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1 Introduction

From the pioneering elastic scattering experiments in the 1950s that revealed the finite size
of the proton [1], to the classic deep-inelastic measurements that observed the first glimpses
of the proton’s pointlike substructure [2, 3] in the 1960s and 1970s, electron scattering has
been an indispensable tool for hadron structure studies. These experiments established
critical milestones that ultimately paved the way to the fundamental theory of the strong
interactions, Quantum Chromodynamics (QCD). The theoretical formalism of collinear
factorization, developed in the 1980s in the context of perturbative QCD [4–6], provided
a rigorous and systematic path between high-energy scattering observables, such as deep-
inelastic scattering (DIS) cross sections, and the quark and gluon (or parton) longitudinal
momentum distributions that characterize the proton’s internal structure. Over the course
of the last few decades, a wealth of experimental data has been accumulated on proton and
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nuclear targets which has revealed intriguing features of the flavor and spin dependence of
the parton distribution functions (PDFs) in nucleons and nuclei [7–9].

More recently, it has been recognized that one can access also the transverse mo-
mentum distributions of quarks and gluons, which, when combined with the longitudinal
information, holds the promise of systematically mapping out the full three-dimensional
partonic structure of the nucleon in momentum space [10–15]. Charting the distributions
in the transverse plane is naturally more involved, however, requiring the development of
transverse momentum dependent (TMD) factorization in appropriate regions of kinemat-
ics [16]. Tremendous interest has been generated in recent years [17–23] by the prospects
of extracting TMD information from experiments at existing facilities such as COMPASS
at CERN and Jefferson Lab, which use lepton probes (muons and electrons, respectively),
and RHIC at BNL, which utilizes proton beams.

One of the key processes that has been embraced as a potentially rich source of infor-
mation about TMD PDFs is semi-inclusive DIS (SIDIS), where in addition to the scattered
lepton, a high-momentum hadron (typically a pion) is detected in coincidence in the final
state [24]. With the incident ` and scattered `′ lepton four-momenta defining the leptonic
plane, and the target nucleon and produced hadron four-momenta P and Ph defining the
hadronic plane, specific angular modulations between these planes in SIDIS can allow the
extraction of various types of TMDs that are not accessible from traditional inclusive ob-
servables. (Note that for simplicity we will refer in this paper to scattering of leptons
from nucleons, however, the results apply equally to scattering from any other hadron or
nucleus.) Here, as for inclusive scattering, the large four-momentum transfer q ≡ ` − `′

between the leptons provides the hard scale, Q2 ≡ −q2 � Λ2
QCD, for the factorization of

the SIDIS process.
A clear advantage of electrons (and other pointlike leptons, such as positrons and

muons) is that they are much cleaner probes of nucleon structure than are hadron beams,
whose internal partonic structure is typically intertwined with that of the probe and hence
more difficult to disentangle. At the same time, it has long been understood that electron
scattering at large momentum transfer can be a source of considerable photon radiation,
which can significantly distort the inferred nucleon structure if it is not properly accounted
for. In particular, the radiation can not only affect the momentum transfer q from the
lepton to the nucleon, it can also alter the angular modulation between the leptonic and
hadronic planes, making it problematic to define the transverse momentum of the pro-
duced hadron, PhT , in the true photon-nucleon frame. This in turn can induce angular
modulations which can mimic those arising from the true nucleon structure effects encoded
by the TMDs.

In the literature, modifications to inclusive DIS [25–27] and e+e− annihilation [28–
31] cross sections induced by electromagnetic radiation have been treated in the form of
corrections to the tree-level cross sections, in some cases improved by resummation of
logarithmic-enhanced radiative effects [32–34], what are then subtracted to reveal the true
Born cross sections without radiation. Unfortunately, without accounting for all radiated
photons experimentally, some of the radiative corrections (RCs) rely on knowing the in-
variant mass of the hadronic final state and subsequent Monte Carlo simulation [35–38],
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which inherently introduces a degree of model dependence in the procedure. For processes
beyond inclusive DIS the prescription of matching to the Born cross section by removing
the radiation effects becomes increasingly difficult [39, 40]. For exclusive or semi-inclusive
cross sections, which are parametrized by 18 structure functions, the procedure becomes
effectively impractical without introducing severe approximations.

Despite the complications, several pioneering efforts have been made to address RCs in
SIDIS reactions, most notably within the covariant approach of Bardin and Shumeiko [41],
in which infrared divergences from real and virtual photon emission are shown to cancel.
Compared with the Mo and Tsai approach [25], an advantage of the covariant method
is that the expressions for the RCs do not depend on parameters introduced to separate
the photon emission on the hard and soft parts of the amplitudes. Using this approach,
the corrections to the triply-differential (transverse momentum integrated) SIDIS cross
section d3σ/dxB dy dzh were considered by Soroko and Shumeiko for unpolarized [42] as
well as polarized [43] scattering, where xB = −q2/2P · q is the Bjorken scaling variable,
y = P · q/P · ` is the energy loss of the incident electron, and zh = P · Ph/P · q is the
longitudinal momentum fraction carried by the final state hadron.

This was extended by Akushevich et al. [44, 45] to the case of the angular dependent
cross section for unpolarized SIDIS, d5σ/dxB dy dzh dP 2

hT dφh, where φh is the azimuthal
angle between the lepton and hadron production planes, including contributions from the
exclusive radiative tail. Ilyichev and Osipenko [46] considered a higher-order background to
this five-fold unpolarized SIDIS cross section arising from exclusive lepton-pair production,
which in the region φh = 180◦ can be comparable to the SIDIS signal. Contributions from
two-photon emission, which enter at the same order, were also considered in this work.
Most recently, Akushevich and Ilyichev [47] derived within the same approach analytical
expressions for RCs to sixfold differential SIDIS cross sections for scattering longitudinally
polarized leptons from nucleons with arbitrary polarization, d6σ/dxB dy dzh dP 2

hT dφh dψ,
where ψ is the azimuthal angle between the lepton scattering plane and the spin direction
of the incident nucleon. The calculations included the “model-independent contributions,”
proportional to log(Q2/m2

e), where me is the lepton mass, associated with the emission of
real photons from leptons, along with leptonic vertex correction, and vacuum polarization.
Not considered in the analysis were corrections from real and virtual photon emissions by
hadrons, QED hadronic vertex corrections, or two-photon exchange contributions.

In a recent paper [48], we proposed a new factorized framework for SIDIS reactions,
which simultaneously treats QED and QCD radiative effects on the same footing and in a
systematically improvable manner. In this approach, the lepton-nucleon SIDIS cross sec-
tion is effectively an inclusive cross section to observe one lepton and one hadron in the
final state. It is a well-defined two-scale observable when Q2 is much larger than the mo-
mentum imbalance between the observed final-state lepton and hadron, and the imbalance
is sensitive to the collision-induced QED and QCD radiation and transverse momentum
of the active partons and leptons. Our new factorized framework for SIDIS is effectively
a hybrid factorization approach with collinear factorization for the two leptons and TMD
factorization for two hadrons when the SIDIS cross section is in the two-scale regime.

In the present work, we provide the details that justify this hybrid factorization ap-
proach, and demonstrate why the collinear factorization is a good approximation for or-
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ganizing all-order contributions of collision-induced radiation from the leptons in both
lepton-nucleon DIS and SIDIS. We illustrate this with explicit examples of applications of
the factorization approach to QED radiation in inclusive DIS, and compare with existing
RC calculations. For SIDIS, we quantitatively demonstrate that the amount of transverse
momentum broadening generated by the collision-induced QED and QCD radiation from
a “point-like” lepton is much smaller than the typical transverse momentum of a colliding
parton (which could be further enhanced by QCD radiation from its intrinsic value) for all
foreseeable energies of lepton-nucleon scattering experiments. The momentum imbalance
between the observed lepton and hadron in the final state is therefore dominated by the
transverse momentum dependence of the nucleon TMDs, which makes SIDIS a particularly
useful process for TMD extraction. This finding justifies our hybrid factorization approach
to handling high-order QED and QCD contributions to SIDIS consistently, with collinear
and TMD factorization for the leptons and hadrons describing their leading nonperturba-
tive contributions via universal collinear and TMD distributions, respectively, when the
SIDIS is in the two-scale regime. In addition, our hybrid factorization approach to SIDIS
in this two-scale regime avoids having to deal with a full TMD factorization for all four
observed particles (the two leptons and two hadrons) in both QED and QCD [49].

The challenge for the traditional method of treating QED radiation as an RC factor
applied to the QED Born cross section is the difficulty in controlling the “true” momentum
transfer to the incident nucleon. Even when the momentum transfer Q2 is sufficiently large
for a perturbative hard scale, QED radiation can render the “true” momentum transfer Q̂2

to the colliding nucleon, which has a minimum

Q̂2
min = Q2 (1− y)

(1− xB y) , (1.1)

such that Q̂2 � Q2 when xB is small or y is large and there is a large phase space for
radiation. When the “true” momentum transfer to the colliding nucleon Q̂2 is not in the
DIS regime because of QED radiation, high-twists and quasielastic or elastic tails could
contribute to the lepton-nucleon cross section even when Q2 is large. This could naturally
lead to model dependence of the RCs in order to remove or correct these non-DIS events,
even for the inclusive DIS measurements.

Our proposed factorization approach for both QCD and QED contributions to DIS and
SIDIS naturally maintains the “true” momentum transfer sufficiently large, Q̂2

min � Λ2
QCD,

to ensure factorization and avoid regimes where higher-twist and non-DIS events could
be relevant. To achieve this, we systematically separate the infrared-sensitive QED parts
as me → 0 from the infrared-safe QED terms in the same way as for QCD factorization.
We include all-order QED contributions to DIS and SIDIS cross sections by resumming
infrared-sensitive terms into universal lepton distribution functions (LDFs) for the incident
leptons, and lepton fragmentation functions (LFFs) of the observed leptons. The infrared-
safe contributions are calculated perturbatively in powers of α, up to power corrections in
powers of me/Q̂� 1.

The key impact of QED radiation on the SIDIS cross section is from the change of
the momentum transfer to the colliding nucleon, in both its direction and invariant mass,
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caused mainly by the logarithmic-enhanced collinear QED radiation. In this paper, we
extend the analysis [48] of the unpolarized SIDIS structure function to the spin-dependent
case, for the specific examples of the Sivers and Collins asymmetries. In particular, we
demonstrate a “no-go theorem” for RCs in SIDIS, which arises from the dependence of
the longitudinal and transverse polarization vectors SL and ST on the leptonic momentum
fractions, and forces us to consider a two-step process to account for the radiation. We note
that the same issue will affect the case of inclusive polarized DIS, in addition to SIDIS,
and the extraction of the spin-dependent g1 and g2 structure functions.

We begin by reviewing in section 2 the factorized formalism for inclusive DIS in the
presence of QED radiation, presenting the basic formulas for DIS cross sections in terms
of universal LDFs and LFFs. We assess the importance of the QED radiation numerically
at various kinematics relevant to Jefferson Lab and EIC energies, and compare the results
of our factorized approach with the traditional formulation of RCs in the literature. In
section 3 we generalize the factorized formalism to the case of SIDIS processes, and discuss
the specific collinear and TMD factorization for the leptonic tensor and structure functions
relevant in different kinematics. The numerical impact of QED effects on SIDIS observables
is described in section 4. To demonstrate the practicality of our approach, we illustrate the
formalism applied to unpolarized SIDIS structure functions, as well as to the azimuthal
modulations for transversely polarized nucleons associated with the Sivers and Collins
asymmetries. In particular, we quantify the effect of the mismatch between the total four-
momentum transferred from the incident lepton and the QED Born approximation on
the problem of defining a unique photon-nucleon frame, and the resulting mixing induced
between the different angular modulations. Finally, in section 5 we summarize our main
conclusions and discuss possible future extensions of this work. Several appendices give
additional details of the calculation of the NLO perturbative coefficients for the leptonic
tensor (appendix A), together with a few useful formulas (appendix B), and a set of QED
dependent kinematic expressions relevant for SIDIS calculations (appendix C).

2 Factorized formalism for inclusive DIS with QED

We begin our discussion by reviewing the more familiar case of inclusive DIS, where we
demonstrate the factorized formulation for the QED radiative effects in terms of universal
LDFs and LFFs and infrared-safe higher-order QED corrections. Most generally, the cross
section for inelastic scattering of a lepton e of four-momentum ` and helicity λ` from a
nucleon N of four-momentum P and spin S to a scattered lepton e of four-momentum `′

with inclusive final states X, e(`, λ`) + N(P, S) → e(`′) + X, can be formally written in
terms of the square of its scattering amplitude M`(λ`)P (S)→`′X , as sketched in figure 1(a),

dσ`(λ`)P (S)→`′X = 1
2s

∣∣∣M`(λ`)P (S)→`′X

∣∣∣2 dPS, (2.1)

where s = (`+ P )2 ≈ 2` · P is the total collision energy, and dPS indicates the differential
phase space of the given final state, which will be specified below. Using the fact that the
QED fine structure constant α = e2/(4π) is small in the energy regime of interest, the DIS
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ℓ′

ℓ

(a)

X

P

ℓ′

ℓ

(b)

q

X
P

Figure 1. (a) Inelastic scattering amplitude for a lepton (`, λ`) from a nucleon (P, S) to a scattered
lepton (`′) with inclusive final states X, and (b) the same amplitude via an exchange of one virtual
photon (q).

amplitude is often approximated by the amplitude with one-photon exchange, as shown in
figure 1(b). The inclusive DIS cross section in this case can be written as

E`′
d3σ`(λ`)P (S)→`′X

d3`′
≈ 2α2

sQ4L
(0)
µν (`, `′, λ`)Wµν(q, P, S), (2.2)

where the zeroth-order leptonic tensor given by

L(0)
µν (`, `′, λ`) = Tr

[
γν

1
2 (1 + λ`γ5) γ · ` γµ γ · `′

]
= 2

(
`µ `
′
ν + `ν `

′
µ − ` · `′gµν + iλ` εµναβ `

α `′
β)
, (2.3)

and εµνρσ is the totally antisymmetric tensor with ε0123 = 1. The hadronic tensor is
defined as

Wµν(q, P, S) = 1
4π
∑
X

∫ ∏
i∈X

d3pi
(2π)32Ei

(2π)4δ(4)
(
q + P −

∑
i∈X

pi

)
×〈P, S|Jµ(0)|X〉〈X|Jν(0)|P, S〉, (2.4)

where Jµ(0) is the electromagnetic current coupling to quarks. In general, the hadronic ten-
sor can be expanded in terms of spin-averaged F1,2(xB, Q2) and spin-dependent g1,2(xB, Q2)
structure functions,

Wµν(q, P, S) = −g̃µν(q)F1(xB, Q2) + 1
P · q

P̃µP̃ ν F2(xB, Q2)

+ iM

P · q
εµναβ qα

[
Sβ g1(xB, Q2) +

(
Sβ −

S · q
P · q

Pβ

)
g2(xB, Q2)

]
, (2.5)

where the current conserving tensor g̃µν and vector P̃µ are defined as

g̃µν(q) ≡ gµν − qµqν

q2 , P̃µ ≡ Pµ − P · q
q2 qµ, (2.6)

such that qµ g̃µν(q) = qµP̃
µ = 0. The target nucleon spin four-vector can be written in

terms of the polarization vector S, Sµ = (S0, S), with P ·S = 0 and normalized such that
S2 = −1.
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In the one-photon exchange approximation, and in the absence of photon radiation
from leptons (i.e., the QED Born approximation), the inclusive DIS cross section in eq. (2.1)
can be expressed in terms of the spin-averaged and spin-dependent structure functions by
using the leptonic and hadronic tensors in eqs. (2.3) and (2.4), respectively. For example,
the unpolarized lepton-nucleon DIS cross section is given by

E`′
d3σ`P→`′X

d3`′
≈ 4α2

sxBy2Q2

[
xBy

2F1(xB, Q2) +
(

1− y − 1
4γ

2y2
)
F2(xB, Q2)

]
, (2.7)

where γ = 2MxB/Q, and we neglect hadron masses relative to the center of mass energy
√
s,

but keep finite mass terms with respect to Q ≡
√
Q2. The one-photon exchange expression

for the cross section (2.7) indicates that the nucleon structure functions F1 and F2 can be
extracted directly from inclusive DIS data, and traditionally have often been considered
as “direct” physical observables. With a large four-momentum transfer, Q2 � Λ2

QCD, these
structure functions can be further factorized in terms of quark and gluon PDFs [6]; for
example, for the F2 structure function,

F2(xB, Q2) =
∑
a

∫ 1

xB

dxC2a

(
x

xB
,
Q2

µ2 , αs

)
fa(x, µ2) +O

(Λ2
QCD

Q2

)
, (2.8)

where the sum runs over all parton flavors a (= q, q̄, g), C2a are coefficient functions calcu-
lable in QCD perturbation theory order-by-order in powers of the strong coupling αs, and
fa(x, µ2) are universal PDFs of flavor a probed with active parton momentum fraction x

and factorization scale µ.
In principle, any cross section with an identified hadron (in the initial or final state),

such as the inclusive DIS cross section, cannot be fully calculated within QCD perturba-
tion theory due to its dependence on the hadronic scale of the identified hadron. The
factorization formalism, as in eq. (2.8), is an approximation with the correction sup-
pressed by inverse powers of the large momentum transfer Q of the collision. Simi-
larly, other structure functions in eq. (2.5) can also be factorized in terms of univer-
sal PDFs [16]. If the factorized coefficients are calculated at leading order (LO) in αs,
the two spin-averaged structure functions are related via the Callan-Gross relation [50],
F2(xB, Q2) = 2xBF1(xB, Q2) =

∑
a e

2
a xB fa(xB, Q2). With the perturbatively calculated

coefficient functions at next-to-leading order (NLO) and next-to-next-to leading order
(NNLO) in αs, precise data from inclusive DIS have provided important constraints on
QCD global analysis of PDFs [51].

2.1 Inclusive DIS with QED radiative contributions

With the large momentum transfer, Q2 � Λ2
QCD, lepton-nucleon scattering naturally trig-

gers radiation of photons (photon showers), such as those from the incident and scattered
charged leptons and quarks illustrated in figure 2 at NLO in α. Without being able to
account for all radiated photons experimentally, this collision-induced QED radiation not
only changes the momentum transfer q between the incident lepton and nucleon, but also
requires diagrams beyond the one-photon exchange approximation to maintain the gauge
invariance of QED (or in general electroweak) contributions to the inclusive lepton-nucleon
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Figure 2. Diagrams for the first real (top row) and virtual (bottom row) QED radiative contribu-
tion to scattering of a lepton (momentum k) from a quark (p) to a lepton (k′) and recoiling quark.

p

X

l

l'
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(a) ℓ′

ℓ k
k′

P

p
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
q

p

k

(b)

k

k′

q p

Figure 3. Sketch of scattering amplitudes for (a) the factorized DIS process in eq. (2.9), and
(b) lowest order lepton-quark scattering.

DIS cross section. Beyond the one-photon exchange approximation, the structure functions,
along with the PDFs from eq. (2.8), cannot be uniquely determined from inclusive DIS data
without accounting for all QED radiative contributions to the measured cross section.

The traditional method to include all QED radiative contributions to the lepton-
nucleon DIS cross sections is to introduce an RC factor to the Born cross section, so that
one can still extract the structure functions from inclusive DIS data. However, this ap-
proach necessarily introduces uncertainties in handling the contributions of QED diagrams
beyond one-photon exchange, such as the virtual diagrams with two-photon exchange con-
tributions in the second row in figure 2 at NLO, and similar diagrams at higher orders.
Consistent treatment of such QED (or electroweak) contributions to the lepton-nucleon DIS
cross sections is important for precision extraction of PDFs, and especially for searches of
new physics beyond the standard model in processes such as parity-violating DIS.

Instead of treating QED radiation as a correction to the Born process, here we unify
the QED and QCD contributions to the lepton-nucleon scattering cross section in a consis-
tent factorization formalism. We consider the lepton-nucleon inclusive DIS in eq. (2.1) as
an inclusive production of a scattered lepton of four-momentum `′µ with a transverse com-
ponent `′T � ΛQCD in the lepton-nucleon frame, where the colliding lepton and nucleon are
head-on, as sketched in figure 3(a). Applying the factorization formalism previously devel-
oped for single-hadron production at large transverse momentum in hadronic collisions [52]
to lepton-nucleon scattering, the factorized cross section for the unpolarized inclusive DIS
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ℓ

k

ℓ

k

Figure 4. Sketch of the lepton distribution function for finding a fermion (quark or lepton) inside
a colliding lepton of momentum `, where the active fermion of momentum k in the amplitude and
its complex conjugate is contracted by the cut-vertex, γ+/(2`+) δ(ξ − k+/`+).

reaction e(`) +N(P )→ e(`′) +X can be written as

E′
dσ`P→`′X

d3`′
= 1

2s
∑
ija

∫ 1

ζmin

dζ
ζ2

∫ 1

ξmin

dξ
ξ
De/j(ζ, µ2) fi/e(ξ, µ2)

×
∫ 1

xmin

dx
x
fa/N (x, µ2) Ĥia→jX(ξ`, xP, `′/ζ, µ2) + · · · , (2.9)

where i, j, a include all QED and QCD particles, and the ellipsis represents corrections
suppressed by inverse powers of `′T . The lower limits of the integrations in eq. (2.9) depend
on external kinematics as specified in eq. (2.24) below, and fa/N (x, µ2) is the PDF of the
colliding nucleon N with momentum fraction x = p−/P− carried by the active parton of
flavor a (either a quark, antiquark or gluon in QCD, or a lepton or photon in QED) [4],
where we use the light-cone vector notation v± = (v0± v3)/

√
2 for any four-vector vµ with

the plus direction defined along the lepton momentum `. (Note that we take the nucleon
to be moving along the −z direction, with the incident lepton along the +z direction.)

In eq. (2.9), the LDF fi/e(ξ, µ2) gives the probability to find a lepton (or parton) of
flavor i with momentum k ∼ ξ` in the incident lepton of flavor e, defined analogously to
the PDF of a hadron [4], but with the hadron state replaced by an asymptotic lepton state
|e〉. Explicitly, for a lepton (or quark) distribution in a lepton e with momentum `, the
LDF is defined as

fi/e(ξ, µ2) =
∫ dz−

4π eiξ`
+z−〈e(`)|ψi(0)γ+Φ[0,z−] ψi(z−)|e(`)〉, (2.10)

where ξ = k+/`+ is the light-cone momentum fraction carried by the active lepton (or
quark) of momentum k and flavor i, as sketched in figure 4, µ is a scale to renormalize the
nonlocal fermion operator, and Φ[0,z−] = exp[−ie

∫ z−
0 dη−A+(η−)] is the gauge link with

a photon (or gluon) field Aµ. Similarly, the photon (or gluon) distribution function of
a lepton can be defined in the same way as the gluon distribution of a hadron, except
replacing the hadron state by a lepton state, and the gluon field by corresponding photon
field for the photon distribution function [4].

In analogy with the LDF, the LFF De/j(ζ, µ2) in eq. (2.9) describes the emergence of
the final lepton e with momentum `′ from a lepton (or parton) of flavor j with momen-
tum k′ ∼ `′/ζ. Formally, the LFF for a fermion (lepton or quark) of flavor j to decay into
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the observed lepton e is defined as

De/j(ζ, µ2) = ζ

2
∑
X

∫ dz−

4π ei`
′+z−/ζ

×Tr
[
γ+〈0|ψj(0)Φ[0,∞] |e(`′), X〉〈e(`′), X|ψj(z−)Φ[z−,∞]|0〉

]
, (2.11)

where the plus direction is taken along the observed lepton momentum `′µ = (`′+, 0−,0T )
[note that the plus direction for the LDF in eq. (2.10) was defined along `]. The LFF from
a photon (or gluon) is defined analogously to the gluon fragmentation function to a hadron,
with the hadron state replaced by the observed lepton state and gluon field replaced by the
corresponding photon field for the photon fragmentation function [4]. Both the LDF (2.10)
and LFF (2.11) are defined in analogy with the quark PDF in the nucleon, fa/N (x, µ2),
and quark to hadron fragmentation function [4], with the quark and gluon fields replaced
by lepton and photon fields, and the hadron state by a lepton state.

In eq. (2.9), the function Ĥia→jX is the lepton-parton (or parton-parton) scattering
cross section, with all logarithmic collinear sensitivities along the direction of observed
momenta, `, `′ and P , removed, and is therefore infrared safe and insensitive to taking the
me → 0 or mq → 0 limits. The infrared-safe Ĥia→jX can be perturbatively calculated by
expanding the factorized formula (2.9) order-by-order in powers of α and αs, with Ĥ(m,n)

ia→j
denoting the contribution at O(αmαns ).

The factorized inclusive DIS cross section in eq. (2.9) resums all logarithmic enhanced
contributions from collision-induced radiation collinearly sensitive to the incident lepton
into LDFs fi/e, radiation that is collinearly sensitive to the scattered lepton into LFFs De/j ,
and radiation collinear to the colliding nucleon into the nucleon PDFs fa/N . We stress that
our factorization approach to inclusive DIS does not require the approximation of one-
photon exchange. The factorization formula (2.9) does provide a perturbatively stable basis
for the reliable extraction of the nucleon PDFs, fa/N , from inclusive DIS cross sections,
along with the universal LDFs and LFFs, without the need for introducing the concept
of hadron structure functions. In this approach the structure functions are not direct
physical observables, but are in practice tied to the one-photon exchange approximation.
In addition, the factorized formalism in eq. (2.9) naturally accounts for all leading power
QED contributions in theme/Q expansion of the inclusive DIS cross section, order-by-order
in powers of α, such as those in figure 2, as well as the resummation of logarithmically
enhanced collinear radiative contributions into LDFs and LFFs.

As an additional approximation, if one can justify that the inclusive DIS cross section
for a lepton of momentum ` and helicity λ` colliding with a nucleon of momentum P and
spin S, as sketched in figure 5, is dominated by the subprocesses consistent with the one-
photon approximation, which is equivalent to setting i = j = e for the

∑
ij in eq. (2.9),

then the factorization formula in eq. (2.9) can be further simplified to

E`′
d3σ`(λ`)P (S)→`′X

d3`′
≈
∑
λk

∫ 1

ζmin

dζ
ζ2 De/e(ζ, µ2)

∫ 1

ξmin
dξ fe(λk)/e(λ`)(ξ, µ

2)

×
[
Ek′

d3σ̂k(λk)P (S)→k′X
d3k′

]
k=ξ`, k′=`′/ζ

, (2.12)
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Figure 5. Sketch of the kinematical variables describing inclusive DIS from a nucleon (with
momentum P and spin S), with the incident (`) and scattered (`′) leptons defining the lepton
plane.

where λk is the helicity of the lepton of momentum k that collides with the nucleon. The
cross section σ̂k(λk)P (S)→k′X is infrared-safe as me → 0, with all collinear sensitive QED
radiative contributions along the lepton momenta ` and `′ resummed into fe/e and De/e,
respectively. At lowest order in powers of α, effectively with one-photon exchange, the
cross section can be written as

Ek′
d3σ̂k(λk)P (S)→k′X

d3k′
≈ 2α2

ŝ Q̂4
L(0)
µν (k, k′, λk)Wµν(q̂, P, S), (2.13)

with L(0)
µν (k, k′, λk) and Wµν(q̂, P, S) defined in eqs. (2.3) and (2.5), respectively. We can

express the phase space of the scattered lepton `′ in terms of more commonly used variables,
d3`′

E`′
=
(
y

2xB

)
dxB dQ2 dψ =

(
Q2

2xB

)
dxB dy dψ, (2.14)

where ψ is an angle between the leptonic plane and the nucleon spin plane defined by
vectors P and S, as shown in figure 5, with integration over dψ giving a factor 2π for
unpolarized or longitudinally polarized DIS. Substituting the tensors in eqs. (2.3) and (2.5)
into eq. (2.13), and then substituting (2.13) into eq. (2.12), we can express the spin-averaged
lepton-nucleon DIS cross section in terms of structure functions evaluated at the shifted
variables xB → x̂B and Q2 → Q̂2,

d2σ`P→`′X
dxBdy ≈

∫ 1

ζmin

dζ
ζ2

∫ 1

ξmin
dξ De/e(ζ, µ2) fe/e(ξ, µ2)

[
Q2

xB

x̂B

Q̂2

]

× 4πα2

x̂B ŷ Q̂2

[
x̂Bŷ

2 F1(x̂B, Q̂2) +
(

1− ŷ − 1
4 ŷ

2γ̂2
)
F2(x̂B, Q̂2)

]
. (2.15)

Here the factor
[
(Q2/xB) (x̂B/Q̂2)

]
is the Jacobian from eq. (2.14), and the variables with

carets “ ̂ ” are defined with respect to a virtual photon with momentum q̂µ = ξ`µ− `′µ/ζ,

Q̂2 = −q̂2 = ξ

ζ
Q2, x̂B = Q̂2

2P · q̂ , ŷ = P · q̂
P · k

, γ̂ = 2Mx̂B

Q̂
, (2.16)
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with Q̂2 = x̂B ŷ ŝ and ŝ = (k+ P )2 ≈ ξs. The factorization formalism with the one-photon
exchange in eq. (2.15) resums all logarithmic enhanced QED radiative contributions to the
inclusive DIS cross section into the universal LDFs and LFFs.

We stress that the result in eq. (2.15) is derived from (2.12) with the approximation of
eq. (2.13), and should be valid so long as QED power corrections, proportional to powers
of me/Q̂, are small, without assuming any QCD factorization of the nonperturbative F1
and F2 structure functions. The QCD factorization of F1 and F2 into expressions involving
PDFs may indeed not be valid if the “true” hard scale Q̂2 is not in the DIS regime, or if
x̂B is too close to 1 when the power corrections are large. On the other hand, eq. (2.15)
does express a valid QED factorization formalism that preserves the concept of the F1 and
F2 DIS structure functions in the one-photon exchange scenario. With knowledge of the
LDFs and LFFs, eq. (2.15) allows the extraction of F1 and F2 as functions of x̂B and Q̂2

via global analysis of all DIS cross section data at measured xB and Q2 values, without
necessarily addressing whether they can be factorized into PDFs.

It is important also to note, as we discuss in more detail in section 2.4 below, that
the integration over the leptonic momentum fractions ξ and ζ in eq. (2.15), resulting
from the induced QED radiation, allows the “true” Bjorken variable experienced by the
colliding nucleon, x̂B, to take any value between xB and 1 for any measured xB. Namely,
if one insisted on deriving an RC factor to mimic the impact of all (or the dominant)
induced QED radiation, one would require knowledge of the structure functions for all
possible values of the Bjorken variable between xB and 1, which is the quantity that we
are trying to measure in the first place. Such an RC factor, therefore, is necessarily model
dependent. Furthermore, the structure functions are nonperturbative quantities and the
validity of their factorization into PDFs requires power corrections ∝ 1/(1 − x̂B)Q̂2 to be
small and controllable. However, modeling the structure functions with known PDFs in
order to derive the RC factor could lead to uncontrollable systematic uncertainties, since
such power correction could be enhanced by not only x̂B → 1 but also the fact that Q̂2

min
as given in eq. (1.1) is ≤ Q2.

Under the collinear factorization approach to inclusive DIS in eq. (2.9), the active lep-
tons of momentum k and k′ are in the same plane as the incoming and scattered leptons
of momentum ` and `′. In the one-photon exchange approximation, therefore, the factor-
ization formalism in eq. (2.12) also applies to the polarized inclusive DIS cross section,

dσ`(λ`)P (S)→`′X
dxB dy dψ −

dσ`(λ`)P (−S)→`′X
dxB dy dψ

≈
∫ 1

ζmin

dζ
ζ2

∫ 1

ξmin
dξ De/e(ζ, µ2) ∆fe/e(λ`)(ξ, µ

2)

×
[
Q2

xB

x̂B

Q̂2

]
4λ` α2

Q̂2

{
cos θ

[(
1− ŷ

2 −
1
4 γ̂

2ŷ2
)
g1(x̂B, Q̂2)− 1

2 γ̂
2ŷ g2(x̂B, Q̂2)

]

− sin θ cosψ γ̂

√
1− ŷ − 1

4 γ̂
2ŷ2
[
ŷ

2 g1(x̂B, Q̂2) + g2(x̂B, Q̂2)
]}

, (2.17)

where ∆fe/e(λ`) ≡ [fe(λk=1)/e(λ`) − fe(λk=−1)/e(λ`)]/2 = [fe(λk=1)/e(λ`) − fe(λk=1)/e(−λ`)]/2
denotes the lepton helicity distribution, and θ is the angle between the colliding lepton of
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ℓ

(a)

P X

k
′k

q̂

ℓ′

ℓ

(b)

P X

k
k ′

q̂

Figure 6. Sketch of sample scattering amplitudes for inclusive DIS with (a) one-photon exchange,
and (b) one-gluon exchange.

3-momentum ` and the direction of the nucleon spin S [cos θ = M(` ·S)/(` ·P )], as shown
in figure 5.

If one wishes to include higher order QED radiative contributions that are not re-
summed into the LDFs and LFFs, one should use the more general factorization formalism
in eq. (2.9) [or in eq. (2.12) under the one-photon approximation] for the inclusive DIS
cross section. In this case all QED radiative contributions are systematically included into
the infrared-safe hard part Ĥia→jX , order-by-order in powers of α, and the universal LDFs
and LFFs.

2.2 Universal LDFs and LFFs

The universal LDFs and LFFs share the same operator definitions with the hadron PDFs
and FFs, as discussed above. Like the hadron PDFs and FFs, in principle the LDFs and
LFFs are nonperturbative due to the fact that they can have hadronic components from
high-order processes. For example, the colliding electron could radiate a photon, the photon
could split into quark-antiquark pair, and the quark could initiate a hard scattering to
produce the observed lepton of momentum `′, leading to a factorized nonperturbative term
proportional to the LDF fq/e(ξ, µ2). In this case one has contributions to the factorized
inclusive DIS cross section in eq. (2.9) in terms of nonperturbative quark or gluon PDFs
of a colliding electron, as well as quark or gluon FFs to the observed lepton, as illustrated
in figure 6. In addition, even the LDF fe/e(ξ, µ2) may have nonperturbative hadronic
component from high-order processes, although the impact of its hadronic components
may be very small in the energy regime of interest.

If we could restrict the events where there is effectively no hadronic activity along the
direction of the observed lepton, we could suppress the contributions from the types of
subprocesses in figure 6(b), even though these are expected to be small. Such restriction
could be imposed on the measurements to identify “isolated lepton” events, similar to the
“isolated photon” events in hadronic collision [53]. However, such isolation could reduce the
phase space for real gluon emission to break the perturbative infrared cancellation between
the real and virtual diagrams, since the phase space for the virtual gluon loop is not affected
by the isolation requirement. This was recognized in the “isolated photon” case [54, 55], and
has being consistently taken care of by the proposed implementation of the isolation [56].
Photon isolation is very important and needed for high energy photon production as a
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(a)
ℓ
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ℓ
(b)

ℓ

k k

ℓ ℓ

k k

ℓ

Figure 7. Examples of (a) real and (b) virtual QED diagrams contributing to the NLO lepton
distribution f (1)

e/e.

hard probe of short-distance dynamics, since there is a large background of high energy
photons from the decay of an energetic π0. However, as discussed in section 3.3.2 below,
the hadronic content of the collision-induced shower along the direction of the lepton is
strongly suppressed by powers of α ∼ 10−2, and we expect that the leading lepton is
almost “isolated”. A detailed implementation of such “isolated leptons” is beyond the
scope of current paper.

Neglecting the hadronic contribution, the LDF fe/e(ξ, µ2) can be calculated perturba-
tively in QED with a properly defined renormalization for the nonlocal operators. Denoting
by f (m)

e/e (ξ, µ2) the LDF evaluated perturbatively to order O(αm), we have, for example, the
LO LDF given by f (0)

e/e(ξ) = δ(ξ−1). At NLO, the leading logarithmically enhanced real and
virtual contribution in the light-cone gauge are given by the diagrams in figure 7(a) and (b),
respectively, leading to the result in the MS scheme,

f
(1)
e/e(ξ, µ

2) = α

2π

[
1 + ξ2

1− ξ ln µ2

(1− ξ)2m2
e

]
+
, (2.18)

where the standard “+” prescription is used. As expected, the perturbatively calculated
LDF, fe/e(ξ, µ2) ≈ f

(0)
e/e(ξ, µ

2) + f
(1)
e/e(ξ, µ

2), preserves lepton number,
∫ 1

0 dξ fe/e(ξ, µ2) = 1.
A more comprehensive derivation of this LDF, beyond our NLO QED calculation, can be
found in ref. [57]. As for the contributions to hadron PDFs, high-order logarithmically
enhanced contributions to LDFs can be systematically resummed by solving the evolution
equations for these collinearly factorized distributions, including PDFs of the lepton if we
apply collinear factorization for the collision-induced QED and QCD radiation from the
leptons [58–63]. For the flavor non-singlet evolution, for example, one has

µ2 d
dµ2 fe/e(ξ, µ

2) =
∫ 1

ξ

dξ′

ξ′
Pee

(
ξ

ξ′
, α, αs

)
fe/e(ξ′, µ2), (2.19)

where the evolution kernel Pee is calculable perturbatively order-by-order in powers of α
and αs. At O(α), from eq. (2.18) one has P (1)

ee (z, α, αs) = (α/2π)
[
(1 + z2)/(1− z)

]
+.

Similarly, the LFFs can also be calculated perturbatively in QED, if we neglect their
hadronic components. At LO, the LFF is given by the trivial expression D(0)

e/e(ζ) = δ(ζ−1),
while at O(α) we have analogous expression to that in eq. (2.18),

D
(1)
e/e(ζ, µ) = α

2π

[
1 + ζ2

1− ζ ln ζ2µ2

(1− ζ)2m2
e

]
+
. (2.20)
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As for the LDFs, the logarithmically enhanced high-order contributions to the LFFs can
be resummd by solving the corresponding evolution equations.

Within the collinear factorization framework, in analogy with PDFs and FFs of
hadrons, we can derive the LDFs and LFFs by solving their corresponding evolution equa-
tions with nonperturbative input distributions at an initial scale µ0. Unlike PDFs or FFs of
hadrons, however, which are completely nonperturbative, we could use the perturbatively
calculated LDFs and LFFs in QED at µ0 as a reasonable model for the input distribu-
tions, neglecting their QCD contributions as an approximation. In practice, the input
distributions can always be improved by comparing with experimental data. We also note
that the choice of µ0 is not unique, which impacts the size of uncalculated higher order
contributions to LDFs and LFFs in QED, as well as the size of neglected nonperturbative
QCD contributions to LDFs and LFFs. Our choice of µ0 will be specified in section 4, and
further discussion about this will be explored in future work.

2.3 Short-distance partonic hard parts

As with all QCD factorization approaches, the partonic hard parts Ĥia→jX in eq. (2.9) are
infrared safe and insensitive to taking the limits me → 0 ormq → 0. They can be calculated
perturbatively by applying the factorized formula (2.9) to lepton-parton scattering order-
by-order in powers of α and αs, and depend on the choice for the renormalization scheme
of the LDFs and LFFs, in addition to the scheme that defines the PDFs.

To compute the leading order infrared-safe hard part in eq. (2.9), we can replace the
target nucleon by a point-like quark target, q. The lepton-quark cross section can then
be expanded to a given order in α and αs, with the O(αmαns ) contribution to the cross
section denoted by σ(m,n)

eq ≡ 2sE′dσ(m,n)
eq→eX/d3`′. [Note that the subscripts on the partonic

cross section here refer to particle type, in contrast to the hadronic cross sections discussed
above, as in eq. (2.12) and subsequently, which are labeled by the leptons’ and hadrons’
momenta.] Expanding the partonic cross section to the lowest order, i.e., O(α2α0

s), we have

σ(2,0)
eq = D

(0)
e/e ⊗ f

(0)
e/e ⊗ f

(0)
q/q ⊗ Ĥ

(2,0)
eq→eX = Ĥ

(2,0)
eq→eX , (2.21)

where ⊗ indicates the convolution of momentum fractions, and the O(α0
s) quark distribu-

tion f (0)
q/q(x) = δ(x − 1) is also used. Evaluating the lowest order lepton-quark scattering

diagram, one finds for the hard part function

Ĥ
(2,0)
eq→eX =

4α2e2
q

ζ

[(ζξxs)2 + (xu)2

(ξt)2

]
δ
(
ζξxs+ xu+ ξt

)
, (2.22)

with Mandelstam variables s = (`+P )2, u = (`′−P )2 = (y−1)s, and t = (`− `′)2 = −Q2.
Substituting the calculated Ĥ(2,0)

eq→eX into eq. (2.15), we then have

E`′
dσ`P→`′X

d3`′
≈ 2α2

s

∑
q

∫ 1

ζmin

dζ
ζ2

∫ 1

ξmin

dξ
ξ
De/e(ζ) fe/e(ξ)

×
∫ 1

xmin

dx
x
e2
q fq/N (x)

x2ζ
[
(ζξs)2 + u2]

(ξt)2(ζξs+ u) δ
(
x− xmin

)
, (2.23)
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where the lower limits of the integrations are given by

ζmin = − t+ u

s
= 1− (1− xB) y, (2.24a)

ξmin = − u

ζs+ t
= 1− y

ζ − xB y
, (2.24b)

xmin = − ξt

ζξs+ u
= ξ xB y

ξζ + y − 1 . (2.24c)

Choosing the leading order contributions fe/e(ξ) ≈ f
(0)
e/e(ξ) and De/e(ζ) ≈ D

(0)
e/e(ζ) in

eq. (2.23), and noting that to O(α0
s) the structure functions in eq. (2.15) are given by

F2(xB) = 2xBF1(xB) =
∑
q e

2
q xBfq/N (xB), one can reproduce the lepton-nucleon cross

section (2.15) from eq. (2.23). The key difference between eqs. (2.15) and (2.23), apart
from infrared-safe high order QED contribution, is the resummation of logarithmic-
enhanced photon radiation for the colliding and scattered leptons into the LDFs and
LFFs, respectively.

With the factorization formalism in eq. (2.9), one can systematically improve the
“RCs” by calculating the infrared-safe hard parts Ĥ(m,n)

eq→eX perturbatively for m > 2, and
determining the lepton mass-sensitive, but universal, LDFs and LFFs. For example, at
m = 3 one can write

Ĥ
(3,0)
eq→eX = σ(3,0)

eq −D(1)
e/e ⊗ Ĥ

(2,0)
eq→eX − f

(1)
e/e ⊗ Ĥ

(2,0)
eq→eX − f

(1)
q/q ⊗ Ĥ

(2,0)
eq→eX , (2.25)

where σ
(3,0)
eq is the NLO QED contribution to electron-quark scattering with a proper

collinear regularization, and is given by the diagrams in figure 2. The function Ĥ(2,0)
eq→eX is

given in eq. (2.22), and f (1)
e/e and D

(1)
e/e are the NLO electron distribution and fragmentation

functions of an electron in eqs. (2.18) and (2.20), respectively, if we regularize the pertur-
bative collinear divergence by the electron mass. The NLO quark distribution function
in a quark, f (1)

q/q, is similar to f (1)
e/e, and its exact expression depends on how the pertur-

bative collinear divergence associated with massless quark is regularized [16]. The three
subtraction terms in eq. (2.25) involve convolutions over different momentum fractions to
remove the collinear-sensitive photon radiation from the scattered lepton, incident lepton,
and incident quark, respectively. With infrared safety, the perturbatively calculated RCs
are completely perturbative-stable and insensitive to the lepton mass me → 0, with all me

sensitive RCs resummed into universal LDFs and LFFs.
The effects of the QED radiation on the inclusive cross section are illustrated nu-

merically in figure 8, for typical Jefferson Lab (
√
s = 4.7GeV) and EIC (

√
s = 140GeV)

center of mass energies. The ratios of the full cross sections to the Born results show
that the effects of the QED radiation can be quite large in some regions of kinematics,
especially at larger values of y. For the ratios with fixed Q2 values, since xB y s = Q2 the
large-y region corresponds to small values of xB, and lower y values correspond to larger
xB. The minimum value of y accessible is restricted by the cut W > Wmin = 2GeV,
which excludes the nucleon resonance region, and corresponds to a maximum value of
xB < xmax

B = Q2/(W 2
min −M2 + Q2). At Jefferson Lab energies this places a strong re-

striction on the range of y values allowed, while at EIC energies the effect of the cut is
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Figure 8. Ratio of inclusive ep cross sections with QED radiation effects (σRC) to those without
radiation (σno RC) versus y at fixed values of Q2 (top row) and fixed xB (bottom row) for Jefferson
Lab energy

√
s = 4.7GeV (left), and EIC energy

√
s = 140GeV (right), for the resummed (“RES”,

solid lines) and fixed-order (“NLO”, dashed lines) results.

less dramatic. Note that for Q2 = 1GeV2, for example, the resonance region cut corre-
sponds to a maximum value xmax

B ≈ 0.24, while for Q2 = 10GeV2, xmax
B ≈ 0.76, and for

Q2 = 100GeV2, xmax
B ≈ 0.97.

For the ratios at fixed values of xB in figure 8, the effects also increase at larger y, which
corresponds to larger Q2 values. The minimum value of y is restricted by the Q2 > 1GeV2

cut, which is imposed to exclude regions where the factorized framework would not be
applicable. This constraint becomes more evident at smaller xB values, which again is
less dramatic at the higher EIC energies, where the limit on the y range is visible for
xB . 10−4. In addition, with the collision-induced QED radiation, the hard scale of the
collision (momentum transfer experienced by the colliding nucleon) changes from Q2 to
Q̂2 = (ξ/ζ)Q2, which has a minimum value of Q̂2

min ≤ Q2 given by eq. (1.1). The induced
QED radiation could push the scattering between the virtual photon and the colliding
nucleon out of the DIS regime when the “true” probing scale Q̂2 is less than 1GeV2, even
though Q2 itself would be above the cut. Instead of restricting Q2 > 1GeV2, a requirement
of Q̂2

min > 1GeV2 could impose a stronger constraint on the range of xB for a given value
of y, as shown in figure 9.
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Figure 9. Available phase-space for lepton-nucleon DIS with collision-induced QED radiative
contributions at Jefferson Lab (

√
s = 4.7GeV) (left) and EIC (

√
s = 140GeV) (right) kinematics.

The colored lines denote regions of fixed Q̂2
min and the diagonal yellow bands represent typical

ranges of y at those facilities.

Overall, the radiative effects are positive over most kinematics, with the σRC/σno RC
ratio dropping below unity only at the lowest y values, especially for larger xB. The effect
of the resummation is generally a decrease in the magnitude of the radiative effects relative
to the NLO calculation, except at the highest y values where it enhances the corrections.
Clearly, the effects of the QED radiation are nontrivial and will have a significant impact
on the extraction of PDF information from inclusive DIS experiments. This is especially
pertinent at large values of y and small xB, where more phase space is available for both
QED and QCD radiation, and will be of particular interest at these kinematics in future
EIC measurements.

2.4 QED radiative contributions vs. radiative corrections

Before moving to the more involved case of semi-inclusive lepton-nucleon scattering, we
conclude the discussion of QED radiative effects in inclusive DIS by comparing our proposed
factorization approach with existing approaches that isolate such contributions in the form
of QED “radiative corrections.” With a large momentum transfer, the collision-induced
QED radiation is an integral part of the experimentally measured cross section for deep-
inelastic lepton-nucleon scattering. Historically, tremendous efforts have been devoted to
isolate and remove collision-induced QED contributions from measured cross sections that
would enable one to focus purely on QCD effects in lepton-nucleon scattering. The RCs
can be represented schematically in the form

σobs(xB, Q2) ?= RQED(xB, Q2;xB,true, Q
2
true)× σBorn(xB,true, Q

2
true) + σX(xB, Q2), (2.26)

where σobs is the physically measured cross section, σBorn is the ideal lepton-nucleon cross
section without the collision-induced QED radiation contamination, and RQED and σX are
correction factors that are computed theoretically. The variables xB,true and Q2

true represent
the “true” or effective momentum scales that are experienced by the colliding nucleon, and
differ from the corresponding experimental xB and Q2 due to the induced QED radiation.
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For the expression in eq. (2.26) to be a valid basis on which to quantitatively account
for QED radiation, there must exist some controllable approximation scheme applicable for
the full kinematic regime where the cross sections are measured. More importantly, the fol-
lowing two conditions should be met in order to isolate QED contribution in terms of RCs:

(1) the correction factors RQED and σX should not depend on the hadron structure
that we wish to extract, and they can be systematically calculated in QED to
high precision;

(2) the effective scale Q2
true for the Born cross section σBorn should be large enough to

keep the “true” scattering within the DIS regime.

In particular, with the one-photon approximation, the exchanged virtual photon (or vector
boson, in general), with its fully determined four-momentum under the QED Born kine-
matics, would be able to serve as a localized and well-controlled hard probe to explore the
partonic structure of the colliding nucleon.

In practice, however, the collision-induced QED radiation will change the momentum
of the exchanged photon from q to q̂, as shown in figure 6(a) under the one-photon ap-
proximation for the hard collision. Since q̂ is not fixed by the observed external momenta,
it must be integrated over if we cannot account for all radiated photons. The integration
necessarily includes contributions from radiation that can distort q̂ so much as to move
the collision with the nucleon out of the desired DIS regime, when Q̂2 ≡ −q̂2 . 1GeV2,
and introduce contamination from elastic scattering events. As indicated in figure 1 of
ref. [3] from over 50 years ago, and verified by numerous experiments since, the event rate
for inclusive lepton-nucleon DIS is expected to be much larger than the typical rate from
elastic scattering when the probing scale is larger than ≈ 1GeV2. The collision-induced
QED radiation could make the “true” probing scale Q2

true = Q̂2 smaller, however, effectively
enhancing the rate of non-DIS events and the size of non-factorized power corrections, even
when Q2 = O(1 GeV2) or larger. Furthermore, QED radiation from final-state nucleons in
elastic events requires a larger Q2 to mimic DIS events. Since these non-DIS events involve
nonperturbative strong interaction physics that cannot be calculated reliably, QED RC
factors that aim to “correct” for this QED contamination are necessarily model dependent.
Some of these contaminations are sensitive to the very hadronic physics that we aim to
explore in the DIS and SIDIS reactions.

A further complication stems from the fact that photons are massless and the lep-
ton mass is much smaller than the typical hard scale for QCD dynamics. Consequently,
RC factors based on fixed-order QED calculations are often infrared sensitive as me → 0,
involving infrared cutoff parameters, such as the total energy of soft photons in the treat-
ment by Mo and Tsai [25] or the minimum photon energy in the approach of Bardin and
Shumeniko [41]. These parameters need to be tuned to the data.

As will be discussed in detail in the next section, the collision-induced QED radiation
also leads to uncertainty in determining the photon-nucleon frame in which the produced
hadron momentum, the hadronic plane, angular modulations and, most importantly, the
TMD factorization of SIDIS, are defined. Consequently, hadronic model dependence is
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Figure 10. The range of the hard scale Q̂2 experienced by the nucleon as a function of the measured
scale Q2, for fixed values of xB, at Jefferson Lab (

√
s = 4.7GeV) (left) and EIC (

√
s = 140GeV)

(right) kinematics. The straight black lines correspond to Q̂2 = Q2.

inevitably introduced into attempts to derive RCs for SIDIS [42, 43, 47]. In contrast,
rather than searching for more reliable RC factors with which to extract the ideal σBorn in
eq. (2.26) from the experimental cross section, σobs, our proposed approach is a systemati-
cally improvable and reliable way to calculate the induced QED radiative contributions to
all orders in powers of α. In analogy with the calculation of the induced QCD radiative
contributions to the measured cross sections, our factorization approach organizes all-order
contributions with respect to both QCD and QED, such as in eq. (2.9) for the inclusive
DIS cross section. Instead of the RC approach of eq. (2.26), our factorization approach can
be schematically represented as

σobs(xB, Q2) = σuniv
lep (µ2;m2

e)⊗ σuniv
had (µ2; Λ2

QCD)⊗ σ̂IR-safe(x̂B, Q̂2, µ2)

+O
(

Λ2
QCD

Q2 ,
m2
e

Q2

)
, (2.27)

where all infrared-sensitive contributions to the cross sections are either factorized into the
universal leptonic and hadronic distribution or fragmentation functions, σuniv

lep and σuniv
had ,

which are renormalization group improved with the factorization scale µ2, or neglected as
power-suppressed corrections, and ⊗ represents the convolution over the respective leptonic
and partonic momentum fractions.

The IR-safe and perturbatively calculable short-distance coefficient functions σ̂IR-safe
depend on the “true” probing scales x̂B and Q̂2 for the colliding nucleon under the one-
photon approximation, and can be systematically improved by higher-order contributions
in powers of both α and αs. As illustrated in figure 10, for a given value of Q2 the true
probing scale Q̂2 can be in the range Q̂2

min ≤ Q̂2 ≤ Q̂2
max, where

Q̂2
min = Q2 (1− y)

(1− xB y) and Q̂2
max = Q2 1

(1− y + xB y) (2.28)

are the minimum and maximum values. To obtain a single Q2
true value from the range of Q̂2

that defines the QED RC factor RQED in eq. (2.26), one must model the colliding nucleon’s
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Figure 11. Comparison of our factorized results for the ratio σno RC/σRC versus xB with those
from ref. [27] using the FERRAD35 and TERAD86 codes for the Mo-Tsai [25] and Bardin et al. [71]
schemes, respectively, at matching kinematics (

√
s = 23GeV, y = 0.9). Our factorized results for

the resummed (RES, solid lines) and NLO (dashed lines) calculations are computed using PDFs
from the JAM global QCD analysis [70] (red lines) and using a simple model (blue lines, see text).

response at different values of Q̂2, and such modeling could impact the quantity itself
that we wish to extract from the measured cross sections. In addition, the Bjorken scaling
variable in eq. (2.16), x̂B = xB ξ y/(ξζ+y−1), ranges between its minimum value, x̂min

B = xB,
and its maximum value, x̂max

B = 1. With the collision-induced QED radiation, for given
values of xB and Q2 from the measured lepton and nucleon momenta `, `′, and P , we
actually probe the colliding nucleon over a much wider kinematic region of x̂B ∈ [x̂min

B , x̂max
B ]

and Q̂2 ∈ [Q̂2
min, Q̂

2
max].

In figure 11 we show the effect of radiation on the ratio of inclusive ep cross sections
as in figure 8, but inverted to match the definition used in ref. [27]. To demonstrate the
dependence of the traditional method of calculating QED contributions (as an RC factor
applied to the Born term) on the hadron structure input, we show the inclusive ratio for
two different sets of proton PDFs, namely, PDFs from the JAM global QCD analysis [70]
and using a simple model xfi/p(x) ∼ xa(1 − x)b. For the latter, we choose the shape
parameters a = 0.5 and b = 3 for valence quarks, a = −0.08 and b = 7 for sea quarks, and
a = −0.08 and b = 5 for gluons, with the valence distributions normalized to 2 (1) for u (d)
quarks, and the sea quark and gluon distributions normalized with momentum fractions
〈x〉i = {0.030, 0.036, 0.016, 0.005, 0.41} for i = {ū, d̄, s = s̄, c = c̄, g}. Note that for the
traditional method, the RC factor at (xB, Q2) is sensitive to the input of hadron structure
function for xB ∈ [xB, 1) and Q2 ∈ [Q̂2

min, Q̂
2
max]. For comparison, we also show in figure 11

the results from ref. [27] using the Mo-Tsai [25] and Bardin et al. [71] schemes at matching
kinematics (

√
s = 23GeV, y = 0.9). The comparison clearly shows the sensitivity of the

ratio σRC/σno RC to the hadronic structure input, which is problematic given that the aim
is to extract this very structure from the data.

As discussed in section 2.1, the novelty of our approach is the fact that we do not
need to assume any prior knowledge about the hadronic structures, provided that the
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power corrections are suppressed. The exact demarcation of the phase space where our
proposed factorization approach is applicable cannot be determined a priori, but can be
found through global analysis involving multiple high-energy reactions with overlapping
partonic kinematics, which can ultimately confirm and validate the universality of the
inferred structures.

In our proposed new approach to the QED radiation (2.27), all collision-induced QED
contributions to the measured cross sections are organized such that all leading power
infrared-sensitive contributions are included into the universal LDFs and LFFs. All leading
power infrared-safe contributions are included in the calculable hard parts, and the rest can
be neglected or further improved as power corrections. Although QED radiation changes
the momentum of the exchanged hard photon and introduces uncertainty in controlling the
“true” hard probe, our factorization formalism as in eq. (2.9) provides the minimum value
of the probing scale, Q̂2

min. As shown in figure 9, the collision-induced QED radiation does
remove some phase space from the DIS regime, particularly when xB is small or y is large,
which corresponds to more phase space for radiation.

Most importantly, in our factorization approach to the collision-induced QED radiative
contributions, neither the universal infrared-sensitive LDFs and LFFs, nor the calculable
QED hard parts depend on the nonperturbative hadron structure, such as PDFs, fragmen-
tation functions, or TMDs that we aim to extract. That is, our factorization approach does
not require any modeling of hadronic physics and is not sensitive to infrared cutoffs, which
are the two main uncertainties of existing approaches to treating induced QED radiation
via RC factors.

As with all factorization approaches, on the other hand, we do not know exactly the size
of the power corrections or the precise functional forms of the universal infrared-sensitive
LDFs and LFFs in eq. (2.9). Although we could have a better control on LDFs and LFFs in
QED than for corresponding partonic functions in QCD, the global analysis of all possible
data is still needed to identify regions where the process-dependent power corrections are
small, and one can demonstrate the universality of the infrared-sensitive functions.

3 Factorized formalism for semi-inclusive DIS with QED

In this section, we expand our combined QED and QCD factorization approach to contri-
butions to the cross section for the SIDIS process, e(`, λ`) +N(P, S)→ e(`′) + h(Ph) +X,
for the semi-inclusive production of a hadron h with four-momentum Ph in coincidence
with the scattered lepton `′. As for the case of inclusive DIS in eq. (2.1) of section 2,
the SIDIS cross section can be formally written in terms of the square of its scattering
amplitude, M`P→`′PhX ,

dσ`P→`′PhX = 1
2s
∣∣M`P→`′PhX

∣∣2 dPS, (3.1)

where for convenience the dependence on the electron and nucleon polarization (λ` and S,
respectively) is suppressed. In analogy with the inclusive DIS case, we consider SIDIS as an
inclusive production of a large-`′T lepton plus a large-PhT hadron (or jet) in lepton-nucleon
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Figure 12. Sketch of (a) the SIDIS process e(`) + N(P ) → e(`′) + h(Ph) + X, and (b) SIDIS in
the one-photon exchange approximation.

collisions, as illustrated in figure 12(a). In the plane transverse to the lepton-nucleon
collision axis, the regime where the transverse momenta `′T and PhT are almost back-to-
back, namely, PT ≡ |`′T − PhT |/2 � |`′T + PhT | ≡ pT , is suited for TMD factorization,
while the region where PT ∼ pT is suited for collinear factorization.

3.1 Collinear factorization for semi-inclusive DIS with QED contributions

With an exchange of a single hard scale, PT ∼ pT � ΛQCD, the invariant mass of any pair
of initial-state colliding particle and final-state observed particle momenta is a hard scale,
whose absolute value is much larger than ΛQCD. Applying the arguments in ref. [64], we
can factorize the SIDIS cross section in the regime where PT ∼ pT � ΛQCD as

E`′EPh
dσ`P→`′PhX

d3`′d3Ph
= 1

2s
∑
ijab

∫ 1

ζmin

dζ
ζ2

∫ 1

ξmin

dξ
ξ
De/j(ζ, µ2) fi/e(ξ, µ2)

×
∫ 1

zmin

dz
z2

∫ 1

xmin

dx
x
Dh/b(z, µ2) fa/N (x, µ2)

× Ĥia→jbX(ξ, x, `′T /ζ, PhT /z, µ2) + · · · , (3.2)

where the indices i, j, a, b include all QED and QCD particles, and the ellipsis represents
power corrections suppressed by inverse powers of `′T and PhT , or PT ∼ pT , defined in the
lepton-nucleon frame. The lower limits of the integrations depend on the collision energy√
s and the observed lepton and hadron momenta, `′ and Ph, respectively, and are given

in eqs. (2.24) in the previous section.
The functions fi/e(ξ, µ2), De/j(ζ, µ2) and fa/N (x, µ2) in eq. (3.2) are LDFs, LFFs and

PDFs, respectively, and are the same universal functions as those in eq. (2.9) for inclusive
DIS. The function Dh/b(z, µ2) in eq. (3.2) is the collinear fragmentation function (FF) to
the observed hadron h of momentum Ph from a parton b of momentum p′, which is defined
in ref. [4] for b = q, q̄, g as a function of momentum fraction z = P+

h /p
′+. The definition

is straightforwardly extended to the case where b is a lepton or a photon, with the quark
and gluon fields replaced by the corresponding lepton and photon fields.

The short-distance hard parts Ĥia→jbX in eq. (3.2) are infrared safe and perturbatively
calculable in QCD and QED. These are equal to the partonic cross section for the sub-
process i(k)+a(p)→ j(k′)+b(p′)+X(k+p−k′−p′), where all perturbative collinear diver-
gences along the momentum directions of the active particles, k, p, k′, and p′, respectively,
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removed and resummed into the corresponding LDFs, LFFs, PDFs and FFs, respectively.
The factorization formalism in eq. (3.2) also provides a prescription for evaluating the short-
distance hard parts Ĥia→jbX by applying the factorization formalism to lepton or parton
states order-by-order in perturbation theory. With the requirement that PT ∼ pT � ΛQCD,
the leading order contribution to Ĥia→jbX is given by the 2→ 3 scattering processes. For
example, by applying the factorization formalism in (3.2) to SIDIS with the nucleon N and
hadron h each replaced by a quark, e(k) + q(p)→ e(k′) + q(p′) + g(k + p− k′ − p′) at the
lowest order, one can derive Ĥ(2,1)

eq→eqg at order O(α2 αs).

3.2 TMD factorization for semi-inclusive DIS with QED contributions

When PT � pT , the transverse momentum imbalance between the observed lepton of
momentum `′ and hadron of momentum Ph becomes sensitive to the infrared-sensitive
collinear radiation from both QCD and QED. In this case, the collinear factorization for
the SIDIS cross section in this kinematic regime is no longer reliable. A TMD factorization
is instead needed to take into account the transverse momentum dependence of the active
particles (partons or leptons) probed by the hard collisions. The transverse momentum of
a colliding particle (a parton or a lepton) is generated by the induced radiation of the hard
collision plus the particle’s intrinsic transverse momentum in the bound hadron state, if
the particle is a parton. Therefore, a TMD factorization for the SIDIS process should take
into account the active particles’ transverse momentum generated by both collision-induced
QCD and QED showers (or radiation).

However, a full TMD QED and QCD factorization for the momentum imbalance of the
observed lepton and hadron in SIDIS is likely to be violated [49]. Instead of the full TMD
factorization for all four observed particles (the two leptons and two hadrons) in SIDIS,
in ref. [48], we proposed a hybrid factorization approach, with the collinear factorization
for the two leptons and TMD factorization for the two hadrons for SIDIS in the two-scale
regime. The hybrid factorization approach was motivated by the observation that the
momentum imbalance between the observed lepton and hadron in SIDIS is dominated by
the transverse momentum of active partons from the two hadrons in all relevant collision
energies. To justify this hybrid factorization for SIDIS, we demonstrate below that the
transverse momentum broadening generated by the collision-induced radiation for a “point-
like” lepton is much smaller than the typical transverse momentum of an active parton
in a colliding hadron, and argue that such hybrid factorization should be valid up to
power corrections.

With a sufficiently large momentum transfer between the leptons and hadrons, the
one-photon approximation, as shown in figure 12(b), is often adopted for evaluating the
SIDIS cross sections. To ensure this large momentum transfer, we require the transverse
momentum of the scattered lepton `′ and the observed hadron (or jet) Ph in the lepton-
nucleon frame to be the hard scales, with `′T � ΛQCD and PhT � ΛQCD. However, as an
inclusive production of the lepton `′ and hadron Ph, this large momentum transfer could
also be achieved by exchanging a virtual parton, such as a gluon, as in figure 13(b). Here,
the colliding lepton radiates a photon that turns into a quark-antiquark pair, and the quark
then undergoes the hard scattering with the colliding hadron via the exchange of a virtual
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Figure 13. Sketch for sample scattering amplitudes of SIDIS with (a) one-photon exchange,
and (b) one-gluon exchange.
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Figure 14. Illustration of (a) the general leptonic tensor, L̃µν(`, `′, q̂), and (b) the lowest-order
contribution to L̃µν(`, `′, q̂).

gluon. As discussed in section 2.2 in connection with the contribution from the subprocess
in figure 6(b), the type of subprocess in figure 13(b) is likely to be further suppressed if we
require the observed lepton of momentum `′ not to have strong hadronic activity around
it. In the rest of this paper, we take the one-photon approximation to include only the
scattering amplitude in figure 13(a) for the SIDIS cross section, leaving the study of SIDIS
beyond one-photon exchange for future work.

With the approximation of one-photon exchange, we can write the SIDIS cross section
in eq. (3.1) in terms of leptonic, L̃µν , and semi-inclusive hadronic, W̃µν , tensors,

E`′EPh
d6σ`P→`′PhX

d3`′ d3Ph
≈ α2

2s

∫
d4q̂

( 1
q̂2

)2
L̃µν(`, `′, q̂) W̃µν(q̂, P, Ph, S), (3.3)

where q̂ is the momentum carried by the exchanged virtual photon. The leptonic tensor
L̃µν(`, `′, q̂), sketched in figure 14(a), is defined as

L̃µν(`, `′, q̂) ≡
∑
XL

∫ ∏
i∈XL

d3ki
(2π)32Ei

δ(4)
(
`− `′ − q̂ −

∑
i∈XL

ki

)
×〈`|jµ(0)|`′XL〉〈`′XL|jν(0)|`〉, (3.4)

where the electromagnetic current jµ(0) couples to leptons, and the sum over all final states
XL includes radiation associated with the incoming and scattered leptons.

The corresponding semi-inclusive hadronic tensor W̃µν(q̂, P, Ph, S), representing the
colliding nucleon of momentum P and observed hadron of momentum Ph, is sketched in
figure 15(a). It is defined similarly to the hadronic tensor for inclusive DIS in the one-
photon approximation in eq. (2.4),

W̃µν(q̂, P, Ph, S) =
∑
Xh

∫ ∏
i∈Xh

d3pi
(2π)32Ei

δ(4)
(
q̂ + P − Ph −

∑
i∈Xh

pi

)
× 〈P, S|Jµ(0)|PhXh〉〈PhXh|Jν(0)|P, S〉, (3.5)
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Figure 15. Illustration of (a) the semi-inclusive hadronic tensor, W̃µν(q̂, P, Ph, S), and (b) the
lowest-order contribution to W̃µν(q̂, P, Ph, S).

where the electromagnetic current Jµ(0) couples to quarks (or charged leptons), and the
sum is taken over all final states Xh.

The lowest order contribution to the leptonic tensor for an unpolarized lepton of mo-
mentum ` in eq. (3.4), as sketched in figure 14(b), is given by

L̃µν(0)(`, `′, q̂) = 2
(
`µ`′

ν + `′
µ
`ν − ` · `′gµν

)
δ(4)(`− `′ − q̂) . (3.6)

By substituting L̃µν(0)(`, `′, q̂) into eq. (3.3), and using the δ(4)(`−`′− q̂) function to remove
the integration over d4q̂, we obtain the familiar expression for the SIDIS cross section in
the Born QED approximation and a fully determined virtual photon momentum qµ = q̂µ.
On the other hand, with QED radiation, the exchanged virtual photon momentum q̂µ

cannot be fully determined without measuring all radiated final states XL. In other words,
there is no well-defined “photon-hadron frame” without having full control of the leptonic
tensor L̃µν(`, `′, q̂).

3.3 Leptonic tensor and lepton structure functions

The leptonic tensor L̃µν(`, `′, q̂) in eq. (3.4) is in general nonperturbative and cannot be
calculated fully in QED and QCD perturbation theory. Since the QCD contribution to L̃µν

is from much higher order in α, we will first calculate the leading QED contributions to
this leptonic tensor and the transverse momentum broadening from the collision-induced
QED radiation, which is perturbatively calculable. We quantify and demonstrate the
impact of the collision-induced QED radiation on the momentum change of the exchanged
virtual photon from qµ to q̂µ, and, in particular, the transverse momentum broadening
of the q̂µ in the lepton back-to-back frame where ` is along the +z direction while `′ is
along the −z direction. The size of such transverse momentum broadening would directly
impact the transverse momentum distribution of the observed final-state hadron in all
SIDIS measurements.

3.3.1 Lepton structure functions

In analogy to the decomposition of the hadronic tensor in eq. (2.5), we can express the
leptonic tensor L̃µν in terms of lepton structure functions,

L̃µν(`, `′, q̂) = −g̃µν(q̂)L1 +
˜̀µ ˜̀ν
` · `′

L2 +
˜̀′µ ˜̀′ν
` · `′

L3 +
˜̀µ ˜̀′ν + ˜̀′µ ˜̀ν

2` · `′ L4, (3.7)

where g̃µν(q̂) is given by eq. (2.6) with q replaced by q̂, and we define
˜̀µ = g̃µν(q̂) `ν , ˜̀′µ = g̃µν(q̂) `′ν , (3.8)
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such that q̂µ ˜̀µ = q̂µ ˜̀′µ = 0. In eq. (3.7), the lepton structure functions Li (i = 1, 2, 3, 4)
depend on the four independent Lorentz scalars Q2, Q̂2, and the ratios

ξB ≡
q̂ · `′

` · `′
,

1
ζB
≡ − q̂ · `

` · `′
. (3.9)

In the lepton back-to-back frame, in which

`µ = (`+, 0,0T ), `′
µ = (0, `′−,0T ), (3.10)

with `+ = `′− = Q/
√

2, the exchanged virtual photon momentum can be written as

q̂µ =
(
q̂+, q̂−, q̂T

)
=
(
ξB`

+,− 1
ζB
`′
−
, q̂T

)
, (3.11)

where the transverse component is

q̂2
T = Q̂2 − ξB

ζB
Q2. (3.12)

We can also use q̂2
T to replace Q̂2 or Q2 as one of the four independent scalar variables for

all lepton structure functions. In this frame, the variable ξB is effectively the momentum
fraction of the incoming lepton carried by the active lepton at the hard collision, and ζB
is the momentum fraction of the scattered lepton carried by the observed lepton in the
final state. The transverse momentum of the exchanged virtual photon q̂T is generated by
the collision-induced radiation (mainly QED radiation, if we neglect the hadronic contri-
bution to the leptonic tensor). The amount of transverse momentum broadening q̂T from
QED radiation will directly impact the direction of the exchanged virtual photon and the
transverse momentum distribution of the extracted TMDs.

For the study of the q̂T dependence of the leptonic tensor L̃µν(`, `′, q̂) and the size of
q̂T generated by QED radiation, it is convenient to express the tensor in eq. (3.7) in a
helicity basis of the exchanged virtual photon,

Lρσ(`, `′, q̂) ≡ εµρ(q̂) L̃µν(`, `′, q̂) ε∗νσ (q̂), (3.13)

where the polarization vectors εµρ(q̂) and ε∗νσ (q̂), with polarization indices ρ, σ = 0,+,−,
depend on the reference frame and the coordinate system. We construct the coordinate
system by introducing the basis four-vectors T , X, Y , and Z, which satisfy the orthogonal
and normalization relations,

T ·X = T · Y = T · Z = X · Y = X · Z = Y · Z = 0, (3.14a)
T 2 = 1, X2 = Y 2 = Z2 = −1 . (3.14b)

Since q̂µ is a space-like vector, we choose the basis vector Zµ to be parallel to q̂µ,

Zµ = 1
Q̂
q̂µ , (3.15)
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with Q̂ ≡
√
Q̂2 =

√
−q̂2 > 0. If we choose the leptonic plane, defined by ` and `′, as the

X–Z plane, the other three basis vectors can be constructed from the conserved momenta,˜̀ and ˜̀′, as
Tµ =

√
ξBζB
Q

˜̀µ + 1
Q
√
ξBζB

˜̀′µ, (3.16a)

Xµ = −Q̂
√
ξBζB

Q q̂T
˜̀µ + Q̂

Q q̂T
√
ξBζB

˜̀′µ, (3.16b)

Y µ = εµνρσZνTρXσ, (3.16c)

where q̂T is the magnitude of the photon transverse momentum, q̂T ≡
√

q̂2
T . With the basis

vectors defined, the three independent polarization vectors can then be written as

εµ0 (q̂) = Tµ, (3.17a)

εµ±(q̂) = ∓ 1√
2
Xµ − i√

2
Y µ, (3.17b)

This ensures that the vectors εµρ(q̂) are orthogonal to q̂, εµρ(q̂) q̂µ = ε∗µρ (q̂) q̂µ = 0, and
orthogonal and normalized among themselves,

ε∗0(q̂) · ε±(q̂) = ε∗±(q̂) · ε∓(q̂) = 0, (3.18a)
ε∗0(q̂) · ε0(q̂) = 1, ε∗±(q̂) · ε±(q̂) = −1 . (3.18b)

With the polarization vectors defined in the lepton back-to-back frame, we introduce the
helicity-based lepton structure functions according to

L̃µν = ε∗µ0 εν0 L00 + (ε∗µ+ εν+ + ε∗µ− ε
ν
−)L++ + (ε∗µ+ εν− + ε∗µ− ε

ν
+)L+−

− ε∗µ0 (εν+ − εν−)L0+ − (εµ+ − ε
µ
−)∗εν0 L+0 (3.19a)

= TµT ν L00 + (XµXν + Y µY ν)LTT
+ (TµXν + T νXµ)L∆ + (Y µY ν −XµXν)L∆∆, (3.19b)

where LTT ≡ L++, L∆ ≡ (L0+ + L+0)/
√

2, and L∆∆ ≡ L+−. From these one can derive
the relations between the original Li (3.7) and helicity-based lepton structure functions,

L00 = L̃µνT
µT ν = −L1 + 1

2ξBζB
L2 + ξBζB

2 L3 + 1
2 L4, (3.20a)

LTT = 1
2 L̃µν(XµXν + Y µY ν) = L1 + 1

4ξBζB
q̂2
T

Q̂2
L2 + ξBζB

4
q̂2
T

Q̂2
L3 −

1
4

q̂2
T

Q̂2
L4, (3.20b)

L∆ = −1
2 L̃µν(TµXν + T νXµ) = − 1

2ξBζB
q̂T

Q̂
L2 + ξBζB

2
q̂T

Q̂
L3, (3.20c)

L∆∆ = 1
2 L̃µν(Y µY ν −XµXν) = − 1

4ξBζB
q̂2
T

Q̂2
L2 −

ξBζB
4

q̂2
T

Q̂2
L3 + 1

4
q̂2
T

Q̂2
L4 . (3.20d)

As for the original lepton structure functions Li (i = 1, . . . , 4), the helicity-based lepton
structure functions are also functions of ξB, ζB, Q2, and q̂2

T (or equivalently, Q̂2).
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Without the collision-induced QED radiation, the transverse momentum, q̂T , of the
exchanged virtual photon in the lepton back-to-back frame should vanish. Any nonzero
transverse momentum of the exchanged virtual photon in the lepton back-to-back frame is
generated by the collision-induced radiations from both QED and QCD. If we can neglect
the QCD contributions arising at higher orders in α, the lepton structure functions could
be perturbatively calculable in QED and expanded as a power series in α,

Lρσ(ξB, ζB, Q2, q̂2
T ) =

∞∑
N=0

(
α

π

)N
L(N)
ρσ (ξB, ζB, Q2, q̂2

T ), (3.21)

where an overall factor e2 (or 4πα) is factored out for our definition of the perturbative
lepton structure functions. From the lowest order leptonic tensor in eq. (3.6), we derive
the corresponding helicity-based lepton structure functions,

L
(0)
TT = 2 δ(ξB − 1) δ

( 1
ζB
− 1

)
δ(2)(q̂T ), (3.22a)

L
(0)
00 = 0, L

(0)
∆ = 0, L

(0)
∆∆ = 0. (3.22b)

As expected from helicity conservation, apart from LTT , all the other helicity-based lepton
structure functions vanish at lowest order, and are suppressed by powers of q̂T /Q̂ at higher
orders. In the next subsection, we quantify the amount of photon transverse momentum
q̂T that can be generated by the collision-induced QED radiation in the relevant collision
energies of SIDIS.

3.3.2 TMD factorization for lepton structure functions

The collision-induced QED radiation in SIDIS can generate nonvanishing q̂T for the lep-
tonic tensor L̃µν . As defined in eq. (3.4), the leptonic tensor has effectively the same
operator definition as the corresponding hadronic tensor W̃µν(q̂, P, Ph, S) in eq. (3.5), with
the electromagnetic quark currents replaced by lepton currents, and hadronic states re-
placed by lepton states. From studies of the factorization in SIDIS [16], it is known that
the hadronic tensor can be factorized in the hadron back-to-back frame in terms of QCD
collinear factorization when q̂T ∼ Q̂, and in terms of the TMD factorization when q̂T � Q̂.
Similarly, we can study the radiation induced q̂T dependence of the leptonic tensor L̃µν in
the lepton back-to-back frame by applying the same factorization in QED, with TMD fac-
torization describing the low-q̂T region and collinear factorization for the high-q̂T region,
along with a proper matching procedure for the phase space in between.

The collision-induced radiation dominates the low-q̂T region due to the logarithmic
enhancement of the radiation in this regime. Since the lepton structure functions L00, L∆,
and L∆∆ are power suppressed in q̂T /Q̂, we focus on the leading-power lepton structure
function LTT in the following to study the size of q̂T generated by the induced photon
shower. In analogy with the QCD factorization of the SIDIS hadronic tensor [16], we write
LTT as

LTT (ξB, ζB, Q2, q̂2
T ) = WTT (ξB, ζB, Q2, q̂2

T ) + YTT (ξB, ζB, Q2, q̂2
T ), (3.23)
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where the first term is given by a Fourier transform of an impact parameter distribution
W̃TT (ξB, ζB, Q2, bT ), with bT ≡ |bT | the magnitude of the impact parameter bT conju-
gated to q̂T ,

WTT (ξB, ζB, Q2, q̂2
T ) =

∫ d2bT
(2π)2 e

iq̂T ·bT W̃TT (ξB, ζB, Q2, bT ). (3.24)

This term is mainly responsible for the region where q̂T � Q̂, including the resummation of
large ln(Q̂2/q̂2

T )-type logarithms associated with the radiations. The second term in (3.23),
YTT , provides a smooth matching to the region of collinear factorization where q̂T ∼ Q̂.
The formulation in eq. (3.23) is usually referred to as the “W+Y” formalism [5]. As for the
hadronic case, the function W̃TT for the leptonic structure function can be factorized as

W̃TT (ξB, ζB, Q2, bT ) = 2
∫ 1

ζB

dζ

ζ2

∫ 1

ξB

dξ

ξ

[
CD

(
ζB
ζ
, α

)
D(ζ, µ2

b)
][
Cf

(
ξB
ξ
, α

)
f(ξ, µ2

b)
]

× exp
{
−
∫ µ2

Q

µ2
b

dµ′2

µ′2

[
A
(
α(µ′)

)
ln
µ2
Q

µ′2
+B

(
α(µ′)

)]}
, (3.25)

where we neglected the lepton flavor-changing contribution and kept only fe/e = f and
De/e = D. The factorized expression for the leading leptonic structure function in eq. (3.25)
has effectively the same form as the bT -space expression of the combined QED and QCD
transverse momentum resummation for the transverse momentum (qT ) distribution of Z0

bosons produced in hadronic collisions [65, 66], if we replace the leptons by hadrons, along
with proper kinematic factors and adjustment from space-like to time-like hard processes.
For Z0 production in hadronic collisions, both QED and QCD radiative contributions to
the transverse momentum broadening, or to the coefficient functions A, B, Cf , and CD in
eq. (3.25), start at leading order in α and αs, respectively. Since α � αs, the transverse
momentum broadening induced by the QED shower is much smaller than that generated
by the QCD shower, and is of the order of a percent [65, 66]. However, unlike the hadronic
case, QCD radiative contributions to the transverse momentum broadening of the leptonic
tensor in eq. (3.25) start at a much higher order in α. For example, as shown in figure 16,
QCD contributions to the coefficient function, A, which is responsible for the resummation
of the leading double logarithmic effects for the broadening, starts at O(α2αs), which is
an order of ααs suppressed compared to the leading QED contribution at O(α). That
is, the transverse momentum broadening caused by the collision-induced radiation from a
“point-like” lepton is dominated by the QED radiation.

If we neglect the hadronic contribution to the lepton structure function W̃TT , all the
coefficient functions A, B, Cf , and CD, as well as the LDF and LFF, are perturbatively
calculable in QED and valid at a scale µb that is much lower than the order of GeV in
hadronic collisions. Generally, we can expand them in a power series in α,

A =
∞∑
N=1

(
α

π

)N
A(N), B =

∞∑
N=1

(
α

π

)N
B(N), (3.26a)

Cf =
∞∑
N=0

(
α

π

)N
C

(N)
f , CD =

∞∑
N=0

(
α

π

)N
C

(N)
D . (3.26b)
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(a)

q
γ∗ γ∗

q q
γ∗

(b) (c)

Figure 16. Sample diagrams, like the virtual diagram in figure 23, responsible for the leading
double logarithmic contributions to the coefficient function A of the lepton tensor in eq. (3.25) at
(a) LO (α), (b) NLO (α2), and (c) NNLO (α2αs).

To estimate the size of q̂T broadening from induced radiation, we choose the convention
to define the factorization scales in eq. (3.25) as µb = 2e−γE/bT and µQ =

√
ξB/ζB Q [5].

In principle, we could introduce two proportional constants of O(1) to test the uncertainty
associated with the scale choice.

With the leading order L(0)
TT given in eq. (3.22a), together with f (0)(ξ) = δ(1− ξ) and

D(0)(ξ) = δ(1− ζ), we have for the hard coefficients

C
(0)
f (λ) = δ(λ− 1), C

(0)
D (η) = δ

(1
η
− 1

)
, (3.27)

with λ = ξB/ξ and η = ζB/ζ. As presented in appendix A, at O(α) in the MS scheme we
find the following coefficient functions,

C
(1)
f (λ) = 1

2(1− λ)− 1
2

[
1 + λ2

1− λ

]
+

ln
µ2

MS
µ2
b

− 2δ(1− λ), (3.28a)

C
(1)
D (η) = 1

2η (η − 1)− 1
2η

[
1 + η2

1− η

]
+

ln
µ2

MS
µ2
b

− 2
η
δ(1
η
− 1), (3.28b)

A(1) = 1, (3.28c)

B(1) = −3
2 , (3.28d)

as well as for the “Y” term,

Ŷ
(1)
TT = 1

2πµ2
Q

[
− 2(û2 + v̂2) + 4t̂(t̂+ û+ v̂)

ûv̂
+ 1 + λ2η2

λη

]
δ

( 1
λ

(1− λ)(1− η)− q̂2
T

µ2
Q

)

− 1
πq̂2

T

[ 1 + λ2

(1− λ)+
δ(1− η) + 1

η

1 + η2

(1− η)+
δ(1− λ)− 2δ(1− λ)δ(1− η) ln q̂2

T

µ2
Q

]
, (3.29)

with the variables defined as t̂ = (k−k′)2 = −(ξ/ζ)Q2, û = (k− q̂)2 = [(ξ−ξB)/ζB]Q2−q̂2
T ,

and v̂ = (k′ + q̂)2 = [ξB(ζB − ζ)/(ζζB)]Q2 − q̂2
T . The expression in eq. (3.29) is presented

as a difference between the NLO perturbative contribution to the leptonic tensor and the
asymptotic piece of this contribution when q̂2

T → 0.
In figure 17 we plot the impact parameter distribution of the lepton structure function,

W̃TT (ξB, ζB, Q2, bT ), along with its Fourier transform WTT (ξB, ζB, Q2, q̂2
T ) in conjugate q̂T
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10−1 101 103

bT (GeV−1)

0

1

W̃TT

(arbitrary units)

10−5 10−4 10−3

qT (GeV)

0

1

WTT

(arbitrary units)

Q = 10 GeV

ξB, ζB = 0.95

Figure 17. Shape of the lepton structure function W̃TT (ξB , ζB , Q2, bT ) (in arbitrary units) in
impact parameter space (left) and the corresponding Fourier transform in transverse momentum
space WTT (ξB , ζB , Q2, q̂2

T ) (right), evaluated at fixed Q = 10GeV and ξB = ζB = 0.95.

space, at fixed values of Q = 10GeV and ξB = ζB = 0.95. The WTT function, which is
generated by resumming the leading logarithmic enhanced QED radiation, has a very steep
and narrow peak at q̂2

T = 0. Although the logarithms due to the hard collisions could be
large, the QED fine structure constant α ∼ 1/137 is much smaller than αs in the same kine-
matic regime, which effectively makes the q̂T -broadening from QED radiation negligible
compared with the typical transverse momentum broadening of QCD radiation. As dis-
cussed following eq. (3.25), QCD contributions to the same q̂T -broadening are even smaller
than what can be generated from QED showers from the leptons, although they are much
more important, even dominant, for hadronic Z0 production [65, 66]. One can therefore
safely use the collinear factorization approach to account for the leading power radiative
contributions from the leptons of the SIDIS cross section as a controllable approximation.

3.4 SIDIS cross section with collinearly factorized QED contributions

As demonstrated quantitatively in the previous subsection, the transverse momentum im-
balance generated by the collision-induced QED and QCD radiation from the leptons for
SIDIS at relevant collision energies is much smaller than the typical intrinsic parton trans-
verse momentum of hadrons. This fact ensures that contributions to the momentum im-
balance pT between the observed lepton of momentum `′ and hadron of momentum Ph
are completely dominated by the active parton’s transverse momentum generated by the
collision-induced QCD shower on top of parton’s intrinsic transverse momentum from the
hadrons. The leading collision-induced radiative contributions to the SIDIS cross section
from the two leptons can therefore be systematically accounted for in terms of the collinear
factorization approach. In this case, the SIDIS cross section for a colliding lepton of mo-
mentum ` and helicity λ` and a nucleon of momentum P and spin S can be factorized
as [67]

E`′EPh
d6σ`(λ`)P (S)→`′PhX

d3`′ d3Ph
≈
∑
ijλk

∫ 1

ζmin

dζ
ζ2 De/j(ζ)

∫ 1

ξmin
dξ fi(λk)/e(λ`)(ξ)

×
[
Ek′EPh

d6σ̂k(λk)P (S)→k′PhX
d3k′ d3Ph

]
k=ξ`,k′=`′/ζ

, (3.30)
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Figure 18. Sketch for the “photon-hadron frame” for SIDIS according to the Trento convention [20].

where the integration limits ζmin and ξmin are given in eq. (2.24), and σ̂k(λk)P (S)→k′PhX is
infrared-safe as me → 0, with all infrared sensitive collinear QED radiative contributions to
the cross section resummed into the LDFs and LFFs. (For ease of notation the dependence
on the factorization scale in (3.30) is suppressed.) With the one-photon approximation, we
set i = j = e in eq. (3.30).

In the Born approximation in QED (which is the LO contribution in α), the QED
infrared-safe cross section σ̂k(λk)P (S)→k′PhX in eq. (3.30) further simplifies to

Ek′EPh
d6σ̂

(0)
k(λk)P (S)→k′PhX
d3k′ d3Ph

= α2

2ŝ

( 1
q̂2

)2
L̂(0)
µν (k, k′, λk) W̃µν(q̂, P, Ph, S), (3.31)

where the 0th-order leptonic tensor hard part is

L̂(0)
µν (k, k′, λk) = 2

(
kµk

′
ν + kνk

′
µ − k · k′gµν + iλkεµνρσk

ρk′σ
)
, (3.32)

and the hadronic tensor W̃µν(q̂, P, Ph, S) is defined in eq. (3.5). Our factorization formula
for SIDIS in eqs. (3.30) and (3.31) indicates that the impact of QED radiative contribution
to the SIDIS cross section is not only from the change of the exchanged virtual photon
momentum qµ → q̂µ, weighted by the convolution over the LDFs and LFFs, but also
from non-logarithmic and infrared-safe higher-order QED corrections to σ̂k(λk)P (S)→k′PhX .
Without QED radiation, the probing scale for the hard collision — the momentum of
the exchanged virtual photon q̂µ = qµ — is uniquely determined from the experimental
measurement of the colliding and scattered lepton momenta, `µ and `′µ. On the other
hand, with QED radiation the momentum of the exchanged virtual photon q̂µ is no longer
determined by direct experimental measurement, but instead is a function of the lepton
momentum fractions ξ and ζ.

To proceed with the application of QED and QCD factorization to SIDIS hadron
production experiments, we convert the differential cross section in eq. (3.31) to more
standard kinematic variables consistent with the Trento convention [20]. In particular, we
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use the change of variables

Ek′EPh
d6σ̂

(0)
k(λk)P (S)→k′PhX
d3k′ d3Ph

=
(4x̂B
Q̂2

√
ẑ2
h − (γ̂P̂hT /Q̂)2

) d6σ̂
(0)
k(λk)P (S)→k′PhX

dx̂Bdŷ dψ̂ dẑh dφ̂hdP̂ 2
hT

, (3.33)

where ẑh = P · P̂h/P · q̂ and φ̂h is the angle from the leptonic plane to the hadronic plane
defined in the virtual “photon-nucleon frame”, as shown in figure 18. The angle ψ̂ is the
azimuthal angle of k′ around k with respect to the transverse spin of the nucleon. In DIS
kinematics, one has dψ̂ ≈ dφ̂S [68], with φ̂S the angle from the leptonic plane to the spin
plane, as shown in figure 18. Parametrizing the one-photon exchange cross section in terms
of the usual 18 SIDIS structure functions, F hn (x̂B, Q̂2, ẑh, P̂

2
hT ) (n = 1, . . . , 18) [10], weighted

by factors ŵn that are functions of the kinematic variables, we can write the differential
SIDIS cross section in the presence of QED effects as

d6σ`(λ`)P (S)→`′PhX
dxBdy dψ dzh dφhdP 2

hT

=
∑
ijλk

∫ 1

ζmin

dζ
ζ2

∫ 1

ξmin

dξ
ξ
fi(λk)/e(λ`)(ξ)De/j(ζ)

× x̂B
xBξζ

[
α2

x̂B ŷ Q̂2
ŷ2

2(1− ε̂)

(
1 + γ̂2

2x̂B

)∑
n

ŵnF
h
n (x̂B, Q̂2, ẑh, P̂

2
hT )
]
, (3.34)

where the kinematic variables with carets in the factorized expression can be written in
terms of momentum fractions ξ, ζ and the measured variables without carets.

Our strategy to evaluate the lepton-nucleon SIDIS cross section with QED contribu-
tions, as in eq. (3.30), is as follows:

(1) Evaluate the SIDIS cross section without QED radiation in the “photon-nucleon
frame” (defined by the exchanged virtual photon of momentum q̂ and colliding nu-
cleon of momentum P for a given set of momentum fractions (ξ, ζ)) in terms of TMD
factorization and the corresponding momentum variables {q̂, P , P̂h} if P̂hT � Q̂,
and in terms of collinear factorization if P̂hT ∼ Q̂, along with a matching prescrip-
tion between these two regimes.

(2) Apply a (ξ, ζ)-dependent Lorentz transformation to change all variables of the calcu-
lated SIDIS cross section, composed of {q̂, P , P̂h} and the spin vectors in figure 18 for
polarized lepton-nucleon SIDIS, to the corresponding variables in a frame suitable for
comparison with experiment, such as the lepton-hadron frame, or the experimentally
defined photon-nucleon Breit frame.

This (ξ, ζ)-dependent Lorentz transformation changes P̂hT and φ̂h, the angle between the
leptonic plane and the hadronic plane, in a virtual “photon-nucleon frame”, as shown in
figure 18, to be functions of ξ, ζ, and experimentally measured kinematic variables xB,
Q2, zh, PhT and φh, in a frame where the calculated SIDIS cross section is compared with
experimental data. This leads to a strong impact on the extraction of TMDs from SIDIS
cross section data, as we discuss in more detail in the next section.
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4 Numerical impact of QED in semi-inclusive DIS

Having derived the SIDIS cross section formulas in our combined QED + QCD factorized
approach, in this section we discuss the numerical impact of the QED radiation on the
extraction of SIDIS structure functions and asymmetries. As illustrative examples, we
consider the unpolarized SIDIS structure function, as well as the angular modulations for
scattering unpolarized leptons from transversely polarized nucleons, such as those associ-
ated with the Collins and Sivers asymmetries.

For the numerical implementation of the radiative effects on the SIDIS calculation,
we use LDFs and LFFs evolved in Mellin space and computed in momentum space via a
numerical inverse Mellin transform. One problem encountered in implementing eq. (3.34)
numerically is the accuracy of the calculation in the vicinity of the end-point regions when ξ,
ζ → 1. These regions contribute maximally to the cross sections, reflecting the presence of
peaks in the LDFs and LFFs. However, the end-point region contributions are numerically
inaccurate if one naively evaluates them via the inverse Mellin transform directly. Instead,
one can make use of a subtraction trick, whereby the differential cross section is first written
in the form

d6σ`(λ`)P (S)→`′PhX
dxBdy dψ dzh dφhdP 2

hT

=
∑
ij

∫ 1

ζmin
dζ
∫ 1

ξmin(ζ)
dξ fi/e(ξ)De/j(ζ)Hij(ξ, ζ), (4.1)

whereHij(ξ, ζ) contains all other factors in the integrand of eq. (3.34) that are not contained
in the LDF and LFF. The right-hand-side of (4.1) can then be written as

d6σ`(λ`)P (S)→`′PhX
dxBdy dψ dzh dφhdP 2

hT

=
∑
ij

[∫ 1

ζmin
dζ De/j(ζ)

[
gij(ζ)− gij(1)

]
+ gij(1)ζmin

2πi

∫
dN ζ−Nmin

DN
j

N − 1

]
, (4.2)

where the function gij is defined as

gij(ζ) =
∫ 1

ξmin(ζ)

dξ
[
Hij(ξ, ζ)−Hij(1, ζ)

]
+ Hij(1, ζ)ξmin(ζ)

2πi

∫
dM ξ−Mmin (ζ) FMi

M − 1 , (4.3)

and FMi and DN
j are the Mellin moments of the LDFs and LFFs, respectively,

FMi =
∫

dξ ξM−1 fi/e(ξ), (4.4a)

DN
j =

∫
dζ ζN−1De/j(ζ). (4.4b)

The subtraction trick allows us to remove the numerically problematic region and evaluate
the end-point contributions accurately through convolution of the LDF and LFF moments
with simple factors 1/(M − 1) and 1/(N − 1), respectively.

With the numerical strategy in place, we proceed to quantify the radiative effects for
the SIDIS process for various channels. In our earlier work [48], we demonstrated the impact
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of QED effects on the unpolarized SIDIS cross section differential in the outgoing hadron’s
transverse momentum, PhT , in the Breit frame. The associated unpolarized SIDIS structure
function F hUU,T was modeled by a factorized Gaussian ansatz in the TMD framework [23],

F hUU,T (xB, Q2, zh, PhT ) =
∑
q

e2
q fq/N (xB, Q2)Dh/q(zh, Q2) exp(−P 2

hT /〈P 2
hT 〉)

π〈P 2
hT 〉

, (4.5)

where we adopt the notation of ref. [10] in which the first two subscripts of the structure
functions denote the polarization states of the lepton and nucleon, respectively, while the
third indicates the polarization of the virtual photon.

Using the fitted parameters from ref. [23], the PhT spectrum was found [48] to be
significantly modified in the presence of QED effects. Since the fitted Gaussian ansatz for
F hUU,T is only valid for small transverse momenta, it is instructive to see how the QED effects
depend on its shape in the large transverse momentum region, where the Gaussian behavior
is expected to transform into a power law-like dependence. To explore this transition, we
augment the original function F hUU,T by modifying its large-PhT behavior,

F hUU,T → F
h (mod)
UU,T = F hUU,T R + (1−R)Ftail, (4.6)

where

R = exp
[
−N

(
qT
Q

)3]
, Ftail = Ctail

q2
T

, (4.7)

with qT = PhT /z, and the parameters set to N = 20 and Ctail = 0.01GeV2. The mod-
ification mimics the enhancement of the structure function at large PhT stemming from
hard QCD radiation, which overwhelms the effects from intrinsic transverse momentum in
this region.

In figure 19 we illustrate our modification to F hUU,T , showing the dependence on qT /Q
for fixed values of Q2 = 25GeV2, y = 0.3, and zh = 0.5, using for the unmodified F hUU,T
structure function the result extracted from the recent JAM3D20 global analysis in the
TMD framework [69]. The specific parameters used for the modification are simply il-
lustrative, but chosen to approximate a typical scenario for the large-PhT region within
collinear factorization. Note that when implementing the QED effects described in the
previous sections, eqs. (4.5)–(4.7) are utilized by replacing the arguments of F hUU,T with
the corresponding variables x̂B, Q̂2, ẑh and P̂hT .

In figure 20 we show the impact of the QED radiative effects on the ratios of unpo-
larized SIDIS cross sections, calculated at the Born level and with RCs, as a function of
qT /Q at fixed values of

√
s = 140GeV, y = 0.4 and zh = 0.5, for Q = 3 and 10GeV, typical

of those expected at the EIC. The QED radiative effects are observed to be stronger in
the absence of hard QCD radiation enhancements in F hUU,T at large PhT , and relatively
mild otherwise. To isolate the rotational effects induced by the QED radiation in relating
the true Breit frame transverse momentum and the one computed with external kinemat-
ics, we set P̂hT → PhT , but keep the other (ξ, ζ)-dependent variables unmodified. This
effectively removes the rotational effect, and reveals its suppressed role for the power-law
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Figure 19. Unpolarized SIDIS structure function FhUU,T as a function qT /Q, where qT = PhT /z,
at fixed values of Q2 = 25GeV2, y = 0.4, and zh = 0.5. The unmodified function (dotted blue
line) is taken from the JAM3D20 global QCD analysis [69], while the additional power-law tail
contribution (dashed green line) distorts the region qT /Q > 0.5 by enhancing the modified Fh (mod)

UU,T

(solid red line) to mimic QCD radiation effects in collinear factorization.
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Figure 20. Ratios of unpolarized SIDIS cross sections without radiation (“no RC”) to those
including QED effects, as a function of qT /Q, for the FhUU,T structure function from ref. [69] using
the Gaussian ansatz in the TMD framework (left) and with the modified F

h (mod)
UU,T as in eq. (4.6)

(right), for
√
s = 140GeV, y = 0.4 and zh = 0.5, at Q = 3GeV (blue lines) and 10GeV (red lines).

The full calculation with QED radiation (“RC+rot”, solid lines) is compared with that removing the
QED rotational effects induced to the transverse momentum in Breit frame (“RC”, dashed lines).

enhanced F h (mod)
UU,T structure function compared with the unmodified function. The striking

dependence of the QED radiative effects on the specific behavior of F hUU,T indicates the
difficulty in establishing a universal QED correction that can be applied to extract the
pure QED, “free” SIDIS structure function from the data. Since the corrections depends
on the behavior of F hUU,T itself, one is confronted with an inverse problem that can only be
solved within a QCD analysis framework that incorporates QED effects simultaneously.

Turning now to the QED radiative effects on the leading-twist spin modulations in
SIDIS, we note that for scattering of unpolarized leptons (U) from nucleons with trans-

– 37 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
7

verse (T ) polarization ST there are three contributions that enter in the sum
∑
n ŵnF

h
n

in eq. (3.34). These UT modulations depend on the relative angles φ̂h and φ̂S in the
combinations given by [10]∑
n

ŵnF
h
n (x̂B, Q̂2, ẑh, P̂

2
hT )
∣∣∣
UT

= |ST |
[

sin(φ̂h − φ̂S)F sin(φh−φS)
UT ,T + sin(φ̂h + φ̂S)F sin(φh+φS)

UT

+ sin(3φ̂h − φ̂S)F sin(3φh−φS)
UT

]
, (4.8)

where the first and second terms correspond to the Sivers and Collins asymmetries, re-
spectively, and the third term contains the pretzelosity TMD function in the small-PhT
region.

Typically, the measured differential cross sections are integrated over the physical
angles φh and φS . In the absence of QED radiative effects, the Sivers asymmetry, for
instance, would be isolated via the external sin(φh − φS) projecting phase,

d6σ`P (ST )→`′PhX
dxBdy dψ dzh dP 2

hT

∣∣∣∣∣
sin(φh−φS)

UT,T

=
∫

dφh dφS sin(φh − φS)
d6σ`P (ST )→`′PhX

dxBdy dψ dzh dφhdP 2
hT

, (4.9)

which at the structure function level is equivalent to the identity

F
sin(φh−φS)
UT ,T

no QED=
∫

dφh dφS sin(φh − φS)
[

sin(φh − φS)F sin(φh−φS)
UT ,T

+ sin(φh + φS)F sin(φh+φS)
UT + sin(3φh − φS)F sin(3φh−φS)

UT

]
. (4.10)

In contrast, with QED radiation eq. (4.10) no longer holds, as the projecting phases are
not orthogonal with the “internal” phases,∫

dφh dφS sin(φh − φS) sin(φ̂h + φ̂S) 6= 0 (4.11)

for ξ, ζ 6= 1. The external projecting phases will then not uniquely isolate the desired
structure function, but instead receive “leakage” from other modulations.

In figure 21 we illustrate this phenomenon by integrating the UT cross section (with
|ST | = 1) over the three different modulations in eq. (4.8), calculated at some typical EIC
kinematics versus qT /Q. The structure functions F sin(φh−φS)

UT,T and F
sin(φh+φS)
UT are taken

from the JAM3D20 analysis [69] and F sin(3φh−φS)
UT is set to zero. As expected, the lowest

order QED calculations isolate only the structure function associated with the relevant
phase. In the presence of radiation, however, the modulations are no longer orthogonal,
and identification of the desired signal requires more care. The largest effect is seen for
the sin(φh − φS) modulation, where the cross section decreases uniformly across all qT /Q,
with no visible leakage from other modulations. For the sin(φh+φS) modulation, a similar
depletion is found, but is partly compensated by leakage from the Sivers contribution.
Finally, the sin(3φh − φS) modulation, which in the “true” Breit frame (at LO) is set to
zero, acquires a sizable contribution due to leakage from the Sivers sin(φh−φS) effect, with
a small effect from the Collins sin(φh + φS) modulation.

As for the unpolarized SIDIS cross section, the QED radiative effects for the spin
modulations generally depend on the shape of the transverse momentum distribution of the
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Figure 21. QED radiation effects for sin(φh − φS) (top), sin(φh + φS) (middle) and sin(3φh − φS)
(bottom) SIDIS UT spin modulations versus qT /Q at

√
s = 140GeV, xB = 0.01, zh = 0.5, and

Q2 = 25GeV2 (left) and 100GeV2 (right), with |ST | = 1. The cross sections with no QED effects
(“LO”, dotted lines) are compared with the QED resummed cross sections (“RES”, dashed lines)
for the Sivers (green lines) and Collins (blue lines) asymmetries. The total spin modulations (solid
red lines) include the full QED contribution along with leakage effects.

structure functions. The presence of the inverse problem makes it impossible in practice to
establish a universal set of QED corrections for SIDIS. For the spin-dependent cross sections
the problem is further aggravated since the radiative effects are not even universal within
a specific type of modulation due to leakage effects. The direct and simultaneous inclusion
of QED radiation, along with QCD frameworks such as collinear or TMD factorization, is
therefore indispensable for a meaningful QCD global analysis involving SIDIS data.
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5 Conclusion and outlook

In this paper we have proposed a QCD-like factorization approach to take into account
the collision-induced QED radiative contributions to the experimentally measured cross
sections of both inclusive and semi-inclusive lepton-nucleon DIS. In this new hybrid fac-
torized approach, based on the perturbative sensitivity in the limit when the lepton mass
me/Q→ 0, all-order collision-induced QED contributions to the lepton-nucleon cross sec-
tions are organized into three groups: infrared sensitive, infrared safe, and power sup-
pressed. In the limit when me/Q → 0, the infrared sensitive contributions diverge loga-
rithmically in powers of ln(Q2/m2

e), while the infrared safe contributions are independent
of me and can be calculated order-by-order in powers of α. The power suppressed contri-
butions (in powers of me/Q) are typically very small and can be safely neglected.

Taking advantage of the fact that the logarithmically enhanced and infrared sensi-
tive contributions from the induced radiation are process independent, we collect them
into universal LDFs and LFFs, and resum the logarithms to all orders in α by solving
corresponding renormalization group equations. Since QED contributions are in principle
perturbatively calculable in the energy regime of relevant experiments, our factorization
approach to the collision-induced radiation provides a consistent and perturbatively stable
method to include all order QED contributions to both inclusive and semi-inclusive DIS
cross sections, up to the power corrections in me/Q. This provides excellent predictive
power for lepton-nucleon SIDIS cross sections, given the universality of LDFs and LFFs,
our ability to calculate the infrared-safe contributions perturbatively to all orders in α, and
the fact that me/Q is a small number. Although we can calculate LDFs and LFFs in QED,
they can be further improved by performing global analyses of lepton-nucleon scattering
data to include the nonperturbative QCD contributions to these lepton distributions.

We have demonstrated that the traditional approach to handling the contributions
from collision-induced QED radiation by imposing a “radiative correction” factor to the
“Born” cross section with no QED radiation will not work for semi-inclusive lepton-nucleon
processes when a final-state hadron or jet of momentum Ph is measured in addition to the
scattered lepton of momentum `′. Furthermore, without being able to account for all
radiation, the photon-nucleon frame, where the TMD factorization was proven for SIDIS,
is not well-defined. Consequently, there is no unique connection between the produced
hadron’s transverse momentum PhT defined in the TMD factorization formalism and the
measured hadron’s PhT , either in the laboratory frame, where the lepton and nucleon collide
head-on, or in the “Breit”-frame defined experimentally without taking into account the
collision-induced radiation. In addition, without knowing the “true” photon-nucleon frame,
we cannot uniquely determine the hadronic plane, and will lose all advantages of extracting
different TMDs from the different modulations of angle distribution between the leptonic
plane and the hadronic plane. Numerically, we found significant “leakage” between different
angular modulations, which could impact the precision with which TMDs can be extracted
in practice.

Our factorization approach to the inclusive and semi-inclusive lepton-nucleon DIS nat-
urally goes beyond the “one-photon approximation”. We define the inclusive DIS as an
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inclusive production of a scattered lepton of momentum `′ with `′T � ΛQCD, and the semi-
inclusive DIS as an inclusive production of a scattered lepton of momentum `′ plus an
observed hadron of momentum Ph with both `′T and PhT � ΛQCD in the lepton-nucleon
frame. We demonstrated quantitatively that the collision-induced QED and QCD radiative
contributions to SIDIS from the observed leptons can be consistently treated in terms of
collinear factorization, which allows a uniform treatment of the infrared-sensitive part of in-
duced QED and QCD radiative contributions for both DIS and SIDIS, by resumming them
into universal collinear LDFs and LFFs. This factorization framework therefore provides
excellent predictive power for QED and QCD radiative contributions.

With the collinear factorization approach to the induced QED and QCD radiation for
the leptons, and the “one-photon approximation”, we can define a “virtual photon-nucleon”
frame for a given combination of lepton momentum fractions (ξ, ζ), and take advantage
of all factorization formalisms, including collinear and TMD factorization, to evaluate the
semi-inclusive virtual-photon cross sections with the observed hadronic variables defined in
the “virtual photon-nucleon” frame. A (ξ, ζ)-dependent Lorentz transformation can then
be applied to transfer these variables from the “virtual photon-nucleon” frame to a frame
(either laboratory or experimentally defined Breit frame), where the hadronic variables are
measured. Finally, the integration over (ξ, ζ), weighted by LDFs and LFFs, sums up the
total impact of the induced QED radiation on the SIDIS cross sections.

We stress that even though α is very small, the logarithmic enhanced QED radiation
could significantly alter the momentum transfer to the colliding nucleon, including the
invariant mass (which defines the hard scale), as well as the direction that impacts on
the angular distributions between the leptonic and hadronic planes, and the precision
of extracting the TMDs from lepton-nucleon scattering. Our new and renormalization
improved factorization approach allows the systematic resummation of the logarithmically
enhanced collision-induced radiative effects from observed leptons into factorized LDFs
and LFFs that are universal for all final states, applicable for DIS, SIDIS, as well as for
e+e− annihilation and Drell-Yan lepton-pair production processes, leaving the fixed-order
QED corrections completely infrared-safe and stable in the limit as me → 0. Our hybrid
factorization approach goes beyond the “one photon-approximation”, and provides a new
paradigm for a uniform treatment of QED radiation in the extraction of PDFs, TMDs
and other partonic correlation functions. This will have important implications for the
future analyses of hard scattering process at the EIC, in the quest to map the nucleon’s
three-dimensional structure in momentum space from lepton-nucleon collision data.
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A Perturbative coefficients of the leptonic tensor at NLO

In this appendix, we derive the NLO perturbative coefficients A(1), B(1), C(1)
f , and C(1)

D of
the W-term W̃TT and the first nontrivial Y-term YTT in eq. (3.23) of section 3.3.2. Among
the four helicity basis lepton structure functions L00, LTT , L∆, and L∆∆ in eqs. (3.20),
only LTT has a nonzero contribution at LO. With L

(0)
TT given in eq. (3.22a) and the LO

LDF and LFF given by

f
(0)
i/e (ξ) = δie δ(1− ξ), (A.1a)

D
(0)
e/j(ζ) = δej δ(1− ζ), (A.1b)

one can obtain the hard part,

L̂
(0)
TT = 2δ(1− λ) δ

(1
η
− 1

)
δ(2)(q̂T ), (A.2)

and the C functions,

C
(0)
f (λ)C(0)

D (η) = δ(1− λ) δ(1− η). (A.3)

As a natural choice, we set

C
(0)
f (λ) = δ(1− λ), (A.4a)

C
(0)
D (η) = δ(1− η). (A.4b)

The NLO coefficients can be extracted from the NLO lepton structure function L
(1)
TT ,

which can be derived by calculating the real and virtual diagrams in figures 22 and 23,
respectively. To extract the helicity basis lepton structure function L(1)

TT , we contract these
diagrams with (XµXν + Y µY ν)/2, and perform our calculation in D = 4 − 2ε dimension
to regulate all perturbative divergences. Computing the amplitude squared of the real
diagrams (figure 22), we obtain the real contribution to L(1)

TT ,

R̂
(1)
TT =

(
4π2µ2)ε
2πQ2

[
−2(1− ε)2 (û2 + v̂2)+ 4(1− ε)t̂(t̂+ û+ v̂)

ûv̂

+1 + λ2η2 − ε(1− λη)2

λη
− 4ε2

]
δ

(
ξB
λζB

(1− λ)(1− η)− q̂2
T

Q2

)
, (A.5)

where the phase space factor (2π)2ε/
[
(2π)3Q2] δ([ξB/λζB](1−λ)(1−η)− q̂2

T /Q
2
)
has been

included, and the corresponding virtual contribution (figure 23),

V̂
(1)
TT = −(1− ε) 2δ(1− λ) δ(1− η) δ(2−2ε) (q̂T )

[
1
ε2

+ 2
ε

+ 1
ε

(
ln 4πµ2

−t̂
− γE

)

+1
2

(
ln 4πµ2

−t̂
− γE

)2
+ 3

2

(
ln 4πµ2

−t̂
− γE

)
− π2

12 + 4
]
. (A.6)
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Figure 22. Real photon emission diagrams for the calculation of the leptonic tensor at NLO.

k k’q̂
µν

q̂k’ k

Figure 23. Virtual correction diagram for the calculation of the leptonic tensor at NLO. The
corresponding Hermitian conjugate diagram (omitted here) is also included in the calculation.

Note that in defining R̂(1)
TT and V̂ (1)

TT we follow the same convention as for the leptonic tensor
in eq. (3.21), and the variables, t̂, û and v̂ are the same as those defined below eq. (3.29).
In terms of the “W+Y” formalism in eq. (3.23), one can write the NLO lepton structure
function as the sum

L̂
(1)
TT = Ŵ

(1)
TT + Ŷ

(1)
TT , (A.7)

where the Y-term is a regular part of L̂(1)
TT as q̂T → 0. Since the virtual contribution is

proportional to δ(2−2ε) (q̂T ), and is singular as q̂T → 0, we only need the real diagrams to
obtain the Y-term as Y (1)

TT = R̂
(1)
TT − R̂

(1)
TT

∣∣
q̂T→0, where the subtraction term is known as the

asymptotic term. Taking ε→ 0 for the real-term in (A.5), we obtain the Y-term as

Ŷ
(1)
TT = 1

2πµ2
Q

[
− 2(û2 + v̂2) + 4t̂(t̂+ û+ v̂)

ûv̂
+ 1 + λ2η2

λη

]
δ

( 1
λ

(1− λ)(1− η)− q̂2
T

µ2
Q

)

− 1
πq̂2

T

[
1 + λ2

(1− λ)+
δ(1− η) + 1

η

1 + η2

(1− η)+
δ(1− λ)− 2δ(1− λ)δ(1− η) ln q̂2

T

µ2
Q

]
, (A.8)

where the asymptotic second term has been derived using the identity in eq. (B.2) of
appendix B.

To extract the NLO coefficients A(1), B(1), C(1)
f , and C(1)

D , we expand the resummed
expression for the W-term in (3.25) to O(α) and remove the term proportional to f (1) and
D(1) to isolate the perturbative part of the W-term in eq. (A.7),

̂̃
W

(1)
TT = C

(1)
f C

(0)
D S(0) + C

(0)
f C

(1)
D S(0) + C

(0)
f C

(0)
D S(1), (A.9)

– 43 –



J
H
E
P
1
1
(
2
0
2
1
)
1
5
7

where S(0) and S(1) are the first two terms in the expansion of

S = exp
{
−
∫ µ2

Q

µ2
b

dµ′2

µ′2

[
A
(
α(µ′)

)
ln
µ2
Q

µ′2
+B

(
α(µ′)

)]}

= 1− α

π

[
1
2A

(1) ln2 µ
2
Q

µ2
b

+B(1) ln
µ2
Q

µ2
b

]
+O(α2). (A.10)

To derive ̂̃W (1)
TT , we perform a Fourier transform of L̂(1)

TT to bT space using the relevant
integral formulas in appendix B. The 1/ε2 terms from the soft radiation exactly cancel
between the real and virtual diagrams of figures 22 and 23. The 1/ε terms from collinear
radiation can be absorbed into the LDF and LFF. The NLO perturbative part of the
W-term can then be written

̂̃
W

(1)
TT = 2δ(1− λ)δ(1− η)

[
− 1

2 ln2 µ
2
Q

µ2
b

+ 3
2 ln

µ2
Q

µ2
b

]
− 2 ln

µMS
µb

[(1 + λ2

1− λ

)
+
δ(1− η) + 1

η

(1 + η2

1− η

)
+
δ(1− λ)

]
+ 2

[1
2(1− λ)δ(1− η) + 1

2η (1− η)δ(1− λ)− 4δ(1− λ)δ(1− η)
]
. (A.11)

By comparing eqs. (A.9) and (A.11), we determine the NLO perturbative coefficients,

C
(1)
f (λ) = 1

2(1− λ)−
(1 + λ2

1− λ

)
+

ln
µMS
µb
− 2δ(1− λ), (A.12a)

C
(1)
D (η) = 1

2η (1− η)− 1
η

(1 + η2

1− η

)
+

ln
µMS
µb
− 2δ(1− η), (A.12b)

A(1) = 1, (A.12c)

B(1) = −3
2 . (A.12d)

B Some useful formulas

In this appendix we collect some integral formulas which are relevant to the calculation of
the NLO leptonic tensor in appendix A. First, we consider the integral

I ≡
∫ 1

ξB

dξ
ξ

∫ 1

ζB

dζ
ζ2 f(ξ)D(ζ)F (λ, η) δ

(
ξB
λζB

(1− λ)(1− η)− q̂2
T

Q2

)
=
∫ 1

ξB

dλ
λ

∫ 1

ζB

dη
ξB

f

(
ξB
λ

)
D

(
ζB
η

)
F (λ, η) δ

(( 1
λ
− 1

)
(1− η)− χ2

)
, (B.1)

where χ2 ≡ (ζB q̂2
T )/(ξBQ2) and F (λ, η) is a smooth function of λ and η. Taking the limit

q̂T → 0, which corresponds to χ→ 0+, we have

I =
∫ 1−χ

ξB

dλ
λ

∫ 1

2−1/λ
dη 1

ξB
f

(
ξB
λ

)
D

(
ζB
η

)
F (λ, η) λ

1− λδ(1− η)

+
∫ 1−χ

ζB

dη
∫ 1

1/(2−η)

dλ
λ

1
ξB
f

(
ξB
λ

)
D

(
ζB
η

)
F (λ, η) λ

1− η δ(1− λ) +O(χ2)
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=
∫ 1

ξB

dλ
(1− λ)+

1
ξB
f

(
ξB
λ

)
D(ζB)F (λ, 1) +

∫ 1

ζB

dη
(1− η)+

1
ξB

f(ξB)D
(
ζB
η

)
F (1, η)

− 1
ξB

f(ξB)D(ζB)F (1, 1) lnχ2 +O(χ2)

=
∫ 1

ξB

dξ
ξ

∫ 1

ζB

dζ
ζ2 f(ξ)D(ζ)F (λ, η) λζB

ξB

[ 1
(1− λ)+

δ(1− η) + 1
(1− η)+

δ(1− λ)

− δ(1− λ) δ(1− η) ln ζB q̂2
T

ξBQ2

]
+O(χ2). (B.2)

When computing the Fourier transform, one needs to calculate integrals of the type

I(a, k) ≡
(
µ2)ε+a−1

∫
d2−2εq̂T e

−iq̂T ·b 1
(q̂2
T )a

lnk q
2
T

µ2 . (B.3)

For k = 0, the integral can be evaluated directly,

I(a, 0) = π1−ε
(
µ2b2

4

)ε+α−1 Γ(1− ε− α)
Γ(α) . (B.4)

For positive integer values of k, one can evaluate the integral by calculating the derivative
of I(a, 0),

I(a, k) =
( d

dδ

)k
I(a− δ, 0)

∣∣∣∣
δ=0

. (B.5)

Applying these results, we arrive at the following expressions for the I(a, k) integrals utilized
in appendix A,

I(1, 0) = π1−ε
[
− 1
ε
− γE − ln µ

2b2

4 +O(ε)
]
, (B.6a)

I(1, 1) = π1−ε
[
− 1
ε2

+ 1
ε
γE + 1

2 ln2 µ
2b2

4 + 2γE ln µ
2b2

4 + π2

12 + 3
2γ

2
E +O(ε)

]
, (B.6b)

I
(1

2 , 0
)

= π1−ε 2
µb

+O(ε), (B.6c)

I
(1

2 , 1
)

= −π1−ε 2
µb

[
2γE + 2 ln 4 + ln µ

2b2

4 +O(ε)
]
. (B.6d)

C QED dependent SIDIS kinematic variables

In computing SIDIS cross sections including QED effects, it is convenient to express the
Breit frame kinematical variables, such as the angular phases and transverse momenta, in
terms of lab frame variables that are directly accessible experimentally. For notations and
definitions, we follow the Trento convention as set out in ref. [10].

We define symmetric and antisymmetric tensors for projections perpendicular to the
direction of the virtual photon of momentum q in the Breit frame scattering from an initial
nucleon of momentum P ,

gµνT = gµν − Pµqν + P νqµ

(1 + γ2)P · q −
γ2

1 + γ2

(
PµP ν

M2 −
qµqν

Q2

)
, (C.1)

εµνT = 1√
1 + γ2 P · q

εµνρσPρ qσ. (C.2)
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Here by “virtual photon” we refer to the external momentum q = ` − `′, which does not
necessary coincide with the true photon momentum that enters in the hard scattering.
With these transverse projectors we can write covariant expressions for the Breit frame
transverse momenta,

`µT = gµνT `ν , PµhT = gµνT Phν . (C.3)

Similarly, the angular dependence for the outgoing hadron (φh) and the initial state spin
vector (φS) are given by

cosφh = − 1√
`2TP

2
hT

`µPhν g
µν
T , sinφh = − 1√

`2TP
2
hT

`µPhν ε
µν
T , (C.4)

cosφS = − 1√
`2TS

2
T

`µSν g
µν
T , sinφS = − 1√

`2TS
2
T

`µSν ε
µν
T , (C.5)

where the spin vector S of the initial nucleon is decomposed into longitudinal and transverse
components,

Sµ = SL
Pµ − qµM2/P · q

M
√

1 + γ2 + SµT , (C.6a)

SL = M√
1 + γ2

S · q
P · q

, SµT = gµνT Sν . (C.6b)

Note that while the expressions in eqs. (C.3)–(C.6) are written in a covariant way, their
interpretation in terms of longitudinal and transverse momentum directions is true only in
the Breit frame.

The expressions above, along with the variables xB, zh and Q2, provide the full set of
variables that characterize SIDIS for any configuration of initial state particles. With these
it is then possible to build the corresponding internal invariant variables that depend on the
momentum fractions ξ and ζ. To that end, it is important to note that only the external
momenta ` and `′ are directly connected with the QED momentum fractions via k = ξ`

and k′ = `′/ζ, while the other external hadronic vectors, P , Ph and S, do not depend on
ξ or ζ. It is only when the latter are decomposed in the Breit frame using the covariant
projectors that the QED momentum fractions play a role. For instance, in eq. (C.3) the
vector PµhT becomes sensitive to the QED momentum fractions because the projector gµνT
depends on `, `′ or q, rather than because the original Pµh vector is sensitive to these.

The strategy then is to simply express all the relevant invariants in terms of the scalar
products ` · V and `′ · V , with V = P , S or Ph, and include QED radiative effects via the
substitutions ` · V → ξ ` · V and `′ · V → `′ · V/ζ. For this purpose we form the scalar
products from the external kinematics through the invariants xB, zh, Q2, y and PhT , the
angles φh and φS , and the spin projections SL and |ST |. We utilize both the sine and cosine
of the phases to keep track of the signs of the modulations. Defining Q2 ≡ Q2 + 4M2x2

B, it
is then straightforward to verify that

`2T =
Q2(Q2(1− y)−M2x2

By
2)

y2Q2 , (C.7a)

q · Ph = Q

4M2x2
B

(
Q3zh −

√
Q2(Q4z2

h − 4M2x2
B (m2

h + P 2
hT )
))
, (C.7b)
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` · Ph = − 1
yQ2

(
Q2 PhT [`T ] y cosφh −

(
Q2 + 2M2x2

B y
)

[q · Ph] +Q4zh
(
1 + 1

2y
))
, (C.7c)

`′ · Ph = [` · Ph]− [q · Ph]. (C.7d)

For convenience, in the expressions for `·Ph and `′ ·Ph we have kept explicit the dependence
on `T and q · Ph, highlighted by the brackets “[...].” The QED effects on the various scalar
products can be implemented in a covariant way through the substitutions ` ·Ph → k ·Ph =
ξ [` ·Ph] and `′ ·Ph → k′ ·Ph = [l′ ·Ph]/ζ. Proceeding next to scalar products involving the
spin vector S, we have

q · S = − QQ
2MxB

√
1− S2

T , (C.8a)

` · S = − 1
yQ2

(
Q2 |ST | [`T ] y cosφS − (Q2 + 2M2x2

B y) [q · S]
)
, (C.8b)

`′ · S = [` · S]− [q · S]. (C.8c)

As for the case of Ph, we can implement the scalar products involving the spin vector S in a
covariant way by making the replacements `·S → k ·S = ξ [`·S] and `′ ·S → k′ ·S = [`′ ·S]/ζ.

For the sinusoidal phases involving contractions of the Levi-Civita tensor with ` and
`′, we have the relations

εµνρσP
µ`ν`′

ρ
P σh = −PhT QQ [`T ]

2x sinφh, (C.9a)

εµνρσP
µ`ν`′

ρ
Sσ = −|ST |QQ [`T ]

2x sinφS . (C.9b)

These also allow us to implement the ξ and ζ dependence of the sinusoidal modulations
via the substitutions

εµνρσP
µ`ν`′

ρ
P σh → εµνρσP

µkνk′ρP σh = ξ

ζ
[εµνρσPµ`ν`′ρP σh ], (C.10a)

εµνρσP
µ`ν`′

ρ
Sσ → εµνρσP

µkνk′ρSσ = ξ

ζ
[εµνρσPµ`ν`′ρSσ]. (C.10b)

We next consider the SIDIS invariants with ξ and ζ dependence, which for the simplest
variables are

x̂B = xB ξ y

ξζ + y − 1 , ŷ =ξζ + y − 1
ξζ

, ẑh = yzh ζ

ξζ + y − 1 , (C.11a)

Q̂2 =ξ

ζ
Q2, γ̂2 =(2Mx̂B)2

Q̂2
. (C.11b)

Defining again the shorthand notation Q̂2 ≡ Q̂2 +4M2x̂2
B = Q̂2(1+ γ̂2), from eq. (C.7a) we

can write the transverse momentum of the incoming lepton that enters the hard scattering
in the true Breit frame as

k2
T =

Q̂2(Q̂2(1− y)−M2 x̂2
B ŷ

2)
ŷ2Q̂2

. (C.12)
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For the corresponding scalar products involving the internal q̂ vector, we can write

q̂ · Ph = [[k · Ph]]− [[k′ · Ph]], q̂ · S = [[k · S]]− [[k′ · S]]. (C.13)

Here we use the shorthand notation “[[...]]” for the (ξ, ζ)-dependent scalar products to
distinguish them from the (ξ, ζ)-independent quantities above, with the understanding that
the former are functions of (ξ, ζ) and of the latter scalar products, which we can represent
schematically as “[[...]] = [[...]](ξ, ζ, [...])”. The transverse momentum of the produced hadron
can be computed using eq. (C.3) in terms of the (ξ, ζ)-dependent variables as

P̂ 2
hT = − 1

Q̂2 Q̂2

(
m2
h Q̂

2 Q̂2 − Q̂6ẑ2
h + 2

(
Q̂4ẑh + 2M2x̂2

B

)
[[q̂ · Ph]]

)
. (C.14)

Similarly, the decomposition of the spin vector S in the true Breit frame is given by

ŜL = γ̂

Q̂
[[q̂ · S]], (C.15a)

|ŜT |2 = 1− γ̂2

Q̂2
[[q̂ · S]]2 = 1− Ŝ2

L. (C.15b)

Finally, the angular phases can be expressed in terms of the scalar products as

cos φ̂h =
Q̂4 (2− ŷ)ẑh + 2

(
Q̂2 + 2M2x̂2

B ŷ
)

[[q̂ · Ph]]− 2Q̂2 ŷ [[k · Ph]]
2Q̂2 ŷ [[P̂hT ]][[kT ]]

, (C.16a)

sin φ̂h = −2x̂B [[εµνρσPµkνk′ρP σh ]]
Q̂ Q̂ [[P̂hT ]][[kT ]]

, (C.16b)

and

cos φ̂S =
(
Q̂2 + 2M2x̂2

B ŷ
)

[[q̂ · S]]− Q̂2 ŷ [[k · S]]
Q̂2 ŷ [[|ŜT |]][[kT ]]

, (C.17a)

sin φ̂S = −2x̂B [[εµνρσPµkνk′ρSσ]]
Q̂ Q̂ [[|ŜT |]][[kT ]]

. (C.17b)

With these expressions, we have now completed the translation of the SIDIS invariants
expressed in terms of external degrees of freedom into their corresponding internal ones
that depend on ξ and ζ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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