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We describe the approach to lattice extraction of generalized parton distributions (GPDs) that is based on
the use of the double distribution (DD) formalism within the pseudodistribution framework. The advantage
of using DDs is that GPDs obtained in this way have the mandatory polynomiality property, a nontrivial
correlation between x and ξ dependences of GPDs. Another advantage of using DDs is that the D-term
appears as an independent entity in the DD formalism rather than a part of GPDs H and E. We relate the ξ
dependence of GPDs to the width of the α profiles of the corresponding DDs and discuss strategies for
fitting lattice-extracted pseudodistributions by DDs. The approach described in the present paper may be
used in ongoing and future lattice extractions of GPDs.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–6] (for
reviews see Refs. [7–9]) are a major object of study at
the future Electron-Ion Collider and existing facilities at
Jefferson Laboratory and CERN. They provide detailed
information about hadronic structure. Being functions
Hðx; ξ; tÞ of three kinematic variables (while there are
other GPDs: E; H̃; Ẽ, etc., we will use H as a generic
notation), they combine properties of usual parton distri-
butions fðxÞ, hadronic form factors FðtÞ, and in the central
region jxj < ξ, of the distribution amplitudes φðx=ξÞ.
However, this multidimensional nature of GPDs highly

complicates their extraction from experimental data. In
particular, deeply virtual Compton scattering (DVCS),
which is the main tool for obtaining information about
GPDs, gives information about GPDs on the lines x ¼ �ξ
or through the Compton form factors that are x integrals of
GPDs with the 1=ðx − ξÞ weight.
More complicated processes, like double DVCS or

recently proposed single diffractive hard exclusive photo-
production [10], may provide information about GPDs off
the x ¼ �ξ diagonals. The study of such processes is in its
early stage.
During the last decade, starting with the pioneering

paper of Ji [11] that introduced the quasidistribution
approach (see also Ref. [12] for “lattice cross sections”
approach), strong efforts have been made to calculate

parton distributions on the lattice (for reviews, see
Refs. [13–16]). In particular, matching conditions for
GPDs in the quasidistribution approach were discussed
in Refs. [17–19]. For a review of recent lattice calculations
of GPDs, see Refs. [20,21].
In our paper [22], general aspects of lattice QCD

extraction of GPDs have been discussed in the frame-
work of the pseudodistribution approach [23,24]. The
advantage of lattice calculations is that matrix elements
Mðν; ξ; tÞ [“Ioffe-time distributions” (ITDs)] of nonlocal
operators measured on the lattice are related to Fourier
transforms of GPDs Hðx; ξ; tÞ, which may be inverted
using various techniques to produce GPDs as functions of x
for fixed values of skewness ξ and invariant momentum
transfer t.
An important property of GPDs is “polynomiality” [7],

which states that xN moment of Hðx; ξ; tÞ must be a
polynomial of ξ of not larger than (N þ 1)th power. This
nontrivial correlation between x and ξ dependences of
Hðx; ξ; tÞ is automatically satisfied when GPDs are
obtained from double distributions Fðβ; α; tÞ [1,3,4,25,26].
The goal of the present work is to outline the approach

of lattice extraction of double distributions from lattice
calculations. The paper organized as follows. To make it
self-contained, in Sec. II we formulate the definitions of
usual (light-cone) GPDs and double distributions (DDs)
and discuss their relationship. Some basic properties of
GPDs are discussed in Sec. III. There we also introduce
Ioffe-time distributions. Pseudodistributions, as generaliza-
tions of the ITDs onto correlators off the light cone,
are introduced in Sec. IV. Some strategies for fitting
lattice-extracted pseudodistributions by DDs are
discussed in Sec. V. Finally, in Sec. VI, we summarize
our discussion.
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II. GPDs AND DDs

A. Definition of GPD

In the GPD description of a nonforward kinematics
proposed by Ji [2], the plus components of the initial p and
final p0 hadron momenta are given by ð1þ ξÞPþ and
ð1 − ξÞPþ, respectively, with P being the average momen-
tum P ¼ ðpþ p0Þ=2, while the partons have ðxþ ξÞPþ
and ðx − ξÞPþ as the plus components of their momenta,
see Fig. 1.
For the pion, one may define the light-cone GPDs

Hðx; ξ; t; μ2Þ [1,2,6] by

hp0jOλðzÞjpi ¼ 2Pλ

Z
1

−1
dxe−ixðPzÞH

�
x; ξ; t; μ2

�
; ð2:1Þ

where OλðzÞ ¼ ψ̄ð−z=2ÞγλŴð−z=2; z=2Þψðz=2Þ is the
quark bilocal operator with Ŵð−z=2; z=2;AÞ being the
Wilson line in the fundamental representation, the co-
ordinate z has only the z− light-cone component, and
γλ ¼ γþ. The matrix element is singular on the light cone,
so one should use some regularization for it specified by a
scale μ. For brevity, we will skip reference to μ2 in what
follows.
The invariant momentum transfer is given by

t ¼ ðp − p0Þ2. In principle, the rhs of Eq. (2.1) has also the
rλ term, where r ¼ p − p0 is the momentum transfer.
However, the GPD convention is to write rþ ¼ 2ξPþ,
where ξ is the skewness variable, and the two terms are
combined in one GPD Hðx; ξ; tÞ.
A similar definition holds for nucleons,

hp0; s0jOþðzÞjp; si ¼
Z

1

−1
dxe−ixP

þz−

��
ū0γþu

�
Hðx; ξ; tÞ

−
1

2M

�
ū0iσþμrμu

�
Eðx; ξ; tÞ

�
; ð2:2Þ

where ū0 ≡ ūðp0; s0Þ and u≡ uðp; sÞ are the nucleon
spinors, while Hðx; ξ; tÞ and Eðx; ξ; tÞ are the nucleon
GPDs.

One may rewrite these definitions in a more covariant
form that uses Lorentz invariants ðPzÞ and ðrzÞ only. For
the pion, we have

hp2jzλOλðzÞjp1ijz2¼0

¼ 2ðPzÞ
Z

1

−1
dxe−ixðPzÞHðx; ξ; t; μ2Þ

����
z2¼0

: ð2:3Þ

For nucleons, we have two GPDs,

hp0; s0jzλOλðzÞjp;sijz2¼0 ¼
Z

1

−1
dxe−ixðPzÞ

�
ðū0zuÞHðx;ξ; tÞ

−
1

2M
ðū0iσzruÞEðx; ξ; tÞ

�
z2¼0

:

ð2:4Þ

B. Double distribution description

An alternative approach to describe nonforward matrix
elements is based on DD formalism [1,3,4,25,26]. Its
guiding idea is to treat Pþ and rþ as independent variables
and organize the plus-momentum flux as a “superposition”
of Pþ and rþ momentum flows.
The parton momentum in this picture is written as

kþ ¼ βPþ þ ð1þ αÞrþ=2, i.e., as a sum of the component
βPþ due to the average hadron momentum P (flowing in
the s channel) and the component ð1þ αÞrþ=2 due to the
t-channel momentum r, see Fig. 2.
Thus, the α dependence of the DD Fðβ; αÞ describes the

distribution of the momentum transfer rþ between the initial
and final quarks in fractions ð1þ αÞ=2 and ð1 − αÞ=2. One
may expect that it has a shape similar to those of parton
distribution amplitudes, e.g., with maximum at α ¼ 0 (equal
sharing of rþ) and vanishing at kinematical boundaries.
These are located at α ¼ �ð1 − jβjÞ, since the support
region for DDs is jαj þ jβj ≤ 1 [26].

FIG. 1. Flux of the momentum plus components in terms of
GPD variables.

FIG. 2. Flux of the momentum plus components in terms of DD
variables.
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1. Pion

In terms of DDs, the matrix element (2.3) is written
as [1,3,26,27]

hP − r=2jzλOλðzÞjP þ r=2iz2¼0

¼
Z
Ω
dαdβe−iβðPzÞ−iαðrzÞ=2

×
	
2ðPzÞFðβ; α; tÞ þ ðrzÞGðβ;α; tÞ
���

z2¼0
; ð2:5Þ

where Ω is the DD support region, i.e., a rhombus in the
ðαβÞ plane defined by jαj þ jβj ≤ 1. The time reversal
invariance requires that Fðβ; α; tÞ is an even function of α,
while Gðβ; α; tÞ is odd in α.
Expanding e−iβðPzÞ−iαðrzÞ=2 in powers of ðPzÞ and ðrzÞ,

one observes that the generic term ðPzÞN−kðrzÞk may be
obtained both from F and G parts [28], with two excep-
tions. Namely, one cannot obtain the ðPzÞN term from the
G part, and one cannot obtain the ðrzÞN term from the F
part. The usual convention is to absorb all the ðPzÞN−kðrzÞk
terms with k < N into the F function, leaving the ðrzÞN
terms in the G function [27]. As a result, the G part would
not depend on ðPzÞ, and one can write

hP − r=2jzλOλðzÞjP þ r=2iz2¼0

¼
�
2ðPzÞ

Z
Ω
dαdβe−iβðPzÞ−iαðrzÞ=2Fðβ; α; tÞ

þ ðrzÞ
Z

1

−1
dαe−iαðrzÞ=2Dðα; tÞ

�����
z2¼0

; ð2:6Þ

where Dðα; tÞ is the D-term function introduced in
Ref. [27]. It is odd in α.
Comparing GPD and DD parametrizations (2.3) and (2.6),

we get the relation between the pion GPD and DD [1,6,27]

Hðx; ξ; tÞ ¼
Z
Ω
dαdβδðx − β − αξÞFðβ; α; tÞ

þ sgnðξÞDðx=ξ; t; μ2Þ
≡HDD þD: ð2:7Þ

As noticed in Ref. [28], the ðαβÞ integral above, i.e., the
“DD part” HDDðx; ξ; tÞ, may be treated as the Radon
transform of F.

2. Nucleon

In the nucleon case, we have the following represen-
tation [1,3,26]:

hP − r=2; s0jzλOλðzÞÞjP þ r=2; siz2¼0

¼
Z
Ω
dαdβe−iβðPzÞ−iαðrzÞ=2

×

�
ðū0zuÞhðβ; α; tÞ − 1

2M
ðū0iσzruÞeðβ; α; tÞ

�

þ ðrzÞ ðū
0uÞ
M

Z
1

−1
dαe−iαðrzÞ=2Dðα; tÞ: ð2:8Þ

Here, hðβ; α; tÞ and eðβ; α; tÞ are even functions of α, while
DðαÞ is odd. Using Gordon decomposition

Pλ

M
ū0u ¼ 1

2M
ū0iσλruþ ū0γλu; ð2:9Þ

and comparing (2.8) with the GPD representation (2.4),
gives the relation between the nucleon GPDs, DDs, and
D-term [29]. Namely, we have

Hðx; ξ; tÞ ¼
Z
Ω
dαdβδðx − β − αξÞhðβ;α; tÞ

þ sgnðξÞDðx=ξ; tÞ
≡HDD þD; ð2:10Þ

for Hðx; ξ; tÞ, and

Eðx; ξ; tÞ ¼
Z
Ω
dαdβδðx − β − αξÞeðβ; α; tÞ

− sgnðξÞDðx=ξ; tÞ
≡ EDD −D; ð2:11Þ

for Eðx; ξ; tÞ.
Again, we may talk about the DD parts HDDðx; ξ; tÞ and

EDDðx; ξ; tÞ of the corresponding GPDs. Note that the
D-term cancels in the sum Hðx; ξ; tÞ þ Eðx; ξ; tÞ≡
Aðx; ξ; tÞ. So, Aðx; ξ; tÞ is built purely from the
DD aðβ; α; tÞ≡ hðβ;α; tÞ þ eðβ; α; tÞ.

C. Fixed parity cases

Usually we are interested in the functions corresponding
to operators

Oλ
�ðzÞ ¼

1

2

�
OλðzÞ �Oλð−z; AÞ� ð2:12Þ

that are symmetric or antisymmetric with respect to the
inversion of z. These combinations appear when we
consider “nonsinglet” q − q̄ or “singlet” qþ q̄ parton
distributions, respectively. Since the D-term contribution
[without the overall ðrzÞ factor] is odd in z, it appears in the
singlet case only. However, the H þ E sum does not
contain the D-term even in the singlet case.
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In fact, it is sufficient to consider the matrix element of
the original OλðzÞ operator. The real part of this matrix
element is even in z, while its imaginary part is odd in z.

III. SOME PROPERTIES OF GPDs and DDs

A. DD parts of GPDs

In this section, we consider the relations between the
DDs and the DD parts of GPDs that they generate, thus
ignoring for a while theD-term contributions to GPDs. The
D-term will be discussed later in the paper. For definite-
ness, we will have in mind relations between the DD part of
the pion GPD and its DD. All the relations are equally
applicable to the DD parts of the nucleon GPDs.

B. ξ = 0 limit

Taking ξ ¼ 0, we have

Hðx; ξ ¼ 0; tÞ ¼
Z

1

−1
dβδðx − βÞ

Z
1−jβj

−1þjβj
dαFðβ; α; tÞ

¼
Z

1−jxj

−1þjxj
dαFðx; α; tÞ≡ fðx; tÞ: ð3:1Þ

This means that integrating Fðβ; α; tÞ over vertical lines
β ¼ x (see Fig. 3) gives the ξ ¼ 0 (“nonskewed”) GPD
Hðx; ξ ¼ 0; tÞ, which we will also denote as fðx; tÞ. It is the
simplest GPD, which was called “nonforward parton
density” in the paper [30], where it was introduced. It
differs from the forward parton distribution function (PDF)
fðxÞ by the presence of t dependence and satis-
fies fðx; t ¼ 0Þ ¼ fðxÞ.

C. Polynomiality

The DD representation automatically produces a GPD
satisfying the polynomiality property. Indeed,

Z
1

−1
dxxnHDDðx; ξ; tÞ

¼
Z

1

−1
dxxn

Z
Ω
dαdβδðx − β − αξÞFðβ; α; tÞ

¼
Xn
k¼0

n!
k!ðn − kÞ! ξ

k

Z
Ω
dαdββn−kαkFðβ;α; tÞ; ð3:2Þ

i.e., the nth x moment of HDDðx; ξ; tÞ is a polynomial in ξ
of the order not exceeding n.
Note that, since Fðβ; α; tÞ is even in α, the summation

over k involves even k only, i.e., (3.1) is in fact an
expansion in powers of ξ2.

D. Ioffe-time distributions

By Lorentz invariance, the matrix element (2.3) defining
GPD is a function of the scalars ðpzÞ≡ −ν1 and
ðp0zÞ≡ −ν2, two Ioffe-time parameters, so we may write

hp2jψ̄ð−z=2Þzψðz=2Þjp1i ¼ 2ðPzÞIðν1; ν2; tÞ; ð3:3Þ

where Iðν1; ν2; tÞ is the double Ioffe-time distribution.
Since z ¼ z− is assumed, only the values of the plus
components of momenta are essential in the scalar products
ðp1zÞ and ðp2zÞ. The skewness variable ξ in this case is
given by

ξ ¼ ν1 − ν2
ν1 þ ν2

≡ ν1 − ν2
2ν

: ð3:4Þ

We have introduced here the variable ν ¼ ðν1 þ ν2Þ=2.
Treating ν and ξ as independent variables, we define the
generalized Ioffe-time distribution (GITD) as

Iðν1; ν2; tÞ ¼ Iðν; ξ; tÞ: ð3:5Þ

According to (2.1), it is a Fourier transform of the GPD,

Iðν; ξ; tÞ ¼
Z

1

−1
dxeixνHðx; ξ; tÞ: ð3:6Þ

Using Eq. (2.5), we can write the DD part of GITD in terms
of DD,

IDDðν; ξ; tÞ ¼
Z

1

−1
dβeiνβ

Z
1−jβj

−1þjβj
dαeiναξFðβ; α; tÞ: ð3:7Þ

E. DD profile and ξ dependence

If Fðβ; α; tÞ has an infinitely narrow profile in the α
direction, i.e., if Fðβ; α; tÞ ¼ fðβ; tÞδðαÞ, then the ξ
dependence disappears, and we deal with the simplest
GPD fðx; tÞ. A nontrivial dependence on the skewness ξ is
obtained if the DD has a nonzero-width profile in the α
direction.

FIG. 3. DD support rhombus and integration lines producing
the DD parts of Hðξ; ξÞ, Hð−ξ; ξÞ, Hðx; ξ ¼ 0Þ ¼ fðxÞ, and
Hðx; ξÞ in (jxj > ξ) and (jxj < ξ) regions.
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Using the DD representation (3.7) for the GITD and
expanding eiναξ into the Taylor series, we get the following
expansion in powers of ξ2:

IDDðν; ξ; tÞ ¼
Z

1

−1
dβeiνβ

Z
1−jβj

−1þjβj
dαFðβ; α; tÞ − ξ2ν2

2

×
Z

1

−1
dβeiνβ

Z
1−jβj

−1þjβj
dαα2Fðβ; α; tÞ þ � � �

ð3:8Þ

[odd powers of ξ do not appear because Fðβ; α; tÞ is even
in α]. By analogy with (3.1), we will use the notation
f2ðβ; tÞ for the second α moment of Fðβ; α; tÞ,

Z
1−jβj

−1þjβj
dαα2Fðβ; α; tÞ≡ f2ðβ; tÞ: ð3:9Þ

As a result, we write

IDDðν; ξ; tÞ ¼
Z

1

−1
dβeiνβ

�
fðβ; tÞ− ξ2ν2

2
f2ðβ; tÞ

�
þOðξ4Þ

≡ I0ðν; tÞ−
ξ2ν2

2
I2ðν; tÞ þOðξ4Þ: ð3:10Þ

IV. PSEUDODISTRIBUTIONS

A. Definitions

On the lattice, we choose z ¼ z3, and introduce pseudo-
GPDs Hðx; ξ; t; z23Þ [and also Eðx; ξ; t; z23Þ in the nucleon
case].
The two Ioffe-time parameters are given now by

ν1 ¼ pð3Þz3 ≡ P1z3 and ν1 ¼ p0ð3Þz3 ≡ P2z3. In terms of
momenta P1;2, the skewness ξ is given by

ξ ¼ P1 − P2

P1 þ P2

: ð4:1Þ

The pseudo-GITD will be denoted as Mðν; ξ; t; z23Þ, e.g.,
the inverse transformation for H is written as

Hðx; ξ; t; z23Þ ¼
1

2π

Z
∞

−∞
dνe−ixνMðν; ξ; t; z23Þ: ð4:2Þ

Similarly, to denote pseudo-DDs, we will just add z23 to
their arguments.

B. Contaminations

On the lattice, we have z2 ≠ 0, and we need to add
extra z-dependent structures to the original twist-two
parametrization,

zλMλ ≡ hP − r=2; s0jzλOλðzÞjP þ r=2; si

¼
Z
Ω
dαdβe−iβðPzÞ−iαðrzÞ=2

�
ðū0zuÞhðβ; α; tÞ

−
1

2M
ðū0iσzruÞeðβ; α; tÞ þ ū0u

M
ðrzÞδðβÞDðα; tÞ

�

≡ ðū0zuÞHDD −
1

2M
ðū0iσzruÞEDD þ ðrzÞ ū

0u
M

D;

ð4:3Þ

where z2 ¼ 0 and the ITDs HDD; EDD, and D are functions
of ν, ξ, and t.
A classification of additional tensor structures that

appear in parametrizations of Mλ off the light cone was
done in Ref. [31], where eight independent structures have
been identified.
However, there is some subtlety related to the fact that,

for lattice extractions, we need to parametrize the “non-
contracted” matrix element Mλ. In this case, the index λ in
local operators ψ̄γλðzDÞNψ is not symmetrized with the
indices Dμ1…DμN in covariant derivatives, which is neces-
sary for building twist-two local operators.
A way to perform symmetrization for bilocal operators

was indicated in Ref. [32]. Further studies of parametriza-
tions for matrix elements with an open index have been
done in Refs. [33–38]. An important observation made
there is that Mλ should contain terms that vanish when
contracted with zλ, such as rλðPzÞ − PλðrzÞ. One can see
that rλ − PλðrzÞ=ðPzÞ≡ Δλ⊥ is the part of the momentum
transfer r that is transverse to z.
As shown in these papers, one should add Wandzura-

Wilczek-type (WW) terms [39] to parametrizations of GPDs
to secure electromagnetic gauge invariance of the DVCS
amplitude [40] with OðΔ⊥Þ accuracy. While the WW terms
are “kinematical twist-three” contributions built from twist-
two GPDs, one cannot exclude nonperturbative (dynamical)
twist-three terms accompanied by the Δλ⊥ factor.
Among additional structures listed in Ref. [31], one can

see the structure ðū0iσλzuÞ that also vanishes when multiplied
by zλ and thus should be treated as a “higher-twist” term.
On the other hand, two other additional structures,

ðū0iσzrPλuÞ and ðū0iσzrrλuÞ, after contraction with zλ,
produce the same “twist-two” structure ∼σzr that accom-
panies the EDD contribution. In this sense, the invariant
amplitudes accompanying these structures have a twist-two
component.
Note, however, that combinations σzrPλ − σλrðPzÞ and

σzrrλ − σλrðrzÞ vanish after contraction with zλ. So, we
propose to use these “subtracted” forms in building the
basis of additional terms, rather than just σzrPλ and σzrrλ.
Since the subtracted structures do not contribute to the
twist-two parametrization (4.3), the DDs associated with
them should be classified as higher-twist ones.
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For this reason, we construct a parametrization forMλ in which twist-two and higher-twist terms are explicitly separated,

Mλ ¼ ðū0γλuÞHDD −
1

2M
ðū0iσλruÞEDD þ rλ

ū0u
M

Dþ �
rλðPzÞ − PλðrzÞ� ū0u

M
Y −

1

M

�ðū0iσzruÞPλ − ðū0iσλruÞðPzÞ�X1

−
1

M

�ðū0iσzruÞrλ − ðū0iσλruÞðrzÞ�X2 þ ðū0iσλzuÞMX3 þ iðū0uÞMzλZ1 − ðū0iσzruÞMzλZ2: ð4:4Þ

We have here Y and Xi terms whose contribution vanishes
when contracted with zλ, and Zi terms that produce the z2

factor after contraction with zλ.
Formally, the rλðPzÞ − PλðrzÞ combination does not

contain new structures that are independent from those
present in the twist-two line. However, the corresponding
invariant amplitude, which is denoted as Y, is generated by
a new DD. This higher-twist DD is different from the twist-
two DDs hðβ;αÞ, eðβ; αÞ and the D-term, which are also
associated with the ∼ū0u structures.
Of course, using Gordon decomposition

Pλ

M
ū0u ¼ 1

2M
ū0iσλruþ ū0γλu; ð4:5Þ

we can rewrite (4.4) in a form explicitly having just eight
structures,

Mλ ¼ ðū0γλuÞ�HDD − ðrzÞY�þ rλ
ū0u
M

�
Dþ ðPzÞY�

−
1

2M
ðū0iσλruÞ�EDD þ ðrzÞY� − 1

M

�ðū0iσzruÞPλ

− ðū0iσλruÞðPzÞ�X1 −
1

M

�ðū0iσzruÞrλ
− ðū0iσλruÞðrzÞ�X2 þ ðū0iσλzuÞMX3

þ iðū0uÞMzλZ1 − ðū0iσzruÞMzλZ2; ð4:6Þ

like in Ref. [31]. To establish a direct correspondence,
we note that Ref. [31] uses a basis in which ðū0γλuÞ is
substituted by two other structures that appear in the
Gordon decomposition (4.5). Also, all the terms containing
ðū0iσλruÞ are combined in one contribution. Using this
basis, we have

Mλ ¼ Pλ

M
ðū0uÞ�HDD − ðrzÞY�þ rλ

ū0u
M

�
Dþ ðPzÞY�

−
1

2M
ðū0iσλruÞ�HDD þ EDD þ 2ðPzÞX1 þ 2ðrzÞX2

�
þ ðū0iσλzuÞMX3 þ iðū0uÞMzλZ1

−
ðū0iσzruÞ

M

�
PλX1 þ rλX2 þ zλM2Z2

�
: ð4:7Þ

Comparing Eq. (4.7) with the coefficients Ai in Eq. (35)
of Ref. [31], we establish the correspondence A1 ¼
½HDD − ðrzÞY�, A2 ¼ iZ1, −A3 ¼ Dþ ðPzÞY, A4 ¼ −X3,

A5 ¼ ðHDD þ EDDÞ=2 þ ðPzÞX1 þ ðrzÞX2, A6 ¼ X1,
A7 ¼ Z2, and A8 ¼ −X2.
The main difference is that HDD and D contributions in

Eq. (4.7) come with the contamination from the Y function,
the 9th higher-twist ITD. Also, the ðū0iσλruÞ structure is
accompanied by a factor in which the Y term is absent, but
there are contaminations from X1 and X2 contributions.

V. FITTING PSEUDODISTRIBUTIONS

A. Nonforward parton pseudodensity f ðβ; t;z23Þ
Taking ξ ¼ 0 we have

Mðν; ξ ¼ 0; t; z23Þ ¼
Z

1

−1
dβeiνβfðβ; t; z23Þ; ð5:1Þ

where ν ¼ P1z3 ¼ P2z3. An important point is that ξ ¼ 0
may be achieved for different pairs of equal initial and final
momenta P1 ¼ P2 ≡ P. One should check that the lattice
gives the same curve for different P’s, up to evolution-type
dependence on z23.
One can use relation (5.1) to fit fðβ; t; z23Þ. First, taking

t ¼ 0, we fit the forward pseudodistribution fðβ; z23Þ, just as
a pseudo-PDF. After that, one can vary t, by changing the
transverse components Δ1;2

⊥ , for several fixed ν. In this way,
one can study what kind of dependence on t we have
(dipole, monopole, etc.) and how it changes with ν.

B. α2-moment function f 2ðβ; t;z23Þ
The next step is to check if the ξ dependence of the lattice

data for Mðν; ξ; t; z23Þ agrees with the form

M
�
ν; ξ; t; z23

� ¼ M
�
ν; ξ ¼ 0; t; z23

�
−
ξ2ν2

2
M2

�
ν; t; z23

�
þOðξ4Þ; ð5:2Þ

and extract f2ðβ; t; z23Þ using

M2

�
ν; ξ; t; z23

� ¼
Z

1

−1
dβeiνβf2

�
β; t; z23

�
: ð5:3Þ

The α dependence of the DD Fðβ; αÞ describes the
distribution of the momentum transfer r ¼ P1 − P2

between the initial and final quarks. It is expected that
it has a shape similar to those of parton distribution
amplitudes.
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C. Factorized DD ansatz

A nonzero-width profile of DD in the α direction may be
modeled by using the factorized DD ansatz [25,26],

FNðβ;α; tÞ ¼ fðβ; tÞ ΓðNþ 3
2
Þffiffiffi

π
p

ΓðNþ 1Þ
½ð1− jβjÞ2−α2�N
ð1− jβjÞ2Nþ1

; ð5:4Þ

with N being the parameter governing the width of the α
profile of the model DD FNðβ; α; tÞ. The α integral of
FNðβ;α; tÞ gives the nonforward parton density fðβ; tÞ.
The ½ð1 − jβjÞ2 − α2� factor reflects the support proper-

ties of the DD, which vanishes if jβj þ jαj > 1. The ansatz
also complies with the requirement that Fðβ; αÞ should be
an even function of α.
For fðβ; tÞ one can also take a factorized form

fðβ; tÞ ¼ fðβÞFðtÞ, where fðβÞ is the forward PDF, and
FðtÞ is some form factor. Combining (3.7) and (5.4) gives

MNðν; ξ; t; z23Þ ¼
Z

1

−1
dβeiνβf

�
β; t; z23

�

×
Z

1−jβj

−1þjβj
dαeiναξ

ΓðN þ 3
2
Þffiffiffi

π
p

ΓðN þ 1Þ

×
½ð1 − jβjÞ2 − α2�N
ð1 − jβjÞ2Nþ1

: ð5:5Þ

The integral over α can be taken as

ANðβÞ ¼
Z

1−jβj

−1þjβj
dαeiναξ

½ð1 − jβjÞ2 − α2�N
ð1 − jβjÞ2Nþ1

¼
Z

1

−1
dηeiνξð1−jβjÞηð1 − η2ÞN

¼ 0F̃1

�
;N þ 3

2
;−

ν2ξ2ð1 − jβjÞ2
4

� ffiffiffi
π

p
ΓðN þ 1Þ;

ð5:6Þ

where

0F̃1ð; b; zÞ ¼
X∞
k¼0

zk

Γðbþ kÞk! ð5:7Þ

is a hypergeometric function.
So, we have a model for pseudo-GITD,

MNðν; ξ; t; z23Þ

¼
Z

1

−1
dβeiνβfðβ; tÞ0F̃1

�
;N þ 3

2
;−

ν2ξ2ð1 − jβjÞ2
4

�

× Γ
�
N þ 3

2

�
; ð5:8Þ

or, expanding in ξ,

MNðν; ξ; t; z23Þ ¼
Z

1

−1
dβeiνβfðβ; tÞ

×
X∞
k¼0

�
−
ν2ξ2ð1 − jβjÞ2

4

�
k

×
ΓðN þ 3

2
Þ

k!ΓðN þ 3=2þ kÞ : ð5:9Þ

This expansion may be also obtained by taking the Taylor
series of eiνξð1−jβjÞη in Eq. (5.6) and integrating over η.

D. Check of polynomiality

Getting GPDs from a DD representation guarantees that
the resulting GPD has the polynomiality property. Still,
we can double check this. Note that the xn moment
MðnÞðξ; t; z23Þ of a pseudo-GPD Hðx; ξ; t; z23Þ is propor-
tional to the coefficient accompanying νn in the Taylor
expansion,

Mðν; ξ; t; z23Þ ¼
X∞
N¼0

inνn

n!
MðnÞðξ; t; z23Þ: ð5:10Þ

Now, from

MNðν; ξ; t; z23Þ ¼
Z

1

−1
dβ

X∞
m¼0

ðiνβÞm
m!

fðβ; t; z23Þ

×
X∞
k¼0

�
−
ν2ξ2ð1 − jβjÞ2

4

�
k

×
ΓðN þ 3

2
Þ

k!ΓðN þ 3=2þ kÞ ; ð5:11Þ

we see that “n” in MðnÞ
N corresponds here to n ¼ mþ 2k.

On the other hand, MðnÞ
N ðξ; t; z23Þ is a polynomial in ξ of

order 2k, which is equal to or smaller than n since m ≥ 0.

E. Fitting α-profile width

After fixing fðβ; t; z23Þ that gives the profile of the DD in
the β direction, we may quantify what kind of profile it has
in the α direction. The presence of a nontrivial profile is
indicated by the presence of ξ dependence. Using the first
terms of the series for 0F̃1ð; b; zÞ,

ΓðbÞ0F̃1ð; b; zÞ ¼
X∞
k¼0

zkΓðbÞ
Γðbþ kÞk!

¼ 1þ z
b
þ z2

2bðbþ 1Þ þ � � � ; ð5:12Þ

we write (5.9) as
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Mðν;ξ; t;z23;NÞ¼
Z

1

−1
dβeiνβfðβ; tÞ

�
1−

ν2ξ2ð1− jβjÞ2
4ðNþ3=2Þ

þ
�
ν2ξ2ð1− jβjÞ2

4

�
2

×
1

2ðNþ3=2ÞðNþ5=2Þþ �� �
�
: ð5:13Þ

In Eq. (5.13), ξ appears through the combination
ξν ¼ ðν1 − ν2Þ=2. On the lattice, we have ν1 ¼ P1z3,
ν2 ¼ P2z3. Hence, the presence of a nontrivial profile
should be reflected by the dependence of the data on the
difference P1 − P2 for a fixed sum P1 þ P2. The first
correction in Eq. (5.13) is given by

δMðν; ξ; t; z23;NÞ ¼ −
Z

1

−1
dβeiνβfðβ; t; z23Þð1 − jβjÞ2

×
ξ2ν2

4ðN þ 3=2Þ : ð5:14Þ

Using this expression, one can try to determine the
profile parameter N. This task probably will not be easy,
since the correction looks rather small due to a small overall
factor ∼ξ2=4.
We may also estimate the extra suppression due to the

ð1 − jβjÞ2 factor in the integrand of (5.14). For a simple
illustration, take fðβ; tÞ ¼ 4ð1 − jβjÞ3. In this case,

Z
1

−1
dβeiνβfðβ; tÞ ¼ 48

ν4

�
cosðνÞ − 1þ ν2

2

�

¼ 2 −
ν2

15
þ ν4

840
þOðν5Þ; ð5:15Þ

while

Z
1

−1
dβeiνβfðβ; tÞð1− jβjÞ2 ¼ 960

ν6

�
−cosðνÞþ 1−

ν2

2
þ ν4

24

�

¼ 4

3
−
ν2

42
þ ν4

3780
þOðν5Þ:

ð5:16Þ

Thus, the additional suppression is by about 2=3 for
small ν, i.e., not very strong.

F. D-term

When we take the z-odd part Oλ
− of the operator OλðzÞ,

its parametrization contains a nonzero D-term. In GPD
description, it appears in a mixture withHDD (and also EDD
in the nucleon case) GPDs. However, using all possible
helicity states for nucleons and various values of λ, one can
construct a sufficient number of linearly independent
relations. To separate the DDs that appear in the para-
metrization of Eq. (4.6) one can use, e.g., the singular value

decomposition technique. Unfortunately, as seen from
Eq. (4.6), the D-term obtained in this way comes together
with the Y contamination.
Another way is to eliminate HDD, EDD, etc. contribu-

tions from the matrix element of Oλ
− by taking kinematics

in which ðPzÞ ¼ 0. As a result, α-even DD hðβ; αÞ will be
integrated with the α-odd function sinðαðrzÞÞ, etc., so that
we will have

hP − r=2; s0jOλ
−ðzÞjP þ r=2; sijðPzÞ¼0

¼ rλ
ðū0uÞ
M

Z
1

−1
dαe−iαðrzÞ=2Dðα; tÞ

þ ðū0uÞMzλ
Z
Ω
dαdβz1ðβ; α; tÞ cosðαðrzÞ=2Þ: ð5:17Þ

On the lattice, choosing z ¼ z3, we can arrange
ðPzÞ ¼ 0, i.e., P3 ¼ 0, by taking p1 and p2 with opposite
components in the z direction, namely, p ¼ ðE1;p1T; PÞ
and p0 ¼ ðE2;p2T;−PÞ. Introducing the relevant Ioffe time
νD ≡ −ðrzÞ=2 ⇒ Pz3, we deal with the ITD

IDðνD; tÞ ¼
Z

1

−1
dαeiανDDðα; tÞ: ð5:18Þ

However, if we choose λ ¼ 0, we get r0 ¼ E1 − E2

as the accompanying factor. It vanishes for purely longi-
tudinal momenta p ¼ ðE; 0T; PÞ, p0 ¼ ðE2; 0T;−PÞ and
remains rather small when one takes nonequal transverse
momenta p1T;p2T .
Another choice is to take λ ¼ 3. In this case, we have ∼z3

contamination,

1

i
hðE2;p2T;−PÞjO3

−ðzÞjðE1;p1T; PÞi

¼ 2P
Z

1

−1
dα sinðνDαÞDðα; tÞ

þ zð3ÞM2

Z
1

−1
dα cosðνDαÞZ1ðα; tÞ; ð5:19Þ

where the “Z-term” function Z1ðα; tÞ is even in α.
Multiplying by zλ ¼ z3, we have

ihðE2;p2T;−PÞjzλOλ
−ðzÞjðE1;p1T; PÞi

¼ νD

Z
1

−1
dα sinðνDαÞDðα; tÞ

þ ν2D
4P2

Z
1

−1
dα cosðνDαÞZðα; tÞ

¼ νDIDðνD; tÞ þ
ν2D
4P2

IZðνD; tÞ: ð5:20Þ

As we see, for a fixed ν, the contamination term decreases
with P. In principle, one may try to extract IDðνD; tÞ by
fitting the P dependence of the matrix element.
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VI. SUMMARY

In the present paper, we have outlined the approach of
lattice extraction of GPDs based on a combined use of the
double distribution formalism and pseudo-PDF framework.
The use of DDs guarantees that GPDs obtained from
them have the required polynomiality property that imposes
a nontrivial correlation between x and ξ dependences
of GPDs.
We have introduced Ioffe-time distributions, writing

these directly in terms of DDs, and generalized them onto
correlators off the light cone. An important advantage of
using DDs is that the D-term appears then as an indepen-
dent quantity rather than a nonseparable part of GPDs
H and E.

We have discussed the relation of the ξ dependence of
GPDs with the width of the α profiles of the corresponding
DDs and proposed strategies for fitting lattice-extracted
pseudodistributions by DDs. The approach described in the
present paper is already used in ongoing lattice extractions
of GPDs by the HadStruc Collaboration.
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