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We conduct a two-flavor (Nf ¼ 2) lattice QCD calculation of the elastic phase shifts for pion-pion
scattering in the scalar, isoscalar channel (the σ-meson). The calculation is performed for two quark masses
corresponding to pion masses of 315 and 227 MeV. The σ-meson parameters are extracted using various
parametrizations of the scattering amplitude. The results obtained from a chiral unitary parametrization are
extrapolated to the physical point and read Mσ ¼ ð440þ10

−16 ð50Þ − i240ð20Þð25ÞÞ MeV, where the
uncertainties in the parentheses denote the stochastic and systematic ones. The behavior of the σ-meson
parameters with increasing pion mass is discussed as well.
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I. INTRODUCTION

The lightest excited state in the spectrum of hadrons is at
the same time one of the most controversial. As described
in detail in an extensive review [1], its properties (mass and
width) and even presence were debated for a long time.
Many precise analyses finally led to the currently accepted
ranges for mass, 400–550 MeV, and width, 400–700 MeV,
of the so-called σ or f0ð500Þ resonance [2]. This scalar/
isocalar excited state has a dominant decay channel to two
pions, with a very uncommon shape of the partial wave in
this channel.
Lattice QCD is the only method to compute the hadron

properties directly in terms of quark-gluon QCD dynamics.
In the context of ππ scattering, many important results have
been reported in the I ¼ L ¼ 1 channel [3–14]. Due to the
presence of disconnected diagrams, the corresponding
calculations in the I ¼ L ¼ 0 channel were not possible
for a long time, despite early pioneering works [15–17].
The first results have been reported recently by the Hadron

Spectrum Collaboration [18], extracting also phase shifts
using the Lüscher framework [19–22] in combination
with moving frames [23,24] and elongated boxes [25,26].
The datawere then analyzed and extrapolated to the physical
point using the Inverse Amplitude Method in Ref. [27].
The isoscalar scattering length at three pion masses
has been extracted recently by the European Twisted
Mass Collaboration [28].
In the present work, we report new Nf ¼ 2 lattice QCD

results for two different pion masses (Mπ ¼ 227 and
Mπ ¼ 315 MeV) and analyze them. To extract a robust
energy spectrum in a specific scattering channel, a large and
proper interpolating field basis is required. To have an
interpolating field basis that has the correct quantum number
and symmetry as the scattering channel and has enough
overlap with the relevant eigenstates of the system, both
quark-antiquark (qq̄ operators) and two-hadron interpolators
are included.We perform a variational analysis [21] with this
interpolating field basis to extract several low-lying energy
states that are in the elastic scattering region. The evaluation
of the correlation functions is carried out using theLaplacian-
Heaviside smearing method [29] for all the possible quark
diagrams calculated from the Wick-contraction procedure.
For our volumes, it was sufficient to use the original
Laplacian Heaviside (LapH) method, but for larger volumes,
it may be more efficient to use the stochastic version [30]. To
have more phase-shift data points in different kinematic
regions so as to better describe the energy dependence of
the ππ scattering phase shifts, we implement our calcula-
tion in three boxes with different elongation factor and two
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total-momentum frames, one being the rest frame P ¼
ð0; 0; 0Þ and the other one moving along the elongated
direction with P ¼ ð0; 0; 1Þ, the smallest nonzero momen-
tum allowed by the boundary conditions. Since we are
interested in two-particle scattering in the elastic region,
the physical observables such as the phase shift can be
obtained from the energy spectrum in finite volume using the
Lüscher formula [22].
In the second step of the present work, we perform an

energy-dependent analysis using directly the set of energy
eigenvalues at different elongations and momenta. This
allows to take into account the correlations between
different energy eigenvalues. To this end, we formulate
the scattering amplitude in a manner similar to theK-matrix
approach, which allows to access finite-volume energy
eigenlevels (as positions of the poles of this amplitude).
The free parameters of the parametrizations are fitted to
reproduce the lattice data and then used in the infinite-
volume formulation to determine the parameters of the
isoscalar ππ resonance. We use different parametrizations
to estimate the systematic uncertainty from this source.
Specifically, we consider a general expansion in an energy
variable conformally mapping the energy plane to the unit
disk, similar to the analyses of Refs. [31,32]. Second, we
employ a model based on the chiral unitary approach
(UChPT), used, e.g., in Refs. [9,33,34]. Subsequently, the
UChPTamplitude is extrapolated to the physical point. Our
final result, based on all lattice data presented here with and
without the isovector channel data [9], reads Mphys

σ ¼
ð440þ10

−16 − i240þ20
−20Þ MeV and agrees with the result of

the most recent analysis of experimental data [1] within the
quoted 1σ region. Additionally, the study of the pion mass
dependence of resonance mass and coupling to the ππ
channel is studied in a broader range ofMπ , as was done in
Refs. [27,35,36].
The paper is organized as follows. In Sec. II, we describe

the details of the lattice calculation to obtain the energy
eigenvalues and correlation matrices. In Sec. III, we
describe the scattering amplitudes used for the extrapola-
tion of the lattice results in energy and pion mass. The
results of these analyses are discussed in Sec. III C, and the
overall summary is given in Sec. IV.

II. TECHNICAL DETAILS

A. Interpolating basis

As we mention in the Introduction, the composition of
the σ-meson might include different kinds of components.
In order to extract low-lying energy states from the
correlation function, we perform a variational analysis.
In this study, we are interested in two-pion elastic scatter-
ing. To better extract the low-lying energy levels in the
elastic scattering region, we choose a set of interpolating
fields with the same quantum number including the quark-
antiquark (qq̄) and meson-meson interpolating fields in the

variational basis. There are several reasons for using a large
variational basis. First, it helps resolve energy states that are
nearly degenerated. Second, it offers a large enough overlap
with the eigenstates of the Hamiltonian, which can improve
the accuracy and stability of the extracted energy spectrum.
The correlation matrix is constructed from two-point

functions of all combinations of the interpolating fields
in the variational basis. The elements of the correlation
matrix are

CijðtÞ ¼ hOiðtÞO†
jð0Þi: ð1Þ

We denote the interpolators as Oi with i ¼ 1;…; N with N
being the number of interpolating fields in the basis. The
eigenvalues of the correlation matrix can be obtained by
solving the generalized eigenvalue problem

Cðt0Þ−1
2CðtÞCðt0Þ−1

2ψ ðnÞðt; t0Þ ¼ λðnÞðt; t0Þψ ðnÞðt; t0Þ ð2Þ

for a particular initial time t0 and for each time slice t. The
energies of the system are then determined from the long-
time behavior of the eigenvalues [37]

λðnÞðt; t0Þ ∝ e−Ent½1þOðe−ΔEntÞ�; n ¼ 1;…; N; ð3Þ

where the correction term depends on the energy difference
ΔEn ¼ ENþ1 − En. According to this behavior, for the low-
lying energy states, the larger the interpolating basis we use,
the faster the correction vanishes. However, the benefit from
enlarging the interpolating basis decreases because the
energy eigenstates get denser in the higher-energy part of
the spectrum. Our goal is to choose an interpolating basis
that is good enough to capture the energy eigenstates in the
elastic scattering energy region.
In this work, we consider lattices with one spatial

direction elongated. The corresponding rotational sym-
metry group for this elongated box is D4h, which is a
subgroup of the full rotational symmetry group SOð3Þ.
Therefore, the angular momenta that label the irreducible
representations (irreps) of SOð3Þ are split into multiplets
related to irreps of theD4h group. The resulting split for the
lowest angular momentum multiplets is listed in Table I.
The σ-meson has angular momentum L ¼ 0 and positive
parity. The irrep L ¼ 0 maps to the one-dimensional
Aþ
1 irrep. The lowest state in this channel corresponds to

TABLE I. Resolution of angular momentum in terms of irreps
of the Oh and the D4h group.

l Oh D4h

0 Aþ
1 Aþ

1

1 F−
1 A−

2 ⊕ E−

2 Eþ ⊕ Fþ
2 Aþ

1 ⊕ Bþ
1 ⊕ Bþ

2 ⊕ Eþ

3 A−
2 ⊕ F−

1 ⊕ F−
2 A−

2 ⊕ B−
1 ⊕ B−

2 ⊕ 2E−

4 Aþ
1 ⊕ Eþ ⊕ Fþ

1 ⊕ Fþ
2 2Aþ

1 ⊕ Aþ
2 ⊕ Bþ

1 ⊕ Bþ
2 ⊕ 2Eþ
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a π − π state for which the two pions decay at rest.
Therefore, the lowest state changes very little when varying
the elongation of the box. The excited states energy
changes as we increase the elongation, and we can scan
this corresponding energy region.
In order to have more energy values data points in

different kinematic regions, we implement the boosted
frame method. The idea is to boost the whole system with a
given momentum P in a certain direction. Due to the
relativistic effects, the box along the boosted direction is
contracted [23]. A generic boost direction of the box will
further reduce the original symmetry group to a subgroup
which depends on the direction of the boost. In this study,
we implement a boost to an elongated box parallel to the
elongated direction. In this case, the boost reduces the
rotational symmetry group of the cubic box from Oh to
D4h, but it does not change the rotational symmetry group
for the elongated box, which is still D4h.
We note that the states in the Aþ

1 irrep belong to different
irreps of SOð3Þ. The Aþ

1 irrep couples not only to L ¼ 0 but
also to other higher angular momentum channels such as
L ¼ 4 and so on in the Oh group for the cubic box and
L ¼ 2, L ¼ 4 and so on in the D4h group for the elongated
box. However, to study the σ-meson, we are interested in
the low-energy region where the two-pion states have
relatively small scattering momentum. In this case, the
effect from the L ≥ 2 channels is small, and their con-
tribution can be safely neglected because it is kinematically
suppressed through the barrier factor. Indeed, the influence
of the D-wave in the extraction of the S-wave from energy
eigenvalues in Aþ

1 has been estimated in Ref. [38] using
realistic S and D waves; it was found to be small.
As a result, we focus on the states in the Aþ

1 irrep. For the
volumes considered in this study, there are only two or
three low-lying energy states in the elastic scattering energy
region. As mentioned before, we need a basis that has
overlaps both with the resonance state (to take into account
possible two-quark components of the σ resonance) and
with the states that have a dominant two-pion content. We
include four quark-antiquark interpolators in our basis so
that we can see their effects on the energy spectrum. These
four quark-antiquark interpolators have the form

σðΓiðpÞ; tÞ ¼
1ffiffiffi
2

p ½ūðtÞΓiðpÞuðtÞ þ d̄ðtÞΓiðpÞdðtÞ�: ð4Þ

The uðtÞ and dðtÞ denote the up and down quarks on the
entire t time slice which is a column vector of size
N ¼ 12 × Nx × Ny × Nz. The ΓiðpÞ represents N × N
matrices. Their form in the creation operators is defined
as Γ0

iðpÞ, which can be derived using

½σðΓiðpÞ; tÞ�† ¼ σðΓ0
iðpÞ; tÞ: ð5Þ

The details for ΓiðpÞ and Γ0
iðpÞ are listed in the first four

rows of Table II. The first interpolator is pointlike, and the

next three interpolators involve q̄q pairs that are separated
by several lattice spacings, defined using the covariant
derivative

ð∇kÞabx;y ¼ Uab
k ðxÞδxþk̂;y − δabδx;y: ð6Þ

The forth interpolator has a different gamma matrix
structure.
In previous studies for the ρ-meson resonance in the

π − π scattering channel [4,9,12], it was shown that the
quark-antiquark interpolators are not sufficient to extract a
reliable spectrum in the interacting theory where the actual
eigenstates are mixed with quark-antiquark basis states and
multihadron basis states. The reason is that the quark-
antiquark interpolators have little overlap with the multi-
hadron states and the overlap is shown to be suppressed by
a power of the lattice volume [12]. To solve this problem,
we include the pion-pion interpolators in the variational
basis. First, we construct the pion-pion interpolators to have
isospin I ¼ 0 and I3 ¼ 0 which correspond to the σ-meson,

ππðp1; p2Þ ¼
1ffiffiffi
3

p fπþðp1Þπ−ðp2Þ þ π−ðp1Þπþðp2Þ

þ π0ðp1Þπ0ðp2Þg; ð7Þ

where πþ, π−, and π0 are given by

πþðp; tÞ ¼
X
x

d̄ðx; tÞγ5uðx; tÞeipx ¼ d̄ðtÞΓ5ðpÞuðtÞ;

π−ðp; tÞ ¼
X
x

ūðx; tÞγ5dðx; tÞeipx ¼ ūðtÞΓ5ðpÞdðtÞ; ð8Þ

and

π0ðp; tÞ ¼ 1ffiffiffi
2

p
X
x

fūð,x; tÞΓ5eipxuðx; tÞ

− d̄ðx; tÞΓ5eipxdðx; tÞg

¼ 1ffiffiffi
2

p fūðtÞΓ5ðpÞuðtÞ − d̄ðtÞΓ5ðpÞuðtÞg: ð9Þ

As we mention before, in this study, we focus on the Aþ
1

irrep, which mainly couples to the S-wave of the pion-pion

TABLE II. Interpolator structure for the quark bilinears for the
quark-antiquark interpolators (i ¼ 1–4) and for pion-pion inter-
polators (i ¼ 5).

i ΓiðpÞ Γ0
iðpÞ

1 1eip 1e−ip

2 ∇i1eip∇i ∇i1e−ip∇i

3 ∇4
i 1e

ip∇4
i ∇4

i 1e
−ip∇4

i

4 γieip∇i γie−ip∇i

5 γ5eip −γ5e−ip
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scattering. To construct interpolators transforming accord-
ing to the Aþ

1 representation, we project the general ππ
interpolators into Aþ

1 using

ππðp1; p2ÞAþ
1
¼ 1

jD4hj
X
g∈D4h

χAþ
1
ðgÞππðRðgÞp1; RðgÞp2Þ;

ð10Þ

where RðgÞ implements the rotation associated with the
symmetry transformation g, jD4hj is the number of ele-
ments of the group D4h, and χAþ

1
is the character of group

element g in the Aþ
1 irrep.

In order to have more energy levels in different kinematic
regions, we implement two different total momenta for the
system. The ππ operators in the rest frame P0 ¼ ð0; 0; 0Þ in
Aþ
1 irrep are as follows:

ππð0Þ000 ¼ ππðp1 ¼ ð0; 0; 0Þ; p2 ¼ P0 − p1Þ;
ππð0Þ001 ¼ ππðp1 ¼ ð0; 0; 1Þ; p2 ¼ P0 − p1Þ: ð11Þ

In the boost frame P1 ¼ ð0; 0; 1Þ, the lowest scattering
momentum p1 ¼ ð0; 0; 1Þ. Therefore, we use the following
interpolators,

ππð1Þ001 ¼ ππðp1 ¼ ð0; 0; 1Þ; p2 ¼ Pi − p1Þ;
ππð1Þ002 ¼ ππðp1 ¼ ð0; 0; 2Þ; p2 ¼ Pi − p1Þ;

ππð1Þ011 ¼
1

2

X
p1∈P

ππðp1; p2 ¼ P1 − p1Þ; ð12Þ

where P ¼ fð0; 1; 1Þ; ð1; 0; 1Þ; ð−1; 0; 1Þ; ð0;−1; 1Þg are
all the possible momenta generated by symmetry trans-
formations RðgÞp from p ¼ ð0; 1; 1Þ. The value of p2 in the
equations above is imposed by momentum conservation.
The reason we only apply the positive total momentum P1

in the boosted case is that the expectation values for the
correlation functions associated with momentum P1 and
−P1 are the same due to rotational symmetry.
With these six interpolators, we construct a 6 × 6

variational basis. Each entry in the correlation matrix
can be calculated through the Wick-contraction procedure.
There are three types of entries in the correlation matrix,

Cσi←σj ¼ hσiðP; tfÞσ†jðP; tiÞi
¼ h−½iPfjj0Pi� þ 2 × ½iPf�½j0Pi�i;

Cσi←ππ ¼ hσiðP; tfÞππðp;P − p; tiÞ†i
¼

ffiffiffiffiffiffiffiffi
3=2

p
× h−2½iPf�½50pij50P − pi� þ ½iPfj50P − pij50pi� þ ½iPfj50pij50P − pi�i;

Cππ←ππ ¼ hππðp0;P − p0; tfÞππðp;P − p; tiÞ†i
¼ h3 × ½5p0fj5P − p0f�½50pij50P − pi� þ 1 × ½5p0fj50pi�½5P − p0fj50P − pi� þ 1 × ½5p0fj50P − pi�½5P − p0fj50pi�
− ð3=2Þ × ½5p0fj5P − p0fj50pij50P − pi� − ð3=2Þ × ½5p0fj50P − pij50pij5P − p0f�
− ð3=2Þ × ½5p0fj5P − p0fj50P − pij50pi� − ð3=2Þ × ½5p0fj50pij50P − pij5P − p0f�
þ ð1=2Þ × ½5p0fj50P − pij5P − p0fj50pi� þ ð1=2Þ × ½5p0fj50pij5P − p0fj50P − pi�i: ð13Þ

The notation above is defined as

½i1p1j1j…jikpkjk�≡ Tr
Yk
α¼1

ΓiαðpαÞM−1ðtjα ; tjαþ1
Þ; ð14Þ

where jkþ1 is defined to be j1 andM−1ðt; t0Þ ¼ huðtÞūðt0ÞiF
is the quark propagator between time slices t and t0 (for
more details about the notation, see Ref. [9]).
The calculation of the correlation functions involves the

evaluation of the all-to-all propagator, which is expensive
to compute directly. We evaluate them using the LapH
method: the quark fields are replaced by LapH smeared
fields. The smeared interpolators have the same quantum
numbers as the original ones, but their correlation functions
can be computed efficiently using the projection of the
quark propagator to the low-lying Laplacian eigenmode

space. For each ensemble, we use 100 Laplacian eigenmodes
per time slice, corresponding to a smearing radius of about
0.5 fm. More details about the LapH method used in this
study can be founded in our previous study [9]. To calculate
the all-to-all propagator projected on theLapH space requires
a large number of fermionicmatrix inversions. Thiswas done
efficiently using our GPU inverters [39].

B. Finite-volume spectrum

In the I ¼ 0 channel, each entry of the correlation
function contains temporally disconnected diagrams in
which the trace only has one time slice. Evaluation of
these diagrams is difficult. The reason is that this channel
has the same quantum numbers as the vacuum and the
correlators do not vanish as the time separation is taken to
infinity. The constant contribution has to be subtracted in
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order to get the expected exponential behavior. In our study,
we implement two approaches to subtract the vacuum
contribution from temporally disconnected diagrams. In the
first method, we estimate the vacuum contribution by
taking the average of the vacuum bubble and subtract this
value from the original correlation functions as

hOðt2ÞO†ðt1Þisub ¼ hOðt2ÞO†ðt1Þi − hOðt2ÞihO†ðt1Þi:
ð15Þ

The second approach to solving this problem is to consider
the so called shifted correlators instead of the original
correlators in the correlation matrix

C̃ijðtÞ ¼ Cijðtþ dÞ − CijðtÞ; ð16Þ

where d is the time shift between two correlation functions.
In this case, since thevacuum contribution is a constant in the
correlator, it is subtracted implicitly when taking the differ-
ence of correlation functions. We compare the energy levels

extracted from these two approaches atMπ ¼ 227 MeVwith
different elongation factors η in Fig. 1.
We note that the results from direct subtraction have

smaller error bars, but they seem to be inconsistent with the
expectation from the UChPT predictions when using the
parameters for this model extracted from the ρ study.
Furthermore, these results are also inconsistent with the
ones extracted using themoving frame correlators that do not
require a vacuum subtraction. It turns out that energy levels
extracted using this method are very sensitive to the value of
the constant used to subtract the correlator, the vacuum
expectationvalue of the one-point functions generated by the
interpolators. One possibility is that the values we computed
are biased by wraparound effects in the time direction. The
shifted correlator method does not suffer from this problem,
but it generates results with larger error bars. The reason for
this is that, for the same fitting window as in the direct
subtractionmethod, the correlators involved are noisier since
the shifted values of the correlators correspond to later times.
We decided to use the shifted correlator method for the zero-
momentum states. For themoving states, we do not need any
subtraction, since the one-point functions vanish in this case.
We also looked at the stability of our results with respect

to varying the interpolator basis. Our conclusions are
similar to the ones derived in our ρ study [9]. The only
noticeable difference is that for the moving states, we found
that the energy levels are more sensitive to the presence of
the O4 ¼ γi∇i interpolator in our basis. We believe this is
because the other q̄q operators have the same γ-matrix
structure, all γ ¼ 1, and thus O4 provides a significantly
different overlap with the relevant states.
We evaluated the correlators using six different ensem-

bles, three at mπ ≈ 227 MeV and another three at
mπ ≈ 315 MeV. The parameters for these ensembles are
listed in Table III. The lattice spacing was determined using
an observable based on the Wilson flow [40]: the w0

parameter [41]. We decided to adopt the scale determined
by w0 because the method is very straightforward and it has
small stochastic errors. We used 150 configurations from
ensembles E1 and E4 and computed w0=a ¼ 1.3888ð24Þ
and w0=a ¼ 1.4157ð37Þ respectively and converted this to
physical units using the conversion factors determined in

FIG. 1. Comparison of the σ energy spectrum with direct
subtraction (orange) and shifted correlator (blue) methods at
pion mass ensembles mπ ≈ 227 MeV. Orange points are dis-
placed slightly in the horizontal direction for clarity. The solid
curves are a prediction of the UChPT model with a parameter set
from the fit to the ρ data [9].

TABLE III. The parameters for the ensembles used in this study. The lattice spacing a for each ensemble is listed, and the number of
gauge configurations amN and afπ represent the nucleon mass and pion decay constant in lattice units. The two errors for the lattice
spacing are stochastic, from the w0=a determination, and a systematic one estimated to be 2%.

Ensemble Nt × N2
x;y × Nz η aðfmÞ Ncfg aMπ amN ampcac

u=d afπ

E1 48 × 242 × 24 1.0 0.1210(2)(24) 300 0.1934(5) 0.644(6) 0.01237(9) 0.0648(8)
E2 48 × 242 × 30 1.25 … … … … … …
E3 48 × 242 × 48 2.0 … … … … … …
E4 64 × 242 × 24 1.0 0.1215(3)(24) 400 0.1390(5) 0.62(1) 0.00617(9) 0.060(1)
E5 64 × 242 × 28 1.17 … … … … … …
E6 64 × 242 × 32 1.33 … … … … … …
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Ref. [42]. Note that at fixed lattice spacing in the presence
of lattice artifacts, the lattice spacing determination intro-
duces a systematic error. We estimate that our systematic
error associated with the lattice spacing is at the level of
2%. More details about our lattice spacing determination
and the consistency checks we used are included in our
previous study [9].
The energy levels extracted for this channel both for

zero-momentum and moving states, and the details of the
fitting parameters are listed in Appendix.

C. Phase-shift formulas

As mentioned in the Introduction, in this study, we only
consider two-pion scattering below the inelastic threshold.
To connect the two-hadron state energies determined from
lattice QCD with the physical observables, i.e., the phase
shifts in the continuum, we use Lüscher’s formula [22] and
its extensions to the elongated box [25] and to states boosted
along the elongated direction [26]; see also Refs. [23,43].
Note that the extraction of resonance parameters from the
phase shifts requires a more delicate analysis in case of σ
resonance. This is due to the fact that the σ cannot be
described by an ordinary Breit-Wigner shape. Careful
implementation of analyticity and unitarity in the scattering
amplitude is necessary and will be discussed in the next
section.
We illustrate Lüscher’s formula for studying σ-resonance

phase shifts in the IðJPCÞ ¼ 0ð0þþÞ scattering channel.
The corresponding irrep for the S-wave scattering channel
is Aþ

1 in both the Oh and D4h groups. The A
þ
1 irrep in D4h

couples to angular momenta J ¼ L ¼ 0; 2; 4…. Using the
argument for the angular momentum cutoff we discussed in
Sec. II A, we assume that the contribution from J > 0 is
negligible. As a result, we consider the Aþ

1 irrep under the
condition that it is dominated by J ¼ 0. Lüscher’s formula
in Aþ

1 is then given by

cot δ0 ¼ W00 ¼
Z00ð1; q2; ηÞ

π3=2ηq
: ð17Þ

The boost along the elongated direction does not change
the symmetry group of the elongated box. Therefore, the
boosted version of Lüscher’s formula has the same form as
Eq. (17) in the Aþ

1 irrep of the D4h group but with the
modification that comes from the boost factor. The detailed
derivation can be found in Ref. [9].

III. ANALYSIS OF THE ππ SCATTERING
AMPLITUDE

The extracted phase shifts and their covariances carry the
full information about the interaction of (unphysically
heavy) pions at discrete values of energy (or momentum)
above and even below the corresponding ππ threshold.
From the point of view of scattering theory, these points are

interconnected by a function of energy (partial wave pro-
jection is assumed)which carries specific analytic properties.
These properties are the guiding principle for the construc-
tion of fit functions to extract its parameters from lattice data
(as described in Sec. II and collected at the end of this paper in
Appendix.) Given the S-matrix and scattering amplitude T
for two-to-two scattering with S ¼ 1 − iT, the unitarity
constrains the imaginary part of the scattering amplitude
projected to definite isospin (I) and angular momentum (L)
to be 16πImT−1

IL ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=s
p

, where s denotes the
square of the total four-momentum of the system. The above
equation does not fix the amplitude entirely but only up to a
real-valued function in the physical region,

TILðsÞ ¼
1

K−1
IL ðsÞ −GðsÞ ; ð18Þ

where KILðsÞ is a real-valued function and GðsÞ is the two-
pion loop function. In dimensional regularization, it reads

GðsÞ¼aðμÞþ2 lnðMπ=μÞ
16π2

þ pcm

8π2
ffiffiffi
s

p ln

�
2pcmþ

ffiffiffi
s

p
2pcm−

ffiffiffi
s

p
�
; ð19Þ

where pcm is the modulus of the three-momentum in the
center-of-mass system. The regularization scale and the
subtraction constant are fixed throughout this study and in
accordancewith the discussion of Refs. [9,34] to μ ¼ 1 GeV
and aðμÞ ¼ −1.28, respectively. This value results from a fit
to experimental data, but it can be varied in a range of �0.5
without changing the result noticeably; i.e., the change is
well absorbed into the values of the low-energy constants
even if the amplitude is not explicitly scale invariant [34].
Note that since 16πImGðsÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=s
p

, the above
formulation of the T-matrix differs from the usual K-matrix
formulation only by a reshuffling of the ReGðsÞ part. The
form of the function KILðsÞ is not fixed by unitarity. In this
work, we will use four versions of two different types of the
K-matrix to gauge the systematic uncertainty tied to a
particular choice. In the complex energy plane, GðsÞ from
Eq. (18) is replaced by its analytical continuation to the
second Riemann sheet,

GIIðsÞ ¼ GIðsÞ þ i
pcm

4π
ffiffiffi
s

p Impcm > 0: ð20Þ

There, the resonances are identified with poles of the scatter-
ing amplitude, the positions of which are found numerically.
For the direct use of lattice data, i.e., energy eigenvalues

and their covariance matrices, we formulate the finite-
volume version of the scattering amplitude, i.e., of Eq. (18).
The positions of poles of the latter give access to the
discrete energy spectrum on the lattice. For boxes with
asymmetry η in the z direction and in the rest frame, such an
amplitude can be obtained replacing GðsÞ → G̃ðη; sÞ in
Eq. (18) with
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G̃ðη; sÞ ¼ GðsÞ þ lim
qmax→∞

�
1

ηL3

X
jqj<qmax

Iðs; jqjÞ −
Z
jqj<qmax

d3q
ð2πÞ3 Iðs; jqjÞ

�

for Iðs; jqjÞ ¼ ω1 þ ω2

2ω1ω2

1

s − ðω1 þ ω2Þ2
ð21Þ

and ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þm2

i

p
, with q being the momentum in the

rest frame, q ¼ 2π=Lðnx; ny; nz=ηÞ. For boosts with mo-
mentum P, one performs a Lorentz transformation see
Ref. [38]. Note also that G̃ðη; sÞ is independent of qmax but
does depend on the subtraction constant aðμÞ via GðsÞ as
given in Eq. (19). In other words, the infinite-volume
extrapolation is cutoff independent and equivalent to
the Lüscher formalism up to exponentially suppressed
contributions. At the same time, the function G̃ contains
a dispersive real part relevant for the parametrization of the
infinite-volume amplitude itself. See Ref. [38] for further
details. The discrete energy spectrum obtained from the
finite-volume scattering amplitude [see Eqs. (18) and (21)],

K−1
00 ðsiÞ − G̃ðsiÞ ¼ 0: ð22Þ

In the following, we will specify different parametriza-
tions for K00, which in every case depend on some free
parameters. These will be adjusted by minimizing

χ2 ¼ ð ffiffiffiffi
si

p
−

ffiffiffiffiffi
s0

p ÞT · C−1 · ð ffiffiffiffi
si

p
−

ffiffiffi
s

p
0Þ; ð23Þ

where si are the fit parameter–dependent solutions of
Eq. (22), ordered in a vector in Eq. (23);

ffiffiffiffiffi
s0

p
indicates

the vector of eigenenergies measured on the lattice; andC is
the covariance matrix of the correlated data. Equation (23)
implicitly contains a summation over contributions to the
χ2 from different elongation factors η and boosts P. The
covariances between data from different moving frames are
taken into account.
Note that one other lattice input used in the fits is the

mass of the pion. The error bars for the pion mass are much
smaller than the errors for the energies of two-hadron states
used in the analysis. As such, we treat the pion masses as
exact in the fit.
We analyze data from different pion masses and channels

individually and also simultaneously. In the case the data of
the isoscalar channel (from this work) and of the I ¼ L ¼ 1
ρ channel [9] are simultaneously fitted, Eq. (22) changes
accordingly for the data from the ρ channel,K00 → K11, and
Eq. (23) becomes a sum over the two channels. Similarly, it
becomes a sum over contributions from different pion
masses in the respective simultaneous fits. Further statistical
tests, such as Pearson’s χ2 test, will be discussed below.

A. Conformal mapping

The first type of the parametrization of the scattering
amplitude relies on a general form of the K-matrix as an

analytic function of energy. As discussed in Refs. [31,32],
the convergence of a power series in energy is limited but
can be improved, mapping it onto the interior of a disk
limited by the right- and left-hand cuts lying on the
boundary circle. We use two versions of such a mapping
slightly adapted to our approach. We refer to them as [cm1]
and [cm2] with the respective expansion variables

ω½cm1�ðsÞ ¼
ffiffiffi
s

p
− α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sthres − s

p
ffiffiffi
s

p þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sthres − s

p ;

ω½cm2�ðsÞ ¼
ffiffiffi
s

p
−

ffiffiffi
c

p
ffiffiffi
s

p þ ffiffiffi
c

p ; ð24Þ

where α, sthres, and c are parameters of the mapping. In
particular, sthres in parametrization [cm1] is the position of
the next threshold opening above the ππ threshold. Here,
we do not have a KK̄ channel as in Refs. [31,32], but we
can interpret the parameter to take account of the opening
of the four-pion threshold. The [cm2] parametrization is
obtained in the limit sthres → ∞. The quantity

ffiffiffi
c

p
is the

expansion point in the
ffiffiffi
s

p
plane connected to α through

c ¼ sthresα2=ð1þ α2Þ. For the [cm1] parametrization,ffiffiffi
c

p ¼ 778 MeV (for α ¼ 1 and
ffiffiffiffiffiffiffiffiffi
sthres

p ¼ 550 MeV); for
[cm2],

ffiffiffi
c

p ¼ 1 GeV. We have checked that the results do
not depend on these choices.
For the isoscalar channel (I ¼ L ¼ 0), the chiral sym-

metry dictates that T00ðsÞ must vanish for s ¼ sA ∼M2
π=2.

To account for this fact, the K-matrix in this channel takes
for both versions of the mapping variable ω½…� the
following form,

K−1
00 ðsÞ¼

1

16π

M2
π

sA− s

�
2sA

Mπ
ffiffiffi
s

p þB0þB1ωðsÞþ �� �
�
; ð25Þ

where throughout the further calculations sA are set to its
leading chiral order value, i.e., 2sA ¼ M2

π. The number of
polynomial terms in the latter equations (∼Bi) is not
restricted a priori. For the present case, two polynomial
terms (B0, B1) turn out to give sufficient flexibility in the
energy variable ωðsÞ to fit the data. The lattice data consist
of the energy eigenvalues and covariance matrices of the
energy levels at two different pion masses (Mπ ¼ 227 and
Mπ ¼ 315 MeV) in the I ¼ L ¼ 0 channel which we fit
individually.
Here and in Sec. III B, the lattice energy levels for

the σ-meson are fitted up to
ffiffiffi
s

p
≈ 970 MeV and
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ffiffiffi
s

p
≈ 1070 MeV for the light and heavy pion masses,

respectively. This corresponds in both cases to p2 ≈
0.187 GeV2 for the magnitude of the center-of-mass
three-momentum p. The data at higher p2 cannot be fitted
by the considered parametrizations. Fitting with more
flexible parametrizations would, however, require more
data points in the high-momentum range.
The results of the fits are collected in the first four

entries of Table IV, which all pass Pearson’s test with the
total χ2 ≈ 9 lying inside of the 80% confidence interval of
our two-tailed test, i.e., (6, 19) and (7, 20), for the light
and heavy pion masses, respectively. The error bands
depicted in Fig. 2 are obtained from the error ellipses of
the fitting parameters. Such a procedure for the propa-
gation of statistical uncertainties is used in the remainder
of the paper. There is a clear overlap of the fits with the

data. Only for the heavy pion mass and energies deep
below threshold, there is some discrepancy that could be
significant. Note again that not the phase shifts are fitted
but the energies extracted from lattice QCD. This makes
the comparison of the fit results and the shown phase
shifts difficult; for example, the error bars in the x and y
directions of the phase-shift data are perfectly correlated
(one may think of inclined error bars), and the correla-
tions between different phase-shift data can obviously not
be visualized.
Finally, having fixed parameters of both parametriza-

tions, we perform an analytical continuation to the complex
energy plane. On the second Riemann sheet of this plane,
we determine the position (z0) and residuum (g2) of the σ-
resonance pole. The results are collected in the last three
columns of Table V. They are discussed in Sec. III C

FIG. 2. Results of the fits to the lattice data in terms of p cot δ using the conformal parametrization in two variants ([cm1] and [cm2]),
cf. Eq. (24) for Mπ ¼ 227 MeV and Mπ ¼ 315 MeV. Data points outside of the fitting region are excluded from the plot.

TABLE IV. Best fit parameters of considered parametrizations obtained from fits to lattice energy levels as specified in the second
column. The number of data points in each fit, denoted by n, is stated in the seventh column. The last subtable contains results of the
[chm2] analysis for the isovector data only; see Ref. [9].

Parametrization Fitted data Free parameters n χ2d:o:f:

B0 B1 (MeV−1)
cm1 σ227 þ11ð1Þ þ9ð3Þ 14 0.7
cm1 σ315 þ6ð1Þ −2ð3Þ 15 0.7

B0 B1 (MeV−1)
cm2 σ227 þ11ð2Þ þ9ð5Þ 14 0.8
cm2 σ315 þ6ð1Þ −3ð6Þ 15 0.7

La Lb Lc
chm1 σ227;315 −0.10ð16Þ þ0.07ð14Þ −0.010ð12Þ 29 1.1

l̂1 × 103 l̂2 × 103 L2 × 103 L68 × 103

chm2 σ227, ρ227 þ2.2ð9Þ −3.44ð16Þ þ1.0ð2Þ þ1.6ð8Þ 22 0.9
chm2 σ315, ρ315 þ2.2ð5Þ −3.45ð15Þ þ1.4ð2Þ −3ð2Þ 22 0.9
chm2 σ227;315; ρ227;315 þ2.24ð3Þ −3.44ð1Þ þ1.2ð1Þ −0.1ð7Þ 44 1.1

l̂1 × 103 l̂2 × 103

Ref. [9] ρ227;315 þ2.26ð14Þ −3.44ð3Þ … … 15 1.3
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together with the results from the chiral unitary approach
discussed in the next section.

B. Chiral unitary approach

The second option for the form of the K-matrix explored
in this work is inspired by chiral perturbation theory in two-
flavor formulation. As such, it contains symmetries of
QCD, while it also relates different interaction channels as a
full-fledged quantum field theory. These two facts allow for
a chiral extrapolation between different pion masses as well
as for a simultaneous description of the isoscalar and
isovector channels. However, the price to pay is that the
full K-matrix would contain infinitely many terms. To
make a practically feasible approach, a truncation of a
chiral series is required. Different versions are in use; their
theoretical properties are discussed in detail in Ref. [44].
In the following, we will use a version of UChPT, which,

on the one hand, allows us to address both (σ and ρ)
channels of the ππ scattering simultaneously; see, e.g.,
Refs. [9,33,34,45]. On the other hand, it contains only local
terms (of the leading and next-to-leading chiral orders),
which makes the analysis of the discrete finite-volume
spectrum feasible in the same way as in the case of
conformal mapping; see Sec. III A. Other versions of chiral
unitary approaches utilized for the analyses of ρ and σ
lattice spectra can be found in Refs. [27,46]. The K-matrix
reads in both considered channels

K00ðsÞ¼
3ðM2

π −2sÞ2
6f2πðM2

π −2sÞþ8ðLaM4
πþ sðLbM2

πþLcsÞÞ
;

ð26Þ

K11ðsÞ ¼
4M2

π − s

3ðf2π − 8l̂1M2
π þ 4l̂2sÞ

; ð27Þ

where fπ is the pion decay constant fixed to its value at the
given pion mass (using the data from Table III). The low-
energy constants (LECs) of the next-to-leading chiral order
read [47]

La ¼ −36l̂1 þ 44l̂2 þ 20ð5L2 þ 6L6 þ 3L8Þ;
Lb ¼ 12l̂1 − 40l̂2 − 80L2;

Lc ¼ 11l̂2 þ 25L2;

l̂2 ¼ 2L1 − L2 þ L3 and l̂1 ¼ 2L4 þ L5: ð28Þ

The model used here is identical to the one of Ref. [9], in
which, using the potential of Eq. (27), the energy levels of the
ρ-mesonwere analyzed. The same data set for the ρ-meson is
considered here as well. Therefore, we refer to Ref. [9] for a
detailed discussion of the results concerning the ρ-meson.
Here, we perform a combined fit of the energy levels at the
two given pion masses (Mπ ¼ 227 and 315 MeV) in the
σ-resonance channel, which depends on the three combina-
tions of LECs (fitting parameters) of Eq. (26),La,Lb, andLc,
and combined fits of theσ andρ channels (at one and twopion
masses), being the fitting parameters in this case l̂1, l̂2,L2 and
L68 ≔ L8 þ 2L6. Note that in Eq. (28), Li are LECs of
three-flavor chiral perturbation theory (ChPT) [47], which,
however, appear here only in four linear independent combi-
nations corresponding to the LECs of two-flavor ChPT [48].
We emphasize again that the simple chiral model has the
advantage of being formulated in the same form as the one in
Sec. III A. This allows us to address the systematic uncer-
tainties tied to the choice of a parametrization. Effects tied to
theorder atwhich the chiral approachmatches the exact chiral
series [here Oðp2Þ], the appearance of the Adler zero
[sA ∈ R ⇔ TðsAÞ ¼ 0], and the approximative description
of the left-hand cut are discussed in detail in Refs. [1,35,44].

TABLE V. Pole positions (z� in MeV) and corresponding couplings to the ππ channel (g in GeV) from conformal mapping ([cm1] and
[cm2]) and chiral unitary approach ([chm1] and [chm2]) as described in the main body of the manuscript. The parameters of the
parametrizations are fitted to the data set specified in the second column. In the last row, the result of the analysis of experimental data [1]
is shown.

Mπ ¼ 138 MeV Mπ ¼ 227 MeV Mπ ¼ 315 MeV

Parametrization Fitted data Rez� −Imz� jgj Rez� −Imz� jgj Rez� −Imz� jgj
cm1 σ227 … … … 460þ30

−60 180þ30
−30 3.2þ0.1

−0.1 … … …

cm1 σ315 … … … … … … 660þ50
−70 150þ40

−50 4.0þ0.2
−0.2

cm2 σ227 … … … 475þ30
−60 176þ50

−40 3.3þ0.3
−0.2 … … …

cm2 σ315 … … … … … … 660þ50
−90 140þ40

−50 3.9þ0.2
−0.2

chm1 σ227;315 440þ60
−90 240þ20

−50 3.0þ0.2
−0.6 490þ100

−70 170þ40
−110 3.0þ0.7

−0.5 590þ130
−120 80þ150

−80 4.0þ4.0
−2.0

chm2 σ227ρ227 430þ20
−30 250þ30

−30 3.0þ0.1
−0.1 460þ30

−40 160þ30
−30 3.0þ0.1

−0.1 620þ10
−80 0þ60

−0 3.1þ6.0
−3.0

chm2 σ315ρ315 460þ10
−15 210þ40

−30 3.0þ0.1
−0.1 540þ30

−40 150þ30
−30 3.1þ0.1

−0.1 660þ40
−60 120þ40

−40 3.6þ0.1
−0.1

chm2 σ227;315ρ227;315 440þ10
−16 240þ20

−20 3.0þ0.0
−0.0 500þ20

−20 160þ15
−15 3.0þ0.0

−0.1 600þ30
−40 80þ20

−80 3.9þ5.0
−0.2

Ref. [1] Experimental 449þ22
−16 275þ12

−12 3.5þ0.3
−0.2 … … … … … …
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In the following, we refer to [chm1] as the fits to the data
in the isoscalar channel and to [chm2] as the fits to the
combined data of the isoscalar and isovector channels. The
lattice data for the isovector channel includes only energy
eigenvalues, corresponding to the center-of-mass energiesffiffiffi
s

p
∈ fmρ − 2Γρ; mρ þ 2Γρgwheremρ and Γρ are the mass

and width of the ρ resonance. For the detailed discussion,
see Ref. [9].
The best fit parameters are collected in Table IV; see the

entries “chm1 σ227;315” and “chm2 σ227;315ρ227;315.”These fits
pass the two-tailed Pearson’s testwith χ2 ≈ 29 for [chm1] and
χ2 ≈ 44 for [chm2], which both are inside of the correspond-
ing 80% intervals of (17, 36) and (29, 52), respectively. The
corresponding phase shifts are depicted in Fig. 4.
For both best fits (fitting in both cases Mπ ¼ 227 and

315 MeV simultaneously), we perform an extrapolation
to the physical point, predicting the phase shifts and compar-
ing themwith the experimental data fromRefs. [49–54]. The
result is depicted in Fig. 3 and shows a good agreement with

the experimental data below energies of 950 MeV. Some
deviation from the data becomes evident at higher energies,
associated with the presence of f0ð980Þ not captured by the
two-flavor parametrization of theK-matrix. Furthermore, we
perform an analytic continuation to the second Riemann
sheet of the complex energy plane, determining the pole
position and the coupling to the ππ channel. The results
including a prediction at the physical point are collected in
rows 5–8 of Table V. In principle, the chirally inspired
approach used here allows for a prediction of the full chiral
trajectory of the pole positions and their residua, which will
be discussed in the next section.
In Tables IV and V, also other fits are quoted. In

particular, the chiral unitary approach has been fitted to
the lighter pion mass alone (“σ227, ρ227”) and to the heavier
pion mass alone (“σ315, ρ315”). For the low-energy con-
stants, we observe agreement between these cases and also
between these cases and the combined fit to both masses. A
similar agreement is observed for the pole positions and
residues, which shows that the data are consistent under the
fit hypothesis and, independently of the pion masses in the
lattice calculation, lead to similar predictions for the σ
properties at physical pion masses.

C. Discussion of the results

Both types of parametrization of the scattering amplitude
have various advantages, complementing each other. On
the one hand, parametrization on the basis of chiral
amplitudes up to the next-to-leading order allows us to
perform an extrapolation of the results in pion masses
([chm1]), describing at the same time isoscalar and iso-
vector channels of ππ scattering ([chm2]). On the other
hand, the parametrization based on the conformal mapping
of the expansion variable ([cm1] and [cm2]) yields a more
model-independent form of the amplitude.
As demonstrated in Figs. 2 and 4, all considered para-

metrizations lead to good agreement with the fitted lattice

FIG. 3. Phase shift extrapolated to the physical point as a result
of the fits to the energy levels in the σ (red) and the σ þ ρ (blue)
channels. The experimental data are taken from Refs. [49–54].

FIG. 4. Results of the fits to the lattice data using chiral parametrization as described in the main text. The fits are performed
simultaneously to the data of both pion masses (Mπ ¼ 227 and 315 MeV), including only the data in the σ channel [chm1] or the σ and ρ
channel [chm2]. Data points outside of the fitting region are excluded from the plot.
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data. Also, the experimental data from Refs. [49,51–55] lie
in the 1σ error band around the extrapolated phase shift
from both parametrizations [chm1] and [chm2].
The analytical continuation of the scattering amplitude to

the second Riemann sheet reveals the presence of a pole
corresponding to the σ resonance. The real and imaginary
parts of the pole position as well as the residuum give the
information about the mass, width, and coupling to the ππ
channel of this exited state, respectively. The results are
collected in Table V. For comparison, we also quote
there the result of the dispersion analysis of the experimental
data from Ref. [1], which overlaps (within 1–2 σ uncertainty)
with our extrapolations [chm1] and [chm2]. Additionally, the
comparison between results of [cm1]/[cm2] and [chm1]/
[chm2] shows a good agreement of both approaches for the
lower pionmass (Mπ ¼ 227 MeV). For the higher pionmass,
the pole position in the individual [chm2] fit for thismass is in
good agreement with the result of the conformal parametri-
zations. In the chiral fits to both pion masses combined,
“[chm1], σ227, σ315,” the data from the lighter pionmass push
the state toward the real axis, making it, for some value in the
uncertainty area, a virtual bound state. As a result, the pole
position and residue have large uncertainties (see Fig. 5 and
the explanation below). Overall, the systematic uncertainty
tied to the use of one or another parametrization appears to be
smaller than the statistical one.
With this in mind, we make a prediction of the σ pole

position and the corresponding coupling to the ππ channel
as a continuous function of the pion mass based on [chm2]
fitted to both sets of lattice data, σ and ρ, and both pion
masses simultaneously. To remind the reader, these sets
are obtained from calculations at Mπ ≈ 1.65Mphys

π and

Mπ ≈ 2.3Mphys
π . The result of the extrapolation is depicted

in Fig. 5 and exhibits three major regions:
(1) With the pion mass increasing from the physical one,

the σ resonance becomes lighter in units of pion
mass but couples more strongly to the ππ channel.
The same happens with the reflected pole in the
positive half-plane of the second Riemann sheet. At
Mπ ≈ 2.5Mphys

π , both poles meet at the real energy
axis below threshold on the second Riemann sheet,
becoming virtual bound states. In the center-of-mass
momentum (p) plane, virtual bound states lie on the
positive imaginary half-axis.

(2) With higher pion mass, both poles evolve on the real
axis toward and away from the ππ threshold (p ¼ 0),
respectively. At Mπ ≈ 3Mphys

π , one pole reaches the
two-pion threshold, where the coupling g vanishes.

(3) At higher pion masses, the σ resonance becomes a
bound state, thus appearing as a pole on the first
Riemann sheet below threshold or negative imagi-
nary half-axis in the complex p-plane. The coupling
to two pions increases in this region monotonically.

The behavior described above was pointed out first in
Refs. [35,36] using experimental data only and later in
Ref. [27] with the input from lattice data of Refs. [12,13,18].
The present study favors a bound σ state at a pion mass of
aroundMπ ≈ 3Mphys

π . However, we note that the uncertain-
ties grow rapidly with increasing pionmass as can be seen in
the size of the green 1σ error area on pole positions and error
bars on g at heavy pion mass (see Fig. 5).
From Table V, we note that the unextrapolated results of

conformal parametrizations ([cm1] and [cm2]) indicate

FIG. 5. Left:Mπ-dependence of the pole position of the σ resonance in the complex plane of the center-of-mass three-momentum from
the [chm2] fit to the data from both pion masses. The dashed line represents the real

ffiffiffi
s

p
-axis, which connects the first (IRS�) and second

(IIRS�) Riemann sheets, and the subscript þ=− denotes the positive/negative
ffiffiffi
s

p
half-plane, respectively. The encircled numbers

represent the pion mass in units of the physical one, while “×” shows the result of the simultaneous fit to ρ and σ at light (orange) and
heavy (dark green) pion masses with corresponding 1σ error areas. Right: Mπ-dependence of the coupling of the σ resonance to the ππ
channel in the same color coding as in the left panel.
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that the systematical uncertainty tied to the choice of the
(K-matrix) parametrization and approximation of the left-
hand cut is well under control, at least at the present level of
statistical uncertainty of the lattice data. We have estimated
that systematical uncertainty due to the fitting window and
lattice spacing in the calculation of the lattice data may have
higher importance and lead to a several percent uncertainty
for the mass and width of the σ resonance.

IV. SUMMARY

We performed a calculation of the phase shifts in the
isoscalar/scalar ππ channel in the elastic region for two
quark masses corresponding to Mπ ¼ 227 MeV and
315 MeV. For each quark mass, we used ensembles with
three different volumes to help us determine the phase
shifts in different kinematic regions.
To extract the parameters of the σ resonance, we have to

use a parametrization that satisfies physical constraints, in
particular unitarity, analyticity, and proper chiral behavior.
To gauge the systematics associated with the choice of such
parametrizations, we used two types of approaches (each in
several variants): a generic one that makes no assumption
about the underlying dynamics and a chiral perturbation
theory inspired one that allows us to extrapolate the
resonance parameters to different (i.e., physical) pion mass.
The systematic errors associated with the choice of para-

metrization are about 10% for the pole position. The other
sources of systematic errors that we assessed are the dis-
cretization errors and the fit window for the extraction of the
lattice QCD energies. The discretization errors are estimated
based on the spread of lattice spacing results determined using
variousmethods to calibrate it; we estimated this to be around
2%–3% (see Ref. [9] for more details). For the fit window
systematics,we computed the pole position based on energies
extracted using slightly shifted fit windows; the shift on the
pole position was at the level of 1%.
One of the strengths of the chiral parametrization is

that it allows us to fit simultaneously both the σ and ρ
channels, for both pion masses. We find that the model

describes the data well and that the results extracted
from the simultaneous fit to both channels agree well with
the σ-channel fit results. We use the combined fit to
extrapolate to the physical point, and based on the position
of the pole in the complex energy plane, we find that
Mσ ¼ ð440þ10

−16ð50Þ − i240ð20Þð25ÞÞ MeV. Here, the first
error is the stochastic error, and the second one is the
combined systematic error discussed above.
The extrapolation to the physical point agrees with the

experimental phase shifts, and the pole mass and width of
the σ is compatible with the result of recent analyses based
on experimental data.
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APPENDIX: EXTRACTED ENERGIES AND
CORRELATION MATRICES

In this section, we list the fit result and the corresponding
fit quality for each energy level and for each ensemble in
Table VI. In this table, d stands for the time interval of the

TABLE VI. Extracted energies and fitting details for the σ-meson. η is the elongation factor. t0 is the initial time we
choose for the variational analysis. d is the shift interval we use in the shift correlator method.

Mπ ¼ 315 MeV

P η n d t0 Fit window aE χ2=dof Q

(0, 0, 0) 1.0 1 2 2 3–13 0.355(9) 0.99 44
2 2 2 2–8 0.54(3) 0.89 47
3 2 2 2–7 0.66(2) 0.91 44

1.25 1 2 2 3–12 0.363(15) 0.92 49
2 2 2 2–8 0.50(2) 0.88 47
3 2 2 2–9 0.59(2) 0.86 48

2.0 1 2 2 4–21 0.378(7) 1.02 43
2 2 2 2–7 0.457(8) 1.05 37
3 2 2 3–9 0.54(2) 0.84 50

(Table continued)
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TABLE VII. Covariance matrices for the energies extracted from each ensembles. In the left column from top down, we list the
ensembles E1;2;3 corresponding to mπ ≈ 315 MeV and on the right E4;5;6 corresponding to mπ ≈ 227 MeV. The order of the levels in
each matrix corresponds to the order in which they appear in Table VI.

0
BBBBB@

75.1 −29.4 −7.2 −2.37 −7.14
1137 653.6 −23.2 63.6

1345 −6.37 30.3
57.6 116.5

1025.1

1
CCCCCA

× 10−6

0
BBBBB@

5.19 −7.5 5.97 1.29 −4.27
806.6 377.4 −5.84 −60.0

1068 −7.43 −44.4
56.5 −37.9

790

1
CCCCCA

× 10−6

0
BBBBB@

193 −37.2 −56.3 16.13 −7.89
1130 1253 −11.1 −67.4

2848 −8.55 61.8
414.0 265.5

1552

1
CCCCCA

× 10−6

0
BBBBB@

7.06 −2.64 0.601 0.561 1.65
820.5 403.6 −2.34 −49.2

432 3.13 −38.6
17.5 −12.8

465.5

1
CCCCCCA

× 10−6

0
BBBBB@

163.8 −70.4 156.6 −1.003 −2.66 −5.65
137.6 117.6 1.57 −0.846 −0.682

966.1 −0.226 30.8 −29.6
10.4 14.6 2.95

479.6 −51.8
104.2

1
CCCCCCA

× 10−6

0
BBBBBB@

2.31 5.24 1.23 0.868 1.91 −0.118
373.5 263.8 3.78 −38.1 −2.20

513.2 0.927 −16.04 −3.33
7.63 4.31 1.39

1648 26.04
15.6

1
CCCCCCA

× 10−6

TABLE VI. (Continued)

Mπ ¼ 315 MeV

P η n d t0 Fit window aE χ2=dof Q

(0, 0, 1) 1.0 1 0 2 2–9 0.492(5) 0.27 93
2 0 2 2–7 0.693(3) 0.46 71

1.25 1 0 2 4–13 0.447(16) 1.4 20
2 0 2 2–8 0.60(3) 0.65 62

2.0 1 0 2 4–21 0.410(2) 0.70 77
2 0 2 4–8 0.54(2) 0.92 40
3 0 2 2–6 0.60(1) 0.07 93

Mπ ¼ 227 MeV

P η n d t0 Fit window aE χ2=dof Q

(0, 0, 0) 1.0 1 3 3 3–14 0.256(2) 0.97 46
2 3 3 2–9 0.48(3) 0.98 43
3 3 3 3–11 0.60(2) 1.03 40

1.17 1 3 3 4–13 0.256(3) 0.23 98
2 3 3 2–8 0.44(3) 0.61 65
3 3 3 2–6 0.54(2) 0.37 69

1.33 1 3 3 2–15 0.264(2) 0.77 68
2 3 3 2–14 0.44(1) 0.28 99
3 3 3 2–8 0.53(2) 0.78 54

(0, 0, 1) 1.0 1 0 2 5–15 0.409(7) 0.09 91
2 0 2 2–8 0.59(3) 0.81 51

1.17 1 0 2 6–17 0.379(5) 0.81 60
2 0 2 3–8 0.575(16) 1.08 36

1.33 1 0 2 4–15 0.353(3) 0.38 94
2 0 2 3–11 0.55(3) 0.38 94
3 0 2 3–9 0.648(4) 1.08 36
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shifted correlator. In the rest frame [P ¼ ð0; 0; 0Þ], we need
to have d ≠ 0 to subtract the vacuum contribution. In the
boost frame where the total momentum in our study is
P ¼ ð0; 0; 1Þ, we use the normal correlator to extract the
energy spectrum. Therefore, we set the d to zero in this
case. Q represents the confidence level of the fit, that is the
probability under ideal conditions that the χ2 is larger than
the fit result.
To determine resonance parameters by fitting a func-

tional description to our phase shifts, we need to take into
account cross-correlations between the extracted energies.

The energies extracted from different ensembles are
uncorrelated, but there will be correlations between the
energy levels extracted from the same ensemble including
the correlations between the energy levels in the rest frame
and the boosted frame. We computed these covariance
matrices using a jackknife resampling procedure. These
matrices are listed in Table VII. In the left column from top
down, we list the ensembles E1;2;3 corresponding to
mπ ≈ 315 MeV, and on the right are E4;5;6 corresponding
to mπ ≈ 227 MeV. The order of the levels in each matrix
corresponds to the order in which they appear in Table VI.
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