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Abstract

We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their
flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion
of the higher Fock components |¢qqqq) has a significant effect on the spin-flip elastic Pauli form factor
and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD
results for the proton and neutron form factors at any momentum transfer range, including asymptotic
predictions, and show that our results agree with the available experimental data with high accuracy. In
order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30%
in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and
perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed
to describe the experimental nucleon form factors are very few: two parameters for the probabilities
of higher Fock states for the spin-flip form factor and a phenomenological parameter r, required to
account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form
factors are normalized to the experimental values of the anomalous magnetic moments. The covariant
spin structure for the Dirac and Pauli nucleon form factors prescribed by AdSs semiclassical gravity
incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance

at low energy.



I. INTRODUCTION

The space-like electromagnetic form factors of the proton and neutron obtained in electron-
nucleon elastic scattering are key measures of the fundamental structure of hadrons. The helicity-
conserving and helicity-flip current matrix elements required to compute the Dirac F;(Q?) and
Pauli F5(Q?) form factors, respectively, have an exact representation in terms of the overlap of the
nonperturbative hadronic light-front wave functions (LFWFs) [1], the eigensolutions of the QCD
light-front Hamiltonian — the Drell-Yan-West formulae [2, 3]. The squares of the same hadronic
LFWFs, summed over all Fock states, underly the structure functions measured in deep inelastic
lepton-nucleon scattering. A central goal of hadron physics is to not only successfully predict
these dynamical observables but to also accurately account for the spectroscopy of hadrons.

The quest for a detailed quantitative understanding of the nucleon form factors is an active
field in hadronic physics. A wide variety of models have been proposed to describe the nucleon
form factors. However, in most of these approaches there has been no attempt to understand
the observed hadron spectroscopy. Furthermore, a consensus among different phenomenological
models and parameterizations which describe the nucleon form factors has not yet been achieved,
especially for the neutron Dirac and Pauli electromagnetic form factors, nor the nucleon time-like
form factors.

Detailed reviews of the experimental results and models can be found in Refs. [4, 5]. It
should be noted that inconsistencies in the extraction of the data appear in the proton electric to
magnetic Sachs form factor (FF) ratio R,(Q?) = u,G%(Q*)/G%,(Q?), when one compares double
polarization experiments [6-9], in which the ratio R, decreases almost linearly for momentum
transfer Q2 > 0.5 GeV?, with the results obtained from the Rosenbluth separation method [10-21]
in which R, remains constant in the space-like (SL) region. Predictions for different combinations
of the neutron FFs are even more puzzling to explain using phenomenological models. A further
limitation is that experimental data for the neutron FFs are not available in the large Q? = —¢?
regime. Another challenge is to describe the modulus of the electric to magnetic Sachs FF ratio
|G,/ G% | measured by the PS170 experiment at LEAR [22] and by the BABAR Collaboration in
the time-like (TL) domain [23] above the physical threshold ¢, = 4m2, where m,, is the proton
mass, at which proton-antiproton pairs are produced at rest in their center of mass system, and

where strong threshold effects are also important.



The recent 12 GeV energy upgrade of Jefferson Lab will bring a wealth of high precision
measurements at larger Q. A measurement of G4, in Jefferson Lab’s Hall A is currently ongoing
in the 7 to 17 GeV? range, with a precision aimed at less than 2 % [24]. Future experiments
approved for running in Hall A include measurements of R,(Q?) up to 15 GeV? using recoil
polarization [25], of R,(Q?) = p,G%(Q%)/G%(Q%) up to 10.2 GeV? using a polarized *He tar-
get [26], and of G%; up to Q* = 18 GeV? using a deuteron target [27]. A similar experiment up to
Q? = 14 GeV? will run in Jefferson Lab’s Hall B [28], and a G% measurement up to Q* = 7 GeV?
using a deuteron target and recoil polarization will run in Jefferson Lab’s Hall C [29]. Finally, in
order to provide an unambiguous value of the proton electric radius from electron scattering, an
experiment was recently completed (April 2016) which measured G, down to Q* = 107* GeV?,
with a statistical precision better than 2 x 107 and a systematic accuracy of 5 x 1072 [30].

The spectra of hadrons and their FFs can both be calculated using a novel nonperturbative
approach to hadron physics called light-front (LF) holographic QCD (LFHQCD) [31-34], which
provides new analytical tools for hadron dynamics within a relativistic frame-independent first-
approximation to the LF QCD Hamiltonian. This new approach to hadronic physics follows from
the precise mapping of the Hamiltonian equations in Anti-de Sitter (AdS) space to the relativistic
semiclassical light-front bound-state equations in the usual Minkowski space [32, 33|, which is
the boundary space of AdSs. This connection gives an exact relation between the holographic
variable z of AdS space and the invariant impact LF variable ¢ in physical space-time . This
holographic connection also implies that the light-front effective potential U ~ x2¢? in the LF
Hamiltonian, corresponds to a modification of the infrared region of AdS space. The specific
form of the LF potential is determined by superconformal quantum mechanics [35-39], which
captures the relevant aspects of color confinement based on a universal emerging single mass
scale £ = /A [40]. The modification is a quadratic dilaton profile in the bosonic AdSs action

and a Yukawa-like interaction term in the fermionic action [38, 39].

!The invariant light-front variable of an N—quark bound state is ¢ = , /ﬁ| Z;V:_ll z;b |, where x is the longi-

tudinal momentum fraction of the active quark, z; with j =1,2,--- , N — 1, the momentum fractions associated
with the N — 1 quarks in the cluster, and b, ; are the transverse positions of the spectator quarks in the cluster

relative to the active one [31]. For a two-constituent bound-state ¢ = \/x(1 — z)|b_|, which is conjugate to the
k3 3

invariant mass ————.
z(l—x)



This new approach to hadron physics predicts universal linear Regge trajectories and slopes
in both orbital angular momentum and radial excitation quantum numbers, the appearance of
a massless pion in the limit of zero-mass quarks, and gives remarkable connections between the
light meson and nucleon spectra [39, 40]. The superconformal approach has thus the advantage
that mesons and nucleons are treated on the same footing, and the confinement potential is
uniquely determined by the formalism. Remarkably, the meson spectrum and baryon spectrum
are related by a simple shift of the orbital angular momentum L, = Ly + 1. The QCD running
coupling is also consistently described at both small and large Q* [41-43].

In this paper we will calculate the space-like nucleon electromagnetic (EM) form factors
within the framework of LFHQCD [34]. In the modified AdSs space, which can be considered
as a gravity theory in 5 dimensions, FFs are computed from the overlap integral of normalizable
modes, which represent the incoming and outgoing hadrons, convoluted with a non-normalizable
mode which represents an EM current [44]. The EM current propagates into the infrared modified
AdS space and generates an infinite number of poles. Thus, the FF in the gravity theory has
the advantage that it generates the nonperturbative pole structure in the time-like region of the
FF [34]. Furthermore, for nucleons, the specific form of the interaction Lagrangian terms in the
higher-dimensional gravity theory dictates precise scaling relations for the Dirac and Pauli FF's,
which lead, when mapped to physical Minkowski space, to unambiguous scaling predictions for

different ratios of nucleon FFs.

When mapping the “dressed” EM current propagating in a modified AdS space to the LF QCD
Drell-Yan-West expression for the FF, the resulting LEWF incorporates non-valence higher Fock
states generated by the confined current [45]. The gauge/gravity duality also incorporates the
connection between the twist-scaling dimension 7 of the QQCD boundary interpolating operators
with the fall-off of the normalizable modes in AdS near its conformal boundary [46], consistent
with leading-twist scaling; i.e., in agreement with the power-law fall-off of the counting rules for
hard scattering dynamics at large Q? [47, 48]. The twist of a particle 7 is defined here as the
power behavior of its light-front wave function near ( = 0: ® ~ (7. For ground state hadrons

the leading twist is the number of constituents.

When computing nucleon FFs one has to constrain the asymptotic boundary conditions of

the leading fall-off of the FFs to match the twist of the nucleon’s interpolating operator, i.e.
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7 = 3, to represent the fact that at high virtualities the nucleon is essentially a system of 3
weakly interacting partons. For a multi-quark bound state, the LF invariant impact variable ¢
applies to a system composed of an active quark plus a spectator “cluster”. For example, for a
three-quark nucleon state, the three-body problem is reduced to an effective two-body problem
where two of the constituents form a diquark cluster [34]. This follows from the holographic
approach, where one has only one variable to describe the internal structure of the nucleon. This
means, for example, that for a proton the bound state behaves like a quark-diquark system,
i.e., like a twist-2 system. However, at large momentum transfer, or at small distances, where
the cluster is resolved into its individual constituents, the nucleon is governed by twist-3, in
contrast to the nonperturbative region where it is approximated by twist-2. A similar feature
appears in the study of sequential decay chains in baryons [49], which are sensitive to the short
distance behavior of the wave function. At very short distances, the bound state is twist-3 since
the two constituents particles in the diquark are resolved. This different scaling behavior of the
structure functions at low and high virtualities can be properly addressed from the LF cluster

decomposition for bound states [50-52] and will be discussed below.

In contrast to the prototypical example of the gauge/gravity duality, the AdS/CFT corre-
spondence [53], where the baryon is identified as an SU(N¢) singlet bound state of N quarks in
the large- N¢ limit, in the LFHQCD formalism, baryons are computed for No = 3, not No — o0.
In particular, the correct physical twist assignment is critical when computing hadron FFs since
the leading twist corresponds to the number of constituents N, i. e., 7 = 3 for a nucleon. In fact,
the nucleon AdS solutions have both L = 0 and L = 1 components with equal weight. Therefore
we use both the leading twist 7 = 3 and 7 = 3 + L = 4 to compute the valence contribution
to the nucleon FFs. The space-like Pauli FF of the nucleons arises from the overlap of L = 0
and L =1 AdS wavefunctions [1]. It is important to recall that the spin-flavor symmetry is not
contained in the holographic principle, which essentially describes the )? scale dependence for a
given twist, and has to be imposed from the symmetries of the quark model under consideration.
In the present work we use the SU(6) spin-flavor symmetry and examine possible breaking effects

of this symmetry.

In holographic QCD gluonic degrees of freedom only arise at high virtuality, whereas gluons

with small virtuality are sublimated in the effective confining potential [54]. Thus, Fock states of
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hadrons can have any number of extra ¢q pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of higher-Fock states using the holographic
framework described here. Indeed, it was shown in Refs. [34, 55] that higher Fock components
are essential to describe the rather complex time-like structure of the pion FF. Contribution
from the higher-twist components (¢¢ and ¢gqq) has also been considered to describe the pion
transition FF in yy* — 70 [45]. Contributions from three, four, and five parton components in the
nucleon Fock expansion have been considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of Sachs FFs, such as u,G%/G%,, could
not be successfully described. More recent works [57, 58] by the same group can describe the
experimental data of nucleon FF's well, but the number of parameters required is large, typically
about 8 — 12 free parameters. Other attempts to describe the flavor nucleon FFs in AdS/QCD
also require a large number of parameters [59]. On the other hand, simple holographic models —
which essentially include only the valence contribution, fail to systematically account for all the
properties of the nucleon FFs and their flavor decomposition [34, 60, 61]. As we will show below,
higher-twist components in the Fock expansion are in general needed for an accurate description
of the nucleon FFs, and, in fact, this can be achieved with a minimal number of parameters in

the LF holographic framework.

The contents of this article are as follows: After briefly reviewing in Sec. II how nonpertur-
bative analytical expressions for FF's in physical four-dimensional space follow from semiclassical
gravity in AdSs space, and their light-front holographic cluster decomposition, we show in Sec.
ITI how the Dirac and Pauli nucleon FF's in physical space-time follow from the covariant spin
structure of FFs in AdS;. In Sec. IV we study the effect of higher Fock states and build a simple
light-front holographic model for the nucleon FFs. We compare our predictions with available
data and compute asymptotic predictions for the nucleon FFs and their ratios. We compare our
results for the nucleon radii and perform a flavor decomposition of the nucleon FFs. Predictions
are made for comparison with upcoming JLab experiments. Our concluding remarks are given

in Sec. V.



II. HADRON FORM FACTORS IN HOLOGRAPHIC QCD

For simplicity let us consider first the FF of a spinless hadron. In the higher dimensional grav-
ity theory an electromagnetic FF corresponds to the coupling of an external EM field AM (z, 2)
propagating in AdS space with a hadron mode ®p(x,z), given by the left-hand side of the

equation

/d4:cdz \/E@}/(l’,Z)(g)Mq)p(l',Z) AM(z,2) ~ (2m)** (P'— P —q)e (P + PYF(¢*), (1)

defined up to a constant term. In (1) the coordinates are 2™ = (z*, ), with 2 the holographic

variable and 2# Minkowski flat space-time coordinates. The metric determinant is \/g = (R/z2)°.
To simplify, we set the AdS radius R = 1 since it does not appear in physical quantities. In
the above expression the hadron has initial and final four-momenta P and P’ and ¢ is the four-
momentum transferred to the hadron by the photon with polarization €. For convenience we
have redefined the wave function ®(z, z) to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM hadron FF in physical space-time. It
corresponds to the local coupling of the quark current J* =" 4 €¢07"q to the constituents [34].

In holographic QCD a hadron is described by a z-dependent wave function which includes
the scale dependence and a plane wave in physical space representing a free hadron: ®p(x,z) =

e'2®(2). The physical incoming electromagnetic probe propagates in AdS according to
Au(w,2) =7V (g%, 2) euq), Ao =0, (2)

where the bulk-to-boundary propagator V(¢?, z) has the boundary conditions V(¢*> = 0,2) =
V(g? z = 0) = 1. Extracting the factor (27)*§* (P'— P — ¢) from momentum conservation in
Eq. (1) we find [44] (Q? = —¢?)

F@) = [ Sviens e ®)

where F(Q? = 0) = 0. At small values of z ~ 1/Q, where the EM current V(Q?, z) has its
important support, the hadron modes scale as ®, ~ 27, and the hard-scattering power-scaling

behavior [47, 48] is recovered [46)]

FQ?) - H | (1



In our approach the twist-7 hadronic wave functions are

2 2
CI)T — T—1_7_-Kk%2%2/2 5
) =\ e 5)

and the EM current V(Q?, z) is the solution of the wave-equation of a vector current in AdSs,
with modifications determined by the superconformal algebra, which are the same as used in

spectroscopy. It has the integral representation [62]

1
dx —x
V(Qz,z) _ /<;2z2/ e Q42 =K% /(1) (6)

Since the integrand in Eq. (6) contains the generating function of the associated Laguerre

polynomials L, it can also be expressed as a sum of poles [62]

V(Q2, 2) = drt2? Z M2 . Qw (7)

with the poles located at —Q? = M? = 4k?(n+1). To compare with the data, one has, however,
to shift the poles in Eq. (7) to their physical location at the vector meson masses [34]

1
—Q2:M5n:4/£2(n—l—§>,n:O,l,Q,... . (8)

The ground-state mass of the p meson, M, = M, = 0.775 GeV gives the value of x = Mp/\/§ =
0.548 GeV, where £ = v/X is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector meson poles to their physical
locations using (8), we find for integer twist 7 = N the result [34, 63, 64]

1
ZERY (9)
(1rwg2) () - (e m2s)

expressed as a product of 7 — 1 poles along the vector meson Regge radial trajectory in terms of

F Q) =

the p vector meson mass M, and its radial excitations. For a pion, for example, the leading twist
is two, and thus the corresponding FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the “dressed” EM current (7), for a twist 7-bound
state the corresponding FF is given by a product of 7 — 1 poles, thus establishing a precise
relation between the twist of each Fock state in a hadron and the number of poles in the hadron

FF. As expected from this construction, the analytical form (9) incorporates the correct hard
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scattering twist scaling behavior at high virtuality and also vector meson dominance (VMD) at
low energy [65].

In LF quantization [66], a hadron state |H) is a superposition of an infinite number of Fock
components |N), |H) = >y ¥n/u|N), where ¢/ represents the N-component LEWF with
normalization Yy [¥n/g|* = 1. Thus the FF is given by the sum over an infinite number of

terms

Fu(Q%) =) PF(Q), (10)

where F) is given by Eq. (9). Since the charge is a diagonal operator, only amplitudes with an
identical number of components in the initial and final states contribute to the sum in Eq. (10).
Normalization at Q* = 0, Fy(0) = 1, F;(0) =1 (Eq. (9)) implies that Y _ P, = 1 if all possible
states are included.

Conventionally, the analysis of FFs is based on the generalized vector meson dominance model

where the EM form factor is written as a single-pole expansion
2
Fr@) = 3 Oy (1)
with a dominant contribution from the p vector meson plus contributions from the higher res-
onances p', p”, p”, ..., etc. [67]. The comparison of Eqgs. (10) and (11) allows us to determine
the coefficients C'y in terms of the probabilities P, for each Fock state and the vector meson
masses Mgﬂ. The advantage, however, of the holographic approach is that no fine tuning of the
coefficients C'y is necessary since the correct scaling is incorporated from the onset; the expan-
sion coefficients P, then have a clear physical meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decomposition: the hadronic FF factorizes
into the i = N — 1 product of twist-two monopole FFs evaluated at different scales [52] (N is

the total number of constituents of a given Fock state)

F(Q?) = Fies (Q°) Fizz (5Q%) -+~ Fiz (55Q%) - (12)

In the case of a nucleon, for example, the Dirac FF of the twist-3 valence quark-diquark state
Fi(Q%) = F—5 (Q%) Fi—> (3Q?*) corresponds to the factorization of the proton FF as a product
of a point-like quark and a diquark-cluster FF. The identical twist-3 expression from Eq. (9) is
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described by the product of two poles consistent with leading-twist scaling, Q*F;(Q?) ~ const,
at high momentum transfer. As we will show below, the Pauli form factor F; is given instead by

the i = N + 1 product of dipoles, and thus the leading-twist scaling Q5 F,(Q?) ~ const.

III. NUCLEON FORM FACTORS IN HOLOGRAPHIC QCD

The nucleon spin-non-flip EMFF follows from the expression [34]

/d4x dz /g VUpi(z,2) el T4 Ayr(2, 2)Up(z, 2)

~ (2m)'6Y (P'= P — q) euu(P )" Fi(g*)u(P), (13)

where the curved space indices in AdS5 space are M, N, and tangent indices in flat 5-dimensional
space are A, B. The I'y are Dirac gamma matrices which obey the usual anticommutation
relation {I'4, T8} = 2n4P and are given by I'* = (v#, —i7®), and the e}l are the inverse vielbein,
el = (%) 64, The expression on the right-hand side represents the Dirac EM form factor in
physical space-time. It is the EM spin-conserving matrix element of the quark current J# =
D, a7V q [34].

In the higher dimensional gravity theory nucleons are described by plus and minus wave

functions W, and W_ corresponding to the positive and negative chirality of the nucleon [33, 34]
\IJ+(Z) ~ ZT+1/26—5232/2’ \IJ_(Z) ~ ZT+3/26—/@222/2’ (14)

which represent, respectively, a positive chirality component with orbital angular momentum
L = 0 and and a negative chirality component with L = 1, and have identical normalization.

The spin non-flip nucleon elastic form factor F; follows from (13) and is given in terms of W,

and W_ [34],
FN@) =Y [ Sv@ e (15

The effective charges g+ have to be determined by the specific spin-flavor structure which is not
contained in the holographic principle. For example, in the SU(6) symmetry approximation the

effective charges are computed by the sum of the EM charges of the struck quark convoluted by
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the corresponding probability for the L = 0 and L = 1 components W, and W_ respectively.
The result is [34]

n

9" = (16)

1
3
Notice that there is an additional scaling power in (15), as compared with Eq. (3), but this is
compensated by the additional 2!/2 factor in the twist-7 nucleon AdS wavefunctions (14).

Since the structure of (13) can only account for Fj, one should therefore include an effec-
tive gauge-invariant interaction in the five-dimensional gravity action to describe the spin-flip

amplitude [68]. The nucleon spin-flip EMFF follows from the non-minimal term

/d4$d2\/§@]3/(l’, z)elf ey [T TP] Fun(z,z) Up(z,2)

o qy
2M

~ (2m)'6Y (P'= P — q) e,u(P) Fy(q*)u(P), (17)

where the expression on the right-hand side represents the Pauli EM form factor in physical space-
time. It corresponds to the EM spin-flip matrix element of the quark current J* = >° 4 €ad"q (34].
Since (17) represents an effective interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments x,, and x,, [34, 68].

Extracting the factor (2m)%6* (P'— P — ¢) from momentum conservation in (17) we find [68]

dz

FY@) = [ 502 V@2) v-(e) (15)

where N = p,n. Comparing the spin-flip result (18) with the with the spin-non-flip FF (15),
it becomes clear that there is an important difference between the scaling powers of z in both
expressions. This difference arises from two sources: first, the appearance of one vielbein in (13),
but two in Eq. (17), and secondly, the appearance of an additional power of z in the product
of the two wave functions due to the different scaling behaviour of ¥, and ¥_, Eq. (14), with
orbital angular momentum L = 0 and L = 1 respectively. As a result, while the leading scaling
behavior of the Dirac form factor is 1/Q*, the leading scaling behavior of the Pauli form factor is
1/Q° because of the additional z%-factor in (18). Remarkably, the correct large-Q?* power scaling
from hard scattering is incorporated in the covariant spin structure of the AdS expressions for

the nucleon FFs.
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IV. A SIMPLE LIGHT-FRONT HOLOGRAPHIC MODEL FOR NUCLEON FORM
FACTORS

Following Ref. [55] we will consider a simplified model where we only include the first two
components in a Fock expansion of the nucleon LF function with no constituent dynamical

gluons [54]

|N) =0 = wéqz?N‘q(JQ>T:3 + w(fngq/N|qqq(JQ>T=5 Tt (19)
|IN) =1 = @D(IL;}N|CIQQ>T:4 + wtfqz;q/quCJQ@T:G +oeee (20)

with N = p,n. The additional ¢ contribution to the nucleon wave function from higher Fock
components is relevant at larger distances and is usually interpreted as a pion cloud.

We have performed a systematic evaluation of the relevance of higher Fock components in
the nucleon FFs by extending the previous results in Ref. [34] for the Dirac and Pauli FFs. For
example, for the proton Dirac FF we have determined the relevance of higher Fock components
by writing FT(Q%) = (1 — «a,) Fi=3(Q?) + a, Fi=5(Q?), where i — 1 is the number of poles in

Therefore, 1 — o, = P, is

the expansion (9) and «,, is the twist-5 probability «, = o/

;;qqli/p'
the valence twist-3 probability for the spin non-flip EM transition amplitude. It is found that
P

vaqeq/p 18 very small, of the order of 1 %. Likewise, the contribution of higher Fock components

to the Dirac neutron FF is of the order of 2 % and does not change significantly our previous
results [34]. We thus drop the contribution of the higher Fock components to the spin non-flip

— po

g/ = > which gives us a

nucleon FFs in the rest of our analysis; namely, we take P, Ip

considerable simplification. Within this approximation, thus considering only the effect of higher

qq Fock components to the spin-flip nucleon FF's, we write
F(Q%) = Fi=s(Q?), (21)
FY(Q%) = xp[(1 = ) Fiza(Q®) + 7 Fizs(Q%)) (22)

for the proton, where x, = p, — 1 = 1.793 is the proton anomalous moment, and

FHQ*) = —% [Fims(Q?) — Fiza(Q)] (23)
F3(Q%) = xu [(1 = 1) Fi=a(Q%) + 7 Fi=6(Q?)] (24)

for the neutron, with x,, = p, = —1.913, and where ~,,, are the higher Fock probabilities for
the L = 0 — L = 1 spin-flip nucleon EM form factors. Eqgs. (21) and (23) are the exact SU(6)
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results for the spin non-flip nucleon FFs (13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating the higher Fock components, properly
normalized to the nucleon anomalous magnetic moments.

The inclusion of higher Fock states is not of much help in describing well the available data
for the neutron Dirac form factor. Indeed the zero value of the neutron FF at zero momentum
transfer comes from the cancellation of two normalizable wave functions, which vanishes at
Q? = 0. One could thus expect that in contrast to the other three FFs, namely FF, F¥ and
E}. second order effects are more important. Therefore our results for the neutron FFs are,
in principle, less reliable than our predictions for the proton FFs, especially for the low Q?
region which is more sensitive to the leading cancellations. With this possible shortcoming of
the model in mind, we are thus led to introduce one additional parameter r, which is required

phenomenologically. With this free parameter r we modify the neutron effective charges in Eq.

(16) as

gL =—zr g =3r (25)

and thus the expression for the neutron Dirac FF

FPQ) = —5r [Fes(Q7) — Fra(@)]. (26)
The value r = 2.08 is required to give a proper matching to the available experimental data as
shown in Fig. 1. Also, keeping in mind that the gauge-gravity duality does not determine the spin-
flavor structure of the nucleons, which is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free parameter r from unity may be
interpreted as a SU(6) symmetry-breaking effects in the neutron Dirac FF. Indeed, the breaking
of SU(6) flavor-spin symmetry has also been observed in a meson cloud model where mixed
symmetry in the nucleon wave function was included to reproduce the experimental data [71].
The effect of SU(6) symmetry breaking on the neutron FFs was also investigated within a LF
constituent quark model in Ref. [72].
All the results presented here correspond to the value of the universal confinement scale
determined from the mass of the rho vector meson: kK = VA = m,/ V2 = 0.548 GeV. We

estimate the uncertainties in our predictions from the uncertainty of the confinement scale k.
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FIG. 1. Polarization measurements and predictions for the proton and neutron Dirac form factors [69,
70]. The blue line is the prediction of the proton Dirac FF from LFHQCD, Eq. (21) multiplied by Q*.
The orange and the green lines are predictions for the neutron Dirac FF, Q*F(Q?), from Eq. (23)
and from Eq. (26) with the phenomenological factor » = 2.08, respectively. The dotted lines are the

asymptotic predictions. The asymptotic value of the neutron FF is determined using r = 2.08.
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FIG. 2. Polarization measurements and predictions for the proton and neutron Pauli form factors [69,
70]. The blue line is the proton Pauli FF, Q% F}(Q?) prediction, with v, = 0.27 in Eq. (22). The green

line is the prediction for the neutron Pauli FF, Q% F3(Q?), with v, = 0.38 in Eq. (24) from LFHQCD.
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The universality of x is affected — typically at the 10% level [40] — by the inherent approximations
of the LFHQCD model [34]. We discuss the estimate of the model uncertainties in Appendix A.

From Figs. 1 and 2, it is evident that the contribution of an additional ¢q pair, which embodies
the pion cloud in the nucleon, only plays an important role in reproducing the experimental data
for the spin-flip Pauli FFs. Such an effect of the pion cloud has been addressed in various
calculations, for example in Ref. [73], to show that the same light-front model fails to reproduce
the neutron electric Sachs FF G, unless the effect of the pion cloud is included. An estimate
reported in Ref. [74] indicates that pion loop effect results in a 6% and 12% increase in proton
charge and magnetic radii, respectively. For the neutron, the effects are a 65% and a 19% increase
in charge and magnetic radii, respectively. The values of v, and -, show that the effect of the
pion cloud on the Pauli FF is larger for the neutron. The dotted lines in Figs. 1 and 2 are the
asymptotic results for the nucleon Dirac and Pauli FFs determined by LFHQCD consistent with
the QCD power-counting rules. The asymptotic value of the FFs can be easily obtained from

(8) and (9). We obtain directly

T—2
lim (Q%) ' E(Q¥) = M2, M>___, =22+ 4n). 27
Jim (@) F(Q) = M — n[[g( ) (27)

In the large Q?> domain the power counting rules are reproduced by the model which also
determines its asymptotic normalization. For the spin non-flip EM nucleon FFs we obtain from

(21), (26) and (27) the asymptotic results

Jim QUP(QY) = Mo M, = 124, (28)
and
1
Jim QF(Q) = -3 r Mo M} = —4r k", (29)
—00

since the valence probability P, p = P, n ~ 1. On the other hand, for the spin flip EM nucleon

FFs we obtain
lim Q°FN(Q?) = xnP) M2y M>_, M?_, =120 xy P}, K" (30)

gqqq/N*"n=0 n=2 qqq/N

Q200
where qu N = (1 —n), N = p,n, is the valence probability for the spin-flip EM transition
amplitude. Possible logarithmic corrections are, of course, not predicted in this semiclassical

model.
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Another pair of FFs, called the electric and the magnetic Sachs FFs are defined by a combi-

nation of Dirac and Pauli FFs as follows:

O BN, (31)

?). (32)

GHQY) = F@) - 2
Q) = FY Q) + B

(@

The results of the ratio R, = u,G%/G%, from the polarization experiments have triggered a
revision of various nucleon models, and for Q% > 10 GeV? the ratio R, may vanish or become
negative. We present in Fig. 3 the LFHQCD prediction of R, up to Q* = 30 GeV?, and compare
our result with selected world data of unpolarized cross section and polarization measurement ex-
periments. It is clearly seen from Fig. 3 that LFHQCD predicts G%; to decrease more rapidly than
Gh, for Q* > 1 GeV?, in agreement with the polarization measurements of R,. The asymptotic
result for R, follows from

2

) Yy K
lim R,(Q?) = (1 — 5(“ ne . m2> : (33)

Q?—00

and has the value R,(c0) = —0.309 as indicated in Fig. (3). The monotonic decrease of R,
with @Q? demonstrates that the FFs are not simply the sum of dipole-like contributions from
the up and down quarks. Following the discussion presented in Appendix A, we have included
in Fig. 3 an estimate of uncertainties in the LFHQCD model. The uncertainty band has been
presented with a smooth transition between non-perturbative and perturbative estimates near
the transition point Q2 ~ 1.5 GeV?.

In contrast to the proton FFs, the neutron FFs are more difficult to measure because there
is no free neutron target. Experimental data of neutron FFs are available only up to relatively
small values of Q2. Since most nucleon form factor models such as [72, 81-83] cannot reproduce
the experimental data for the ratio R, = u,G%/G%, for Q% > 2GeV?, it is desirable that one can
parametrize the ratio R, according to the available experimental data and predict its behavior
at large Q%. To this end, we compare in Figs. 4 and 5 the Sachs electric FF and the ratio R,
computed in LFHQCD, with selected experimental data. From these results, one can see that
LFHQCD can properly reproduce G, and R,, in the whole range of available experimental data.
We have also extended our results for the neutron FFs to higher Q2 in order to compare with

upcoming JLab experiments [26-29]. Here the asymptotic value depends in a nontrivial way on
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FIG. 3. LFHQCD prediction and comparison with selected world data of the ratio R, = p,G%,/G%, from
unpolarized cross section measurements from [12, 15, 16, 75] and polarization measurements from [7,
8, 76-80]. The LFHQCD prediction (blue line) from Egs. (21) and (22) corresponds to the range 0 <
Q? < 30GeV?. The band represents an estimated theoretical uncertainty of the model. Our theoretical
results agree well with the polarization data and are incompatible with the experimental results obtained
from Rosenbluth separation. The dotted line is the asymptotic prediction R,(c0) = —0.309 with an

estimated uncertainty of +0.12.

the parameter r:

Q200 2r m2

15 1, P 2
hnl.Rn@95:=/uz(1-%-—fi—ﬁglﬁli—>, (34)

and has the value is R, (c0) = 0.864 for r = 2.08 as indicated in Fig. (5).

A. Holographic Predictions for Nucleon Radii

We now compute the magnetic root-mean-square (rms) radii of the nucleons from the defini-

- ka(o) dGé”Q(ZQQ) |g2—0 and use (rg) = —6deC§§2) |g2=0 to compute the charge mean-

tion (r2,) =
square radii of the nucleons. The LEHQCD predictions of different radii are compared with the
experimental values in Table. I. In determining the charge and magnetic radii, we include the
experimental uncertainty by fitting the experimental data and also the systematic uncertainties

coming from the LEFHQCD model itself. The statistical uncertainties are related to the uncer-
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FIG. 4. Comparison of the neutron electric FF G7(Q?) world data [84-94] with the LFHQCD prediction
from Eqgs. (23), (24) and (26).

tainties in the probabilities 7, , in the fits of the experimental data with x?/d.o.f. ~ 0.9 for
different fits. We calculate the systematic uncertainties coming from the inclusion of higher Fock
components and the parameter r (only for the neutron Dirac FF) in the FF expressions and also
the uncertainty coming form the model as described in the Appendix. In all, the radii computed
from the LFHQCD model described here are in better agreement with the experimental measure-
ments of all radii where no cancellations of leading terms occur. In particular, the proton charge
radius obtained from LFHQCD tends to favor the value obtained from muonic hydrogen Lamb

shift experiments (for the most recent experimental values see Ref. [99].) A recent analysis [100]
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FIG. 5. Selected world data of the ratio R, = 1,G'%/G", from double polarization experiments; recoil
polarization with deuterium target, asymmetry with polarized deuterium target, and asymmetry with
polarized *He target. The data points are taken from Refs. [69, 84, 85, 87, 91, 95-97]. For more data
points and other theoretical predictions, see Ref. [5]. The dotted line is the asymptotic prediction

R, (00) = 0.864 with an estimated uncertainty of £0.11 for » = 2.08 in Eq. (26).

of various baryon properties at low ()? values has been performed in a LFHQCD model where

the authors included quark mass in the LEWFs.

TABLE I. Comparison between the experimental values of the nucleon charge and magnetic radii and
LFHQCD predictions from this work. The radii agree with the experimental values [98]. They also

agree with the predictions without contributions of higher Fock states made in [34].

Nucleon radii Experimental values [98] LFHQCD [This work]
k)2 | 0.8775(51) fm (ep CODATA) 0.801(54) fm
(r)?  10.84087(39) fm (pp Lamb shift) 0.801(54) fm
(rh)? 0.777(16) fm 0.789(79) fm
((r2)?) -0.1161(22) fm? -0.073(30) fm?
(r)? 0.862(9) fm 0.796(81) fm
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B. Flavor decomposition of Nucleon Form Factors in Light-Front Holographic QCD

Recent measurements of neutron form factors made it possible to carry out, for the first time,
a flavor separation of the up and down-quark contributions to the nucleon electromagnetic FFs
up to Q* = 3.4 GeV? [101] with results not well understood by existing models. The initial
flavor-separation results were later expanded in [70, 102], and have been subject of extensive
theoretical analysis with contrasting results, which often show a tension in accounting for the
down-quark contribution. Therefore, anticipating the upcoming JLab measurements, we use
our present holographic model to compare with existing data and extend our predictions to
higher Q% values. To this end, we compare in Figs. 6 and 7 the flavor decomposition of various
FFs, which follows from the LFHQCD results discussed here, with the experimental results
from Ref. [70]. In Fig. 7 the results are scaled by x,', the limiting values of Fj at Q* = 0,
1.6, Xu = My —2 = 1.67 and xq = pg — 1 = —2.03. The LFHQCD prediction of a faster
increase of the up quark contribution to Q*F} for Q> > 1 GeV? compared to Q*F¢ is consistent
with the flavor decomposition performed in Ref. [101]. The flavor decomposed FFs described
here are in good agreement with the flavor decomposition which follows from incorporating the
Regge contribution into generalized parton distributions [103]. A faster fall-off of the down
quark contribution with Q? has been interpreted as a possible axial-vector diquark contribution
in Refs. [104-106]. Although a complete flavor decomposition requires a contribution from the
strange quark and antiquark, a recent high precision lattice QCD calculation [107] indicates,
however, that the strange quark contribution to the proton EMFFs is quite small and becomes
even smaller at Q% > 1 GeV?.

Finally, it is important to recall that we have used a universal value for the confinement
scale k in deriving Eq. (9), but in fact the value of s for the nucleon wave function, which is
obtained from the nucleon slope, is slightly smaller than the value of x in the EM current which
is obtained from the rho mass [40]; it determines the slope of the vector meson trajectory of
radial excitations — the poles in the EM current. Indeed, as explained in the Appendix A, we
have used the difference in the value of the scale x, obtained from the average of all meson and
all baryon trajectories to evaluate the theoretical uncertainty of our holographic model. Since
the wave function determines the low energy bound state dynamics, we expect that observables

which depend on the nucleon wave function, such as radii, are more sensitive to the lower value
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FIG. 6. LFHQCD prediction of the up and the down-quark contributions to the Dirac FF multiplied
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FIG. 7. LFHQCD prediction of the up and the down-quark contributions to the Pauli FF multiplied
by x;'Q°. The data is from Ref. [70].

of k, whereas at higher energies, where the amplitudes depend on the structure of the vector
meson poles, we would expect that the data is better described by the slightly higher value of
r from the rho trajectory of radial excitations. A simple analysis of the data shows that this is

indeed the case.
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V. CONCLUSIONS

We have performed a complete analysis of the nucleon electromagnetic form factors in the
space-like region in the framework of light-front holographic QCD. The essential dynamical el-
ement in our approach is the embedding of superconformal quantum mechanics in AdS, which
fixes its deformation [38, 39]. The covariant spin structure for the Dirac and Pauli electromag-
netic nucleon form factors in the AdS; semiclassical gravity model encodes the correct power-law
scaling for a given twist, ranging from the constituents hard scattering with the photon at high
momentum transfer to vector dominance at low Q2. The model also predicts the asymptotic
normalization at Q> — oo, which depends on a product of vector meson masses and the va-
lence probability (For the spin-flip Pauli form factor it also depends on the anomalous magnetic
moment).

The essential parameter in the model is the confinement scale x = v/A which is universal for the
light hadrons and is determined by hadron spectroscopy. This universality holds to better than
10% accuracy [40], and has been used to describe a variety of fairly disconnected measurements,
such as mass spectra of mesons and nucleons [34], form factors [34] and the infrared behavior of
the strong QCD coupling ay; [43].

In the present article, we have considered the effects of the pion cloud which give information
on the relevance of higher Fock states. For the spin-flip Pauli form factors, we find an admixture
of a five quark state of about 30% in the proton and about 40% in the neutron, and essentially
no contribution of the higher Fock components to the spin-non-flip Dirac form factors. This
relatively important contribution of the higher Fock components to the Pauli form factor of the
nucleons is unexpected, and may be related to the fact that the spin-flip form factor corresponds
to a change of light-front orbital angular momentum L = 0 — L = 1. Likewise, the spin-
conserving transition form factor of the proton to a Roper resonance, which can be interpreted
as a radial transition from n = 0 — n = 1, also requires higher Fock components to describe the
low energy data [52].

Since the holographic model does not include spin-flavor structure, we have used the SU(6)
symmetry to determine the effective electromagnetic couplings to the quarks for the spin non-flip
form factors. This choice, however, is not precise enough if cancellations of the leading terms are

occurring, as in the case of the neutron Dirac form factor. In this case an additional parameter
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r has to be introduced (see Eq. (26)) which accounts for possible SU(6) spin-flavor symmetry
breaking effects. For the spin-flip form factors we use the experimental values of the anomalous
magnetic moments as an effective coupling. Note that in order to obtain agreement with data,
one has to apply a constant shift of the poles predicted by AdS/QCD in the expression for the
dressed current to their physical locations. These shifted locations are then obtained from the
bound state equations of the hadrons in this model.

The simple holographic model described here reproduces quite well the main features of the
nucleon form factor data. Indeed, with the confinement scale fixed by hadron spectroscopy and
the anomalous magnetic moments of proton and neutron fixed by experiment, we have intro-
duced only 3 free (adjustable) parameters to describe an extensive set of data of the nucleon
electromagnetic form factors. Our results for the nucleon form factors and their flavor decom-
position, agree very well with existing data and provide predictions for the various nucleon form
factors in the large momentum transfer regions, which have not been explored by the experi-
ments yet. The charge and magnetic radii of the proton and neutron were extracted and found
to agree, within the estimated uncertainty, with their experimental determinations. Our value
of the proton charge radius tends to favor the muon Lamb shift determination. In general, the
approximations from LFHQCD lead to uncertainties of about 10%. Our results should be consid-
ered within this typical accuracy. The new JLab experiments will provide a valuable test for our
light-front holographic framework which explores the nucleon structure with a minimal number
of free parameters.

Since the analytic expression for the form factors (9) contains a product of time-like poles,
it is especially suited for also describing the nucleon form factors in the time-like region, as has
been done already for the pion form factor in Refs. [34, 55]. The formalism can also be applied

to the nucleon transition form factors.
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Appendix A: Estimate of the model uncertainties

Light front holographic QCD, constrained by superconformal quantum mechanics [39], yields
a semiclassical description to QCD that can be regarded as a first approximation to full QCD.
Therefore, for example, logarithmic terms due to quantum loops are absent in the model. Typ-
ically the uncertainties in the spectra are less than 10%. This is reflected by the fact that the
fitted values of the universal confinement scale x = v/ differ by about this percentage for the
different trajectories [40]. So we obtain from the the rho-trajectory the value k = 0.537 GeV, for
the nucleon trajectory x = 0.499 GeV, and from a fit to the rho-mass alone kK = mp/\/§ = 0.548
GeV. Since the rho pole is dominant for the nucleon FF's, we have taken this latter value as the

default value in all figures.

The uncertainties have been estimated in the following way: For the low ? region, especially
for the charge radii, the form of the nucleon wave function is important, therefore we estimate
the uncertainty in this region from the difference of the results obtained with the default value
of k and of the result obtained with £ = 0.499 GeV from the nucleon trajectory. For large values
of @? the FFs are dominated by the product of the rho-meson masses, see Eq. (27). Therefore
we estimate the uncertainty for large Q2 by the difference of the default value of x and the value
obtained from a fit to all radial and orbital excitations of the rho meson. It typically leads to

uncertainties for I} and F5 below 10%.
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