq. (4.29), within our model.

VII. NEUTRON STRUCTURE EXTRACTION

Our findings regarding the momentum and angular depen-
dence of FSIs have implications for the extraction of neutron
structure functions from deuteron DIS data with proton tag-
ging. A full assessment of the strategy requires an estimate of
the uncertainties of the tagged structure function measurements
and should be made with realistic pseudodata. Nevertheless,
some general conclusions can be drawn already at this level.

The preferred method for extracting the free neutron struc-
ture function is the on-shell extrapolation in ¢ at fixed «,
(see Sec. IV G). The procedure eliminates modifications due
to nuclear binding as well as FSIs. The accuracy of the
extrapolation depends on several factors: (a) the uncertainties
of the tagged structure function data; (b) the smoothness of the
t' dependence of the spectral function after removing the pole
factor, which is determined by the FSI; (c) the distance between
the physical region and the on-shell point, which depends on
the recoil fraction o,.

If accurate measurements of the tagged structure functions
can be made down to rest-frame recoil momenta p,(RF) ~
few 10 MeV, one may perform the on-shell extrapolation in ¢’
at LF fractions ¢, ~ 1, where one can come closest to the pole
in ¢’ (see Fig. 4). In this situation our model predicts that the
FSI corrections have smooth ¢’ dependence, and a magnitude
of <10% of the IA at the lowest ¢’ values, so that they are
reliably eliminated by the extrapolation procedure. Since there
are no singularities in ¢’ between ¢, and 0 the extrapolation can
be performed using a polynomial fit to the # dependence of
the tagged structure function data [15].

If accurate measurements of the tagged structure functions
are only possible at larger recoil momenta p,(RF) ~ 100-200
MeV, one may instead focus on the backward region,, > 1 (or
cos 0, < 0), where our model predicts that FSIs are relatively
small; see Figs. 13 and 14. In this case there is a trade-off
between coming as close as possible to the pole (which favors
o, = 1) and minimizing FSIs (which favors «, substantially
larger than 1). While our model predicts that the ¢’ dependence
is smooth even in the presence of FSIs, the distances from the
pole are such that the magnitude of the correction is substantial
(~30% of the IA at |t'| = 0.1 GeV?; see Fig. 16). In this
situation one may no longer rely on polynomial extrapolation
but fit the data with a more complex parametrization of the
spectral function based on the expected functional form of the
FSI correction.

VIII. SUMMARY AND OUTLOOK

In this work we have presented a theoretical framework
for the analysis of DIS on the deuteron with spectator nu-
cleon tagging. Nuclear and nucleonic structure are separated
using the apparatus of LF quantum mechanics appropriate
for high-energy scattering processes. The IA determines the
basic dependence of the tagged cross section on the recoil
momentum and its analytic properties (nucleon pole). In the
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region of intermediate x (roughly 0.1 < x < 0.5) FSIs arise
mainly from the interaction of the spectator with slow hadrons
produced in the fragmentation of the active nucleon (rest frame
momenta |p,| ~ 1 GeV). We have described this effect in
a schematic model using empirical slow-hadron distributions
(protons, neutrons) and the nucleon-nucleon scattering ampli-
tude. The main conclusions regarding FSI in tagged DIS can
be summarized as follows:

(1) Absorption and refraction. The rescattering between the
slow DIS hadrons and the spectator nucleon involves absorp-
tive interactions (linear in the imaginary part of amplitude,
dominant at recoil momenta | p|, < 200 MeV) and refractive
interactions (quadratic in real and imaginary parts, dominant
at higher momenta). The net effect is to reduce the flux of
spectator nucleons at low momenta and increase it at higher
momenta.

(ii) Angular dependence. The FSI effect on the recoil mo-
mentum distribution is approximately isotropic in the deuteron
rest frame at momenta [p | < 100 MeV. At higher momenta it
becomes angle dependent, with the strongest effect occurring
in the direction approximately perpendicular to the g-vector
(sideways direction).

(iii) Analyticity in t'. The FSI correction to the IA spectral
function vanishes at the nucleon pole ' — 0 (relative to the IA)
and exhibits a smooth dependence on ¢’ up to |t'| ~ 0.1 GeV?>.
It can be eliminated through on-shell extrapolation " — 0.

(iv) Relative magnitude. The FSI correction reduces the TA
spectral function by ~30% at |t'| ~ 0.1 GeV? and a, = 1.The
effect becomes proportionately smaller as |¢'| decreases.

Our results show that extraction of free neutron structure
through on-shell extrapolation is possible if accurate measure-
ments of the recoil momentum dependence can be performed in
the region |¢'| < 0.1 GeV? (or|p »| K 200MeV). The analytic
structure of the FSI correction and its moderate size indicate
that the nucleon pole residue can be extracted reliably even
in the presence of experimental errors. We emphasize that
the extrapolation eliminates not only Fermi motion but also
nuclear binding effects, as the phase space for interactions
vanishes at the on-shell point. Measurements of tagged DIS
over a wide kinematic range will become possible at a future
EIC with suitable forward detectors. Simulations of neutron
structure extraction through on-shell extrapolation using the
IA cross section model suggest that the procedure is feasible
under realistic conditions [79,80]. The dominant systematic
uncertainty in the tagged structure function results from the
uncertainty in the transverse recoil momentum p 7, as caused
by the finite detector resolution and the intrinsic momentum
spread of the deuteron beam [81]. These simulations can now
be updated to include FSI effects in the cross section model;
results will be reported elsewhere.

Tagged DIS on the deuteron has also been proposed as a tool
to explore the dynamical origin of the nuclear modification of
the nucleon’s partonic structure. The idea is that the observed
recoil momentum effectively controls the spatial size of the pn
configuration in the deuteron, which makes is possible to study
nuclear modifications of the nucleon structure functions in con-
figurations of defined size (“tagged EMC effect”) [1,45,82,83].
The main challenge in such measurements is to separate
initial-state modifications of the partonic structure from FSI

effects. Our model provides an a priori estimate of the size of
the FSI effect and can be used to assess the sensitivity of such
measurements to a putative nuclear modification of nucleon
structure. In particular, the results of Fig. 14 show that in the
backward region cos6,, < —0.7 the FSI effect is practically
independent of the modulus of the recoil momentum for values
|p,| Z 300 MeV. An observed variation of the tagged structure
function with |p | in this region could therefore be ascribed
to initial-state modifications. The formulation of a practical
procedure for tagged EMC effect studies at the EIC based on
these findings should be the object of future work.

In applications to neutron structure and the EMC effect
one aims to eliminate or minimize the FSI effects in tagged
DIS. The same measurements could be used to study the
FSI as an object in itself, by going to kinematics where the
effects are maximal (recoil angles —0.2 < cos6,, < 0.4; see
Fig. 14) and verifying their strong kinematic dependence. Such
measurements on the deuteron would help us to understand
better the pattern of nuclear breakup in DIS on heavier nuclei
(e.g., slow neutron rates and angular distributions), which in
turn would assist other studies of hard processes in nuclei
(centrality dependence, hadronization and jets in nuclei) [5].

In the present study of FSIs in tagged DIS we considered the
case of unpolarized electron-deuteron scattering and made sev-
eral simplifying assumptions about the DIS hadron spectrum
and the rescattering process. The treatment could be refined
in several aspects while remaining within the same physical
picture:

(1) Spin effects in hadron-spectator rescattering. Absent ex-
perimental data or theoretical arguments suggesting otherwise,
we have modeled the slow hadrons produced in the DIS process
as an unpolarized beam. Correspondingly, we have neglected
the spin dependence of the hadron-proton rescattering process.
This has allowed us to compute the dominant FSI effect at
recoil momenta p, < 200 MeV, resulting from the S-wave IA
amplitude interfering with the S-wave FSI amplitude. Spin
dependence of the rescattering could be included if data about
the effective polarization of the slow hadrons become available.
Spin effects could also arise without slow hadron polarization,
from a spin-orbit term in the hadron-proton rescattering am-
plitude. Both effects could give rise to S-D wave interference
in the distorted spectral function. Such interference terms are
not expected to significantly change the results compared to
the dominant diagonal S-wave contribution at small recoil
momenta. In particular, the on-shell extrapolation should not
be affected.

(ii) Polarized electron-deuteron DIS. The methods devel-
oped here could be extended to the case of polarized electron
scattering from a polarized deuteron, including possible tensor
polarization of the spin-1 system. The basic formalism for
the LF description of the polarized deuteron in DIS is given
in Ref. [41]. A detailed treatment of polarized deuteron LF
structure and double-polarized tagged DIS in the TA will be
presented in Ref. [40]. The formalism for FSIs developed
here could be applied to the polarized case without essential
changes. In this case one should allow also for spin dependence
of the slow hadron distribution (correlated with the spin of
the active neutron), and of the the rescattering process. An
interesting aspect of polarized tagged DIS is the appearance
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of time-reversal-odd (7 -odd) response functions in the cross
section, which are zero in the IA and become nonzero only due
to FSIs, and which therefore provide sensitive tests of the FSI
dynamics.

(iii) Inelastic rescattering. In the present calculation we
implement FSIs through elastic rescattering of slow hadrons
(protons, neutrons) on the spectator. This scheme allows us to
describe FSIs in the hadronic tensor at the probabilistic level
(because the same hadrons appear in the current matrix element
with and without FSIs) and preserve the nucleon number sum
rule through elastic unitarity. It is clear that certain inelastic
channels are open at the momenta |p,| ~ 1 GeV considered
here and can have sizable cross section, for example, pro-
duction of A isobars in nucleon-nucleon collisions. Including
such channels in the FSI calculation is possible in theory
but very difficult in practice. It requires a coupled-channel
formalism, in which one considers all stable hadrons appearing
in the final state (in the example of A excitation, this would
be two nucleons and one pion) and implements all possible
interactions between them. One would also need to know the
amplitudes for the “direct” production of these hadrons through
fragmentation of the active nucleon, which interfere with those
of “indirect” production in the rescattering process. It is not
obvious whether these amplitudes could be extracted from the
DIS hadron multiplicities without further modeling.

(iv) Rescattering of pions. We have focused here on FSIs
induced by the rescattering of slow protons and neutrons in the
DIS final state, as these are the dominant hadrons at xg < —0.3
and have large cross sections for rescattering on the spectator
nucleon. FSIs could also arise from the rescattering of pions,
whose multiplicity rises strongly at xp > —0.3. This effect
could be calculated with the same formalism as used here (the
formulas for the rescattering integral in Appendix D are given
for a general slow hadron mass). The pion-nucleon amplitude
at pion momenta |p,| ~ 1 GeV is well constrained by data.
One interesting aspect of pions is that they can emerge in
the backward direction of the DIS process, i.e., opposite to
the g-vector [see Sec. V A and Eq. (5.5)], and therefore push
the spectator in the backward direction. It would be worth
investigating pion-induced FSIs in a separate study.

The physical picture of FSIs developed here refers to the
kinematic region of intermediate x, roughly 0.1 < x < 0.5.In
this region the slow hadron distributions extend over a broad
range of LF fractions ¢, < 1 — & &~ 1 — x, while diffractive
hadron production is not yet important. Tagged DIS experi-
ments can of course be performed also at larger or smaller
values of x, with various scientific objectives. It is worthwhile
summarizing what changes in the physical picture of FSIs are
expected in these regions.

(1) FSI and diffraction at small x. At x <« 0.1 diffractive
DIS becomes a distinctive source of slow nucleons in the
target fragmentation region. The xp spectra of protons in DIS
on the proton measured at HERA show a diffractive peak
near xp = —1 with an integrated multiplicity of ~0.1; see
Ref. [84] for a review. Physically this effect is explained by
a color-singlet exchange between the electromagnetic current
and the nucleon, such that the DIS process leaves the nucleon
intact and recoiling with a momentum ~ few 100 MeV. If such
diffractive production happens in tagged DIS on the deuteron,

there is a significant probability for the diffractive nucleon
and the spectator to recombine and form the deuteron, as
they have the same spin-isospin quantum numbers and similar
momenta as the original proton-neutron pair in the deuteron
wave function. In measurements of tagged DIS at small x one
selects the channel where this recombination does not happen
and a proton-neutron scattering state is produced instead of
the deuteron. In this situation it is essential that the wave
function of the scattering state is constructed such that it is
orthogonal to the deuteron, i.e., that it is obtained as the solution
of the dynamical equation with the same effective interaction as
produces the deuteron bound state, cf. Eq. (6.8). It also requires
that off-shell energies are allowed in the rescattering process.
A detailed treatment of FSIs in tagged DIS at small x will be
presented in a forthcoming article [22].

(i) FSIs in tagged DIS at large x. In DIS on the nucleon at
x 2 0.5 the distribution of hadrons in the target fragmentation
region differs substantially from that at lower x. The reason
is that the hadron LF fraction is kinematically restricted to
tn <1 —&=1—x, such that only small values of ¢, are
allowed at x — 1. Physically speaking the DIS process almost
“empties” the nucleon of LF momentum, and the produced
hadrons have to share the small rest. These hadrons therefore
have large momenta in the target rest frame, cf. Eq. (5.5)
and Figs. 9 and 10, and their interactions with the spectator
are suppressed by the formation time. Our picture therefore
suggests that FSIs may be suppressed in tagged DIS at large x.
However, since I, < F;, at x — 1, even small FSIs would
have a large relative effect on the extracted neutron structure
function. The x — 1 limit of tagged DIS therefore requires a
dedicated study.
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APPENDIX A: DEUTERON WAVE FUNCTION

In this Appendix we summarize the properties of the
nonrelativistic deuteron wave function and its spin structure,
as used in the present calculation. The nonrelativistic wave

function in the rest frame is denoted by
Ua(p.0y.001ha), (A1)

where A; = (£1,0) is the deuteron spin projection, p is the
proton momentum, and o, , = j:% are the neutron and proton
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spin projections. The wave function is normalized such that

> f & p¥(p.0, 0N (P60, 0ulhg) = (M ha).
0pyOy
(A2)
It can be represented as a bilinear form in nucleon spinors as

Uy(p,0p,0nlha)

| B . 1 (3pip/ .
= Ee'ud)[s”l/(pwﬁ( o —8'1>W<p>]

x x (@)l (i0P)x (o)),

(A3)

where €(),4) are the polarization vectors describing the spin
states of the spin-1 deuteron,

1 F1 0
e(x1) = E —i]l, €e0)=10], (Ad
0 1

D € ) =87, € ()) - €(ha) = 800y ha),
Ad

(A5)

and x (o, ) are the spinors describing the spin states of the
spin-% nucleons,

= (5) =)

Y x@)x ) =8, x(@)x'(0)=08(0"0). (A7)

(A6)

In the bilinear form in Eq. (A3), o/ are the Pauli spin matrices,
and io? is the metric spinor relating the contravariant and
covariant spinor components. U(p) and W(p) are the radial
wave functions of the S and D waves (angular momentum
L = 0 and 2) and are normalized such that
[e¢]
A / dp p* [U(p) + W*(p)] = 1. (A8)
0

The unpolarized nucleon density matrix in the deuteron (aver-

aged over the deuteron spin, and summed over the neutron and
proton spins) is

pd(p27pl)
1 ~ ~
=322 U200l h) (P 1,0p,0nlka) (A9)
Ad Op,On
1[3(p,p))*
= U(p)U(p1) + 5[% — 1| W(p)W(p1).
P> D1

(A10)

Note that the density matrix is diagonal in S and D waves (no
mixing) even in the case of unequal momenta p, # p,. The
diagonal density matrix, describing the probability to find a
nucleon with given momentum p, is

pa(p,p) = U*(p) + W(p), / d’ppa(p,p) = 1. (All)

Figure 17 shows the integral of the momentum density over
finite intervals p; < |p| < p», corresponding to the probabil-
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FIG. 17. Momentum distribution of the deuteron with the AV18
wave function [56]. The histogram shows the probabilities to find a
nucleon with momentum p; < p < p,, Eq. (A12), for p; , in steps of
50 MeV. The constant values shown at p; < p < p, give the value of
P;(p1 < p < po) for that range. The median momentum is indicated
by a vertical line.

ity to find a nucleon with momentum in that range,

Py(p1 < |pl < p2) = / d’po(p1 < |pl < p2)pa(p,p)

P2
_dn / dpp lU(p) + W(p).
P

1

(A12)

The histogram gives an intuitive picture of the momentum
distribution of nucleons in the deuteron and enables simple
estimates of the contribution of different momentum regions
to observables. The median of the momentum distribution is
69 MeV for the AV18 wave function. Note that the median
nucleon momentum in the deuteron is considerably larger than
the “binding momentum” defined as /Mye; = 45MeV; the
different values illustrate the presence of multiple dynamical
scales in the deuteron wave function.

APPENDIX B: PROJECTION FORMULAS

In this Appendix we derive the explicit expressions of the
proton-tagged deuteron structure functions in terms of the
deuteron LF momentum density and the inclusive neutron
structure functions, Eqgs. (4.18) and (4.19), starting from the
“master formula” for the scattering tensors in the collinear
frame, Eq. (4.9). The same derivation can be used with the
distorted spectral function in the presence of FSIs. We write
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Eq. (4.9) in schematic form as

AW, (pns @),

2| Wl p,P,,T)I
2—apy)?

Wi (pa.g.pp) =1..

[...] = [2Qn)’] ., (BD

and substitute the deuteron tensor parametrized by Eq. (2.22),
and the neutron tensor parametrized by Eq. (4.14). We consider
the deuteron tensor averaged over the transverse direction of
the recoil momentum, in which only the structures with Fj,
and Fr, are present. Equations for the structure functions
can be obtained by taking specific components of the tensor
equation Eq. (B1) in the collinear frame (see Sec. I C). From
the longitudinal component uv = ++ we obtain

Ly [ @ (L | @)
FLd:[“']m{ qTFLn-l‘I:Z—%-l- 7 :|FTn}
(B2)
Ly [@")? (Li)?
= [ ](L+)2 [ (FTn FLn) + —=— Ln FTni| (B3)

From the transverse components uv = ij,(i,j = x,y) we ob-
tain

|L,r?
Fra—Fra=1.. -]|:FTn — Fr, + 2LT Fr,|. (B4)

n

Here we have used that, after averaging over the direction of
the transverse recoil momentum, rotational symmetry allows
us to replace
L L — 89|L,r?/2. (BS)
Explicit expressions for the structure functions are obtained
from Eqgs. (B3) and (B4) by substituting the specific expres-
sions for the vector components in the collinear frame (see
Sec. IIC). The deuteron vector L, is given by Eq. (2.38), and
the nucleon vector L, is given by Eq. (4.16).
The exact expressions for the structure functions are com-

plicated and not instructive. We quote only the expressions in
the scaling limit Q2 > M? ,|piT|, where

L%(G")? LA(LHY?
(WL (L5)2L2

Lt _ o 1P0rP
202 0r )

(B6)

3

In this limit the L and 7 deuteron structure functions are
obtained as

Fra=1[...1FL, B7

Fra =1[...1Frn. (B8)

Reverting to the long form of Eq. (Bl) and writing the
arguments of the structure functions, this is

21y, p )2

Fra(x,0%) = [227)’] ——Fu(X,0%, (BY)
2—ay)
)\ , -
Fra(x,0%) = 207 )]%meh (B10)
ap

The corresponding formula for the deuteron structure function
de = xdFTd, Eq. (223), is

Wy, p )l

Fn~a29
Tl a0

Faq(x,0%) = [2(27)’] (B11)
where we have used that x;, = x/2,X =x/(2 — «,), and

F2n(;» QZ) = EFTn(;a QZ)

APPENDIX C: ELASTIC SCATTERING AMPLITUDE

In this Appendix we give an empirical parametrization of the
spin-averaged nucleon-nucleon elastic scattering amplitude at
small angles and incident momenta p < 1GeV (in the rest
frame of the target nucleon), for use in our calculation of FSIs
in tagged DIS on the deuteron.

Measurements of nucleon-nucleon elastic and total cross
sections at incident momenta p ~ 1GeV have been performed
in several experiments; see Ref. [85] for a review of the
data. Neutron-proton scattering measures directly the strong-
interaction cross section; in proton-proton scattering one also
has to account for electromagnetic interactions (Coulomb
scattering) [86,87]. For both channels (np, pp) the differential
strong-interaction cross section for elastic scattering at forward
angles can be parametrized as

do

el 2 bt
— = 0 ,
7 | f(0)]"e

where f(¢) is a complex amplitude and b is the exponential
slope. The amplitude is of the form

(ChH

f(t) = A(¢) + spin-dependent amplitudes, (C2)

where the central term A(t) is nonzero at + = 0 and can be
expressed as

A(0) =Im A0) i + o). po
The imaginary part at t = 0 is related to the nucleon-nucleon

total cross section by the optical theorem

2

Ot
[Im A(0)]* = ot

The contribution of spin-dependent amplitudes at t = O can be
described by the parameter

= Re A(0)/Im A(0). (C3)

(C4)

Bo = |spin-dependent amplitudes at t = 0]?/[Im A(0)]>.
(C5)
The differential cross section Eq. (C1) can then be repres-
ented as
dog _ atm
dt 16w

Experimental values of the parameters oy, 00,80, and b at
several energies are summarized in Table I.

(1+ 03 + Bo)e"". (C6)
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TABLE I. Parameters of the small-angle elastic scattering amplitude measured in np [86] and pp [87] scattering experiments. Here p is
the momentum of the incident nucleon in the target rest frame (lab momentum), and 7 = /p? + M2 — My is the incident kinetic energy (lab

energy).
p (GeV) T (GeV) Ot (mb) Po Bo b(GeV™?)
np 1.26 0.633 36.1 —0.253 0.181 £0.074 5.09 +£0.51
1.68 0.985 ~40 —0.414 <0.01 5.35 +£0.49
pp 1.28 0.648 41.1 0.202 0.096 £+ 0.030 3.56 £1.09
1.69 0.992 47.5 —0.178 0.025 £ 0.012 6.24 +£0.37

The differential cross section for nucleon-nucleon elastic scattering can be expressed in terms of the invariant scattering
amplitude. Neglecting spin effects, we assume a single complex invariant amplitude 7'(s,?) and write

d(fe]

where s is the squared CM energy and pe,, =
Eq. (C6), we parametrize the invariant amplitude as

T (5,0)* = 4sp2,02,(1 4 p§ + Po)

|T(s,0)]

J1+ 02

These formulas apply at fixed s, and the parameters
(G0t 00, Po,b) generally depend on s. Equation (C8) can be
adapted to the cases of np and pp scattering by choosing
appropriate parameters (cf. Table I) and provide a sufficient
description of the nucleon-nucleon elastic amplitude for our
purposes. For a simple parametrization of the average np and
pp amplitude we take the average of the parameter values at
the lower energy of Table I,

Im T (s,t) =

Ot =39mb, pp=—0.03, Bp=0.14, b=43GeV .
(C9)
For a more realistic parametrization one may use the energy-
dependent parameters quoted in Ref. [85]. We note that the
Re/Im ratio of the amplitude, pg, is poorly constrained by
experimental data and relies on theoretical calculations.

APPENDIX D: RESCATTERING INTEGRAL

In this Appendix we evaluate the rescattering integral for
the FSI correction in the form Eq. (6.50),

Li(p,.py) = /[dppl]shell[-~-]

= —d3pp]
Q7)Y 2En(p,1)

x 27 8[(pp + pn — Pp1)* — M;][...1, (D1)

where [. . .] denotes the product of the nonrelativistic deuteron
wave function, relativistic correction factors, and the scattering
amplitude, or their spin-dependent generalizations. All three-
momenta refer to the deuteron rest frame. p, and p,, are the
final-state proton and hadron momenta; p ,, is the initial proton
momentum and is the integration variable. The integration

_ TGP
dt  64ms p2.’

€N

\/$/4 — M% is the CM momentum. Comparing Eq. (C7) with the empirical formula

IT(s,0)] = |T(s,0)]e"?
polT(s.0)|

J1+ 02
|

extends over the two-dimensional phase space allowed by
energy and momentum conservation (on-shell rescattering).
In the delta function, p,, p; and p,; are the four-momenta of
the particles on their mass shells,

Ex(p) = [Ip, I + M},

Re T(s,1) = (C¥)

Pp =(En(pp).pp),

pr = (Ex(pp), py), En(py) =/IpsP +M; (-
ot =(Ex(p,).P,).  En(p,) = \/Ipa*+ My
(D2)

and the delta function enforces the mass shell condition for
the the initial hadron four-momentum. We introduce the total
four-momentum of the final proton-hadron system,

P=p,+py P=(P°P),

P’ =Ey(p,)+ En(p), P=p,+p,  (D3)

whose square is the invariant mass of the proton-hadron
system,

spp = P2 (D4)

In terms of this variable the argument of the delta function in
Eq. (D1) becomes

(P —pp)* — M} = =2(Pp,1) + P>+ My — M} (D5)
=2|P||p,|cos x —2P En(p,))

+ P2+ M3 — M2, (D6)

where x is the angle between the three-momenta p ,; and P.
For a given magnitude |p | the delta function fixes the value
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of cos x to be
2P°En(p,) — P> — M} + M},
2|P[|p il

A solution exists if X2 < 1, which implies

cos x = = X. (D7)

2
41PP|p, 1> — [2P°En(p,) — P* — My + M;]” > 0.

(D8)
This condition is satisfied if
Pmin < |Pp1| < Pmax; (D9)
Pmin,max = (Emin,max)2 - M[Z\ls (DlO)
1

Eminmax = 5757 [P*(P? + My — M;;) F | PIV3],

(D11)
A= A(P? My, MJ)

= (P> + M} — M}) — 4P>M3,. (DI12)

Altogether, including the Jacobian factor, the phase space
integral of Eq. (D1) becomes

I 1 P dp oy ot
1672 P| /.. En(pp) Jo

Here p,1 = |p,|, and ¢ is an angle specifying the direction
of p,; in the plane perpendicular to the external vector P.
In particular, the integral with unit integrand (phase space)
becomes

2
d¢[ . ']|cossz- (D13)

. \/X _ Pem _ \/X (D14)
C 8msyn Am s Pem =7 /S

as it should be ( pcp, is the CM momentum of the proton-hadron
system).

The phase space integral Eq. (D1) extends over proton
momenta |p ;| K My, where the wave function in the inte-

grand [...] is described by the nonrelativistic approximation.
In this situation the proton energy En(p ;) in the measure of
Eqg. (D13) can be replaced by the nucleon mass M. Note that
no assumption regarding the hadron momentum | p,, | was made
in resolving the phase space delta function; the above formulas
are valid for | p;,| ~ M, and can be used over the entire relevant
range of hadron momenta.

When evaluating the rescattering integral with the deuteron
wave function in the nonrelativistic approximation, the inte-
grand[. . .] generally depends on the direction of the vector p .
For example, the relativistic correction factor in Eq. (6.50) is
proportional to p;I; and the D-wave component involves the

tensor product pi,l p;ﬂ. These vector/tensor valued integrals
can conveniently be computed by expanding the vector p ,; in
an orthogonal basis constructed from the external vectors p,
and p,. We choose the basis vectors as

{P,AN}; P=p,+p,

(PP

A= p W, NEAXP, (D15)

and write

< P i " A 4 in N)
P,1=DPp1lCcos x — +sin x coS¢p— +sin x sSin¢p—— |,
prbr |P| |A| IN|

(D16)

such that the angle ¢ is measured relative to the A direction
in the plane orthogonal to P. This expansion allows one
to convert the original vector/tensor integrals into angular
integrals, which multiply vectors/tensors formed from the basis
vectors. The components of the latter in the collinear frame
(x,y,z) can be calculated from the LF momentum components
ApsPpr and % P pr (see Sec. IID).
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