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Precise determination of the proton magnetic radius from electron scattering data
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We extract the proton magnetic radius from high-precision electron-proton elastic scattering cross section
data. Our theoretical framework combines dispersion analysis and chiral effective field theory and implements
the dynamics governing the shape of the low-Q? form factors. It allows us to use data up to Q> ~ 0.5 GeV?> for
constraining the radii and overcomes the difficulties of empirical fits and Q> — 0 extrapolation. We obtain a

magnetic radius r}, = 0.850 + 0.001 (1o fit uncertainty)

+0.00° (full-range theory uncertainty) fm, significantly

different from earlier results obtained from the same data using empirical fits, and close to our extracted electric
radius i = 0.842 £ 0.002 (1o fit uncertainty) fg:ggg (full-range theory uncertainty) fm.
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I. INTRODUCTION

The electromagnetic form factors (EM FFs) are the most
basic expressions of the nucleon’s finite spatial extent and
composite internal structure. They describe the elastic re-
sponse to external electric and magnetic fields as a function
of the four-momentum transfer Q? and can be associated
with the spatial distributions of charge and current in the
nucleon. The traditional representation of FFs in terms of
three-dimensional spatial densities at fixed instant time x° is
appropriate only for nonrelativistic systems such as nuclei [1].
For relativistic systems such as hadrons, the spatial structure
is expressed through two-dimensional transverse densities at
fixed light-front time x* = x° 4 x3. In the context of QCD
these transverse densities can be regarded as projections of the
nucleon’s partonic structure (generalized parton distributions)
[2—4]. The EM FFs thus reveal aspects of the spatial distri-
bution of quarks and their orbital motion and spin and have
become objects of great interest in nucleon structure studies
[5.6].

The values of the electric and magnetic proton FFs at
Q? = 0 are given by the total charge and magnetic moment
of the proton, GL(0) =1, G},(0) = u? =2.793. The lead-
ing information about the spatial structure is in the first
derivatives of the FFs at Q> = 0. They are conventionally
expressed in terms of the equivalent electric and magnetic
three-dimensional root-mean-square radii,
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This does not imply an actual physical interpretation in terms
of three-dimensional densities; the proper interpretation in
terms of two-dimensional densities is discussed below [1].
Besides their importance for nucleon structure, the FF deriva-
tives are needed in tests of atomic bound-state calculations in
quantum electrodynamics and in precision measurements of
the Rydberg constant [7,8].

The proton electric (or charge) radius is extracted from
the proton FFs measured in electron-proton elastic scattering
and from the nuclear corrections to atomic energy levels of
electronic and muonic hydrogen measured in precision spec-
troscopy experiments; see Refs. [9,10] for a review. Apparent
discrepancies between the different extraction methods (the
“proton radius puzzle”) have engendered intense experimen-
tal and theoretical efforts, including dedicated new elastic
scattering experiments at low Q® with electron and muon
beams [11,12]. Most recent experiments and reanalyses have
converged around rg = 0.84 fm [11,13-24], while some have
obtained larger values [25-28]; the CODATA Task Group and
the Particle Data Group have now adopted 0.84 fm as the
recommended value [29,30]. The proton magnetic radius can
only be extracted from elastic FF measurements (a method
using atomic measurements was proposed in Ref. [31]). Em-
pirical fits to the Mainz A1 data [32,33] have produced a range
of values that disagree with each other, rf,, =0.78 £0.02 fm
[32], 0.914 £ 0.035 fm and 0.776 £ 0.038 fm [25], and differ
from the results of dispersive fits, 0.848f8:88(5’ (30 total uncer-
tainty) fm [34], and other analyticity-based methods [35]. It
is necessary to resolve these discrepancies and determine the
proton magnetic radius with an overall accuracy and consis-
tency comparable to those achieved in the electric radius.

Here we report an extraction of the proton magnetic ra-
dius from electron scattering data using a novel theoretical
framework based on dispersion analysis and chiral effective
field theory (DIxEFT) [20,36-38]. It implements analyticity
and the dynamics governing the shape of the low-Q® FFs
and allows us to use data up to Q> ~ 0.5 GeV? for con-
straining the radii, increasing the sensitivity to the magnetic
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FF. It overcomes the difficulties in extraction methods based
on empirical fits and Q*> — 0 extrapolation (functional form
bias, unstable extrapolation), particularly the issues related
to the normalization of data sets taken at different incident
energies. DI EFT was used in Ref. [20] to extract rg from
an empirical FF parametrization [39] and delivered a value of
rg = 0.844 £ 0.007 fm, in agreement with the other determi-
nations quoted above and the recent results of the Jefferson
Lab PRad experiment [11]. In this work we use the method
to extract both rj, and rf from a direct analysis of the cross
section data, dominated by the Mainz A1 data [32,33]. We ob-
tain 5, = 0.850 £ 0.001 (1o fit uncertainty) *0.00, (full-range
theory uncertainty) fm, significantly different from the values
extracted from the same data using empirical fits [25,32], and
surprisingly close to rh. In the course we also update our
previous extraction of ry and verify the robustness of the
results.

II. METHOD

DIYEFT is a method for calculating nucleon FFs com-
bining dispersion analysis and chiral effective field the-
ory. The theoretical foundations are described in detail
in Refs. [36-38]; applications to FF fits are discussed in
Ref. [20]. The FFs are represented as dispersion integrals
over t = —(Q?. The spectral functions on the two-pion cut
att > 4M? are calculated using (i) the elastic unitarity rela-
tion; (ii) 7N amplitudes computed in x EFT at leading order,
next-to-leading order, and partial next-to-next-to-leading or-
der accuracy; (iii) the timelike pion FF measured in ete™
annihilation experiments. The approach includes wm rescat-
tering effects and the p resonance and generates accurate
spectral functions up to r &~ 1 GeV>. Higher-mass 7-channel
states are described by effective poles. The parameters spec-
ifying the dynamical input (the low-energy constants of the
x EFT calculation, and the strength of the effective poles) are
fixed using the sum rules of dispersion theory and expressed
in terms of the nucleon charges, magnetic moments, and radii.

For each assumed value of r; and rj, the theory generates

a unique prediction for G7.(Q?) and G},(Q?); the theoretical
uncertainties of the predictions are discussed and estimated
below [20]. The theory predicts the “shape” of the spacelike
FF as determined by analyticity (position of singularities) and
dynamics (strength of singularities). In this way the values
of the radii are correlated with the predicted behavior of the
FFs at finite momentum transfers Q%> ~ 1 GeV?, allowing
the use of such data for radius extraction. A computer code
generating the DIy EFT FF predictions, example plots, and
further information are available in the Supplemental Material
[40].

For our radius extraction we use the high-precision data in
electron-proton elastic scattering from the Mainz Al experi-
ment, which dominate the world data [32,33]. The experiment
measured the elastic scattering cross section at momentum
transfers 0.003 < Q%> <1 GeV? and incident electron ener-
gies E from 0.18 to 0.855 GeV (see Fig. 1). In the one-photon
exchange approximation the differential cross section is re-
lated to the proton electric and magnetic FFs by the standard
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FIG. 1. Data: Mainz Al electron-proton elastic scattering cross
section data [32,33], with the normalization of the sets determined
by our fit (in the higher energy bins, the plots show the data up to
0% = 0.5 GeV?). Bands: Theoretical model (DIxEFT) with param-
eters (rf, ry;) obtained from our best fit. The bands show the range
of the model predictions obtained by varying the parameters in the
lo confidence interval of the fit; it does not include the theoretical
uncertainty of the model. Both data and model are divided by the
cross section evaluated with the standard dipole FFs.
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where (do /d2)mor 1S the cross section for scattering from a
spinless pointlike target,
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is the virtual photon polarization parameter (expressed here as

a function of Q% and E), and t = Q?/(4m?), with m the proton
mass. For given E, the theoretical kinematic limits in Q2 are

2mE
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3
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corresponding to 1 > € > 0. The expressions for Q% and € in
terms of the the scattering angle and the actual experimental
limits of the variables in the Al experiment are given in
Ref. [33]. The relative contribution of the electric and mag-
netic FFs to the cross section is determined by the coefficients
with which they enter in Eq. (2): (Gg)2 enters with € and
contributes starting from Q? = 0, while (Gf(l)2 enters with
7 and contributes only at Q%> > 0. The two-dimensional data
cover the cross section at a given Q” at several values of ¢
and allow for separation of the contributions of G5 and G},
through global fits, generalizing the traditional Rosenbluth
method [32,33].

An important issue in global fits is the normalization of
the data sets taken at different energies. The normalization
of the cross section data (both absolute and relative, between
different energies) is limited by the knowledge of the absolute
luminosity in the different settings and subject to consider-
able uncertainties. The combination of data taken at different
energies therefore requires rescaling of the data sets, which
depends on the functional form of the FFs or on other assump-
tions. In the context of empirical fits the effect of the rescaling
on the random uncertainties of the data was studied in detail
in Refs. [25,33]. In the context of our approach this problem is
naturally solved by the fact that the theoretical model predicts
the shape of the FFs at finite Q® (in dependence of the radii).
We can therefore perform a global fit with floating normal-
izations of the data sets, which can adjust themselves to the
theoretical model; the physical information is in the variation
of the data with Q2, which tests the theoretical predictions for
the shape and fixes the radius parameters through the best fit.

As the figure of merit for the global fit with floating nor-
malizations we use a x 2 function of the form
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where we use 0 = do /d2 for brevity. The summation is over
the Ny, data points labeled by i. oy ; is the theoretical elastic
scattering differential cross section, Eq. (2), at the kinematic
point (E;, Q?), evaluated with the DIxEFT FFs G% and G,
with the parameters (ry, rj;). Oexp; is the measured cross
section and Aoy ; is the random uncertainty. The data points

are grouped in Ny sets measured under the same running
conditions; the normalization is assumed to be constant in-
side each set, but its value is unknown. The Ny parameters
(A1, ..., An,,) represent the floating normalizations in each
set; k(i) denotes the index k of the set to which data point
i belongs. (A detailed discussion of how the experimental
normalizations were defined and obtained can be found in
Ref. [22]). The x? defined by Eq. (5) is thus a function of the
theory parameters (r%, rh,) and the normalization parameters
(A1, ..., An,). Minimization is performed with respect to
all the parameters simultaneously. The values of the Ay (k =
I,..., Ngt) at the minimum are found to be equal to unity
within < 1%, indicating that the normalization determined in
the original analysis of Ref. [33] is reproduced well by our fit;
the values themselves have no physical significance otherwise
(nuisance parameters). The values of (7, r},) at the minimum
correspond to the best fit to the data and represent the proton
radii extracted with our method.

To estimate the fit uncertainties of the extracted radii, we
use the criterion A x> = 2.3 to determine the 1o interval (68%
confidence interval), corresponding to the simultaneous esti-
mation of two independent parameters. The uncertainties of
the physical parameters ry. and r}, are affected also by the
statistical fluctuations of the normalization parameters Ay;
we have estimated the total statistical uncertainties using a
bootstrap method and found them to be very close to the
uncertainties of % and rj, one would obtain from the vari-
ation of x? in rf and r}, after minimization with respect to
(A1, ..oy ANy

In our assessment of the uncertainties of the extracted
radii we must include also the intrinsic theoretical uncertainty
of the DIxEFT model. This refers to the uncertainty in the
model predictions for G, and G}, for given values of ry
and r},, which results from the effective description of the
high-mass states in the dispersion integral. For the electric
FF this theoretical uncertainty was estimated in Ref. [20];
we now extend this estimate to the magnetic FF and the
cross section predictions. The uncertainty is estimated by
varying the position of the effective high-mass pole in the
isovector electric and magnetic spectral functions over a range
M? = (0.5-2) x M}(nom), where MZ(nom) ~ 2.1 GeV? is
the nominal value determined in Ref. [38]. The values of M}
covered in this way extend from the upper end of the two-pion
continuum at &~ 1 GeV? to the two-nucleon threshold at 4m?>
and represent the maximum plausible range of the effective
pole position in the context of this model [20]. The theoretical
uncertainty of the cross section predictions obtained in this
way is shown in Fig. 2 for several (assumed) values of r};.
The figure thus simultaneously illustrates the sensitivity of
the DIYEFT cross section prediction to the magnetic radius
and the theoretical uncertainty associated with the prediction
for each radius, as well as the dependence of either on E
and Q2. One observes the following: (a) For all values of
E shown here, in the region Q° < 0.1 GeV? the theoretical
uncertainty of the cross section predictions is small, but there
is little sensitivity to the magnetic radius, because the mag-
netic FF enters in the cross section with a coefficient oc Q?;
cf., Eq. (2). (b) For E = 0.450 GeV and Q? ~ 0.1-0.4 GeV?
the theoretical uncertainty of the cross section predictions is
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FIG. 2. Lines: DIxEFT model predictions for the electron-
proton elastic scattering cross section obtained with magnetic radii
ry, = 0.84 fm (dashed lines), 0.85 fm (solid lines), and 0.86 fm
(dashed-dotted lines); the electric radius r; is kept constant at
0.84 fm. Associated shaded bands: Theoretical uncertainty of
the DIYEFT predictions for a given radius, resulting from the
parametrization of the high-mass states in the dispersion integral
(see text). The three plots show the cross section as a function of
0%, at E = 0.180, 0.450, and 0.855 GeV. In the first two plots, the
kinematic upper limit of Q2 is marked by vertical lines; in the third
plot it is outside the plotted region. The model cross section is divided
by the one evaluated with the standard dipole FFs (cf., Fig. 1).

moderate, while at the same time there is good sensitivity
to the magnetic radius. This region of E and Q® has the
most impact on our magnetic radius extraction (see below).
(c) For E = 0.855 GeV and Q? ~ 0.1-0.5 GeV?, the ratio
of theoretical uncertainties to magnetic radius sensitivity is
less favorable than at E = 0.450 GeV because € is larger [see
Eq. (3)], and the electric FF is more dominant (the electric FF
contributes to the theoretical uncertainty of the cross section
prediction but not to the magnetic radius sensitivity).

To quantify the effect of the theoretical uncertainty on the
radius extraction, we perform the fits and x> minimization
with the nominal and the changed values of M? and take
the differences between the results as a measure of the un-
certainty. We regard this uncertainty as the “full plausible
range” of the theoretical model and quote it separately from
the statistical uncertainty obtained from the fit.

The kinematic range of the fit used for our radius extraction
is determined by a balance of several considerations: (a) the
sensitivity of the cross section to the magnetic radius, which
requires Q% > 0.1 GeV?; (b) the experimental uncertainties
of the data at different £ and Q2, which control their impact
on the fit; and (c) the theoretical uncertainties of the DI x EFT
model. For the electric radius extraction from the electric FF
these considerations were described in detail in Ref. [20]; we
now extend them to include the magnetic FF and performing
the analysis at the cross section level. We include in the fit
the cross section data from all available E sets up to a fixed
maximum momentum transfer, 0> < Q2 ; in the sets where
the experimental upper limit of Q? is smaller than Q2 we

take all the data up to the limit. Our standard value is Q> =

max
0.5 GeV?; this choice ensures good sensitivity to the magnetic
radius, while the theoretical uncertainties are still moderate
(see Fig. 2). We test the robustness of the radius extraction by
performing fits with different values of Q2 __, including fewer

N max?’
or more data in the fit.

III. RESULTS
Our standard fit with Q2 = 0.5 GeV? includes 1285 of

the 1422 Mainz A1 data points. The overall quality of the de-
scription of the experimental cross sections is shown in Fig. 1.
One observes the following: (a) The kinematic dependencies
of the data (with the floating normalization determined by
the fit) are well reproduced by the theoretical model. The
statistically significant deviations observed in some E and Q°
regions are likely due to systematic effects in the data (some
of these features cannot be reproduced even with empirical
fits; cf. the discussion in Ref. [22]). (b) Most of the impact on
the fit comes from data in the midrange E bins (0.45, 0.585,
0.72 GeV), where the data are most precise.

The reduced x? profile in the physical parameters ry and
rf,l, obtained after minimization in the normalization parame-
ters, is shown in Fig. 3; the minimization in the normalization
parameters has been performed separately for each given

value of rf and r). One observes that (a) the variations

of x* in r and r}, are approximately independent and (b)
clear minima are obtained in both parameters. Minimizing
with respect to the radii, we extract rg = 0.842 £+ 0.002 fm
and ry, = 0.850 & 0.001 fm with a reduced x? of 1.39. (The
interpretation of the x 2 value and its significance for the radius
extraction are investigated below).

To test the robustness of the results, we have performed
fits with different values of Q2 and found little effect on
the extracted radii. In fact, using the entire Mainz Al data
setup to Q2. =1 GeV? gives rh = 0.843 £ 0.002 fm and
rh, = 0.850 £ 0.001 fm with a reduced x? of 1.43. This shows
that the theoretical model (evaluated at the “best” value of the
radii) accurately describes the Q? dependence of the data over
the entire range considered.

The minimum x?2 values obtained in our fits (after mini-
mization with respect to the normalization parameters and the
radii) depend on the uncertainties assigned to the experimental
data and need to be interpreted as such. The original analysis
of the Al data of Ref. [33] made certain assumptions about
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FIG. 3. The reduced x> obtained from Eq. (5), after minimiza-
tion in the normalization parameters, as a function of r; and rj,. The
minimization in the normalization parameters has been performed
separately for each given value of r; and r},.

the probability distribution of the errors in estimating the
uncertainties. The reanalysis of Ref. [25] reevaluated these
assumptions and used the actual distributions of the data (from
repeated measurements at the same kinematic points) to deter-
mine the uncertainties, obtaining slightly larger uncertainties
than Ref. [33]. To investigate the impact on our radius extrac-
tion, we have performed fits both to the reanalyzed data and
uncertainties of Ref. [25] and the original ones of Ref. [33]
and compared the results. The fit with Q2 = 0.5 GeV? uses
569 of the 658 reanalyzed data points (the reanalysis combines
the data points from repeated measurements) and gives radii
re =0.840 £0.002 fm and r}, = 0.849 & 0.001 fm with a
reduced x? of 1.07, in good agreement with our fit to the orig-
inal data. Extending Q2 to include all the reanalyzed data
we obtain r; = 0.841 £ 0.003 fm and r}, = 0.849 £ 0.001
fm with a reduced x2 of 1.10, showing similar stability as the
fit to the original data. One sees that the fits to the reanalyzed
data have significantly lower x? than those to the original data,
while the extracted radii and their uncertainties are essentially
the same. This shows that the larger x> values obtained in
the fits to the original data only reflect the underestimated
uncertainties of the original data but have no effect on the
extracted radii and their uncertainties. Altogether, our tests
show that the extracted radii are not sensitive to the choice
of data sets used in the fits.

We have estimated the theoretical uncertainty of the radius
extraction by performing the fits with the changed values of
the high-mass pole position as described in Sec. II. The “full
plausible range” theoretical uncertainties obtained in this way
are i = 0.8421000 fm and rf, = 0.8507000; fm. We note
that the reduced x 2 of the fit (after minimizing with the respect
to the radii) changes only by <12% when varying M? over
the entire range (0.5-2) x Mlz(nom). This clearly shows the
different role of the parameters in our DIy EFT-based radius
extraction: the radii r; and rj, are “fit parameters” to be
determined by x? variation; the pole mass M12 is a “theory
parameter” to be varied in a plausible range, with essentially
no impact from the data in the range considered here.

Summarizing the above results of the fits, tests, and uncer-
tainty estimates, our final results for the extracted electric and
magnetic radii are

rh = 0.842 £ 0.002 (1o fit uncertainty)

+0.00% (full-range theory uncertainty) fm,  (7)

rh, = 0.850 & 0.001 (1o fit uncertainty)

+0.00° (full-range theory uncertainty) fm.  (8)
One observes that the fit uncertainty is smaller in r}, than in
rh (see also Fig. 3), while the theory uncertainty is larger
in r}, than in rf. This pattern is explained by the different
sensitivity of the cross section to Gy, and G%; see Eq. (2)
and the discussion in Sec. II. The sensitivity to G}, is in
the region of “higher” Q% > 0.1 GeV?, where the data are
relatively more precise and have more constraining power in
the fit (see Fig. 1), while at the same time the theoretical
uncertainties are relatively larger (see Fig. 2). The sensitivity
to G}, is distributed more broadly and includes also “lower”
Q? < 0.1 GeV?, where the data are less precise but theoretical
errors are small.

IV. DISCUSSION

Several aspects of our method and results merit further
discussion. Our theory-based method allows us to determine
the proton’s magnetic radius with a precision comparable to
the electric one. This is because the dispersion-theoretical
framework correlates the values of the radii with the behavior
of the FFs at finite Q> ~ 0.1-0.5 GeV?, where the magnetic
FF contributes to the cross section with a strength comparable
to the electric one. It is different from empirical fits such as
higher-order polynomial fits, where the accurate extrapolation
of the functions to Q> — 0 conflicts with the vanishing sen-
sitivity of the cross section to the magnetic FF. Our method
therefore offers principal advantages for the analysis of the
proton’s magnetic structure.

The results of our analysis validate previous results for the
proton magnetic radius ~0.85 fm, obtained using dispersive
fits of the Mainz A1l [34,41] and earlier world data [42] (see
references therein for earlier works). They disagree with the
results obtained from various empirical fits of the Mainz Al
data [25,32]. This indicates that the observed discrepancies
are due to the extraction methods (analyticity, correlations
between Q regions from dispersion relations) rather than the
different data sets.

The Jefferson Lab PRad experiment has reported a new
measurement of the electron-proton elastic cross section down
to 0% &~ 10~* GeV?, significantly extending the reach of ear-
lier measurements [11]. We have performed a fit including the
PRad data in addition to the Mainz Al data and found no
change in the extracted rj and rj, within uncertainties. This
happens because the DIxEFT model naturally describes the
Q? dependence of the low-Q? data, with the same value of re
as favored by the higher-Q? data [20]; this was also observed
in the analysis of Ref. [23]. Note that the low-Q? data are
sensitive mostly to rg, and that our present extraction of r},
requires us to include data up to Q> ~ 0.5 GeV>.
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The values of the electric and magnetic radii extracted from
the data are very close. While this may be accidental, it is
qualitatively consistent with the nonrelativistic quark model
picture (independent particle motion in an L = 0 orbital, no
spin-orbit interactions). Using our method we can also deter-
mine the proton’s transverse charge and magnetization radii,
which refer to the relativistic representation of the FFs in
terms of transverse densities and can be related to the gen-
eralized parton distributions [1-4]. The derivatives at Q2 =0
of the Dirac and Pauli FFs, F” and F;, are related to those of
the electric and magnetic FFs by

dG”
ngO) dQ2m>+4 = )
ld@}> [ﬂ%«»—ﬁiwﬂ——L (10)
kP dQ? dQ? dQ? 4m?’

where x” = F/(0) = u” — 1 is the proton anomalous mag-
netic moment. In the transverse density representation these
derivatives determine the mean squared transverse radii of the
distributions of charge and magnetization in the proton [1],
Loy = glf LI o= A
dQ2 kpdQ? U

Equations (1) and (9)—(11) linearly relate (b*)} and (b*))
to (r7)? and (r})*. Using the results of our fit, we obtaln

(b*)1 = 0.394 £ 0.002 (1o fit uncertainty) *0.00 (full-range

theory uncertainty) fm? and (b*), = 0.531 £0.002 (lo fit
uncertainty) +8 8(1)2 (full-range theory uncertainty) fm?2. It is
interesting to note that, if one neglected the small difference
between the extracted electric and magnetic radii and set
(rE )2 = (rM)2 the transverse charge and magnetization radii

would be related as

(LY — (DY) = m? i ) = (), (12)

i.e., the difference would be entirely proportional to the proton
magnetic moment. Equation (12) is the partonic expression of
the approximate equality of the electric and magnetic radii.
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