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Abstract In light of recent experimental results, we revisit
the dispersive analysis of the ω → 3π decay amplitude and
of theωπ0 transition form factor. Within the framework of the
Khuri–Treiman equations, we show that the ω → 3π Dalitz-
plot parameters obtained with a once-subtracted amplitude
are in agreement with the latest experimental determination
by BESIII. Furthermore, we show that at low energies the
ωπ0 transition form factor obtained from our determination
of the ω → 3π amplitude is consistent with the data from
MAMI and NA60 experiments.
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1 Introduction

A precise description of the amplitudes involving three par-
ticles in the final state is one of the open challenges in hadron
physics. It becomes even more important in view of the
high precision data from the GlueX, CLAS12, COMPASS,
BESIII, and LHCb experiments, where various exotic states
decaying to three particles have been or will be measured [1–
7]. A proper description of three-particle amplitudes is also
required for extraction of resonance parameters from lattice
QCD computations [8–12].

At low energies the adequate formalism to treat the three-
body decays is based on the so-called Khuri–Treiman (KT)
equations [13] which make the maximal use of analyticity,
unitarity, and crossing symmetry via dispersion relations.
They were extensively applied in the study of the isospin
breaking η → 3π decay [14–20], and several other reac-
tions [21–25], and later generalized to include arbitrary spin,
isospin, parity, and charge conjugation for the decaying parti-
cle [26] (see also Ref. [27]). Among the various applications,
the decay of light vector isoscalar resonances ω/φ → 3π

serves as one of the benchmark cases for dispersion theory.
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Because of Bose symmetry only odd angular momentum is
allowed in each of the ππ channels, and thus the final state
is dominated by the J = I = 1 isobars, i.e. the ρ meson.
The latter is related to the J = I = 1 ππ partial wave
amplitude, which is known to high precision from the Roy
analysis of ππ scattering [28]. The existing analyses of the
decays of ω and φ to three pions [21,22,29–31] are mainly
based on unsubtracted dispersion relations, which result in a
parameter-free prediction of the shape of the Dalitz plot. The
φ decay was favorably compared to the high-statistics Dalitz-
plot data from the KLOE [32] and CMD-2 [33] experiments.
Until recently the only available data for ω → 3π came from
the WASA-at-COSY experiment [34]. Given that the nomi-
nal ρπ threshold is above the mass of the ω, the distribution
of events in the Dalitz plot is rather smooth and, therefore, it
can be efficiently parametrized in the experimental analyses
by a low-order polynomial in the Dalitz-plot variables. The
coefficient of the leading term in the Dalitz-plot polynomial
expansion (i.e. the Dalitz-plot parameter α) obtained this way
is consistent with the dominance of the ρ peak, even though
it lies outside the kinematical boundary. However, the exper-
imental uncertainties in the WASA-at-COSY measurement
were too large to verify the prediction of dispersion relation
calculations.

The situation changed recently when the high-statistics
data from BESIII became available [35]. A new set of ω →
3π Dalitz-plot parameters was extracted from the data and
was found to differ significantly from the predictions based
on (unsubtracted) dispersion relations of the KT equations
[21,22]. This is particularly unsettling since, as mentioned
above, there is good agreement between the data and the
predicted shape of the Dalitz plot in the case of the φ decays
[21]. Therefore, in this paper we reanalyze the ω → 3π

BESIII data with the KT equations.
As in any low-energy effective theory, the contribution

from inelastic channels enters as (free) parameters, and this
can be the origin of the discrepancy between the data and the
calculation based on the unsubtracted dispersion relations.
We also reanalyze the ωπ0 transition form factor (TFF),
which controls the ω → π0γ (∗) amplitude. At low ener-
gies, the TFF is sensitive to the ω → 3π amplitude. There are
recent data on the form factor from the MAMI [36] and NA60
[37,38] collaborations. As we will see below, the simultane-
ous analysis of both reactions allows one to better constrain
the subtraction constant of the ω → 3π amplitude.

The analysis presented in this paper could also be relevant
to understand the hadronic contributions to the anomalous
magnetic moment of the muon. The presently observed ∼3σ

deviation between theory [39–42] and experiment [43] has a
potential to become more significant once new measurements
at both Fermilab [44,45] and J-PARC [46] become avail-
able. The theoretical uncertainties mainly originate from the
hadronic vacuum polarization (HVP) and the hadronic light-

by-light (HLbL) processes, with ω → 3π, π0γ ∗ amplitudes
contributing to both. In particular, it was found that the reac-
tion γ ∗ → 3π , which builds upon V → 3π [47–49], gives
the second-largest individual contribution to the HVP integral
[50]. The same reaction together with the electromagnetic
pion form factor constrain the doubly virtual pion transition
form factor at low virtualities [48,49], which in turn gives the
leading contribution to the HLbL process [51]. Additionally,
in the calculation of the helicity partial wave amplitudes for
γ ∗γ ∗ → ππ [52–54], which are responsible for the two-
pion contribution to HLbL, the most important left-hand cut
beyond the pion pole is almost exclusively attributed to the
ω exchange. Thus, it depends on the ω → π0γ ∗ TFF. Given
the importance of the ω → 3π, π0γ ∗ amplitudes and the fact
that the currently available ones appear to be at odds with the
most recent data, we find it timely to perform a new study of
these reactions.

The paper is organized as follows. In Sect. 2 we briefly
review the KT formalism for the ω → 3π decay, and show
its relation to the ωπ0 TFF. In Sect. 3 we discuss fits to the
BESIII, MAMI and NA60 data. Our conclusions are given in
Sect. 4. Details of the statistical analysis performed to deter-
mine uncertainties of the fits are given in the Appendix A.

2 Formalism

2.1 Kinematics and initial definitions

We start by introducing the kinematical definitions for the
ω(pV ) → π0(p0) π+(p+) π−(p−) process. The Mandel-
stam variables are defined as:

s = (p+ + p−)2, t = (p0 + p+)2, u = (p0 + p−)2,

(2.1)

with s + t + u = m2
ω + 3m2

π . Throughout this manuscript
we work in the isospin limit with m2

π = m2
π± = m2

π0 . The
scattering angle in the s-channel, defined by the center of
mass of the π+π− pair, is denoted by θs and it is given by:

cos θs(s, t, u) = t − u

4 p(s) q(s)
,

sin θs(s, t, u) =
√

φ(s, t, u)

2
√
s p(s) q(s)

, (2.2)

where the momenta p(s) and q(s),

p(s) = λ
1
2 (s,m2

π ,m2
π )

2
√
s

, q(s) = λ
1
2 (s,m2

ω,m2
π )

2
√
s

, (2.3)

are those of the π± and π0, respectively, in the s-channel. The
well-known Källen or triangle function λ(a, b, c) is defined
as [55]:

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca. (2.4)
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The also well-known Kibble function φ(s, t, u) is given by
[56]:

φ(s, t, u) = (2
√
s sin θs p(s) q(s))2

= s t u − m2
π (m2

ω − m2
π )2, (2.5)

and it defines the boundaries of the physical regions of the
process through the solutions of φ(s, t, u) = 0. The Dalitz-
plot boundaries in t for a given value of s for the ω → 3π

decay process lie within the interval [t−(s), t+(s)], with

t±(s) = m2
ω + 3m2

π − s

2
± 2 p(s) q(s), (2.6)

while the allowed range for s is:

smin = 4m2
π to smax = (mω − mπ )2. (2.7)

2.2 ω → 3π amplitude from Khuri–Treiman equations

We briefly review here the KT formalism for the ω → 3π

decay amplitudes, referring to Refs. [21,22] for further
details. In the case of vector meson decay into three pions,
the helicity amplitude Hλ(s, t, u) can be expressed in terms
of the single invariant amplitude F(s, t, u),

Hλ(s, t, u) = i εμναβ εμ(pV , λ) pν+ pα− pβ
0 F(s, t, u), (2.8)

and at the same time decomposed into partial wave ampli-
tudes

Hλ(s, t, u) =
∞∑

J odd

(2J + 1) d J
λ0(θs) h

(J )
λ (s), (2.9)

where εμναβ is the Levi-Civita tensor, εμ(pV , λ) is the polar-
ization vector of the ω meson with helicity λ, and d J

λ0(θs) are
the Wigner d-functions with θs given by Eq. (2.2). For a
V → 3π decay, H0 = 0 and H+ = H−, due to parity. As
discussed in Ref. [22], one can rewrite the partial wave expan-
sion for the invariant amplitude F(s, t, u) in the following
form

F(s, t, u) =
∞∑

J odd

(p(s) q(s))J−1 P ′
J (cos θs) f J (s), (2.10)

where the exact relation between h(J )
+ (s) and the kinematic-

singularity-free isobar amplitudes f J (s) can be found in
Ref. [22]. The KT representation of the invariant amplitude
F(s, t, u) in Eq. (2.10) consists in substituting the infinite
sum of partial waves in the s-channel by three finite sums
of so-called isobar amplitudes, one for each of the s-, t- and
u-channels. By truncating each sum at Jmax = 1 we obtain
the crossing-symmetric isobar decomposition [21,22,26]:

F(s, t, u) = F(s) + F(t) + F(u), (2.11)

where each isobar amplitude, F(x), has only right-hand or
unitary cut in its respective Mandelstam variable. For the ππ

scattering a similar decomposition is known as the recon-
struction theorem [57–59]. For J = 1, the relation between
F(s) and f1(s) is obtained by projecting Eq. (2.11) onto the
s-channel partial wave,

f1(s) = F(s) + F̂(s), (2.12)

F̂(s) ≡ 3
∫ 1

−1

dzs
2

(1 − z2
s ) F(t (s, zs)), (2.13)

where zs = cos θs , and where the so-called inhomogeneity
F̂(s) contains the s-channel projection of the left-hand cut
contributions due to the t- and u-channels. Its evaluation in
the decay region requires a proper analytical continuation
[60]. Assuming elastic unitarity with only two-pion interme-
diate states, we arrive at the KT equation for the ω → 3π

decay, i.e. the unitarity relation for the isobar amplitude F(s):

disc F(s) = 2i(F(s) + F̂(s))

× sin δ(s) e−iδ(s) θ(s − 4m2
π ), (2.14)

where δ(s) is the P-wave ππ phase shift. Given the dis-
continuity relation Eq. (2.14), one can write an unsubtracted
dispersion relation (DR) for F(s) as

F(s) = 1

2π i

∫ ∞

4m2
π

ds′ disc F(s′)
s′ − s

, (2.15)

which can be solved numerically [14,19–21]. Its solution is
given in terms of the usual Omnès function [61],

�(s) = exp

[
s

π

∫ ∞

4m2
π

ds′

s′
δ(s′)
s′ − s

]
, (2.16)

defined by the real phase shift δ(s). For the latter we take the
solution of the Roy equations of Ref. [28], that are valid
roughly up to 1.3 GeV. From 1.3 GeV on we smoothly
guide δ(s) to π to obtain the expected asymptotic 1/s fall-off
behavior for the pion vector form factor (see e.g. Ref. [62]).
The solution of Eq. (2.15) is written as:

F(s) = �(s)

(
a + s

π

∫ ∞

4m2
π

ds′

s′
sin δ(s′) F̂(s′)
|�(s′)| (s′ − s)

)
, (2.17)

where the (complex) normalization constant a = |a| eiφa is
an overall normalization of the amplitude and can be fac-
tored out. Using PDG data, |a| can be fixed to reproduce the
experimental ω → 3π decay width. No observables of the
decay are sensitive to the overall phase φa . Due to the asymp-
totic behavior of F(s) implied by Eq. (2.17), the amplitude
F(s, t, u) satisfies the Froissart–Martin bound [21,63,64].

We emphasize that, even though F(s)/�(s) in Eq. (2.17)
looks like a once-subtracted dispersion relation, F(s) actu-
ally satisfies the unsubtracted dispersion relation given in
Eq. (2.15). Therefore, the energy dependence of F(s) is a

123
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pure prediction, which in the elastic approximation is given
solely by the P-wave ππ phase shift. Note that Eq. (2.17)
can be written in the form

F(s) = �(s)

×
(
a + b′ s + s2

π

∫ ∞

4m2
π

ds′

(s′)2

sin δ(s′) F̂(s′)
|�(s′)| (s′ − s)

)
, (2.18)

if b′ satisfies the following sum rule [21]:

b ≡ b′/a = 1

π

∫ ∞

4m2
π

ds′

(s′)2

sin δ(s′) F̂(s′)/a
|�(s′)| . (2.19)

In Ref. [21] its value was computed, with the result:

bsum 	 0.55 e0.15 i GeV−2, (2.20)

which we reproduce as a numerical cross-check. We note
that, due to the three-particle cut, which become physically
accessible in the decay amplitude, this subtraction constant
is complex and is thus determined by two parameters, its
modulus and phase, b = |b| eiφb .

In contrast to the unsubtracted DR in Eq. (2.15), one can
start from a once-subtracted DR:

F(s) = F(0) + s

2π i

∫ ∞

4m2
π

ds′ disc F(s′)
s′(s′ − s)

. (2.21)

The solution to Eq. (2.21) can be constructed as the linear
combination [19,21]:

F(s) = a[F ′
a(s) + b Fb(s)], (2.22a)

where now b is not constrained to satisfy Eq. (2.19), and the
functions F ′

a(s) and Fb(s) are given by

F ′
a(s) = �(s)

[
1 + s2

π

∫ ∞

4m2
π

ds′

s′2
sin δ(s′) F̂ ′

a(s
′)

|�(s′)|(s′ − s)

]
,

(2.22b)

Fb(s) = �(s)

[
s + s2

π

∫ ∞

4m2
π

ds′

s′2
sin δ(s′) F̂b(s′)
|�(s′)|(s′ − s)

]
.

(2.22c)

These functions only need to be calculated once, since they
are independent of the numerical values of a and b, which
become fit parameters, as will be discussed in Sect. 3. For
completeness, in Fig. 1 we show the solutions for F ′

a(s) and
Fb(s) using a numerical iterative procedure similar to those
employed in previous works [19,22,65,66].

By introducing one subtraction we reduce the sensitiv-
ity to the unknown high energy behavior of the phase shift
and/or to the inelastic contributions, which are thus embed-
ded in the subtraction constant. Furthermore, the parameter
b allows to parametrize some unknown energy dependence
of the ω → 3π interaction not directly related to ππ rescat-

tering.1 Strictly speaking, the amplitude F(s, t, u) built from
F(s) in Eq. (2.22a) would not satisfy the Froissart–Martin
bound [21,63,64] for an arbitrary value of the parameter
b 
= bsum [cf. Eq. (2.19)]. In practice, however, given the low-
energy regime in which Eq. (2.22a) is applied, this bound is
not relevant and we therefore do not constrain the value of b.

Finally, the measured differential decay width can be writ-
ten in terms of the invariant amplitude F(s, t, u) as

d2�

ds dt
= 1

(2π)3

1

32m3
ω

1

3

φ(s, t, u)

4
|F(s, t, u)|2. (2.23)

The ω → 3π Dalitz plot distribution is conventionally
parametrized in terms of the variables X , Y defined by

X = t − u√
3Rω

, Y = sc − s

Rω

, (2.24)

where sc = 1
3 (m2

ω +3m2
π ) and Rω = 2

3mω(mω −3mπ ). The
{X,Y } variables are related to the polar ones {Z , ϕ} through
X = √

Z cos ϕ and Y = √
Z sin ϕ, which enter into the

Dalitz-plot expansion as:

|Fpol(Z , ϕ)|2
=|N |2

[
1+2αZ+2βZ3/2 sin 3ϕ+2γ Z2+O(Z5/2)

]
.

(2.25)

In Eq. (2.25), α, β and γ are the real-valued Dalitz-plot
parameters and N is an overall normalization. In order to
obtain α, β, and γ for a given theoretical amplitude Fth(z, φ)

we minimize [21]

ξ2
Dalitz = 1

ND

∫

D
dZ dϕ

×
[

φ(Z , ϕ)

φ(0, 0)

|Fpol(Z , ϕ)|2 − |Fth(Z , ϕ)|2
|N |2

]2

,

ND =
∫

D
dZ dϕ, (2.26)

where D is the area of the Dalitz plot, φ(Z , ϕ) is φ(s, t, u)

with s, t , and u expressed in terms of the polar variables
{Z , ϕ}, and ξ2

Dalitz denotes the average deviation of the the-
oretical description and the polynomial one relative to the
Dalitz plot center. We also note that the Dalitz-plot parame-
ters enter into the difference in Eq. (2.26) linearly, and thus
the minimization can be algebraically solved.

2.3 ωπ0 transition form factor

The ωπ0 transition form factor, fωπ0(s), controls the ω →
π0γ ∗ amplitude, see e.g. Refs. [22,68,69]. A dispersive rep-

1 For instance, in Refs. [19,66,67], in the context of η → 3π KT
equations, the subtraction constants are used to match the dispersive
amplitude and its derivatives to the chiral ones, thus constraining the
value of those parameters.
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Fig. 1 Convergence behavior
of the iterative procedure for the
real (left plots) and imaginary
(right plots) parts of the
amplitudes F ′

a(s) (Eq. (2.22b),
upper plots) and Fb(s)
(Eq. (2.22c), lower plots). The
shaded area corresponds to the
ω → 3π physical decay region

Fig. 2 Diagrammatic representation of the two-pion contribution to
the discontinuity of the ωπ0 transition form factor [cf. Eq. (2.27)]. The
blue and red circles represent, respectively, the full s-channel P-wave
ω → 3π amplitude f1(s) and the pion vector form factor FV

π (s)

resentation of fωπ0(s) is fully determined, up to possible
subtractions, by the discontinuity across the right hand cut.
In order to be consistent with the elastic approximation in the
ω → 3π study, we include only the two-pion contribution

to the discontinuity (see Fig. 2 for a diagrammatic interpre-
tation) [68,70]:

disc fωπ0(s) = i
p3(s)

6π
√
s
FV

π

∗
(s) f1(s) θ(s − 4m2

π ), (2.27)

which requires as input the full s-channel P-wave ω → 3π

amplitude f1(s) given in Eq. (2.12) and the pion vector form
factor FV

π (s), which we approximate by the Omnès function
�(s) given in Eq. (2.16). This is a reasonable approxima-
tion given the low ωπ0 invariant mass that we explore in
this work. Because we are using a once-subtracted disper-
sion relation for the ω → 3π KT equations, an unsubtracted
dispersion relation for the TFF, as used for instance in Refs.
[22,68], would result in a divergent integral if no cutoff is
used. Therefore, we resort to a once-subtracted dispersion
relation for the TFF itself,

fωπ0(s) = | fωπ0(0)| eiφωπ0 (0)

+ s

12π2

∫ ∞

4m2
π

ds′

(s′)3/2

p3(s′) FV
π

∗
(s′) f1(s′)

(s′ − s)
,

(2.28)

123
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Table 1 Dalitz plot parameters
α, β, and γ , obtained by
previous theoretical [21,22,71]
and experimental [34,35]
analyses. For the dispersive
analyses [21,22], we show the
results obtained with and
without KT equations (i.e., with
F(s) proportional to an Omnés
function, see also Sect. 3.3).
Also shown are our results, for
the two solutions that we find in
this work. The upper (lower)
part of the table show the results
when 2 (3) Dalitz plot
parameters are determined. In
our results, the first and second
error represent our statistical
and systematical uncertainties,
respectively, as discussed in
Sect. 3.2

Reference α × 103 β × 103 γ × 103

2 par. (α, β)

Ref. [71] (ππ rescattering) 190 54 –

Ref. [22], w KT 84 28 –

Ref. [22], w/o KT 125 30 –

Ref. [21], w KT 79(5) 26(2) –

Ref. [21], w/o KT 130(5) 31(2) –

WASA-at-COSY [34] 133(41) 37(54) –

BESIII [35] 120.2(8.1) 29.5(9.6) –

This work, low φωπ0 (0) 121.2(7.7)(0.8) 25.7(3.3)(3.3) –

This work, high φωπ0 (0) 120.1(7.7)(0.7) 30.2(4.3)(2.5) –

3 par. (α, β, γ )

Ref. [71] (ππ rescattering) 172 43 50

Ref. [22], w KT 80 27 8

Ref. [22], w/o KT 113 27 24

Ref. [21], w KT 77(4) 26(2) 5(2)

Ref. [21], w/o KT 116(4) 28(2) 16(2)

BESIII [35] 111(18) 25(10) 22(29)

This work, low φωπ0 (0) 112(15)(2) 23(6)(2) 29(6)(8)

This work, high φωπ0 (0) 109(14)(2) 26(6)(2) 19(5)(4)

where we indicate explicitly the existence of a non-vanishing
phase of fωπ0(s) at s = 0. This is implied by the cross-
channel effects, i.e. the functions FV

π (s) and f1(s) do not
have the same phase, and the discontinuity of fωπ0(s) is
in general complex [68], even for φa = 0. The modulus
of the subtraction constant | fωπ0(0)| can be fixed from the
ω → π0γ partial decay width

�(ω → π0γ ) = e2(m2
ω − m2

π0)
3

96πm3
ω

| fωπ0(0)|2, (2.29)

while its phase φωπ0(0) is a free parameter that will be fixed
from fits to the transition form factor experimental data. On
the other hand, this phase appears only in the first term of
Eq. (2.28), while the phase φa appears only in the second
term. Thus, only the relative phase φωπ0(0) − φa is relevant,
and, bearing this in mind, we set φa = 0.

3 Results

3.1 General approach

The two amplitudes defined in the previous section depend
on a total of five real parameters. The ω → 3π ampli-
tude depends on |a| and b = |b| exp(iφb) [cf. Eq. (2.22a)],
whereas the ωπ0 transition form factor additionally depends
on the subtraction constant at s = 0, fωπ0(0), also complex.
To fix those unknown constants we will use the following
experimental information:

(a) the recent determination of the ω → 3π decay Dalitz
plot parameters by BESIII [35], shown in Table 1. We
note that there are two different determinations, labeled
as “2 par.” and “3 par.”, corresponding to whether the
Dalitz plot distribution is assumed to be described by two
(α and β) or three (α, β, and γ ) parameters, respectively;

(b) the ω → 3π and ω → π0γ decay widths, for which
we take the PDG values [43], �ω = 8.49 ± 0.08 MeV,
B(ω → 3π) = 89.3 ± 0.6 %, and B(ω → π0γ ) =
8.40 ± 0.22 %;

(c) the data on
∣∣ fωπ0(s)/ fωπ0(0)

∣∣2 for low ωπ0 invariant
mass by the A2 collaboration at MAMI [36] and by the
NA60 collaboration at SPS [37,38]. From the NA60 col-
laboration data, we will only consider for our fits the
most up to date analysis [38].

For each of these sets we define the following χ2 func-
tions,

χ2
DP =

(
α(th) − α(exp)

σα

)2

+
(

β(th) − β(exp)

σβ

)2

+
(

γ (th) − γ (exp)

σγ

)2

, (3.1a)

χ2
� =

(
�

(th)
ω→3π − �

(exp)
ω→3π

σ�ω→3π

)2
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+
⎛

⎝
�

(th)
ω→π0γ

− �
(exp)
ω→π0γ

σ�
ω→π0γ

⎞

⎠
2

, (3.1b)

χ2
A2,NA60 =

∑

i

⎛

⎜⎝

∣∣∣ f (th)
ωπ (si )

∣∣∣
2 −

∣∣∣ f (exp), i
ωπ

∣∣∣
2

σ
f (i)
ωπ

⎞

⎟⎠

2

, (3.1c)

where in χ2
A2 and χ2

NA60 the sum runs over the experimental
points with

√
si � 0.65 GeV.

To determine the role of each data set, we start by consider-
ing the ω → 3π Dalitz plot parameters alone, since they only
depend on |b| and φb. In a first step, we fix |b| and φb from
the Dalitz plot parameters (i.e., by minimizing χ2

DP), and, in
a second step, we fix |a| and

∣∣ fωπ0(0)
∣∣ from the decay widths

(i.e., by minimizing χ2
�). We obtain the following values for

the “2 par.” case:

|b| = 2.65(1.10) GeV−2, φb = 1.70+1.40
−0.70,

10−2 |a| = 2.82(72) GeV−3,
∣∣ fωπ0 (0)

∣∣ = 2.314(31) GeV−1, (“2 par.”),
(3.2a)

whereas, for the “3 par.” case, one gets:

|b| = 2.88+1.65
−0.85 GeV−2, φb = 1.85+1.45

−0.45,

10−2 |a| = 3.00(68) GeV−3,
∣∣ fωπ0 (0)

∣∣ = 2.314(31) GeV−1, (“3 par.”).
(3.2b)

Because we are fitting two or three experimental points with
two free parameters, the χ2

DP is zero for the “2 par.” case, and
almost zero for the “3 par.” case. In turn, this manifests in
the large value of the errors shown in Eqs. (3.2). These errors
are obtained through the condition �χ2

DP � 1. We note that
the value obtained for b is quite different from the value of
bsum [cf. Eq. (2.20)], as also shown in Fig. 3. This reinforces
the idea that, in order to achieve a proper description of the
BESIII Dalitz plot parameters, an additional subtraction is
needed within the KT formalism.2

In Eqs. (3.2) we have fixed all the free parameters but
φωπ0(0), and we now study the dependence of the ωπ0 TFF
on this phase. In Fig. 4 we show how χ2

A2 and χ2
NA60 depend

on this phase for fixed values of the other parameters. We
present the result for the “3 par.” case, Eq. (3.2b), but an
analogous result is obtained for the “2 par.” case. We observe
that there are two minima, one at φωπ0(0) 	 0.2 and another
one at φωπ0(0) 	 2.5, to which we refer in what follows as
“low φωπ0(0)” and “high φωπ0(0)” solutions, respectively.
Furthermore, it is observed that the values of χ2

NA60,A2 are
similar in both cases, i.e., both solutions describe the data
with similar quality.

2 We note here that in the φ → 3π study of Ref. [21] it is also found
that the fitted value of b differs from the equivalent sum rule, although
the differences are much smaller than in our ω → 3π case.

Fig. 3 Comparison of different determinations of the free parameters
(|b| , φb) for the “2 par.” case (similar results are obtained for “3 par.”).
The blue solid (red dashed) line represents our two-parameter (|b| , φb)

1σ (68% CL) error ellipse for the low (high) φωπ0 (0) solution (global
fits, χ2, cf. Eq. (3.3)) described in Sect. 3.2, with parameters given in
Table 2. Errors are estimated with MC resampling, as explained in the
text and in Appendix A. The background color represents the value
of the function χ2

DP [cf. Eq. (3.1a)] as a function of |b| and φb, thus
corresponding to the fit described in Sect. 3.1 [cf. Eq. (3.2a)]. The
green dashed line represents the χ2

DP 	 2.3 contour (at the minimum,
χ2

DP = 0), that corresponds to the two-parameter 1σ region. Lastly, the
black diamond represents the value bsum, Eq. (2.20)

Fig. 4 Dependence of the χ2
NA60,A2 functions on the phase φωπ0 (0) for

fixed values of the other free parameters, as described in the text

3.2 Global fit results

Given that we are able to separately reproduce the experi-
mental data on the two reactions, in the next step we perform
a simultaneous fit. To that end, we minimize the following
χ2-like function,

χ2 = N

(
χ2

DP

NDP
+ χ2

�

N�

+ χ2
NA60

NNA60
+ χ2

A2

NA2

)
, (3.3)
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Table 2 Values of the fitted parameters (upper part) and of the different
χ2 functions (lower part) for the four different fits considered in this
work (see Sect. 3.2 for details). The first error represents our 1σ statisti-
cal uncertainty, and is computed through MC resampling, as explained

in the text and in the Appendix A. The second error is the systematic
uncertainty attached to our calculation. It is obtained by considering a
finite cutoff in the integral Eq. (2.28), as explained in the text

2 par. 3 par.

Low φωπ0 (0) High φωπ0 (0) Low φωπ0 (0) High φωπ0 (0)

10−2 |a| [
GeV−3

]
3.14(25)(56) 2.63(25)(22) 3.11(28)(38) 2.70(30)(18)

|b| [
GeV−2

]
3.15(22)(35) 2.59(35)(30) 3.25(26)(32) 2.65(35)(31)

φb 2.03(14)(24) 1.61(38)(26) 2.03(13)(18) 1.70(27)(20)
∣∣ fωπ0 (0)

∣∣ [
GeV−1

]
2.314(32)(1) 2.314(32)(1) 2.314(32)(1) 2.315(32)(1)

φωπ0 (0) 0.207(60)(150) 2.39(46)(3) 0.195(76)(140) 2.48(31)(2)

χ2
DP [NDP = 2 or 3] 0.19 < 0.01 0.10 0.03

104χ2
� [N� = 2] 2.4 2.4 1.1 3.5

χ2
A2 [NA2 = 14] 2.3 3.6 2.4 3.7

χ2
NA60 [NNA60 = 22] 31 35 31 35

Fig. 5 Real (left) and
imaginary (right) parts of the
function F(s) (modulo |a|) [cf.
Eq. (2.22)], with b = |b| eφb as
in Table 2, case “3 par.”. We
show the results for the “low
φωπ0 (0)” (blue solid) and “high
φωπ0 (0)” (red dash-dotted)
solutions. The error bands are
obtained from a MC analysis of
the fitted data, and represent the
correlated 1σ uncertainty in our
parameters

where NDP = 2 or 3 is the number of Dalitz plot parameters
considered, N� = 2 the experimental partial widths, NA2 =
14 and NNA60 = 22 the experimental points in the two sets
for |Fωπ(s)|2, and N = NDP + N� + NA2 + NNA60. This
ensures that χ2 functions with a smaller number of points
are well represented in χ2, and are not overridden by those
with a larger number of points.

When the simultaneous fit is performed we observe, as
expected, that the two solutions remain. The two minima are
well separated, as can be seen in Fig. 4, so that we can ana-
lyze each solution individually. Besides these two solutions,
we must also consider the two different sets of Dalitz-plot
parameters given by the BESIII collaboration, as shown in
Table 1. Therefore, we perform four different fits, and the
fitted parameters, as well as the individual values of the χ2

functions, are compiled in Table 2. We quote two errors, the
first is statistical and the second one systematic/theoretical.
The statistical errors are obtained through a Monte Carlo
(MC) analysis with data resampling (bootstrap [72–74]), and
they represent 1σ level uncertainties (see Appendix A for
further details). The values obtained for the individual χ2

functions imply a good quality of the fits. As a consistency

check between the “2 par.” and “3 par.” data sets, we note that
the values of the parameters are similar among the two “low
φωπ0(0)” solutions (second and fourth columns in Table 2),
as well as among the two “high φωπ0(0)” solutions (third and
fifth columns). As an illustration, we show in Fig. 5 the func-
tion F(s) obtained using the values of the parameters that
correspond to the “3 par.” set, for both solutions. Regarding
specifically the values of |b| and φb, we note that both solu-
tions fall well within the region determined by the fit to only
BESIII data described in Sect. 3.1, see Fig. 3. This means
that both solutions originate from that, but have much more
constrained uncertainties as a result of the inclusion of the
TFF data. We also note that the two widths considered in
the χ2 (�ω→3π and �ω→π0γ ) are reproduced with the same
central values and errors as the experimental ones.

The systematic uncertainty attached to our calculation is
obtained as follows. Because of the additional subtraction
performed in the ω → 3π KT amplitude [Eqs. (2.22)] and
the subtraction in the TFF [Eq. (2.28)], the convergence of the
integral term in the latter is only as good as that of the case
in which both amplitudes are obtained from unsubtracted
dispersion relations. This convergence is relatively slow, so,
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Fig. 6 Dependence of the Dalitz plot parameters (X = α, β, γ ) when
a cutoff � is used as an upper integration limit in the TFF dispersive rep-
resentation, Eq. (2.28). This dependence is used to estimate a systematic
uncertainty. See the text for more details

in order to quantify potential uncertainties from it, we study
the dependence of our fits for a finite upper limit � in the
integral in Eq. (2.28). In particular, we fit the free parameters
for running finite values of the cutoff �, obtaining also the
output quantities (Dalitz plot parameters and TFF) for these
cutoff values. In general, we observe that the results for a
cutoff � 	 1 GeV2 are already very similar to the case when
� = ∞. For instance, in Fig. 6 we represent the dependence
on � of the Dalitz plot parameters (to be discussed later
on), for the “3 par.”, “low φωπ0(0)” case. The uncertainty we
attach to every quantity is the absolute value of the difference
between the fits performed for � = ∞ and � = (mω +
mπ )2. This latter value is the ωπ threshold, beyond which
our model would be certainly not reliable. We observe that
the uncertainty attached to the fitted parameters and to the
Dalitz plot parameters is sizeable, but not for the TFF itself,
due to the fact that it dominates the χ2-like function. For this
reason, we do not show a systematic uncertainty of the TFF
in what follows.

The results for the TFF are shown in Fig. 7 for the low and
high φωπ0(0) solutions. It can be seen that both of them agree
very well with the experimental points, except for the highest
two points of the NA60 data.3 Also, it should be noted that
both solutions are almost indistinguishable. The largest dif-
ference is at the ωπ0 invariant mass

√
s 	 0.3 GeV, which

is near the 2π threshold, but even there they are compati-
ble at 1σ level. Although we will later on compare in detail
our results with other approaches, it is worth pointing out

3 These two points give a contribution of around 17 to χ2
NA60. However,

we note that fits without these two points give similar results as the ones
discussed in the text.

Fig. 7 Normalized ωπ0 TFF, | fωπ0 (s)/ fωπ0 (0)|2. The data are taken
from Refs. [36–38]. The lines, and their associated error bands, represent
our two different solutions, which overlap almost completely in the ωπ0

invariant mass range shown. The case shown here is that corresponding
to the “3 par.” fit. The curves for the “2 par.” case are very similar.
For comparison, we also show the Vector Meson Dominance (dot-dot-
dashed brown) prediction, and that of the model without KT equations
(dotted pink curve) discussed in Sect. 3.3, cf. Eqs. (3.4)

here that our theoretical description of the data represents an
improvement over previous theoretical analyses [22,68,75].

We note that the different phase φωπ0(0) in both solutions
translates into a difference in the phase of the TFF in a large
region of ωπ0 invariant mass, up to

√
s 	 0.6 GeV, as shown

in Fig. 8. For energies
√
s � 0.6 GeV the phase motion asso-

ciated with the ρ meson kicks in, and both solutions approxi-
mately converge. This phase, or more properly the phase dif-
ference φωπ0(0)− φa (see Sect. 2.3) has not been measured,
to the best of our knowledge, and thus Fig. 8 constitutes a pre-
diction for it.4 Finally, we note that the “low φωπ0(0)” solu-
tion is rather close to φωπ0(0) = 0, and the “high φωπ0(0)”
is close (but less than the previous one) to φωπ0(0) = π . If
the amplitudes were computed from a Lagrangian approach
with a stable ω, the couplings in the Lagrangians would be
real. Then, one would expect real values for a and fωπ0(0),
and thus their relative phase could only be 0 or π . Anyhow,
we find that the inclusion of this phase with a value different
from 0 or π improves the description of the data, since they
are different from zero by approximately 2σ .

In what relates to the Dalitz plot parameters, we find good
agreement between the input taken from BESIII and our
results, see Table 1, which results in the low χ2

DP shown in
Table 2, in the four cases considered (low or high φωπ0(0), 2
or 3 Dalitz plot parameters). The largest difference between

4 A different prediction is given in Ref. [68], as discussed later on in
Sect. 3.3.
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Fig. 8 Dependence on s of the phase of the ωπ0 transition form factor,
φωπ0 (s), for the two different solutions described in the text. At s = 0,
the phase is given by the fitted parameter φωπ0 (0) shown in Table 2.
The error bands represent our (correlated) 1σ uncertainties in the fitted
parameters, obtained from a MC analysis of the data. We show here
the curves for the “3 par.” fit. The phases for the “2 par.” case are
very similar. For comparison, we also show the prediction of the model
without KT equations (dotted pink curve) discussed in Sect. 3.3, cf.
Eqs. (3.4)

observables used in our fit for the “3 par.” case is found in
γ . The values that we obtain, γ = (19 ± 5 ± 4) × 10−3

and (29 ± 6 ± 8) × 10−3 for the “low φωπ0(0)” and “high
φωπ0(0)” solutions, respectively, are both compatible with
the experimental one used in the fit, γ = (22 ± 29) × 10−3.
However, our values are found to be better constrained and
indicate that this parameter is non-zero at a ∼3σ level. Inter-
estingly, the two values of γ are only marginally compatible
and a more precise measurement of the ω → 3π Dalitz-plot
parameters could help in pinning down the correct solution.
A similar argument, though less stringent, can be made for β

in the “2 par.” fits. As previously mentioned, in the process
of obtaining the systematic errors described above we have
also recomputed the Dalitz plot parameters, which allows us
to propagate this uncertainty into them. This uncertainty is
also shown in Table 1, and turns out to be small for α and β,
but larger for γ .

3.3 Comparison with previous approaches

Our results obtained by solving KT equations for theω → 3π

amplitude, are compared with those from Refs. [21,22] in
Table 1. The difference between these approaches and ours
lies in the subtraction that we have performed on the KT dis-
persion relations, which introduces an additional free param-

eter, b. In Ref. [21], an estimation for this parameter is given
by enforcing the once-subtracted DR to be equivalent to the
unsubtracted DR. This value, bsum 	 0.55e0.15i GeV−2,
Eq. (2.20), turns out to be far away from our fitted b (for
any of the fits in Table 2), which reaffirms the need of the
extra subtraction. Due to this subtraction, and the fits per-
formed in Sects. 3.1 and 3.2, our results for the Dalitz-plot
parameters are in agreement with those of the BESIII exper-
iment. Nonetheless, we must recall here that the disagree-
ment between the BESIII [35] Dalitz-plot parameters and
that obtained with unsubtracted KT equations [21,22] lies
only in the α parameter, as can be seen in Table 1. In partic-
ular, the 3-parameter determinations give α = 111(18), 77,
and 80, respectively. Our results (with a once-subtracted KT
equation) for the α parameter are 109(14)(2) and 112(15)(2)

for the high and low-φωπ0(0) solutions, respectively. While
one subtraction is required to achieve good agreement with
the experimental data, the difference between the once-
subtracted and unsubtracted KT equations determination of
the α parameter turns out to be only around 2σ .5

The values of the TFF given by the KT approach without
the additional subtraction used in our work for the ω → 3π

amplitude lie systematically below the experimental points
[22,68]. In Ref. [22] it was shown that without the extra
subtraction a satisfactory result for the TFF can be obtained
only if additional terms are retained in the non-dispersive
term (see Fig. 8 of that reference). In contrast, as discussed in
Sect. 3.2, our results for the TFF are in good agreement with
the experimental data. In particular, our approach represents
a significant improvement in the description of the NA60
higher energy data, although we will further discuss about
this issue in Sect. 3.4.

In Table 1 we show the results obtained in Refs. [21,22]
when the crossed channel effects, which are the essential
outcome of the KT equations, are “turned off” from the isobar
F(s). In practical terms, this is achieved by neglecting the
contribution of F̂(s) in Eq. (2.22), such that F(s) is simply
an Omnès function times a constant,

Fsim(s) = a′ �(s). (3.4a)

The reduced full amplitude would then read

Fsim(s, t, u) = a′(�(s) + �(t) + �(u)), (3.4b)

The proportionality constant, a′ instead of a, is cho-
sen to reproduce the ω → 3π width, 10−2

∣∣a′∣∣ =
2.818(18) GeV−3, but it is a global constant and does not
affect the values of the Dalitz plot parameters. Interestingly,
as discussed in Sect. 1, the Dalitz plot parameters obtained
in Refs. [21,22] in this simplified approach appear to be in
better agreement with the recent experimental determination

5 We have added in quadrature our statistical and systematic errors,
although the impact of the latter is negligible in α.
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Fig. 9 Absolute value (green solid), real (red dot-dot-dashed) and
imaginary (blue dashed) parts of the F(s)/Fsim(s) ratio, as described
in the text. The ratio is shown in the physical decay range of s

by BESIII [35] than those obtained with the crossed channel
effects included (but no extra subtraction), cf. Table 1, rows
denoted “w/o KT” vs. those denoted “w KT”, respectively.
In sharp contrast, we show in this work that the results we
obtain by keeping the crossed channel effects, and with the
additional subtraction, reproduce very well the experimen-
tal Dalitz-plot parameters, and are consistent with the ωπ0

TFF. We first discuss why the determination of the Dalitz-
plot parameters is very similar in our approach (subtracted
KT) and in the simpler model (no KT, Eqs. (3.4)). Later on,
we will compare the results for the TFF.

The aforementioned agreement is clear, as can be seen
in Table 1, and hence there must be some sort of cancella-
tion that “brings back” our full subtracted KT approach into
the simpler, no KT model. Naively, if one thinks that the
KT formalism is overestimating the crossed channel effects,
it would be expected that this cancellation would occur in
the isobar amplitude itself, F(s), i.e., that the effect of the
crossed channels is mostly linear and thus can be absorbed
by the additional subtraction constant, b. In this case, the
ratio F(s)/Fsim(s) should be essentially constant. We show
in Fig. 9 that this is certainly not the case, although the mod-
ulus of the ratio is still around 1. Here, we are taking the
parameters of the “low φωπ0(0)” solution for the “3 par.”
case, but similar results are obtained in the other fits. This
demonstrates that the cancellation is not trivial, as one would
expect if the crossed channel effects were simply being over-
estimated.

The cancellation must thus occur at the level of the
squared amplitude, |F(s, t, u)|2 = |F(s) + F(t) + F(u)|2.
In Fig. 10 we show |F(s, t, u)|2 for

√
s in the physical

decay region for two lines across the (s, t, u) plane, namely,
t = u and t = sc (respectively corresponding to X = 0
and Y = −√

3X in the usual (X,Y ) Dalitz plot variables,
cf. Eq. (2.24)). We also show in the figures the function

|Fsim(s, t, u)|2, i.e., the full amplitude squared for the sim-
pler model [Eqs. (3.4)] discussed above. It can be seen in
Fig. 10 that the differences between both squared moduli are
quite small. We also find that the phase difference between
our F(s, t, u) and Fsim(s, t, u) is essentially constant. This
large cancellation explains the coincidence of the results for
the Dalitz plot parameters in both approaches.6

As a result of the above discussion, one might question
the necessity of the full approach if, after all, the rather sim-
pler description with no subtractions and no crossed chan-
nel effects, Eq. (3.4), seems to work just fine. However, it
must be noted that this simpler model only describes well
the ω → 3π Dalitz-plot parameters, but not the distribution
for the φ → 3π decay [21] nor the more precise experimen-
tal information on the ωπ0 TFF. In Ref. [68] it is shown that
a model which ignores the crossed-channel effects by insert-
ing f1(s) = a′�(s) into Eq. (2.28) gives a result well below
the experimental points (see Fig. 5 of Ref. [68]). We could
also take the partial wave that results from Eqs. (3.4a) and
(3.4b), which is given by

f1,sim(s)

= a′
(

�(s) + 3
∫ 1

−1

dzs
2

(1 − z2
s ) �(t (s, zs))

)
. (3.4c)

This model, when introduced into Eq. (2.28), produces the
result shown as a pink dotted line in Fig. 7, which is well
below the experimental points and our results.7 This result
for the TFF is very similar to that of Ref. [68] mentioned
above.

In summary, from a phenomenological point of view, our
description of the Dalitz-plot parameters and of the TFF using
a once-subtracted version of the KT equations is (not sur-
prisingly) better than that obtained with unsubtracted KT
equations [21,22,68]. On the other hand, the simpler model
of Eqs. (3.4), in which the KT effects are ignored, describe
properly the Dalitz-plot parameters (see the discussion above
about Figs. 9 and 10), but not the TFF data. Therefore, it
seems that our approach, in which a KT equation for the
ω → 3π amplitude is solved with an additional subtraction,
is the minimal theoretical setup that is able to simultaneously
describe both sets of data. From a more theoretical perspec-
tive, it is clear that the crossed channel effects must be present
in any 2 → 2 or 1 → 3 amplitude, even if they are negligi-
ble or can be mimicked by polynomial terms [59]. The KT
formalism offers a simple framework which allows to pro-
vide the partial waves in the direct channel with left hand
cuts in terms of the isobars of the crossed channels, while

6 The cancellation is also aided by the fact that the nominal ρ-meson
mass lies outside the physical ω → 3π decay region, and hence the
Omnès function is still relatively smooth.
7 The phase of the TFF predicted in this case is also quite different from
our results, see Fig. 8.

123



 1107 Page 12 of 18 Eur. Phys. J. C          (2020) 80:1107 

Fig. 10 Modulus squared of
the amplitudes in our full model
(F(s, t, u), dashed blue lines)
and in the simplified model
(Fsim(s, t, u), Eqs. (3.4), solid
red lines). The left (right) plot
shows the functions along the
t = u (t = sc) lines of the
Mandelstam plane. The ratio is
shown in the physical decay
range of s for each of the cases
considered

allowing to incorporate crossing symmetry, unitarity and, to
some extent,8 analyticity.

3.4 Analyticity and unitarity bounds on the ωπ0 transition
form factor

In Refs. [29,30] the authors derived bounds on the modulus of
the TFF based on unitarity and analyticity using the methods
of unitary bounds [78,79]. The upper and lower bounds of
the TFF are given by:

f (±)

ωπ0(s) = f (0)

ωπ0(s) ± δ f (0)

ωπ0(s), (3.5)

where:9

f (0)

ωπ0(s) = 1

C(z(s))

∣∣∣∣∣g(0) + 1

2π i

∫ s+

4m2
π

ds′ �(s′)
z(s′) − z(s)

∣∣∣∣∣ ,

(3.6a)

δ f (0)

ωπ0(s) = z(s)√
1 − z2(s)

1

C(z(s))
I ′, (3.6b)

�(s′) = C(z(s′)) z′(s′) disc fωπ0(s′). (3.6c)

The conformal mapping z(s),

z(s) = 1 − √
1 − s/s+

1 + √
1 − s/s+

, (3.7)

maps the elastic region 4m2
π � s � s+ = (mω + mπ )2 into

the real segment z(4m2
π ) � z(s) � 1, whereas the inelastic

region s � s+ is mapped into the disk |z(s)| = 1. The so

8 For discussion on this topic, see e.g. Refs. [26,76,77] and references
therein.
9 Here we are writing Eq. (41) of Ref. [29] (or, equivalently, Eq. (22)
of Ref. [30]) with the necessary adaptions to our notation.

called outer function C(z) is given by:

C(z) =
√

1 − z2

2
√
s+

. (3.8)

The quantities I ′ and g(0) are written as:

g(0) = fωπ0(0)C(0) − 1

2π i

∫ s+

4m2
π

ds′ �(s′)
z(s′)

, (3.9a)

I ′2 = I −
∫ s+

4m2
π

ds′ds′′ �(s′)�(s′′)
1 − z(s′)z(s′′)

− |g(0)|2 , (3.9b)

I =
∫ ∞

s+
ds′

∣∣∣∣
fωπ0(s′)

s′

∣∣∣∣
2

. (3.9c)

As can be seen from the previous discussion, the central
value of the bounds f (0)

ωπ0(s) depends only on input quanti-
ties, i.e., the discontinuity disc fωπ0(s) for s � s+ and the
subtraction constant fωπ0(0). In Fig. 11 we show as a green,
solid line this central value for the case in which the unsub-
tracted ω → 3π KT equations [22,68] are used as an input
for the discontinuity. For comparison, we also show the TFF
itself with a green, dashed line, and it can be seen that both
curves are similar. In contrast, the amplitude of the bound
δ f (0)

ωπ0(s) is proportional to I ′, Eq. (3.9b), which involves the
constant I , Eq. (3.9c). This constant, in turn, depends on
the form factor at high energies, s > s+. In Ref. [30] the
value I = 4.63 GeV−4 is estimated by interpolating the high
energy data by the CMD Collaboration [80], which come
from the e+e− → ωπ0 reaction. They are shown in Fig. 11,
together with those of the SND Collaboration [81] (see also
Refs. [82,83]). These data are measured at energies above
the ωπ0 threshold, which lies beyond the focus of our paper.
This value I = 4.63 GeV−4 is the one we have used to com-
pute δ f (0)

ωπ0(s), and in Fig. 11 we show with a green band

123



Eur. Phys. J. C          (2020) 80:1107 Page 13 of 18  1107 

the resulting range f ±
ωπ0(s) for the unsubtracted ω → 3π

amplitude.
Now we discuss the same calculation of the bounds when

the once-subtracted ω → 3π amplitude is used. In partic-
ular, we use the 3 par., low φωπ0(0) fit in Table 2 (similar
results are obtained for the other cases). The central value of
the bounds f (0)

ωπ0(s) [Eq. (3.6a)] is shown in Fig. 11 with a
blue, solid line. The blue, dashed line shows the TFF (i.e., the
blue line of Fig. 7), and it can be noted that, as in the case of
the unsubtracted ω → 3π amplitude, both curves are simi-
lar. However, we cannot compute the amplitude of the bound
δ f (0)

ωπ0(s) because if we use the previous value of I into our
calculation of I ′, the r.h.s. in Eq. (3.9b) turns out to be nega-
tive. This is due to the fact that the integral terms in Eq. (3.9b)
are much larger when the once-subtracted ω → 3π ampli-
tude is used instead of the unsubtracted one. In Ref. [30] the
possibility of Eq. (3.9b) being negative is interpreted as an
incompatibility of the computed form factor with the princi-
ples of unitarity and analyticity. From our perspective, since
the value I = 4.63 GeV−4 is obtained from higher energy
experimental data, the incompatibility is actually between
these data and our low energy description of the transition
form factor. Since, ultimately, our low energy TFF is driven
by the low energy data, this incompatibility could actually
point to a tension between low and high energy data. No
strong claims can be done in this respect since an extension
to the higher energy region would require taking into account
higher resonances in the pion vector form factor, and possi-
bly the inclusion of inelastic thresholds. Still, in order to give
an estimation of the bounds in Eq. (3.5), instead of taking the
value I = 4.63 GeV−4 from Ref. [30] we can compute I
in Eq. (3.9c) from our own model (we use the 3 par., low
φωπ0(0) solution of Table 2). In this way, we obtain a larger
value for I , that we denote Ith, Ith = 33 GeV−4, and now
the quantity I ′2 in Eq. (3.9b) becomes positive, “confirming”
the compatibility of our form factor with analyticity and uni-
tarity. If we use this value Ith in the calculation of δ f (0)

ωπ0(s)
for the once subtracted ω → 3π amplitude, we obtain the
blue band shown in Fig. 11. The band is larger than in the
unsubtracted case because of the larger value of I ′, as dis-
cussed in Ref. [30]. Interestingly enough, we see that even if
the band is larger, the two highest energy data points of the
NA60 collaboration still lie outside of the bounds, pointing to
the aforementioned possible tension. We thus conclude that
more analysis is needed, both on the theoretical and on the
experimental sides, to bring together the low and high energy
data and their theoretical description.

4 Outlook

Summary In this work we have explored the benefits of a
simultaneous analysis of the ω → 3π decay and the ωπ0

Fig. 11 Normalized ωπ0 TFF, | fωπ0 (s)/ fωπ0 (0)|2. The experimen-
tal points are taken from Refs. [36–38,80,81]. The green (blue) lines
represent the case in which the unsubtracted (once subtracted) KT equa-
tions are used for the ω → 3π amplitude. The dashed lines represent
the value of the TFF from a subtracted DR, Eq. (2.28). The solid lines
represent the central value of the bounds f (0)

ωπ0 (s), Eq. (3.6a), whereas

the band represent the bounds, Eq. (3.5). The values I = 4.63 GeV−4

(from Ref. [30]) and Ith = 33 GeV−4 are used in the unsubtracted and
once subtracted case calculations of the bounds, respectively

transition form factor. The motivation for this study is man-
ifold. First, from the point of view of strong interactions,
the decay ω → 3π offers a good environment to study the
dynamics of the ππ subsystems under rather clean condi-
tions. Second, the BESIII collaboration has reported a high-
statistics measurement of the ω → 3π Dalitz plot distribu-
tion, and pointed out a possible overestimation of the crossed-
channel contributions in the KT equations. Third, there are
recent data on the shape of the ωπ0 TFF from the MAMI
and NA60 collaborations making such an analysis of timely
interest.

For the ω → 3π amplitude we follow a dispersive rep-
resentation with subtractions that emerges from the solution
of the KT equation. It thus satisfies the constraints posed by
analyticity (to some extent), crossing symmetry and (elastic)
unitarity, and it is completely determined by the ππ P-wave
scattering phase shift, except for the values of the subtraction
constants. In this work we have performed one subtraction,
which introduces an additional free parameter, b, apart from
the usual global normalization a that is fixed from the partial
decay width. We fix this extra parameter, which is charac-
terized by its modulus |b| and phase φb, from fits to exper-
imental data. The ω → 3π amplitude, in turn, enters the
once-subtracted dispersive parametrization of the ωπ0 TFF
Eq. (2.28), introducing its phase at s = 0, φωπ0(0), as a new
ingredient of this work.

Our first analysis proceeds in two steps. On a first step, we
use the two different sets of Dalitz-plot parameters given by
BESIII and the corresponding partial decay widths to fix all
free parameters (|a|, |b|, φb, | fωπ0(0)|) except for φωπ0(0).
These results bring us to a first relevant observation: the value
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of the subtraction constant b needed to faithfully reproduce
the Dalitz-plot parameters is found to be significantly dif-
ferent (see Fig. 3) from the sum-rule value estimated from
the unsubtracted version of the KT equations. On a second
step, the dependence of the ωπ0 TFF on φωπ0(0) is studied
in relation to the MAMI and NA60 data. It is found that there
are two well separated minima in this variable.

We have also performed a combined analysis to all avail-
able experimental information including Dalitz-plot parame-
ters and form-factor data, and observed that the two solutions
for φωπ0(0) remain. Interestingly enough, the values for the
subtraction constantb obtained from the joint fits have a much
better constrained uncertainty than that in the individual fits
to the BESIII Dalitz-plot parameters (see Fig. 3), however
being in perfect agreement with it. This reaffirms the need of
the additional subtraction constant, although the difference
in the determination of the α Dalitz-plot parameter in the
unsubtracted [21,22] and once-subtracted KT equations is
around 2σ .

From the Dalitz-plot parameters associated to our com-
bined fits (see Table 1), we can draw a second relevant obser-
vation. While the values that we obtain for the Dalitz-plot
parameters are found to be in agreement with the experi-
mental ones, our values carry a smaller error and indicate a
significance for the Dalitz-plot parameter γ of ∼3σ , includ-
ing statistical and systematic errors. The former turn out to be
the dominating ones in α and β, while the latter is more rele-
vant for γ . Furthermore, our results for the normalized ωπ0

TFF (Fig. 7) show a satisfactory description of the experi-
mental data, except for the highest two points of the NA60
collaboration.
Open questions Even though we achieved a simultaneous
description of the Dalitz-plot parameters and the TFF data, it
comes as a surprise that the predictions for the ω → 3π

amplitude are so different between the unsubtracted and
once-subtracted versions of the KT equations. (This can be
visualized either in the discrepancy between the Dalitz-plot
parameters in both cases, or in the large difference between
the fitted subtraction constantb respect to the sum-rule expec-
tation.) Moreover, this does not seem to happen in φ → 3π ,
despite the larger phase space, which makes this difference
even more intriguing.

It is also important to note that, due to the goal of our work,
the analysis of the ωπ0 TFF has been restricted to the rela-
tively low energy region of the NA60 (ω → π0μ+μ−) and
MAMI (ω → π0e+e−) data. Because of this, we have not
taken into account the higher energy region beyond the ωπ0

threshold, where there are experimental data [80–83] coming
from the reactions e+e− → ωπ0. To do so would require
to consider also higher resonances in the ππ phase shifts
and the inclusion of inelastic thresholds, something clearly
outside the scope of the present analysis. Furthermore, the
NA60 data currently have much smaller uncertainties than

the MAMI ones, which translates into the fact that our fits to
the TFF have been dominated by the former, with almost no
influence of the latter. The NA60 data drive the TFF curve
towards higher values (even more if one aims to describe
also the last two NA60 data points). While a fit of an addi-
tional subtraction constant is able to reduce the tension with
the NA60 data, this certainly influences the extrapolation to
higher energies. In particular, we have seen in Sect. 3.4 that
this behaviour impacts the calculation of the bounds of the
TFF discussed in Refs. [29,30]. In turn, this could point out
to inconsistencies with the CMD and SND scattering data,
a conclusion similar to those of Refs. [29,30]. We have also
seen that the experimental points of the NA60 collaboration
in the range

√
s = 0.6−0.7 GeV lie outside of these bounds.

Therefore, we hope that our study strengthens the case for
a reanalysis of all these decays and/or new measurements
thereof, either to reduce uncertainties or to address eventual
incompatibilities.
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Appendix A: Statistical analysis

In this Appendix, we give some details about the MC statisti-
cal analysis performed in Sect. 3.2 for the global fits. For each
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Fig. 12 One dimensional distributions of the free parameters in the
Monte Carlo analysis performed, for the “3 par.” case fit. A Gaussian
distribution with the average and error quoted in Table 2 is superim-

posed for each solution. The double arrows on the upper part of each
histogram represent the 1σ uncertainty intervals

Fig. 13 One dimensional distributions of our computed Dalitz plot
parameters in the Monte Carlo analysis performed, for the “3 par.”
case (top row) and “2 par.” case (bottom row). A Gaussian distribution
with the average and error quoted in Table 1 is superimposed for each

solution. The double arrows on the upper part of each histogram repre-
sent the 1σ uncertainty intervals. The green line represents the BESIII
experimental determination, also shown in Table 1

of the four fits considered in Table 2, we generateO(104) sets
of the data (resampling) described in Sect. 3.1, each single
datum following a Gaussian distribution. For each of these
sets, a fit is performed and each of the output quantities of
our work (DP parameters, TFF, etc.) are computed for that
fit. In this way, all possible known correlations are taken into

account. The values obtained in this work quoted in Tables 1
and 2, as well as those represented in Figs. 5, 7, and 8 are the
average value and the standard deviation of those quantities
in all the fits generated.

In the histograms of Figs. 12 and 13 we show the probabil-
ity distribution of the fitted free parameters and the resulting
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Fig. 14 Two dimensional projections of the MC simulations, for the
fitted and Dalitz-plot parameters. The blue (red) small points repre-
sent a pair of values obtained in a single MC simulation for the low
(high) φωπ0 (0) solution. The ellipses represent the two-parameter 1σ

contours computed with the average and standard deviation, and corre-
lation parameter of each pair. This provides a pictorial representation of
the correlation and accounts for the non-Gaussianity of the distributions

Dalitz plot parameters, respectively, obtained in our MC anal-
ysis for both the low and high φωπ0(0) solutions. We show
the “3 par.” case, but similar results are seen for the “2 par.”
case. In general, the parameters are seen to follow a Gaus-
sian distribution, although some deviations are seen from this
behaviour, specially for |b| and φb. This non-Gaussianity is,
of course, inherited from the χ2

DP function, as can be seen in
Fig. 3.

The correlation parameter between the fitted parameters
and/or the computed quantities can be calculated in a stan-
dard way. However, the two-dimensional distributions are
not always Gaussian, and we therefore prefer to show the
two-dimensional projections of (a small sample of) our MC
simulations in Fig. 14.
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