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The Pomeron Regge trajectory underlies the dynamics dependence of hadronic total cross sections and
diffractive reactions at high energies. The physics of the Pomeron is closely related to the gluon distribution
function and the gluon gravitational form factor of the target hadron. In this article we examine the scale
dependence of the nonperturbative gluon distribution in the nucleon and the pion, which was derived in a
previous article [G. F. de Téramond, H. G. Dosch, T. Liu, R. S. Sufian, S. J. Brodsky, and A. Deur, Gluon
matter distribution in the proton and pion from extended holographic light-front QCD, Phys. Rev. D 104,
114005 (2021)] in the framework of holographic light-front QCD and the Veneziano model. We argue that
the QCD evolution of the gluon distribution function gðx; μÞ to large μ2 leads to a single scale-dependent
Pomeron. The resulting Pomeron trajectory αPðt; μÞ not only depends on the momentum transfer squared t,
but also on the physical scale μ of the amplitude, such as the virtuality Q2 of the interacting photon in
inclusive diffractive electroproduction, thus unifying the soft and the perturbative Pomeron. This can
explain not only the Q2 evolution of the proton structure function F2ðx;Q2Þ at small x, but also the
observed energy and Q2 dependence of high energy diffractive processes involving virtual photons up to
LHC energies.

DOI: 10.1103/PhysRevD.105.034029

I. INTRODUCTION

Despite the successful applications of perturbative quan-
tum chromodynamics (pQCD) in describing hadronic
physics at short distances, many complexities in the soft
domain characterizing small momentum-transfer scattering
processes at high energies remain unsolved. In practice,
either phenomenological or model-dependent nonperturba-
tive physics inputs are required in order to predict high
energy scattering and diffractive processes in the small
longitudinal light-front momentum fraction x domain.
In a previous article [1], we have studied the dynamics of

gluons inside hadrons based on the gauge/gravity

correspondence [2], its light-front holographic mapping
[3–5], and the generalized Veneziano model [6–8].
Although an exact gravity dual to QCD has yet to be
discovered, the holographic light-front QCD (HLFQCD)
framework captures many important nonperturbative fea-
tures of QCD, including color confinement [9], chiral
symmetry breaking [10], and the power-law falloff of
the counting rules for hard scattering dynamics at large
momentum transfer [11–13], which can be derived in the
gauge/gravity correspondence from the warped geometry
of anti–de Sitter (AdS) space [14]. More recent insights,
based on superconformal quantum mechanics [15,16] and
light-front quantization [17–19] have led to remarkable
connections among the spectroscopy of mesons, baryons,
and tetraquarks, as well as predicting a massless pion in the
chiral limit [20–23]. This nonperturbative color-confining
formalism, light-front holography, incorporates the under-
lying conformality of QCD and describes an effective QCD
coupling in the nonperturbative domain [24,25].
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In Ref. [1] we used the soft Pomeron trajectory as a key
ingredient to compute the gluonic gravitational form factor
(gGFF) and the intrinsic gluon distributions in the pion and
nucleon. The Pomeron trajectory was originally introduced
[26,27] to describe diffractive processes in terms of Regge
theory. The value of the Pomeron trajectory at zero
momentum transfer, the Pomeron intercept, plays a special
role: It determines the energy dependence of total cross
sections at large energies [28,29]. Since the work of
[30,31], it has been generally accepted that gluon exchange
is the essential dynamical mechanism underlying diffrac-
tive processes [29]; this provides the connection between
the soft Pomeron trajectory and intrinsic gluon distribu-
tions, as discussed in Ref. [1]. The summation of gluon
ladders derived from perturbative QCD introduces power-
like energy dependence to the diffractive cross sections
[32–34], which, in turn, has led to the introduction of the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) “hard Pomeron.”
Thus it has become conventional to assume the existence of
two separate Pomerons [35], a soft and a hard one, with
very different intercepts.
By using the warped-space gauge/gravity framework for

large-NC QCD-like theories, Brower, Polchinski, Strassler,
and Tan derived a simultaneous description of both the
BFKL hard regime and the classic Regge soft domain [36].
Their model is consistent with some salient general
features, which one would expect from the hard BFKL
Pomeron at negative values of the momentum transfer t and
with a glueball spectrum at positive t. This model, however,
did not solve the problem of the large difference of intercept
values of the soft and the BFKL Pomeron. The basic idea
introduced in Ref. [36], namely that the wave function of
hadronic extended objects contains hard and soft compo-
nents depending on the position of the object in the
holographic coordinate z in AdS space, was reexamined
in Refs. [37–39] for the Pomeron. Further studies of
Pomeron exchange in the small-x Regge domain using
the gauge/gravity duality are described in Refs. [40–44].
On a phenomenological level, the question of a scale-
dependent intercept was addressed in [45], where both the
diffractive photoproduction data up to LHC energies, as
well as the specific small-x behavior of the proton structure
function F2ðx;Q2Þ have been described quantitatively by a
scale-dependent Pomeron intercept.
Our approach to the gluon distribution functions

described in this article adds theoretical support to a single
Pomeron with a scale-dependent intercept. It provides a
natural way to compute intrinsic nonperturbative quantities
at the hadronic scale, which can then be evolved to higher
scales using the renormalization group equations (RGE) of
pQCD. In this approach, the Pomeron intercept determines
the small-x behavior of the gluon distribution function of a
hadron. Assuming that the relations between the Regge
parameters and the gluon distribution functions derived in
[1] are also valid at higher scales, where RGE contributions

become important, we can then determine the scale
dependence of the Pomeron intercept, which, in turn,
can be used to explain the observed scale dependence of
small-x diffractive processes. One can then address whether
the soft Pomeron intercept evolved to high scales agrees
with the larger intercept of the BFKL Pomeron and how it
can be related to diffractive processes at LHC energies. We
will examine these and other related questions in this article
within the HLFQCD framework and the generalized
Veneziano model, with the aim of providing a unified
model in which the soft Pomeron evolves to a BFKL
Pomeron in high virtuality processes.
This article is organized as follows: In Sec. II we extract

a scale-dependent Pomeron intercept from the nonpertur-
bative gluon distribution obtained in [1] at the hadronic
scale, which is then continued to higher scales using
pQCD evolution equations [46–48]. In Sec. III, we
compare this result with HERA (Hadron-Elektron-Ring-
Anlage) measurements [49,50] of the proton’s structure
function. In Sec. IV we present further evidence for a
scale-dependent Pomeron intercept [45], mainly based on
photoproduction data at the LHC [51–54]. Section V
contains a short summary and conclusions.

II. THE POMERON INTERCEPT AND THEGLUON
DISTRIBUTION IN THE HADRON

In previous articles [1,5,55–57] we have derived parton
distributions from the underlying hadronic form factors
obtained in the HLFQCD framework within the constraints
of the generalized Veneziano model [6–8]. In this approach,
the form factors are expressed in terms of the Euler Beta
function. By comparing with the generalized Veneziano
model including currents [7,8], we deduced in [1] that the
twist-τ Fock-state contribution to the gravitational form
factor of a hadron is given by

AτðtÞ ¼
1

Nτ
Bðτ − 1; 2 − αPðtÞÞ; ð1Þ

where αPðtÞ is the soft Pomeron of Donnachie and
Landshoff [28]. It corresponds to a Regge trajectory,

αPðtÞ ¼ αPð0Þ þ α0Pt; ð2Þ

with intercept αPð0Þ ≃ 1.08 and slope α0P ≃ 0.25 GeV−2

[58]. For integer twist τ, the number of constituents of a
given Fock state, the GFF (1) is expressed as a product of
τ − 1 poles, corresponding to the particles exchanged in the
cross t channel [1]. For large momentum transfer −t ¼ Q2,
the expression (1) reproduces the hard-scattering power
behavior [11,12],

AτðQ2Þ ∼
�

1

Q2

�
τ−1

: ð3Þ
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The Euler Beta function, Bðu; vÞ ¼ Bðv; uÞ, has the
integral representation

Bðu; vÞ ¼ ΓðuÞΓðvÞ
Γðuþ vÞ ¼

Z
1

0

dy yu−1ð1 − yÞv−1; ð4Þ

with ℜðuÞ > 0 and ℜðvÞ > 0. The normalization factor,
Nτ ¼ Bðτ − 1; 2 − αPð0ÞÞ, follows the convention given in
[1]. Using Eq. (4), one can express the gravitational form
factor as

AτðtÞ¼
1

Nτ

Z
1

0

dxw0ðxÞwðxÞ1−αPðtÞ½1−wðxÞ�τ−2; ð5Þ

where the integrand can be identified with the generalized
parton distribution at zero skewness ξ: Hðx; tÞ≡Hðx; ξ ¼
0; tÞ via AτðtÞ ¼

R
1
0 dxHτðx; tÞ. Its forward limit gives the

twist-τ component of the gluon distribution function [1],

xgτðxÞ ¼
1

Nτ
w0ðxÞwðxÞ1−αPð0Þ½1 − wðxÞ�τ−2: ð6Þ

The universal function wðxÞ is independent of the twist τ,
and it satisfies the boundary conditions [5] as follows:

wð0Þ ¼ 0; wð1Þ ¼ 0;

w0ð1Þ ¼ 0; w0ðxÞ > 0 for 0 ≤ x < 1; ð7Þ

which largely determines its behavior. Physical constraints
can be imposed on wðxÞ at small and large x: At x → 0,
wðxÞ ∼ x from Regge theory [59], and at x → 1, one
can apply the inclusive-exclusive counting rule [60,61],
gτðxÞ ∼ ð1 − xÞ2τ−3, which fixes the additional condition
w0ð1Þ ¼ 0. A convenient parametrization of wðxÞ, which
fulfills all of these constraints (7), is

wðxÞ ¼ x1−xe−bð1−xÞ2 ; ð8Þ

where b is a parameter determined from phenomenology,
which is fixed by the first moment of the nucleon
unpolarized valence quark distribution. The value b ¼
0.48� 0.04 gives a good description of the quark and
gluon distributions [1,56] for nucleons, as well as for
the pion.
The gluon distribution in a hadron is the sum of

contributions from all Fock states which contain a gluon
component,

xgðxÞ ¼
X
τ

cτxgτðxÞ; ð9Þ

where the cτ’s are expansion coefficients of the correspond-
ing Fock states. In practice, one has to truncate the
expansion at some value of τ for phenomenological studies.
It has been found in our recent work, that the leading Fock

components containing one dynamical gluon, juudgi for
the proton, with cτ¼4 ¼ 0.225� 0.014, and jud̄gi for the
pion, with cτ¼3 ¼ 0.429� 0.007, provide a satisfactory
description of the gluon distributions in the proton and pion
[1], using the same universal function wðxÞ as for the
proton and pion quark distributions. The coefficients cτ are
determined from the momentum sum rule using the
previous results given in Refs. [1,56]. A similar Fock-state
configuration, including one dynamical gluon for the pion,
is described in [62].
The parton distribution functions, including the gluon

distribution, are not direct observables and are scale and
renormalization-scheme dependent. The gluon distribution
given in Eq. (6) should be understood as being determined
at an initial nonperturbative scale μ0. We choose the value
μ0 ¼ 1.057� 0.15 GeV, which is determined by matching
the strong coupling αsðQ2Þ between its perturbative
expansion in the high energy region and the HLFQCD
expression of the effective strong coupling in the low
energy region [25,63]. This value for μ0 is consistent
with the Veneziano model, which is a nonperturbative
model applicable at the hadronic scale. Accordingly, the
gluon distribution corresponds to “intrinsic gluons,” which
exist for a long time scale in the wave function of the
hadronic eigenstate. It has a different physical origin from
the “extrinsic gluons” originating in the pQCD parton
splitting process, such as triggered by an external hard
collision.
Thus, in order to evaluate the full gluon distribution,

which includes both intrinsic and extrinsic contributions,
one needs to take into account the gluons generated from
splitting processes, such as q → qg and g → gg, in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations of pQCD [46–48]. Following this standard
procedure, the parton distributions at a high scale μ are
determined by the input distributions at a lower initial scale
μ0, as long as QCD perturbation theory remains valid
within the chosen range of scale evolution. Since QCD is
flavor blind, the gluon distribution only mixes with the
flavor-singlet combination of the quark distributions. At the
input scale μ0 around 1 GeV, we can neglect contributions
from intrinsic heavy quarks, and thus the flavor-singlet
quark distribution at the initial scale corresponds to light
quarks. For the proton, we take the quark distributions
obtained in Refs. [5,56] and for the pion, the flavor-singlet
twist-2 and twist-4 Fock state contributions obtained in
Ref. [9], although the flavor separation is not uniquely
determined in this case [1]. The numerical results are
computed with the HOPPET toolkit [64] at next-to-next-to-
leading order, with the dominant uncertainty arising from
the choice of the initial scale μ0 ¼ 1.06� 0.15 GeV. As
shown in Ref. [1], the result agrees well with the full gluon
distribution extracted from global analyses [65–67] for
the proton and [68,69] for the pion. In Fig. 1, we show the
leading-twist τ ¼ 4 intrinsic gluon distribution in the
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proton at the hadronic scale μ0, obtained from (6), together
with the evolved predictions at μ ¼ 2 GeV and 10 GeV.
Since Eq. (6) describes the gluon distribution in the full

range of x, it is plausible to assume that it will maintain its
functional form when continued to higher scales, including
its scale dependence. Thus, we write

xgðx; μÞ ¼
X
τ

1

NτðμÞ
cτðμÞw0ðx; μÞ

× ½1 − wðx; μÞ�τðμÞ−2wðx; μÞ1−αPð0;μÞ; ð10Þ

where the scale-dependence in μ can arise from several
sources: the normalization NτðμÞ, the Fock expansion
coefficient cτðμÞ, the rescaling function wðx; μÞ, a scale-
dependent effective twist τðμÞ, and a scale-dependent
Pomeron intercept αPð0; μÞ. At first sight, it appears
intractable to disentangle the scale dependencies arising
from these different origins, but fortunately, the small-x
behavior is determined exclusively by the intercept αPð0; μÞ
and, therefore, the latter can be extracted unambiguously.
Making a Laurent expansion of logðxgðx; μÞÞ, Eq. (10),

in powers of 1= log x,

logðxgðx; μÞÞ ¼ ð1 − αPð0; μÞÞ log xþ BðμÞ þOð1= log xÞ;
ð11Þ

we obtain the Regge intercept from the expression
1 − αPð0; μÞ, the factor of the leading log x term in (11).
The next term BðμÞ does not enter explicitly into our
analysis. Therefore, the normalization of the gluon com-
ponent of the gravitational form factor does not affect our
result for 1 − αPð0; μÞ. The independence of our analysis on
BðμÞ also implies the independence of our results on the

specific form of the universal functionwðxÞ since wðxÞ → x
in the limit x → 0.
As a specific example of the procedure used to extract

the scale dependence or the Pomeron Regge intercept, the
numerical results for logðxgðx; μÞÞ obtained in Ref. [1]
from the pQCD evolution of the intrinsic gluon distribution
is compared in Fig. 2 with the first two terms of its small-x
Laurent expansion (11) at the value μ ¼ 10 GeV. The value
of the Pomeron effective intercept at a given scale μ,
namely 1 − αPð0; μÞ, is the slope of the linear approxima-
tion in the log-log plot in Fig. 2. The value of the second
term in (11), BðμÞ, is also determined numerically from the
perturbative evolution of gluon distributions. Its actual
value has, however, no relevance for the present analysis.
In Table I we specify the values of 1 − αPð0; μÞ at different
evolution scales obtained from the expansion (10) in the
range 0.0001 ≤ x ≤ 0.00016. We also list in Table I the

FIG. 1. Gluon distribution function in the nucleon xgðxÞ at
μ ¼ 2 GeV (blue), and μ ¼ 10 GeV (magenta) using DGLAP
evolution from the initial hadronic scale μ0 (black). The
uncertainty band stems from the initial scale uncertainty
μ0 ¼ 1.06� 0.15 GeV.

FIG. 2. The gluon density xgðx; μÞ in the proton at the scale
μ ¼ 10 GeV. Magenta: numerical result from the DGLAP evo-
lution of the intrinsic gluon distribution in [1], black: leading terms
of its Laurent expansion in the interval 10−4 ≤ x ≤ 1.6 × 10−4

(indicated by an arrow). From the functional form (11) it follows
that 1 − αPð0; μÞ is the slope of the linear approximation in the log-
log plot. The uncertainty band corresponds to the initial scale
uncertainty.

TABLE I. The values of the gluon component of the proton and
pion gravitational form factors, Ag

pð0; μÞ and Ag
πð0; μÞ, and the

effective Pomeron intercept 1 − αPð0; μÞ are indicated for differ-
ent scales. The first row corresponds to the initial hadronic scale
μ0 ¼ 1.06� 0.15 GeV.

μ (GeV) Ag
pð0; μÞ Ag

πð0; μÞ 1 − αPð0; μÞ
μ0 0.225� 0.014 0.429� 0.007 −0.08
2 0.318� 0.020 0.464� 0.009 −0.097� 0.018
5 0.372� 0.015 0.481� 0.006 −0.234� 0.018
10 0.390� 0.012 0.482� 0.005 −0.292� 0.017
20 0.402� 0.010 0.482� 0.004 −0.336� 0.016
50 0.413� 0.008 0.482� 0.003 −0.381� 0.015
100 0.419� 0.007 0.482� 0.002 −0.407� 0.015
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gluon component of the proton and pion gravitational form
factors, Agðt ¼ 0; μÞ,

Agð0; μÞ ¼
Z

1

0

dx xgðx; μÞ; ð12Þ

for the leading twist τ ¼ 4 and τ ¼ 3, respectively, which is
the momentum fraction carried by the gluon at the scale μ.
The uncertainty in the choice of the starting point of the
evolution mainly affects the x-independent term BðμÞ in the
expansion (11); this has minimal affect on the leading term
linear in log x and is thus not relevant for the present
analysis.

III. SCALE DEPENDENCE OF DIFFRACTIVE
PROCESSES

Diffractive processes, in which the scattered particle
keeps its quantum numbers, are dynamically described in
Regge theory [70] by the exchange of particles with the
quantum numbers of the vacuum, i.e., by the Pomeron with
trajectory αPðtÞ. According to the optical theorem, the total
inclusive cross section σtot of the reaction is proportional to
the imaginary part of the elastic forward scattering ampli-
tude and, therefore, its high energy dependence is deter-
mined by the value of the Pomeron trajectory at zero
momentum transfer αPð0Þ,

σtotðsÞ ∼ sαPð0Þ−1; ð13Þ

where s is the center of mass (CM) energy square of the
colliding particles. The high energy behavior of inclusive
hadron cross sections is well described by a hypercritical
Pomeron [28], with intercept αPð0Þ ¼ 1.08. We note that
the resulting high energy behavior is ultimately incompat-
ible with general principles of quantum field theory [71]
and, therefore, unitarity corrections (Regge cuts) are
necessary in order to modify the behavior at extremely
high energies.
The lepton-hadron scattering process at the lowest order

of the electromagnetic fine structure constant αem ≈ 1=137
can be viewed as the interaction of a virtual photon γ� and
the hadron h, as illustrated in Fig. 3. In such processes, the
amplitude depends on the photon virtuality, Q2 ¼ −p2

γ� , in
addition to the total energy squared s of the photon-hadron
system. This allows one to introduce the dimensionless
quantity xbj, the Bjorken variable [72],

xbj ¼
Q2

W2 þQ2 −M2
h

; ð14Þ

where s ¼ ðpγ� þ phÞ2 ¼ W2 and M2
h ¼ p2

h. In deep
inelastic scattering, one identifies xbj with the longitudinal
light-front variable x ¼ kþ

Pþ at leading twist. The x depend-
ence of electromagnetic scattering processes is a principal

source of information about the inner structure and dynam-
ics of hadrons.
It is conventional to extract from the electron-hadron

scattering cross section the structure functions of the
hadron. One of them, F2ðx;Q2Þ, can be directly related
to the total γ�h transverse cross section,

σγ
�h
T ≈

4π2αem
Q2

F2ðx;Q2Þ: ð15Þ

In the region of 3.5 ≤ Q2 < 150 GeV2 and x ≤ 0.001, the
structure function can be fitted by a single power [49,50],

F2ðx;Q2Þ ¼ cx−λPðQ2Þ; ð16Þ

where

λPðQ2Þ ¼ 0.0481 log

�
Q2

Λ2

�
; ð17Þ

withΛ ¼ 0.292 GeV. In the high-energy domain s¼W2≫
Q2¼−t, one has (14) x ∼Q2=s, therefore, the relation (16)
corresponds to the energy behavior of the total cross
section,

σγ
�h
T ∼ sλPðQ2Þ; ð18Þ

where the power of s is definitely much greater than
the value expected from a simple Regge picture: From
Eq. (17) it follows, for example, that λPð3.5 GeV2Þ ≈ 0.18
and λPð150 GeV2Þ ≈ 0.33.
In QCD, the simple two-gluon exchange between

two color neutral hadrons yields a constant cross section.
In contrast, the exchange of a gluon ladder leads to short-
distance power behavior. At the lowest order in the strong
coupling αs, one obtains [32–34]

αPð0Þ − 1 ¼ 12αs
π

log 2 ≃ 2.65αs; ð19Þ

FIG. 3. The reaction eþ h → e0 þ X can be viewed as the total
inclusive cross section of a hadron h and an off-shell photon with
virtuality Q2 ¼ −ðpe0 − peÞ2 ¼ −p2

γ�.
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but the next-to-leading order corrections are very large
[73,74]. One can therefore apparently conclude that the
gluon-ladder approximation in pQCD yields a Pomeron
trajectory with an intercept much greater than the one
obtained from hadron phenomenology. Motivated by
this result and the Q2 dependence of electromagnetic
diffractive processes, Donnachie and Landshoff [35] intro-
duced a perturbative BFKL-Pomeron with an intercept
αBFKLð0Þ ¼ 1.42, in addition to the “nonperturbative”
Pomeron with intercept αPð0Þ ≈ 1.08. By following this
procedure, the full structure function at small x, its specific
heavy flavor contributions, as well as the electroproduction
of vector mesons, could be well described [29].
As noted above, the energy dependence of the measured

total virtual-photon-proton cross section increases with Q2

as sλPðQ2Þ. This increase could be directly explained by a
Q2-dependent Pomeron intercept,

αPð0; QÞ − 1 ¼ λPðQ2Þ: ð20Þ

The analysis of the gluon distribution obtained in Ref. [1]
directly supports such a concept. As emphasized above, the
perturbative evolution of the intrinsic gluon distribution,
together with the flavor-singlet quark distribution at the
initial scale, provides a good description of the full gluon
distribution without any additional input. There is no sign
of an additional independent contribution from perturbative
QCD. This makes the conventional assumption of two
Pomerons, a soft one due to the intrinsic gluon distribution
and a hard one due to perturbative contributions, less
convincing. We therefore postulate that there is only a
single Pomeron αPðt; μÞ, which manifests itself at hadronic
scales μ ≃ 1 GeV as the soft Pomeron with an intercept at
t ¼ 0, about 1.08, but that the intercept is shifted by short-
distance QCD interactions to larger values. Such a scale-
dependent Pomeron intercept is fully compatible with the
fundamental principles of Regge theory [45].
In Fig. 4 we compare the values of αPð0; μÞ − 1 deduced

from the fit (11) to the small-x behavior of the gluon
distribution functions of the proton and the pion at
μ ¼ 1.06, 2, 5, 10, 20, 50, and 100 GeV with the measured
proton structure function: The full circles refer to the
proton, the open ones to the pion. A logarithmic fit for
the proton values at μ ¼ 1.06, 3, 5, 10, and 20 GeV leads to

αPð0; μÞ − 1 ¼ 0.08þ C log

�
μ

μ0

�
; ð21Þ

with C ¼ 0.089� 0.003 for μ0 ¼ 1.06� 0.15 GeV. The
result is displayed as a red solid line in Fig. 4; the dashed
red line is the extrapolation up to μ ¼ 100 GeV.
Measurements [75,76] of the proton structure function

F2ðx;Q2Þ cover the Q range up to 12.5 GeV. The blue
curve in Fig. 4 is the fit (17) to the proton structure function
F2ðx;Q2Þ given in Ref. [49]. In order to compare the result

of this article with the parametrization [49] of the x
dependence of the structure function F2ðx;Q2Þ, Eq. (17),
one has to relate the renormalization scale μ in the gluon
distribution function xgðx; μÞ to the photon virtuality Q.
This is done by introducing a “hadronic scale” Q0 for the
photon virtuality such that λðQ2

0Þ ¼ 1.08. This leads to the
relation Q ¼ 0.633μ. It should be noted, that the logarith-
mic slope of λðQ2Þ, the measure for the scale dependence of
the Pomeron intercept, is not affected by this choice.
As can be observed in Fig. 4, there is good agreement

between the energy dependence of the intercept derived
from the evolution of the intrinsic gluon distribution of the
proton and the results obtained from the total proton
structure function F2ðx;Q2Þ. This agreement is not unex-
pected, since for small-x values and Q values above the
hadronic scale, the structure function is dominated by the
gluon distribution. Yet, since the theoretical value for
the gluon distribution at high scales was obtained by the
evolution of the intrinsic gluon distribution from
the hadronic scale, this result strongly supports the
assumption that there are not two Pomerons, but only
one, where the values of its intercept (and presumably of
its slope) are modified at large photon virtuality by pQCD
interactions.
One would expect that the intercept derived from the

gluon distribution function of the pion has the same value
as that derived from the gluon distribution function of the
nucleon. We will discuss this in Sec. IV.

FIG. 4. The Pomeron intercept αPð0; μÞ − 1 extracted from the
gluon distribution functions of the proton and the pion com-
pared with the measured proton structure function. Black
circles: values extracted with the Laurent expansion (11) from
Eq. (10) at μ ¼ μ0, 2, 5, 10, 20, 50, and 100 GeV for the
proton and empty circles for the pion; red curve: linear fit from
the points between μ0 ¼ 1.06� 0.15 GeV and μ ¼ 20 GeV
(the dashed part is the extrapolation to μ ¼ 100 GeV); blue
curve: λPðQ2Þ from the fit (17) of the proton structure
function F2ðx;Q2Þ [49] with the subtraction point Λ shifted
to 0.461 GeV, such that λPðμ20Þ ¼ 0.08. The blue band represents
the experimental uncertainty.
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IV. FURTHER ARGUMENTS FOR A SINGLE
POMERON

In this section we review earlier arguments for a single,
but scale-dependent, Pomeron trajectory. We note that a
Pomeron with scale-dependent parameters has been dis-
cussed qualitatively on the basis of holographic models in
Refs. [36,37]. More recently, a quantitative investigation
has been performed in Ref. [45].
The scale dependence of diffractive cross sections can

also be observed in diffractive production of vector
mesons.1 In such processes, the photon dissociates into a
quark-antiquark pair, which interacts with the hadron by
Pomeron exchange, as illustrated in Fig. 5(b). The disso-
ciation time at high energies can be shown [77] to be much
larger than the interaction time. The scale dependence can
enter here through both the photon virtuality and the quark-
pair mass. In the case of photoproduction of ρ mesons, the
intercept is identical to the hadronic one: αPð0Þ ≈ 1.08. The
intercept increases to about 1.2 at Q2 ¼ 30 GeV2; for the
photoproduction of J=ψ mesons, it is around 1.17 and forϒ
mesons, it is around 1.25 [75,76]. Another possibility for
observing the scale dependence of diffractive processes is
to identify the heavy-flavor contributions to the structure
function F2ðx;Q2Þ, which increase faster with energy than
the light-flavor contributions; see, e.g., Ref. [78].
As mentioned above, in the usual Regge approach the

scale dependence of diffractive processes is explained by

the presence of two Pomerons with different intercepts
[35]: one at 1.08 and one around 1.42. If this is the case, the
contribution of the Pomeron with the larger intercept would
become more dominant with increasing energy; therefore,
the slope of the energy dependence would increase with
increasing energy leading to a convex dependence of the
cross section on energy. Such a behavior could not be
excluded by measurements at the Deutsches Elektronen-
Synchrotron storage ring [75,76]; however, the photo-
production data at the LHC tends to exclude this behavior,
favoring a global description by a single Pomeron with a
scale-dependent intercept.
The integrated cross section for the reaction γ þ p →

J=ψ þ p has been measured for total center of mass
energies W up to 7 TeV. Within the range covered by
the HERA data [75,76], there is no indication of a convex
energy dependence, and a straight linear fit corresponding
to an intercept of αPð0; μÞ − 1 ¼ 0.17 can describe the data
well. Including the new photoproduction data at the LHC
[51–53], a fit with two separate Pomerons is practically
excluded, whereas the behavior described by a single
Pomeron with a scale dependent intercept is valid up to
the TeV region. A similar situation prevails for the photo-
production of ϒ mesons [54]. In these two cases the hard
scale is not introduced by the virtuality of the photon, but
by the masses of the produced heavy quarks.
As long as we consider inclusive electroproduction

processes with photon virtualities approximately above
3.5 GeV2, as has been done in the HERA analysis
[49,50], it seems justified to identify the scale relevant
for the Pomeron intercept with the photon virtuality, see
e.g., Ref. [78]. The situation is more complex for exclusive
diffractive reactions like photoproduction of vector mesons.
There we have not only Q2 ¼ 0, but also the internal quark
masses of the produced meson determine the scale.
A relation between the scale of the intercept relevant for
such exclusive processes and the scale relevant for inclusive
processes has been derived in [45]; this relation is, however,
not model independent. For example, in Ref. [45] a
connection was derived between the transverse size of
the scattered object and the relevant scale for the Pomeron
intercept. Following this connection, the intercept value
1.17 was obtained for J=ψ photoproduction and 1.25 for ϒ
production, in fair agreement with the data. This depend-
ence of the Pomeron parameters on the size of the scattered
objects could also explain the difference of the Pomeron
intercept between the proton and the pion, which follows
from the gluon distribution function (see Fig. 4). One could
indeed expect, that the effective scale for a pion is higher
than that for a proton since the pion is the smaller object.
At very high scales, corresponding to high virtuality
processes, this difference is supposed to vanish, which is
supported by the theoretical results shown in Fig. 4.
In order to obtain information about the scale depend-

ence of the Regge slope one has to study the t-dependent

pomeron pomeron

v.m.

(a) (b)

FIG. 5. Diffractive γ�-hadron scattering (a) and diffractive
electroproduction of vector mesons (b). The photon dissociates
into a quark-antiquark pair; the lifetime of this pair is long
compared to the interaction time. The scale is set by the decay
width of the q − q̄ pair.

1In photoproduction processes the minimum value of momen-

tum transfer is given by t ≤ tm ¼ − 2M4
V

s ð1þOðM2
V
s ÞÞ, where MV

is the mass of the produced meson and
ffiffiffi
s

p
the center of mass

energy. For high energy processes the value of tm is very close to
zero. Henceforth, we always refer to αPðtm; μÞ when discussing
the intercept of vector meson production processes.
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generalized gluon distribution. One can make, however,
some general remarks. Since the Regge trajectory for
timelike t values in the resonance region can be fixed by
observable resonances, the linear slope in this region must
be approximately independent on the scale. In order to have
at t ¼ 0 a value determined by the scale, the trajectory can
therefore be nonlinear for all t values. In Fig. 6 a plausible
scenario for Pomeron trajectories at different scales is
presented. In the hadronic region (t≳ 1.5 GeV2) the
trajectory is fixed by its hadronic resonances, whereas in
the scattering and production region (t < 0) it can depend
on the scale, fixed, e.g., by the transverse extension of the
electroproduced object or the virtuality of the scattered
photon.
As can be seen from Fig. 6, the increase of the intercept

can reduce the trajectory slope for increasing scales. Such a
decrease with increasing scale has been obtained qualita-
tively in the gauge/gravity dual model in Ref. [36]. It is also
in accordance with the two-Pomeron approach [29,35],
where the hard Pomeron has a significantly smaller slope
than the soft one. In Ref. [45] the scale dependence of the
Pomeron slope has been quantified. It has also been shown
that at large spacelike momentum transfer t, the trajectory
αPðtÞ of the Pomeron approaches asymptotically a negative
integer in order to analytically match the power-law
behavior of the scattering amplitude at fixed t=s; i.e., at
fixed CM angles [79].
We note that the full gravitational form factor is an

observable quantity, although the gluon and the quark
components are individually scale dependent; only their
sum is scale and renormalization scheme independent.
In Ref. [1], the scale dependence of the gluon gravitational

form factor is encoded in its Fock state normalization,
cτðμÞ, which is equal to the gluon longitudinal momentum
using our normalization conventions. It is compensated by
the scale dependence of the longitudinal momentum of the
quarks by the momentum sum rule.

V. SUMMARY AND CONCLUSION

We have studied the scale dependence μ of the Pomeron
trajectory intercept αð0; μÞ, which controls small-x diffrac-
tive processes. To this end, we have related the Pomeron
intercept to the scale evolution of the intrinsic gluon
distribution function obtained in Ref. [1] in the framework
of holographic light-front QCD, together with the con-
straints imposed by the generalized Veneziano model. Our
analysis assumes that the functional form of the gluon
distribution function is not modified by perturbative QCD
evolution from the hadronic initial scale, where it is
normally defined, to higher virtuality scales. This
assumption is based on the observation that the application
of pQCD evolution to the intrinsic gluon contribution
indeed yields the full gluon distribution at all scales [1];
thus, no additional perturbative Pomeron needs to be
introduced. This assumption is also consistent with the
observed scale dependence of diffractive processes since
the evolution of the gluon distribution leads to a scale-
dependent Pomeron intercept. This critical observation
quantitatively explains the Q2 dependence of the proton
structure function F2ðx;Q2Þ with a single (unified) scale-
dependent Pomeron exchange, and it also constitutes a
basis for the observed scale dependence of diffractive
electroproduction of vector mesons. Thus, the nonpertur-
bative “soft” Pomeron with an intercept 1.08 [28] and the
perturbative “hard” BFKL Pomeron [32–34] merge into a
single Pomeron with a scale-dependent intercept. This scale
dependence may seem unconventional, but it is perfectly
compatible with the foundations of Regge theory [45], and
it is conceptually satisfying.
The results presented in this article lead to new insights

into the essential scale dependence of the Pomeron trajec-
tory underlying high energy, high virtuality processes,
which in turn, provides a unified framework for describing
both the hard BFKL and soft Pomeron regimes. For the
analysis of the Pomeron intercept, only the gluon distri-
bution function (6) at t ¼ 0 is relevant. The same procedure
can be extended, in principle, to study the scale dependence
of the Pomeron slope, α0PðμÞ, by studying the pQCD
evolution of the generalized gluon distribution function
for nonvanishing momentum transfer t [5]. In this case the
full Pomeron trajectory αPðt; μÞ enters, and we are con-
fronted with the problem of maintaining the scale invari-
ance of the full gravitational form factor at all t values. This
entails the study of delicate cancellations between the quark
and gluon components, required to compute the scale
dependence of the Pomeron slope α0PðμÞ in terms of the
scale-dependence of the Pomeron intercept αð0; μÞ. Further

FIG. 6. Scenario for Regge trajectories at different scales from
Ref. [45]. The solid line is the proposed trajectory for diffractive
scattering of light hadrons or photoproduction of ρ mesons; the
dashed line is the trajectory for diffractive photoproduction of
J=ψ mesons and the dotted line that ofϒmesons. The scale is set
by the transverse extension of the meson wave function. These
trajectories are in agreement with experiments up to LHC
energies.
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studies of photo-, and if possible, electro-production
processes at LHC energies would be very helpful in better
understanding the nature of the Pomeron.
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