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Assuming that the π+π− photoproduction at forward angles and high energies is dominated by one 
pion exchange we calculate the π+π− mass distributions for low partial waves. Predictions of the model 
agree well with the experimental data which indicate that the S , P and D waves are dominated by the 
f0(980), ρ(770) and f2(1270), resonances respectively.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Photoproduction is an important reaction in hadron spec-
troscopy. To determine resonance production mechanisms one 
performs partial wave analysis of the differential cross section in 
various final state channels. This is now possible thanks to avail-
ability of high-quality data from JLab, ELSA, MAMI, and SPring-8. 
Among those the CLAS data continues to be of high interest as 
it remains to be the only data on photoproduction of f0 reso-
nances. Specifically, from analysis of forward photoproduction of 
pseudoscalar mesons one can investigate the spectrum of light 
meson resonances, including those with exotic quantum numbers 
[1], which are important for development of our understanding of 
color confinement. In the previous studies we have shown that S
and D resonances are copiously produced in di-pion photoproduc-
tion [2,3]. In those studies we assumed that the di-pion photopro-
duction is dominated by the t-channel ρ and ω exchanges at the 
nucleon vertex. In the present work we focus instead on the gen-
eral properties of the production process. Specifically we examine 
two principal modes. The long-range mode related to the one pion 
exchange and the short-range one, which effectively takes into ac-
count all heavier meson exchanges and/or quark/gluon processes. 
As a function of the di-pion mass, the latter has singularities far 
away from the physical region and can be parametrized it terms 
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of a suitably chosen smooth functions. These two modes natu-
rally arise when one considers restrictions imposed by unitarity 
on final state interactions in a general production process [4]. In-
stead of assuming a particular exchange mechanism, we generalize 
the conventional formulation of the Deck model [5,6] by applying 
the phenomenological set of pion-nucleon amplitudes obtained by 
the SAID group [7] and to describe the final state interactions in 
the ππ channel we use a set of partial wave amplitudes from 
a recent analysis in [8]. The use of phenomenological π N and 
ππ amplitudes enables us to make a prediction for the absolute 
normalization of the long range mode of the photoproduction am-
plitude, while the short range mode is fitted to the data. Resulting 
cross sections, as we show in this paper, agree well with the avail-
able data on the π+π− photoproduction in the S , P , D , and F
waves.

Model description. For the π+π− photoproduction on the pro-
ton γ (q, λ) + p(p1, λ1) → p(p2, λ2) +π+ (k1) +π− (k2), where λ’s 
denote particle helicities, the invariant amplitude is related to the 
S matrix by

S f i = δ f i + i(2π)4 δ4(p2 + k1 + k2 − p1 − q)T f i . (1)

Accordingly, the invariant double-differential cross section ex-
pressed as a sum over ππ partial waves is given by

d2σ

d|t|d
√
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Fig. 1. Diagrams for the pion photoproduction (Deck mechanism), where pions are 
subject to final state interactions.

Fig. 2. Coordinate system in the ππ c.m. reference frame.

where |k| = √
sππ/4 − m2

π is the magnitude of pion momenta 
in the ππ rest frame. The partial wave projection is defined in 
the ππ center of mass frame cf. Fig. 1. In this frame the direc-
tion of the recoil proton defines the negative z axis and y axis 
is perpendicular the di-pion production plane. The orientation of 
the π+ momentum is given by the polar and azimuthal angles, 
θ and φ as shown in Fig. 2, with the photon momentum given by 
q = |q|(− sin θq, 0, cos θq) where |q| = (sππ − t)/2

√
sππ and cos θq

is an algebraic function of the Mandelstam invariants.
In terms of the scattering amplitude T the partial wave ampli-

tudes are given by

T lm =
∫

d� Y ∗
lm(�) T (p2λ2 k1k2,qλ p1λ1) (3)

where d� = d cosθ dφ. The partial wave amplitudes depend on 
the total invariant energy s = (q + p1)

2, momentum transfer t =
(p2 − p1)

2, and ππ invariant mass 
√

sππ . A similar expression 
holds for the Deck amplitude Mlm (see below).

For each spin, l and isospin, I = 0, 1, 2 the final state interac-
tions are described by the ππ partial wave amplitudes, t I

l that are 
given by the phase shifts δ I

l and inelasticity parameters η I
l ,

t I
l = 1

2iρ

(
η I

l e2iδ I
l − 1

)
, (4)

where ρ = 2|k|/√sππ . The partial wave amplitudes t I
l (sππ ) are 

taken from the recent study of [8], where crossing symmetry and 
once subtracted dispersion relations were imposed to further con-
strain the amplitudes that were studied previously in [9–11].

In the limit of a large production range, the partial waves are 
related to the FSI amplitudes by a simple algebraic relation [4], 
which for the even waves, assuming isospin symmetry reads,

T lm
π+π−(λ2 λλ1)

=
[

1 + iρ

(
2

3
t0
l + 1

3
t2
l

)]
Mlm

π+π−(λ2 λλ1) , (5)

and for the odd ones

T lm
π+π−(λ2 λλ1) = [

1 + iρ t1
l

]
Mlm

π+π−(λ2 λλ1). (6)

Here the long-range production, Mlm is taken as the partial wave 
projection of one pion exchange aka the Deck amplitude. The Deck 
amplitude was originally constructed in [5] under the assumption 
that contribution from the nearest singularity at low-tγπ , which is 
the channel dual to sππ , is that of the pion pole. Moreover, gauge 
invariance was imposed by modifying the pion pole according to a 
following prescription [6],

Mλ2λλ1 = −e

[(
ελ · k2

q · k2
− ελ · (p1 + p2)

q · (p1 + p2)

)
T +

λ1λ2

−
(

ελ · k1

q · k1
− ελ · (p1 + p2)

q · (p1 + p2)

)
T −

λ1λ2

]
(7)

where e is the electric charge, ελ is the photon helicity polarization 
vector and T +

λ1λ2
and T −

λ1λ2
are π±N scattering amplitudes. This 

is one of many possible implementations of gauge invariance. An-
other model, for example, was studied in [12] where contributions 
from the baryon exchanges were also included, which required a 
different modification to make the overall amplitude gauge invari-
ant. In the following we use Eq. (7), which appears better suited 
in the kinematics dominated by meson exchanges. Similarly to T lm

the partial wave projection of the Deck amplitude is given by,

Mlm
π+π−(λ2λλ1) =

∫
d� Y ∗

lm(�) Mλ2λλ1 . (8)

Elastic amplitudes of the π+ and π− scattering off protons that 
appear in Eq. (7) can be expressed in terms of the isospin ampli-
tudes

T +
λ1λ2

= T
3
2
λ1λ2

, T −
λ1λ2

= 1

3
(T

3
2
λ1λ2

+ 2T
1
2
λ1λ2

), (9)

with the latter given in terms of the standard Lorentz invariant 
isospin amplitudes [13]

T I
λ1λ2

= u(p2, λ2)
(

AI + γ · Q B I
)

u(p1, λ1) (10)

with Q = 1
2 (q ∓ k1 ± k2), for π− and π+ scattering, respectively. 

To construct the amplitudes in Eq. (9) we use the SAID π N partial 
wave parametrization. Note that due to kinematics of the process 
the pion that undergoes the scattering on the proton target is not 
on its mass shell: (q − k1)

2 �= m2
π . Consistency with the assumed 

one pion exchange nature of the leading singularity demands, how-
ever, that the π N amplitudes are evaluated on-shell and that 
the pion virtuality only appears through the pion propagator (cf.
Fig. 1). Even though the pion exchange is close to the physical re-
gion, because of the finite momentum transfer between the target 
and recoil nucleon, t the Deck amplitude gives a rather smooth 
function of sππ . In Fig. 3 we compare individual cross sections 
computed for each of the four lowest partial waves (S, P , D, F ) of 
the Deck amplitude, with their incoherent sum in Eq. (2) and with 

Fig. 3. Cross sections for low partial waves as compared to the cross section com-
puted from the complete amplitude. The results are calculated without the final 
state interactions.
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the total, unprojected Deck amplitude (“all waves”). The calculation 
is done at photon energy Eγ = 3.3 GeV and momentum transfer 
squared t = −0.55 GeV2. We observe that the convergence rate 
of the partial wave expansion is rather slow, so that the combined 
four lowest waves account for roughly 50% of the total contribution 
to the sππ intensity distribution. Moreover, the clear hierarchy of 
partial waves is visible, with the odd partial waves being stronger 
than the even ones. This can be understood by considering the 
cos θ and φ dependence of T +

λ1λ2
and T −

λ1λ2
in Eq. (7). Changing 

θ → π − θ and φ → φ + π in the second term of Eq. (7) and us-
ing Eq. (9) we see that the partial wave expansion in Eq. (8) can 
be rewritten as

Mlm
π+π− = −e

∫
d� Y ∗

lm(�)

(
ελ · k2

q · k2
− ελ · (p1 + p2)

q · (p1 + p2)

)

×
[

T
3
2 − (−1)l

3
(T

3
2 + 2T

1
2 )

]
. (11)

It thus follows that in the case of even partial waves, l = 0, 2, . . . , 
the dominant π N isospin 3/2 component is partially canceled 
while in odd ones it is enhanced, which explains qualitatively the 
hierarchy observed in Fig. 3.

Numerical results. In general, in the kinematics discussed here, 
a minimal model for π+π− photoproduction should contain two 
parts. One corresponds to production of pion pairs from a spatially 
extended region and is given by Eqs. (5) and (6). We refer to this 
component as “Deck+FSI”. The other, corresponds to production 
from a spatially compact source. For each partial wave the latter 
can be parametrized by a short-range contribution given by,

(A + B sππ )eiδ I
l sinδ I

l (12)

The term in the parentheses effectively parametrizes the smooth 
sππ dependence, which in the physical region arises from ex-
changes of heavier mesons and/or quarks. This term is modified 
in the standard way by final state interactions in the ππ channel, 
where, given the limited data range, we ignore inelastic effects. The 
free parameters A and B were fitted to experimental mass distri-
butions extracted from the CLAS data. We compare predictions of 
the model with the mass distributions for low partial waves de-
termined by the CLAS collaboration [14], which, to our knowledge, 
are the only available data on the di-pion partial-wave mass dis-
tributions.

In Fig. 4 we compare model predictions with the experimen-
tal S-wave mass distribution which we denote here by CLAS fit 
as it was obtained from fitting the measured data [14]. It is clear 
that already the Deck amplitude alone gives the right magnitude 
of mass distribution and reproduces the mass dependence of back-
ground, i.e. outside the region of the f0(980) resonance. When the 
final state ππ interactions are taken into account (“Deck+FSI”), 
the resonant shape around 1 GeV, is well reproduced. Destructive 
interference between direct di-pion production and final state in-
teraction cf. Eq. (5) results in the mass distribution dipping below 
the experimental points in the whole energy region (see the dis-
cussion below Fig. 6 for more details). If, however, we include the 
short range component with parameters A = −14.5 ± 0.6 GeV−1

and B = 2.7 ± 0.6 GeV−3 the fit fairly reproduces the mass distri-
bution behavior both in resonance region and outside. The slightly 
different invariant mass behavior of our predictions above 1 GeV 
in comparison with the CLAS fit can be attributed to the absence 
of the K K̄ channel in the model. Another point we would like to 
discuss here is a contribution of the correction term in Deck am-
plitude, Eq. (7) required for gauge invariance, typically referred to 
as a contact term (even though in our case it is not local). In Fig. 4
Fig. 4. S-wave double differential cross section at Eγ = 3.3 GeV and −t =
0.55 GeV2. Dash-dotted line – pure Deck model; dashed line – Deck model with 
final state ππ interactions; solid line – Deck model with FSI and the short range 
term; dotted line – contribution of the contact term; red points – CLAS fit to the 
experimental data. The error band shows the total uncertainty that combines the 
systematic and statistical uncertainties.

Fig. 5. P -wave double differential cross section at Eγ = 3.3 GeV and −t =
0.55 GeV2. Dash-dotted line – pure Deck model; dashed line – Deck model with 
final state ππ interactions; solid line – Deck model with FSI and the short range 
term; dotted line – contribution of the contact term; red points – CLAS fit to the 
experimental data. The band shows the total uncertainty of the fit.

we show the contribution of the contact term in Eq. (7) (the dot-
ted line). It is apparent that in the region around 0.6 GeV this 
contribution reveals a small enhancement in the mass distribu-
tion. This enhancement is also seen in the curve obtained from 
the “Deck+FSI” amplitude. One can also say that the contribution 
is relatively large in the S wave.

In Fig. 5 we show the CLAS P -wave mass distribution compared 
to our model predictions. The overall agreement of data with the 
full model (Deck+FSI+short range), especially in the resonance re-
gion, is good. However, the long-range component with final state 
interactions (Deck+FSI) produces a minimum rather than the max-
imum at the resonance energy. Thus the peak of the ρ(770) res-
onance, as expected is due to the short range production. Specif-
ically we find A = 48.9 ± 1.6 GeV−1 and B = −24.3 ± 2.0 GeV−3. 
A comparison of the fitted values of the A and B parameters for 
the S and P waves implies that the relative contribution of the 
short range component of the amplitude is much larger in the P
wave, as expected for the standard qq̄ state. Small deviations from 
the data can be observed in the near threshold region and for 
masses well above the ρ(770) mass. The near threshold discrep-
ancy results from a small enhancement in the contact term magni-
fied by final state interactions. An alternative model for the P -wave 
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Fig. 6. D-wave double differential cross section at Eγ = 3.3 GeV and −t =
0.55 GeV2 with M ≤1. Dash-dotted line – pure Deck model; dashed line – Deck 
model with final state ππ interactions; solid line – Deck model with FSI and the 
short range term; dotted line – contribution of the contact term; red points – CLAS 
fit to the experimental data. The band shows the total uncertainty of the fit.

photoproduction of K K̄ , based on the pomeron exchange domi-
nance, can be found in [15], which also applies to the π+π− case.

In Fig. 6 we show our model results compared to CLAS D-wave 
mass distribution. It is important to note that following the exper-
imental analysis we take into account only the amplitudes where 
the magnetic quantum number M of the ππ system (equivalent 
to the helicity in the chosen frame of reference) is smaller than 2. 
Similarly as in the S wave, the model gives the right magnitude 
of the experimental points even for the pure Deck amplitude. Re-
call that this result is parameter free, contrary to the results in 
Ref. [3] that were fitted to the experiment. Inclusion of the final 
state interactions, similarly as in the P -wave, results in devel-
oping the minimum rather than the maximum for the invariant 
masses around the f2(1270). This different pattern in the S and 
D waves can be understood from behavior of the isoscalar ππ
phase shifts [8]. The production amplitude in Eq. (5) is domi-
nated by the term proportional to cos δ0

l , which comes from the 
square brackets in Eq. (5). Then the minimum in the D wave is 
due to the ππ phase shift passing π/2 at about 1.25 GeV. In the 
S wave the phase first passes π/2 at about 0.85 GeV as seen in 
Fig. 4 for “Deck+FSI”. When the S wave phase shift reaches π at √

sππ ∼ 0.95 GeV it produces a maximum. The model agrees much 
better with the D-wave data if we include the short range compo-
nent with parameters A = −24 ± 11 GeV−1 and B = 10 ± 7 GeV−3. 
It is obvious from Eq. (12) that the D wave resonates at 

√
sππ ∼

1.25 GeV (so, the overall amplitude behavior is quite analogous as 
in the P -wave). The contribution of the contact term is not so im-
portant in the D wave as in the S wave but it also reveals a tiny 
bump below 0.6 GeV that is apparent in the full result (the solid 
line).

In Fig. 7 we compare the model prediction with the F -wave 
mass distribution measured by CLAS. A discrepancy is observed 
throughout the entire mass region. Moreover, the effect of the fi-
nal state interactions in the F wave is negligible, which results 
from very small values of ππ partial waves. On the other hand 
the effect of the contact term is relatively large here and it ex-
plains the bump around 0.6 GeV. It is apparent that a form of the 
contact term is responsible for the excess in the mass distribution 
below 0.8 GeV, as indicated by the double-dash-dotted line. As the 
contribution of the contact term is flat it cannot contribute to the 
rising distribution at high masses.

Conclusions and outlook. With the model discussed in this pa-
per we have calculated mass distributions for various partial waves 
in photoproduction of the π+π− pairs on the proton. In our 
Fig. 7. F -wave double differential cross section at Eγ = 3.3 GeV and −t = 0.55 GeV2

and M ≤ 1. Dash-dotted line – pure Deck model; dashed line – Deck model with 
final state ππ interactions; dotted line – contribution of the contact term; double-
dash-dotted line – Deck without the contact term; red points – CLAS fit to the 
experimental data. The band shows the total uncertainty of the fit.

approach we combine the Deck model, which accounts for the 
extended source mode of the photoproduction, with the SAID 
parametrization of π N scattering amplitudes. This part of the 
model is essentially parameter free. Thus, we have probed the 
dominant exchange mechanism of the reaction at forward an-
gles that is given by the one pion exchange in the tγπ channel. 
We also took into account the compact source mode of the re-
action, which based on the general grounds can be parametrized 
by a smooth function. In this respect we have used a first order 
polynomial in sππ . When we include the final state ππ interac-
tions in the model, we obtain the ππ mass distributions which 
for low partial waves are in good agreement with CLAS measure-
ments made at Eγ = 3.3 GeV. Predictions of the model agree well 
with the experimental fact that the S and D waves are domi-
nated by isoscalar f0(980) and f2(1270) resonances, respectively, 
whereas the P wave is dominated by the isovector ρ(770) reso-
nance. Moreover, we observe that the compact source component 
of the resonant amplitude in P and D waves is larger than this 
same component for the S wave (compare e.g. the values of the 
corresponding A and B parameters). This is in line with the ex-
pectation that while the ρ(770) and f2(1270) are typical qq̄ res-
onances, the f0(980) is rather more loosely bound system of four 
quarks. In the F wave we observed the discrepancy between CLAS 
measurements and model predictions. At small invariant masses 
we attribute this discrepancy to a specific form of the contact term 
adopted from [6]. We observe a general hierarchy of the partial 
waves resulting from the pure Deck model, namely that the even 
partial waves are weaker than the odd ones which can be qualita-
tively inferred from Eq. (11).

A similar analysis using the Deck (Drell) mechanism driven by 
the kaon exchange for the K K̄ photoproduction was performed in 
[16]. In their analysis the authors took into account the full K N
and K̄ N scattering amplitudes showing that the kaon exchange 
mechanism alone is not sufficient to describe the data on the 
K + p and K − p invariant mass spectra. The reaction mechanism 
was therefore extended by adding the K ∗ exchange with a large 
coupling to the �(1520) resonance and a better description of the 
invariant mass spectra was achieved. Our findings are consistent in 
that the reaction mechanism based only on the long range mode 
is not enough to get a realistic description of the data. The two-
pion photoproduction on the nucleon was also studied at small 
energies (Eγ < 1.5 GeV) in [17] based on an effective Lagrangian 
approach. To achieve a satisfactory description of the data on to-
tal cross sections the authors included many baryon resonances in 
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the s-channel with the mass below 1.8 GeV. In the t-channel, ex-
changes of heavier mesons (σ and ρ) were included showing that 
also in this approach far-away singularities do play important role.

Our formalism allows for systematic refinements of the model. 
These include the coupled channel effects (which we expect to 
be important especially for the isoscalar S wave), off-shell effects 
and inclusion of other t-channel exchanges. In order to use the 
model in the full kinematic region accessible for GlueX and CLAS12 
energies, the SAID π p amplitudes must be supplemented with am-
plitudes applicable for π p CM energies beyond 2 GeV.
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