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A modification of the one boson exchange (OBE) kernel for the covariant spectator theory (CST) is
presented and discussed. When applied to the scattering of two identical particles, the previously used
kernels either introduced spurious singularities, or removed them in an ad-hoc way. The new modification
not only removes these singularities, but also maintains the convergence of the two-body CST equation
(sometimes called the Gross equation) when used to describe the scattering of two identical scalar particles.
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I. INTRODUCTION, HISTORY AND
BACKGROUND

A. Brief overview of this paper

The covariant spectator theory (CST), formulated in
Minkowski space, has enjoyed many successes during its
long, over 50 year history. One of its principal drawbacks is
the presence of unphysical singularities that arise in the
treatment of identical particles. The problem with these
singularities is not a practical one, but rather a theoretical
one: while most numerical calculations are insensitive to
their presence, they are an unpleasant sign that something
might be missing, and methods previously used for treating
them have little justification, leaving room for doubt that
the physics is fully under control. The main purpose of this
paper is to discuss these singularities, and to propose and
justify a new method for removing them.
Mathematical details presented in this paper are limited

to the simple scalar ϕψ�ψ interaction (where the boson ϕ
particles will have the mass μ of the pion in our numerical
examples, but could be any spin zero particle, and the ψ
particles will be referred to as “nucleons” because they are a
stand-in for nucleons or quarks, even though here they have
spin zero). This example is easy to examine in detail, and
many of the conclusions obtained can be straightforwardly
extended to more general theories with spin and isospin.
In addition to this first section, this paper is divided into

four other sections and a few short appendixes with some
details. Section II looks at the lowest order one boson
exchange (OBE) mechanism where the singularities first

appear when the equations are used to describe the scattering
of identical particles, and introduces the new method for
removing them. Section III shows how these singularities
affect the convergence of the CST by examining the next
higher order kernels: the fourth order subtracted box and
crossed box diagrams. A strong motivation for use of the
CST is the cancellation theorem, which states that the higher
order kernels describing the scattering of nonidentical scalar
particles cancel when one of the nucleon masses approaches
infinity, leaving the OBE kernel to give the exact result in
that limit. This theorem is violated when the diagrams are
symmetrized for the description of the scattering of identical
particles, and Sec. IV shows how the new method for
removing singularities also improves the cancellation and
almost restores the cancellation theorem, justifying its
introduction. Finally, conclusions are presented in the
last Sec. V.
Those familiar with the CST might prefer to skip parts of

this introductory section, which includes subsections
describing the assumptions that underly the use of the
CST, a brief review of the early history of the CST, a very
brief review of its major applications, and a general
discussion of the different types of CST equations that
describe (i) the scattering of nonidentical particles (one
channel), (ii) the scattering of identical particles with
exchange symmetry (two channel) and (iii) the pion as a
bound state of a qq̄ pair, that requires four channels in order
to maintain both charge conjugation invariance and sponta-
neously broken chiral symmetry.

B. Underlying assumptions

In hadronic physics, where a separation of scales is
possible, it is often assumed that the exchange of bosons is
a long range force that can be correctly calculated by
summing all ladders and crossed ladders (referred to as
“generalized” ladders). In this picture, vertex corrections
and self-energies are short range effects that may be treated
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through the introduction of phenomenological form factors,
self-energies, and dressed masses. For these reasons, the
summation of generalized ladders, and the Bethe-Salpeter
(BS) and CST integral equations that are viewed as a way to
sum these generalized ladder diagrams in closed form, are
the focus of this paper.
We also know that the existence of bound state poles

requires an infinite sum of generalized ladders, even when
the coupling is small. And if the coupling is large and an
infinite sum will not converge, integral equations provide
solutions believed to be meaningful definition of this sum
when the series they generate diverges.

C. Early history

The idea of putting a spectator on-shell (a covariant
generalization of the nonrelativistic impulse approxima-
tion) was first introduced in a dispersion theory calculation
of the deuteron form factors, published in 1964 [1,2]. This
was before field theory had seen its revival and before QCD
was widely known to the hadronic physics community.
Briefly, the nonrelativistic impulse approximation for the

deuteron form factors treats one of the two nucleons in
the deuteron as a spectator, with exchange current contri-
butions treated separately and often regarded as a correction.
When this idea is applied to a relativistic calculation of the
form factors using dispersion theory, it is found that the
dominant contributions come from the region where the
anomalous cut forces the spectator nucleon to be on-shell; a
very nice covariant generalization of the spectator concept.
Extending this calculation requires a deuteron wave (or
vertex) function which satisfies a relativistic bound state
equation with one of the nucleons restricted to its mass shell.
This equation (sometimes known as the Gross equation) was
introduced in 1969 [3].
The mid-1960s saw the development of many new ideas

for how to solve the strong interactions nonpertubatively. In
1966 Weinberg [4] suggested treating dynamics at infinite
momentum. At about the same time Greenberg [5] intro-
duced the N-quantum approximation, which he later
realized [6] enjoys a close connection to the spectator
equations. A variety of quasipotential equations were also
introduced [7]. It was not until the 1980s that light front
field theory [8] developed as a modern approach to
hadronic physics.
When applied to the generalized ladder (sum of all ladder

and crossed ladder diagrams) approximation to the scatter-
ing of scalar, nonidentical particles, with an interaction
Lagrangian ϕχ�χ þ ϕψ�ψ (where the χ particles will also
be referred to nucleons), the 1969 paper showed that there
existed a remarkable cancellation at fourth order. In
particular, when the mass of one of the particles approaches
infinity, the irreducible fourth order kernel vanishes, so the
exact result is the iteration of the OBE interaction. [The
irreducible part is the sum of the subtracted box diagram
(the part of the box that remains when the iteration of the

OBE is subtracted) and the crossed box.] Later [9,10] it was
shown that the sum of all generalized ladder diagrams is
well approximated using a CST scattering equation with
only a single ϕ boson exchange kernel.
While scalar theory cannot be used to describe the

interactions of most physical systems, the cancellation
theorem still leads to simplifications of the kernels needed
to represent the generalized ladder sum for NN scatter-
ing [11].

D. Applications of the CST

The CST has been used to describe many systems. This
summary includes a very brief review of only five topics.
Some other areas that have been studied are listed at the end
of this subsection.
Hydrogen-like atoms, muonium, and positronium:

The earliest success of the CST was in the description of
the hydrogen-like atoms, where the bound state CST
equation reduces to a Dirac equation with an effective
potential [3,12,13]. These are ideal systems for applications
of the CST [14], which can be used to organize the
perturbative corrections in bound state calculations [15].
Later, a nonrelativistic alternative was developed that sim-
plified the analytic calculations of the many integrals [16].
NN scattering and deuteron structure: The CST has

been used to calculate the structure of the deuteron and
predict np scattering [17–21]. The latest results [20,21],
using the Model C described below, give an excellent fit to
the np phase shifts below lab energies of 350 MeV, with as
few as 15 parameters. Here the OBE model is justified by
the cancellation theorem; for nucleons (with their spin an
isospin) the cancellations are incomplete, but there are
indications that, after the cancellations, what remains will
contribute to the broad σ resonance exchange [11,22].
Deuteron form factors: At first it was unclear how to

calculate electromagnetic interactions of a CST bound state,
but a paper with D. O. Riska [23] shows how to do this in a
gauge invariant manner. Some early calculations did not have
realistic relativistic wave functions, and used the general
formalism to estimate relativistic corrections to the form
factors [24,25]. The first dynamically consistent calculation
of the three form factors was done using Model B [26]
(described below). Later, using Model C and a momentum
dependent σNN coupling, the interaction current generated
by this momentum dependence was determined [27], and
precision calculations of the deuteron static moments and the
form factors we completed [27–30]. None of the recent
calculations use the isoscalar ρπγ (or σωγ) exchange currents,
which are probably small, very model dependent, and not
required by current conservation [31].
Three-body bound states and form factors: CST equations

have been derived for the treatment of three-body bound
states [32,33] and the correct way to normalize a relativistic
CST three-body bound state wave function determined [34].
Using an early family of npmodels, A. Stadler solved the 3N

FRANZ GROSS PHYS. REV. D 104, 054020 (2021)

054020-2



CST equations for the triton and found that the momentum
dependence of the σNN coupling that gives the best fit to the
np scattering phase shifts also predicts the correct triton
binding energy [35]. Remarkably, this seems to be a robust
feature of the CST, and was found to be true also for the 2008
precision fit to the np scattering data [20]. The form of the
CST three-body currents has been derived [36,37] and
preliminary calculations of the three body form factors
completed [38,39]. Experience with three-body equations
suggests that it might be possible use the CST to convert
nonrelativistic n-body equations of the AGS type [40] into
relativistic n-body equations, but this has not been done.
Mesons as qq̄ bound states: The CST is well suited to a

study of qq̄, qQ̄, and Qq̄ bound states (referred to
collectively as qq̄ states). At first it would seem that
placing a quark (or antiquark) on shell would be incom-
patible with the need for quark confinement, but three-
dimensional nature of the CST makes it possible to
construct a relativistic kernel that reduces to linear confine-
ment (the flux tube) in the nonrelativistic limit, and does not
allow the quarks to escape the interaction region [41]. Ifmb
is a qq̄ bound state, it is even possible to show that the
vertex function mb → qq̄ predicted by the CST equation
with confinement is zero when both quarks are on-shell
[42]. Early results showed that it was possible to obtain a
reasonable description of the light mesons [43,44], and
recently elegant calculations by the Portuguese group
successfully fit the spectrum of heavy and heavy-light
mesons [45–47]. One motivation for this paper is to address
one issue that must be solved before the Portuguese
calculations can be extended to the light mesons.
Quark self-energies:Most recently, partly in preparation

for a calculation of the light meson spectrum, the
Portuguese group and I have turned to studies of the quark
self-energy [48–53]. The CST is not naturally designed for
self-energy calculations, and they have turned out to be a
challenge. This effort has lead to new insights, and is one of
the motivations for this paper.
Other systems that have been studied using the CST

include pion-nucleon scattering [54,55], relativistic proton
nucleus scattering [56–60], relativistic nuclear matter [61],
the EMC effect [62,63], and nonperturbative studies using
the Feynman-Schwinger technique [64–68].

E. One-channel CST equation

In this paper the four-momenta of two interacting
particles 1 and 2 (referred to as nucleons even though
they could be quarks, and have spin zero) will be denoted

p1 ¼ p

p2 ¼ P − p; ð1:1Þ

where P is the total four-momentum of the pair, conserved
in the interactions, and p (or k, etc.) is the momentum of

particle 1 (beware that in many previous references, p or k
was used to denote the relative momentum of the pair).
When the particles are nonidentical, the CST prescription
places the heavier particle, which I choose to be particle 1
with mass M, on-shell. When the particle is on-shell, p is
replaced by p̂, where

p̂ ¼ fEp;pg ¼
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ p2

q
;p

o
: ð1:2Þ

(Note that p will sometimes represent the magnitude of p
and sometimes the four-vector; the distinction should be
clear from the context.)
The CST scattering equation, for two nonidentical scalar

particles with particle 1 on shell, has the form

Mðp̂; p̂0;PÞ ¼ Vðp̂; p̂0;PÞ

þ
Z
k
Vðp̂; k̂;PÞGðk̂;PÞMðk̂; p̂0;PÞ; ð1:3Þ

where M is the two-body scattering amplitude resulting
from the solution of the equation, Gðk̂; PÞ is the two-
nucleon propagator, which in the rest system P ¼ fW; 0g is

Gðk̂; PÞ ¼ 1

Wð2Ek −W − iϵÞ ; ð1:4Þ

and the integral over the three-momentum k is

Z
k
¼

Z
d3k

ð2πÞ32Ek
: ð1:5Þ

This equation can be used to define the amplitude when
both particles are off shell in the final state:

Mðp; p̂0;PÞ ¼ Vðp; p̂0;PÞ

þ
Z
k
Vðp; k̂;PÞGðk̂;PÞMðk̂; p̂0;PÞ: ð1:6Þ

OnceMðp̂; p̂0;PÞ has been found by solving (1.3), the off-
shell amplitude Mðp; p̂0;PÞ can be computed from (1.6),
provided the kernel V is known off shell.

F. Two-channel CST equations

The original Ref. [3] discussed a one-channel equation.
Later, when the CST was applied to NN scattering [19],
where the two particles are identical and the scattering
amplitude must be symmetric or antisymmetric under
particle interchange (the generalized Pauli principal), it
was necessary to introduce a two-channel equation to
insure that this symmetry emerges automatically from
the solutions.
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The construction of a two channel equation that will give
the symmetry automatically was derived and discussed in
detail in Ref. [19]. This method introduces the singularity
that will be discussed in the next section. [An alternative
method with no singularity was discussed in detail in
Appendix B of Ref. [20], but does not automatically give
symmetric solutions.]
The derivation of the correct equation is shown dia-

grammatically Figs. 1 and 2. Since the two particles are
identical, a symmetric result is obtained by averaging over
the contributions from particle 1 on-shell plus particle 2
on-shell (for convenience the momentum of both internal
on-shell particles are labeled by the four vector k̂). If
particle 1 is on-shell in the initial state, and both particles
are off-shell in the final state, Fig. 1 illustrates the
equation, which for a spin zero system is written

Mðp; p̂0;PÞ ¼ Vðp; p̂0;PÞ

þ 1

2

Z
k
fVðp; k̂;PÞGðk̂; PÞMðk̂; p̂0;PÞ

þ Vðp;P − k̂;PÞGðk̂; PÞMðP − k̂; p̂0;PÞg:
ð1:7Þ

This can be written as two coupled equations for the
amplitudes. Using the notation

Mdirðp̂; p̂0;PÞ ¼ Mðp̂; p̂0;PÞ
Mexðp̂; p̂0;PÞ ¼ MðP − p̂; p̂0;PÞ ð1:8Þ

and assuming that the kernel has the following properties

FIG. 1. Graph showing the off-shell two-channel CST equation (1.7). The momenta of the unlabeled particles are always P minus the
momenta of the labeled particles. Note that the momenta of the internal particles in the last diagram differ from the usual definition.

FIG. 2. Top two rows are the two-channel coupled equations constructed from Fig. 1 by putting different final state particles on-shell
(accompanied by a corresponding change in the labeling of the momenta). The lower two rows show how nucleon lines in the upper
diagrams can be exchanged (always maintaining the same internal connections so that numerical evaluations are unaffected), leading to
Eq. (1.10).
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Vdirðp̂; p̂0;PÞ≡ Vðp̂; p̂0;PÞ ¼ VðP − p̂; P − p̂0;PÞ
Vexðp̂; p̂0;PÞ≡ VðP − p̂; p̂0;PÞ ¼ Vðp̂; P − p̂0;PÞ

ð1:9Þ

these equations are

Mdirðp̂; p̂0;PÞ ¼ Vdirðp̂; p̂0;PÞ þ 1

2

Z
k
fVdirðp̂; k̂;PÞGðk̂; PÞMdirðk̂; p̂0;PÞ þ Vexðp̂; k̂;PÞGðk̂; PÞMexðk̂; p̂0;PÞg

Mexðp̂; p̂0;PÞ ¼ Vexðp̂; p̂0;PÞ þ 1

2

Z
k
fVexðp̂; k̂;PÞGðk̂; PÞMdirðk̂; p̂0;PÞ þ Vdirðp̂; k̂;PÞGðk̂; PÞMexðk̂; p̂0;PÞg; ð1:10Þ

and the notation and labeling of momentum is shown in
Fig. 2. Note that the first equality in each line of (1.9) can
be regarded as a definition, but the second equality is an
assumed property of the kernel. The OBE kernels I will use
are a function of q2, and satisfy this property.
Multiplying the second equation by η ¼ �1, averaging

the two equations, and using the notation

V̄ðp̂; k̂;PÞ ¼ 1

2
½Vdirðp̂; k̂;PÞ þ ηVexðp̂; k̂;PÞ� ð1:11Þ

for both V and M, gives

M̄ðp̂; p̂0;PÞ ¼ V̄ðp̂; p̂0;PÞ

þ
Z
k
V̄ðp̂; k̂;PÞGðk̂; PÞM̄ðk̂; p̂0;PÞ: ð1:12Þ

The solution of this equation automatically satisfies the
symmetry condition

M̄ðp̂; p̂0;PÞ ¼ ηM̄ðP − p̂; p̂0;PÞ ð1:13Þ

under particle interchange

p̂ ↔ P − p̂: ð1:14Þ

Here η is a symmetry factor that will depend on particle
spin or isospin. This is the generalized Pauli principle,
required of all realistic descriptions of identical particles,
but, because only one particle is on shell, it can only be
satisfied in a CST equation by explicit construction. In the
examples discussed in this paper, where the particles have
spin and isospin zero, η ¼ 1, but I will keep the factor so
that the separate contributions from the direct and
exchanged diagrams can be tracked.

G. Four-channel CST equations

So far the four-channel CST equations have been used
only to describe the qq̄ structure of the pion. In this case it is
important to preserve charge conjugation symmetry and treat

chiral symmetry breaking correctly, which requires main-
taining the correct limit when the bound state pion mass,mπ ,
goes to zero. Charge conjugation symmetry is handled much
the same way as particle interchange symmetry. For particle
interchange, both particles are outgoing and positive energy
mass-shell contributions from each are averaged. For the qq̄
state, one particle is an outgoing antiquark (or an incoming
quark) which is placed on its negative (positive) energy mass
shell, different in detail but not in principle. This requires two
channels. However, in order to get the correct chiral limit
whenmπ → 0, two more channels are needed because in this
limit the positive and negative energy quark poles coalesce,
and both must be considered. This is discussed in detail in
Refs. [47,49].
With this background discussion completed, I now

discuss the issue of singularities and their removal.

II. OBE: SECOND ORDER DIAGRAMS

The shortcoming of previous calculations was the
appearance of spurious singularities in the OBE exchange
kernel Vex, or the way in which they were removed. These
singularities will be discussed in this section.

A. Definition of the OBE kernel

In both the CST and the Bethe-Salpeter (BS) theory, the
OBE kernel of spin zero particles is

VðqÞ ¼ −
g2MμFbðq2Þ
μ2 − q2 − iϵ

; ð2:1Þ

where, as in Ref. [3], I have scaled the coupling constant so
that g2 is dimensionless, and Fbðq2Þ is a boson form factor.
In an unregularized theory, Fb ¼ 1. I use VðqÞ to make the
notation compact; hence

VðqÞ≡ Vð−qÞ: ð2:2Þ

In the remainder of this paper, this definition replaces the
more general one used in Sec. I
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It is important to realize that the functional form of the
OBE kernel is the same for both BS and CST. The
difference (which is significant) is the range of possible
values that the four-vectors p and k can assume. In the BS
formalism, these four vectors can assume any real values of
all four components, while in the coupled CST equa-
tions (1.10) they may only be (in the cm frame)

p → fEp;pg or fW − Ep;−pg
k → fEk;kg or fW − Ek;−kg; ð2:3Þ

corresponding to the choices of particle 1 on-shell in
either the final or initial state, together with one of the
interchanges (1.9). Only one interchange is needed, and
my convention in this paper is to confine the interchange
to the final state. Since the CST limits the domain of
possible values of p and k, symmetrization requires
averaging the two possible on-shell values of p (or k),
whereas the BS does not require explicit symmetrization
because all values of the momenta are among the
acceptable possibilities.

B. Singularities in the exchange term

The boson propagator of the exchange term with q2 ¼
ðP − p̂ − k̂Þ2 has poles at

Ep þ Ek � ω−p ¼ W ≡W�; ð2:4Þ

where this is written in terms of the boson on-shell energy

ω2
�p ¼ μ2 þ ðk ∓ pÞ2: ð2:5Þ

The pole at Wþ ≥ 2M þ μ is the singularity that arises at
energies when physical bosons can be produced, and is
expected. However, the singularity at W− is spurious
because it has no physical origin. It arises from a singularity
that occurs when the off-shell baryon is “unstable”; such
singularities should not appear in physical amplitudes. In
the remainder of this paper I will refer to these as
“instability” (rather than “spurious”) singularities.
To explain this in more detail, focus on the lower vertex

of Fig. 3. The on-shell physical baryon in the final state will

have an energy larger than a physical boson with energy
ω−p and an unphysical baryon with energy, W − Ek when

Ep ≥ W − Ek þ ω−p: ð2:6Þ

The threshold for this instability is therefore atW ¼ W−. For
every value ofW and z, these “instability” singularities lie on
a curve in the p, k plane, symmetric about the diagonal line
p ¼ k. Examples of these curves for three values ofW (with
z ¼ −1) are shown in Fig. 4. In all numerical examples,
μ=M ¼ 0.139=0.939 ¼ 0.148, derived from the physical
pion and nucleon masses.
In both the BS and CST approaches, this instability does

not appear when the initial state is on-shell (so that
W ¼ 2Ek), because the inequality (2.6) can never be
satisfied. It show this, first observe that, if W ¼ 2Ek, the
inequality becomes

Ep − Ek ≥ ω−p; ð2:7Þ

requiring that p > k. Squaring both sides and rearranging
some terms gives the condition

2M2 − 2EpEk þ 2pkz ≥ μ2; ð2:8Þ

where z is the cosine of the angle between p and k. But this
inequality cannot be satisfied because

d
dp

½2M2 − 2EpEk þ 2pkz� ¼ 2

�
kz −

pEk

Ep

�

≤ 2p

�
1 −

Ek

Ep

�
≤ 0: ð2:9Þ

Hence, since the left-hand side (lhs) of (2.8) decreases with
p, its largest value is at z ¼ 1 and p ¼ k, where it is zero.
This completes the proof.
Thus the instability first appears when the kernel is

iterated, or, as required for applications to the three body

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

k

p

FIG. 4. Contour lines showing the location of the singularity at
W− in the p and k plane (for a fixed z ¼ −1) at three energiesW:
1.978 (black), 2.02 (long-dashed black), and 2.1 (short-dashed
black). The two dotted blue lines are fixed values of p ¼ 0.2 and
0.6. Units are in the baryon mass.

FIG. 3. OBE exchange diagram with particle 1 on shell in both
the initial state and final states, and in this paper ηI ¼ η ¼ 1.
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problem, when the initial state must also be off-shell. In my
first work with J. W. Van Orden [19], our Models B kept
these instability singularities and evaluated them using the
principle value prescription. Later, in work with A. Stadler
[20], we introduced Models C which removed the singu-
larities by replacing the four-momentum of the exchanged
meson with its absolute value

ðp − k̂Þ2 → jðp − k̂Þ2j: ð2:10Þ
Neither of these models is fully satisfactory, even though

they both give finite results. It is difficult to get numerically
stable results with Model B, but more importantly, as will
be seen below, this model seriously violates the cancella-
tion theorem in the region of the singularity. It undermines
the justification for using the CST. Model C is not fully
satisfactory because the absolute value introduces undesir-
able discontinuities in the derivatives of the kernel.

C. Cancelling the instability

To solve these problems, I present a new CST model
which uses a subtraction to cancel the instability. The
motivation for the subtraction comes from study of the
fourth order diagrams discussed below, and its advantage is
that it smoothly preserve the analytic behavior of the
kernels near the instability.
It is desirable that the subtraction (i) depend only on q2

so that it will not introduce new electromagnetic exchange
currents, (ii) vanish rapidly when q2 ≠ μ2 so that the
original CST kernel is preserved as much as possible,
(iii) have no singularities on the real q2 axis, and (iv) be
simple. This leaves little freedom for the construction of the
term, and an almost unique choice is

VDðk̂ − p̂Þ ¼ −
g2Mμ

μ2 − q2 − iϵ

�
1 −

λ4μ
λ4μ þ ðμ2 − q2 − iϵÞ2

�

¼ −
g2MμFbðq2Þ
μ2 − q2 − iϵ

; ð2:11Þ

where λμ ¼ λμ, with λ is a dimensionless adjustable
parameter, and the form factor is

Fbðq2Þ ¼
½1 − q2

μ2
− iϵ�2

λ4 þ ½1 − q2

μ2
− iϵ�2

: ð2:12Þ

Note the placement of the iϵ associated with the boson
mass; this seems unimportant now but will play an
important role later. The limit μ2 → 0 (for fixed λ), gives
Fbðq2Þ ¼ 1. This is a nice feature since the one-photon-
exchange mechanism, which requires a 1=q2 singularity
near q2 ¼ 0 in order to reproduce the correct Coulomb
limit, is not modified. For nonzero boson masses,
Fbðμ2Þ ¼ 0, cancelling both the instability and production

singularities. Figure 5 shows the behavior of this form
factor for three choices of λ.
Note that the form factor (2.12) introduces complex

conjugate poles in the complex q2 plane. These will be
studied in my evaluation of some integrals in Sec. IV B
below. The use of complex conjugate poles for the
description of the quark propagator was studied some time
ago in an interesting paper by Tiburzi, Detmold and Miller
[69]. The specific problem they encountered does not apply
here since the CST quark propagators used in this paper
only have poles on the real axis. However, complex
conjugate poles in the kernel (2.11) do pose a problem
for the CST, which is solved using the technique discussed
Sec. IV B. Whether or not this solution will also work when
projecting onto the light cone is unknown and remains to be
studied. The connection between the CST and the light
cone continues to be of considerable interest [70,71], but
beyond the scope of this paper.

D. Numerical implications

Numerical comparisons of the three models B, C, and D
are illustrated in this section. First, Figs. 6–8 show the
functions

Vdir ¼ Vðk̂ − p̂Þ
Vex ¼ VðP − k̂ − p̂Þ ð2:13Þ

for a fixed value of z ¼ cos θ, where z ¼ 1 for the direct
terms and z ¼ −1 for the exchange terms (chosen so that
the both terms agree with the choice made in Fig. 4). All
units are in the nucleon massM with μ=M ¼ 0.148 and the
V’s are divided by −g2μ=M. These figures lead to the
following conclusions:

(i) The direct terms are all smooth. Model D depends
significantly on the parameter λ. Choosing λ ¼ 0.7 is
a compromise between small λ ≃ 0.5, which repro-
duces the other models, and large λ ≃ 1, which
strongly suppresses the peaks at k ≃ p.

–2 –1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

q2

µ2

F(q2)

FIG. 5. Form factor (2.12) for λ ¼ 0.5 (black), 0.7 (blue
dashed), and 1 (red dotted).
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(ii) At small p ¼ 0.2, Fig. 7 shows that the exchange
terms have no singularities, as shown already in
Fig 4, while Model C develops kinks that arise from
the absolute value of q2, and Model D (evaluated
using λ ¼ 0.7) is quite similar to its direct
counterpart.

(iii) At larger momenta p, Fig. 8 clearly shows the
singularities that arise in Model B, how they are
removed by Model C (at the expense of adding
kinks), and how Model D (with λ ¼ 0.7) converts the
singularities into smooth, but rapidly varying func-
tions with an overall behavior similar to Model B.
(A larger λ ≃ 1 will smooth out these variations
significantly, but was not chosen for this discussion
because it also significantly suppresses the direct
term, as mentioned above.)

(iv) For all models at large p, the k dependence of the
direct and exchange terms differs significantly in
size and behavior.

The S-wave projections, V̄, for each of these models are
shown in Figs. 9 and 10 (in the same units as Figs. 6–8).
The direct integrals mirror the same behavior as the
integrands shown in Fig. 6, with the broad bump at p ≃ k
suppressed at higher p. The choice λ ¼ 0.7 is still close to
Model B, while λ ≃ 1 already shows significant deviations.
At large p ¼ 0.6, the exchange integrals for Model B show
spikes and those for Model C are smooth but large. Model
D, with λ ¼ 0.7 follows Model B closely, eliminating the
spikes. Finally, Fig. 11 shows that the S-wave projections
for the direct and exchange contributions are nearly
identical at small p, but differ significantly at larger p,
where the direct term is still fairly close to the
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Vdir
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20
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40

50

k

FIG. 6. Left panel: lines for z ¼ 1, p ¼ 0.2 showing the direct kernel VD
dir as a function of k for λ ¼ 0.5 (black), λ ¼ 0.7 (long-dashed

black) and λ ¼ 1 (short-dashed black). The other cases, also for z ¼ 1 and p ¼ 0.2, are the nonrelativistic limit (brown), VB
dir (red

dashed), and VC
dir (blue dashed). The dimensionless units are defined in the text. Right panel: the same cases but for p ¼ 0.6.

Vex Vex

kk
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FIG. 7. Left panel: lines for z ¼ −1, p ¼ 0.2 showing the exchange kernel VD
ex with λ ¼ 0.7, as a function of k forW ¼ 1.978 (black),

W ¼ 2.01 (long-dashed black) and W ¼ 2.1 (short-dashed black), the singular kernel VB
ex as a function of k for W ¼ 1.978 (red),

W ¼ 2.01 (long-dashed red) and W ¼ 2.1 (short-dashed red), and the regularized kernel VC
ex as a function of k for W ¼ 1.978 (blue),

W ¼ 2.01 (long-dashed blue) and W ¼ 2.1 (short-dashed blue). The nonrelativistic limit, independent of energy, is shown for
comparison (brown). The dimensionless units are defined in the text. Right panel: the same cases on the expanded scale shown in the box
in the left panel.
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FIG. 9. Left panel: lines for integrated kernels at p ¼ 0.2 showing the direct kernel V̄D
dir as a function of k for λ ¼ 0.5 (black), 0.7

(long-dashed black) and λ ¼ 1 (short-dashed black). The other cases, also for p ¼ 0.2, are the nonrelativistic limit (brown), V̄B
dir (red

dashed), and V̄C
dir (blue dashed). The dimensionless units are defined in the text. Right panel: the same cases but for p ¼ 0.6.
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FIG. 8. Left panel: lines for z ¼ −1, p ¼ 0.6 showing the exchange kernel VD
ex (with λ ¼ 0.7) as a function of k forW ¼ 1.978 (black),

W ¼ 2.01 (long-dashed black) and W ¼ 2.1 (short-dashed black), the singular kernel VB
ex as a function of k for W ¼ 1.978 (red),

W ¼ 2.01 (long-dashed red) and W ¼ 2.1 (short-dashed red), and the regularized kernel VC
ex as a function of k for W ¼ 1.978 (blue),

W ¼ 2.01 (long-dashed blue) andW ¼ 2.1 (short-dashed blue). The nonrelativistic limit, independent of energy, is shown for comparison
(brown). The dimensionless units are defined in the text. Right panel: the same cases on an expanded scale around k ∼ 0.5.
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FIG. 10. Left panel: lines for integrated kernels at p ¼ 0.2 showing the exchange kernel V̄D
ex as a function of k for W ¼ 1.978 (thick

black), W ¼ 2.01 (thick long-dashed black) and W ¼ 2.1 (thick short-dashed black), the singular kernel V̄B
ex as a function of k for

W ¼ 1.978 (red), W ¼ 2.01 (long-dashed red) and W ¼ 2.1 (short-dashed red), and the regularized kernel V̄C
ex as a function of k for

W ¼ 1.978 (blue), W ¼ 2.01 (long-dashed blue) and W ¼ 2.1 (short-dashed blue). The nonrelativistic limit, independent of energy, is
shown for comparison (brown). The dimensionless units are defined in the text. Right panel: the same cases but for p ¼ 0.6.
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nonrelativistic result while the exchange term shows
significant structure.
To study the convergence of the generalized ladder sum,

and hence the extent that the OBE approximation domi-
nates the solution, the fourth order diagrams are calcu-
lated next.

III. FOURTH ORDER DIAGRAMS

The generalized ladder diagrams for scattering to fourth
order in CSTare shown in Fig. 12. For later comparison with
the iterated OBE kernel (as suggested by Figs. 1 and 2),
it is convenient to symmetrize the box diagrams by including
two direct diagrams, one with particle 1 having internal

momentum k (diagram a) and one with particle 2 having
internal momentum k (diagram b), and an exchange version
of each (diagrams ax and bx). To avoid over counting, all of
these box diagrams must be multiplied by one-quarter.
The crossed box diagrams will be left unsymmetrized,

and it is convenient to label their internal momenta so that
the momentum of the mesons and particle 2 are identical to
the box (a or ax); therefore only the momenta of particle 1 is
changed. Each of these diagrams must be multiplied by one
half (the factor of one-quarter multiplying all diagrams in
Fig. 12 reduced to one-half by the factor of 2 in the figure).
The sums of direct (top row) and exchange (second row)

diagrams are then

X
k

p

W –  p W –W –  k

k +  p –  W

k –

X
X

W –  p W –W –  k

k –

W – –  kp

X
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XX
kp

W –  p W –W –  k

k –  p

k –

X X
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k –

–  kp
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W –  k
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2

2

FIG. 12. Fourth order diagrams with particle 1 on shell in both the initial state and final states. All diagrams are multiplied by one-
quarter. See the text for a full discussion.
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FIG. 11. Left panel: lines at fixed p ¼ 0.2 as a function of k for the energy independent integrated kernel V̄D
dir (thick black) and the

nonrelativistic limit (brown). The energy dependent exchange kernel, V̄D
ex, is shown for W ¼ 1.978 (solid red), W ¼ 2.01 (long-dashed

red) and W ¼ 2.1 (short-dashed red). The dimensionless units are defined in the text. Right panel: the same cases but for p ¼ 0.6.
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M4
dir ¼ M4box

dir þ δxM4xbox
dir

¼ i
2

Z
d4k
ð2πÞ4

�
Vðp̂ − kÞVðp̂0 − kÞ þ VðP − p̂ − kÞVðP − p̂0 − kÞ

2½E2
k − ðW − k0Þ2�ðE2

k − k20 − iϵÞ

þ δxVðp̂ − kÞVðp̂0 − kÞ
½E2

k − ðW − k0Þ2�½E2
k−p−p0 − ðEp þ Ep0 − k0Þ2�

�
ð3:1aÞ

M4
ex ¼ M4box

ex þ δxM4xbox
ex

¼ i
2

Z
d4k
ð2πÞ4

�
VðP − p̂ − kÞVðp̂0 − kÞ þ Vðp̂ − kÞVðP − p̂0 − kÞ

2½E2
k − ðW − k0Þ2�ðE2

k − k20 − iϵÞ

þ δxVðP − p̂ − kÞVðp̂0 − kÞ
½E2

k − ðW − k0Þ2�½E2
kþp−p0 − ðW − Ep þ Ep0 − k0Þ2�

�
ð3:1bÞ

where the first term in each curly bracket is the sym-
metrized box and the second term is the crossed box,
multiplied by δx ¼ 1 (with momenta as shown in Fig. 12).
The −iϵ prescription has been kept only for those poles that
make leading contributions in the lower half k0 complex
plane (i.e., at k0 ¼ Ek).
The total scattering to fourth order is the sum of the two

terms (3.1a) and (3.1b) [the one-half in (1.11) is already
been included in the definitions (3.1a) and (3.1b)]:

M̄4 ¼ M4
dir þ ηM4

ex; ð3:2Þ

and, by construction for η ¼ 1, is symmetric under inter-
change of the two baryons in the final state. But the initial
state must also be symmetric under the interchange
p0 ↔ P − p0, or

fEp0 ;p0g ↔ fW − Ep0 ;−p0g: ð3:3Þ

The box terms have this symmetry already. To
prove the symmetry for the crossed box terms, first
transform the exchange crossed box in (3.1b) using the
substitution

k → p̂0 − p̂þ k: ð3:4Þ

This transforms the integrand of M4xbox
ex into

VðP − p̂ − kÞVðp̂0 − kÞ
½E2

k − ðW − k0Þ2�½E2
kþp−p0 − ðW − Ep þ Ep0 − k0Þ2�

→
VðP − p̂0 − kÞVðp̂ − kÞ

½E2
kþp0−p − ðW þ Ep − Ep0 − k0Þ2�½E2

k − ðW − k0Þ2�
:

ð3:5Þ

In this form the two crossed box terms (3.1b) and (3.1a)
transform into each other under the exchange of the initial
state particles, completing the demonstration.

A. Iterated OBE and the subtracted box in CST

The irreducible fourth order kernel, V̄4, is obtained
from M̄4 by subtracting the second iteration of the OBE.
In the BS theory, the iteration is equal to the box, so
the subtraction leaves only the crossed box. However, in
the CST, the iteration of the OBE is not equal to the box,
and the remainder, the box minus the iteration of OBE, is
the subtracted box.
The iteration of the OBE kernel is defined by the first

iteration of Eq. (1.10), or diagrammatically in Fig. 2. When
the direct part of this iteration is subtracted fromM4box

dir , and
the exchange part from M4box

ex , the contributions from the
pole at k0 ¼ Ek are zero (to get this result it was necessary
to symmetrize the box, as we did). Appendix A gives the
details of this subtraction.

B. Estimate of box contributions to M̄4 and V̄4

It is a straightforward matter to numerically evaluate the
integrals (3.1a) and (3.1b), but it is more instructive to
obtain an approximate analytic result that displays their
singularity structure. To simplify the calculation, but still
preserve the essential physics at low energy-momentum,
consider the cases when p, p0 and k are of OðμÞ, and that
μ ≪ M. This means that only the three-momenta contained
in the boson energies ω will be retained (i.e.,
Ek ∼ Ep ∼ Ep0 → M). The total energy in the center of
mass, W, will be written

W ¼ 2M þ Ecm; ð3:6Þ
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with Ecm, the center of mass kinetic energy, also assumed to
be of order μ. In scattering experiments, the cm energy is
related to the lab energy by

Ecm ¼ 2M

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Elab

2M

r �
; ð3:7Þ

so a lab energy of 350 MeV ≃ 2.5μ (highest energy used in
most NN phase shift analyses) corresponds to a cm energy
of about 1.2μ, justifying this assumption.
A warning: these approximations mean that the only k

dependence kept for the evaluation the integral is in the
boson energies; the k dependence of Ek is ignored, even
when k becomes very large, or when Ek −M is very small.
The latter leads to a peculiar treatment of the propagator
Gðk̂; PÞ, Eq. (1.4), which becomes

Gðk̂; PÞ ≃ 1

2Mðk2M − Ecm − iϵÞ → −
1

2MEcm
: ð3:8Þ

Without the factor of k2=M, the details of the elastic cut
structure will be lost; the estimates in this paper therefore
differ in detail from those given in Ref. [3], but are
sufficient to preserve the essential fact that the positive
energy nucleon pole terms dominate at small Ecm. The large
k behavior of the integrands are also not treated accurately,
but will converge.
With these assumptions, introducing κ ¼ k0 −M (so that

d4k ¼ d3kdk0 ¼ d3kdκ), the full box diagram is the sum of
four terms

M4box
ij

→
i
4

Z
d4k
ð2πÞ4

ðVVÞij
½M2 − ðM þ Ecm − κÞ2 − iϵ�ð−2Mκ − iϵÞ

→ i
Z

d4k
ð2πÞ4

ðVVÞij
16M2ð−Ecm þ κÞð−κ − iϵÞ ð3:9Þ

where i; j ¼ f1; 2g and

ðVVÞ11 ¼ Vðp̂ − kÞVðp̂0 − kÞ → g4M2μ2

ðω2
p − κ2 − iϵÞðω2

p0 − κ2 − iϵÞ

ðVVÞ12ðp̂; p̂0Þ ¼ Vðp̂ − kÞVðP − k − p̂0Þ → g4M2μ2

ðω2
p − κ2 − iϵÞ½ω2

−p0 − ðEcm − κÞ2 − iϵ�
ðVVÞ21ðp̂; p̂0Þ ¼ VðP − k − p̂ÞVðp̂0 − kÞ → ðVVÞ12ðp̂0; p̂Þ

ðVVÞ22 ¼ VðP − k − p̂ÞVðP − k − p̂0Þ → g4M2μ2

½ω2
−p − ðEcm − κÞ2 − iϵ�½ω2

−p0 − ðEcm − κÞ2 − iϵ� ; ð3:10Þ

where Fb → 1 in the last expression in each line. Doing the κ integrations gives

M4box
11 ¼ g4Mμ2

8

Z
k

�
1

Ecmω
2
pω

2
p0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

κ¼0 pole

þ ðωp þ ωp0 Þðωp þ ωp0 − EcmÞ − ωpωp0

2ω2
pω

2
p0 ðωp − EcmÞðωp0 − EcmÞðωp þ ωp0 Þ

�
ð3:11aÞ

M4box
12 ðp; p0Þ ¼ M4box

21 ðp0; pÞ

¼ g4Mμ2

8

Z
k

�
1

Ecmω
2
pðω2

−p0 − E2
cmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

κ¼0 pole

þ ðωp þ ω−p0 Þ½ω2
p þ ω2

−p0 þ ωpω−p0 þ Ecmðω−p0 − ωpÞ�
2ω2

pω
2
−p0 ðω−p0 þ EcmÞðωp − EcmÞ½ðωp þ ω−p0 Þ2 − E2

cm�
�

¼ g4Mμ2

8

Z
k

2ðωp þ ω−p0 Þ2ωpω−p0 − Ecmðωp þ ω−p0 Þ3 − Ecmωpω−p0 þ E2
cmðω2

p þ ω2
−p0 Þ

2Ecmω
2
pω

2
−p0 ðωp − EcmÞðω−p0 − EcmÞ½ðωp þ ω−p0 Þ2 − E2

cm�
ð3:11bÞ

M4box
22 ¼ g4Mμ2

8

Z
k

�
1

Ecmðω2
−p − E2

cmÞðω2
−p0 − E2

cmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
κ¼0 pole

þ ðω−p þ ω−p0 Þðω−p þ ω−p0 þ EcmÞ − ω−pω−p0

2ω2
−pω

2
−p0 ðω−p þ EcmÞðω−p0 þ EcmÞðω−p þ ω−p0 Þ

�

¼ g4Mμ2

8

Z
k

ðω−p þ ω−p0 Þ½2ω−pω−p0 − Ecmðω−p þ ω−p0 Þ þ E2
cm� − Ecmω−pω−p0

2Ecmω
2
−pω

2
−p0 ðω−p − EcmÞðω−p0 − EcmÞðω−p þ ω−p0 Þ ð3:11cÞ
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where the contributions from the leading pole at κ ¼ 0
(originally k0 ¼ Ek) have been identified, and the factor of
1=Ek → 1=M in the integral over k. As shown in Appen-
dix A, omitting the results from the pole at κ ¼ 0 gives the
irreducible kernel V4box

ij .
To the accuracy we have been working, the singularities

in the OBE exchange kernel, given in (2.4), are at

Ecm ¼ �ωr; ð3:12Þ

(where r ¼ �p or �p0), the plus sign corresponding to the
physical production singularity and the minus sign to the
unphysical instability singularity. Eqs. (3.11a)–(3.11b)
show that the kernels V4box

ij all have instability singularities
(referred to simply as “instability” from now on), which are
cancelled when the contributions from the leading nucleon
(κ ¼ 0) poles are included. The cancellation of the insta-
bility by another pole in the fourth order terms is the
principal motivation for the subtraction (2.11).
Note the presence of new singularities inM4box

21 ðp; p0Þ at

Ecm ¼ �ðω−p þ ωp0 Þ: ð3:13Þ

These will be referred to collectively as “2-boson” singu-
larities: one is a production singularity and one an insta-
bility. That the singularity at Ecm ≤ −2μ is due to an
instability can be seen by focusing on the lower nucleon
line in Fig. 12. The outgoing nucleon with four-momentum
p̂will be unstable with respect to decay into the two bosons
and the off-shell nucleon with momentum P − p̂0 if

E−p ≥ W − Ep0 þ ω−p þ ωp0 ð3:14Þ

which, with the approximations we are using, becomes

Ecm ≤ −ðω−p þ ωp0 Þ; ð3:15Þ

with the equality marking the boundary of the region of
instability.
The simplified discussion in Appendix B shows how

both of these 2-boson singularities are intrinsic to two-
boson exchange (TBE), and introduce cuts into the TBE
kernel. To calculate the TBE kernel I will drop the
imaginary parts from the cuts shown in Appendix B
and integrate over the remaining poles using the principal
value prescription. Possible improvements in this
approach are beyond the scope of this paper, and are

irrelevant to the to the final goal, which is to justify the
neglect of the fourth-order kernel. If the fourth-order
kernel can be neglected, its detailed structure will play no
role in subsequent calculations.
Keeping track of the singularities in each of the ampli-

tudes requires some care; Table I provides a convenient
summary. I emphasize that the term “instability” will be
understood to refer only to the one-boson instability of the
type described by Eq. (2.6), and not any of the 2-boson
singularities.
In summary, the full box diagrams M4box

ij have no
instabilities, but have the scattering and production singu-
larities. The instability is only introduced when the dom-
inant contribution from the pole at κ ¼ 0 is subtracted from
M4box

ij , giving the irreducible kernels V4box
ij . In the vicinity

of the instabilities, which appear in V4box
12 , V4box

21 , V4box
22 ,

these kernels cannot really be regarded as smaller that the
iterated OBE, violating the spirit of the cancellation
theorem, and threatening the assumption that it is possible
to ignore the fourth-order kernel. Model D will solve this
problem.

C. Estimate of crossed box contributions to V4

The crossed box contributions are estimated starting
from (3.1a) and (3.1b) and using steps similar to those used
for the evaluation of the box terms. Noting that the crossed
box is already irreducible, so that M4xbox ¼ V4xbox, and
dropping the factor of δx gives

V4xbox
dir ¼ i

2

Z
d4k
ð2πÞ4

Vðp̂ − kÞVðp̂0 − kÞ
½M2 − ðp̂þ p̂0 − kÞ2�½M2 − ðP − kÞ2� → i

Z
d4k
ð2πÞ4

Vðp̂ − kÞVðp̂0 − kÞ
8M2κðκ − EcmÞ

ð3:16aÞ

V4xbox
ex ¼ i

2

Z
d4k
ð2πÞ4

VðP − p̂ − kÞVðp̂0 − kÞ
½M2 − ðP − p̂þ p̂0 − kÞ2�½M2 − ðP − kÞ2� → i

Z
d4k
ð2πÞ4

VðP − p̂ − kÞVðp̂0 − kÞ
8M2ðκ − EcmÞ2

ð3:16bÞ

TABLE I. Singularities in the amplitudes of the fourth order
diagrams discussed in this paper.

Diagram Singularities if Fb ¼ 1 (Model B)

2-boson Instability Scattering Production

E2
cm ≥ 4μ2 Ecm ≤ μ Ecm ¼ 0 Ecm ≥ μ

M4box
11

✗ ✗

M4box
22

✗ ✗

M4box
12 , M4box

21
✗ ✗ ✗

V4box
11

✗

V4box
22

✗ ✗

V4box
12 , V4box

21
✗ ✗ ✗

V4xbox
dir ✗

V4xbox
ex ✗ ✗
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where here none of the nucleon poles give leading contributions. If Fb ¼ 1, the result becomes

V4xbox
dir ¼ ig4M2μ2

Z
d4k
ð2πÞ4

½ðω2
p − κ2 − iϵÞðω2

p0 − κ2 − iϵÞ�−1
8M2κðκ − EcmÞ

→
g4Mμ2

8

Z
k

1

ω2
p − ω2

p0

�
1

ω2
pðωp − EcmÞ

−
1

ω2
p0 ðωp0 − EcmÞ

�

¼ −
g4Mμ2

8

Z
k

ðωp þ ωp0 Þðωp þ ωp0 − EcmÞ − ωpωp0

ω2
pω

2
p0 ðωp þ ωp0 Þðωp − EcmÞðωp0 − EcmÞ

ð3:17aÞ

V4xbox
ex ¼ ig4M2μ2

Z
d4k
ð2πÞ4

½ðω2
−p − ðEcm − κÞ2 − iϵÞðω2

p0 − κ2 − iϵÞ�−1
8M2ðκ − EcmÞ2

→
g4Mμ2

8

Z
k

�
1

ω3
−p½ðω−p þ EcmÞ2 − ω2

p0 � þ
1

ωp0 ðωp0 − EcmÞ2½ðωp0 − EcmÞ2 − ω2
−p�

�

¼ −
g4Mμ2

8

Z
k

ωp0 ðωp0 þ ω−p − EcmÞ2 þ ω2
−pðω−p þ ωp0 Þ

ω3
−pωp0 ðωp0 − EcmÞ2½ðω−p þ ωp0 Þ2 − E2

cm�
: ð3:17bÞ

Neither of these has the elastic scattering or instability singularities, but both have production singularities and V4xbox
ex also

has the 2-boson singularities discussed above. For later comparison, the fourth order kernel in the BS theory, in the limit
when p and p0 are very small, is

V4
BS ¼ V4xbox

dir þ V4xbox
ex → −

g4Mμ2

8

Z
k

�
3ω − 2Ecm

2ω4ðω − EcmÞ2
þ ð2ω − EcmÞ2 þ 2ω2

ω3ðω − EcmÞ2ð4ω2 − E2
cmÞ

�

¼ −
g4Mμ2

8

Z
k

24ω3 − 16ω2Ecm − ωE2
cm þ 2E3

cm

2ω4ðω − EcmÞ2ð4ω2 − E2
cmÞ

¼ −
g4

16

Z
d3k
ð2πÞ3 ṽ

4
BS: ð3:18Þ

With this preparation, the total fourth order CST kernel
will now be studied.

IV. THE CANCELLATION THEOREM

As stated in the introduction, the cancellation theorem
states that the higher order kernels describing the scattering
of nonidentical scalar particles cancel when one of the
nucleon masses approaches infinity, leaving the OBE
ladders, summed by an integral equation with an OBE
kernel, to give the exact result for generalized sum of all
ladders and crossed ladders.
For two identical particles with mass M → ∞, it might

appear that the theorem should follow from the case when
they are not identical [3], since the mass of the second
particle did not affect the proof. However, for nonidentical
particles the OBE does not depend on the center of mass
energy, while for identical particles the exchange term
(required in order to build in the symmetry as discussed in
Sec. II) does depend on the center of mass energy and this is
the essential difference that alters the results.

A. Cancellations for small Ecm

Begin the discussion by first considering the sum of the
kernels V4box

11 and (because of the different symmetrization
factors) one-half of V4xbox

dir . Using the general results (3.9)
and (3.16a) gives

V̄4
11 ≡ V4box

11 þ 1

2
V4xbox
dir

¼ i
Z

d4k
ð2πÞ4

Vðp̂ − kÞVðp̂0 − kÞ
16M2ðEcm − κÞ

�
1

κ
−
1

κ

�
→ 0; ð4:1Þ

regardless of the choice of the form factor Fb. These terms
cancel only because the pole at κ ¼ 0 in (3.9) is included in
M4box

11 but not in V4box
11 ; i.e., the result of dropping the κ ¼ 0

pole contributions from (3.11a) cancels one-half of (3.17a).
The conclusion is that the cancellation theorem for V̄4

11 is
proved to fourth order for any choice of form factor Fb and
for “large” Ecm ∼ ω.
Collecting all of the remaining terms together gives

V4
CST ≡ V4xbox

ex þ V4box
12 þ V4box

21 þ V4box
22 þ 1

2
V4xbox
dir

¼ −i
Z

d4k
ð2πÞ4

�
−

ðVVÞ21
8M2ðκ − EcmÞ2

þ ðVVÞ12 þ ðVVÞ21 þ ðVVÞ22 − ðVVÞ11
16M2κðκ − EcmÞ

�
ð4:2Þ
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where the ðVVÞij were defined in (3.10). If
Ecm ∼ p2=M → 0, then P → P0 ¼ f2M; 0g, and

lim
Ecm→0

V4
CST ¼ −i

Z
d4k
ð2πÞ4

1

16M2κ2
½Vðp̂ − kÞ

þ VðP0 − p̂ − kÞ�½VðP0 − p̂0 − kÞ
− Vðp̂0 − kÞ� → 0; ð4:3Þ

because, for both p̂ and p̂0, ðp̂ − kÞ2 → κ2 − ðp − kÞ2 and
ðP − p̂ − kÞ2 → κ2 − ðpþ kÞ2, and hence, for any kernel
V dependent only on q2, the integrand is odd in k and
integrates to zero (even before the κ integration is done).
The cancellation theorem is proved if the center of mass
energy is small.

B. Violations when Ecm is not small

When Ecm ∼ μ, the remainder term (4.2) is no longer zero
and the cancellation theorem is already violated at fourth
order. To simplify the study of these violations, and to see
how the form factor that accompanies Model D modifies
the results, the discussion will be limited to the special case
that p and p0 are very small. In this case all of the boson
energies are equal, and will be denoted by ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

p
.

Furthermore, in this limit, ðVVÞ12 ¼ ðVVÞ21, and
ðVVÞ11ðκÞ ¼ ðVVÞ22ðκ − EcmÞ, so κ → κ0 þ Ecm shifts
the ðVVÞ22 terms into the ðVVÞ11 form, so many terms
may be combined, giving two distinct contributions

V4B
21 ≡ V4xbox

ex þ V4box
12 þ V4box

21 → i
Z

d4k
ð2πÞ48M2

ðVVÞ21
ðκ − EcmÞ

�
1

κ − Ecm
−
1

κ

�
¼ i

Z
d4k

ð2πÞ48M2

EcmðVVÞ21
κðκ − EcmÞ2

¼ −
g4Mμ2

8

Z
k

Ecmð8ω2 − 3ωEcm þ E2
cmÞ

ω3ðω − EcmÞ2ðωþ EcmÞð4ω2 − E2
cmÞ

ð4:4aÞ

V4B
11 ≡ V4box

22 þ 1

2
V4xbox
dir → i

Z
d4k

ð2πÞ416M2

ðVVÞ11
κ

�
1

κ − Ecm
−

1

κ þ Ecm

�
¼ i

Z
d4k

ð2πÞ48M2

EcmðVVÞ11
κðκ2 − E2

cmÞ

¼ −
g4Mμ2

8

Z
k

Ecmð2ω2 − E2
cmÞ

ω4ðω2 − E2
cmÞ2

ð4:4bÞ

Hence the total CST fourth order kernel is

V4
B → −

g4Mμ2

8

Z
k

Ecmð16ω4 þ 5Ecmω
3 − 8E2

cmω
2 þ E3

cmωþ E4
cmÞ

ω4ðω2 − E2
cmÞ2ð4ω2 − E2

cmÞ
¼ −

g4

16

Z
d3k
ð2πÞ3 ṽ

4
B: ð4:5Þ

These results clearly display the cancellation as
Ecm → 0, and the singularities from OBE instability and
two-boson exchange.
The form factor that accompanies Model D, will modify

these results. While the form factor is real along the real q0
axis, it has four poles in the complex q0 plane with a
location depending on q2. These poles are at

q0 ¼ ϵ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ iϵ2λ2μ − iϵ

q
¼ ϵ1½Rω þ iϵ2Iω − iϵ0� ð4:6Þ

where ω is the appropriate boson energy for the particular q,
the phases ϵ1 and ϵ2 are independent and equal to �1, and

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4 þ λ4μ

q
Rω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ω2

p ffiffiffi
2

p

Iω ¼ λ2μ
2Rω

ϵ0 ∼
ϵ

2Rω
: ð4:7Þ

Hence the form factor can be written (ignoring the iϵ in the
numerator)

Fbðq2Þ ¼
ðω2 − q20Þ2

Db
; ð4:8Þ

where the denominator factors into four poles, numbered for
later reference:

Db ¼ ðRω þ i Iω − q0 − iϵ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

ðRω − i Iω − q0 − iϵ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

× ðRω þ i Iω þ q0 − iϵ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

ðRω − i Iω þ q0 − iϵ0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4

¼ ðRω þ i Iω − q0 − iϵ0ÞðRω − i Iω − q0 − iϵ0Þ
× ½I2ω þ ðRω þ q0Þ2�

¼ λ4μ þ ðω2 − q20 − iϵÞ2: ð4:9Þ

In evaluating these contributions, great care must be
taken with contour integrations. For consistency with the
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case when λ ¼ 0, the physical sheet is defined when λ2μ < ϵ;
for larger λμ the expressions must be analytically continued
from this physical sheet. Therefore, as λμ (or Iω) increases
from zero, pole 2 remains in the lower half plane and pole 4
remains in the upper half plane. However, pole 1(3) starts in
the lower(upper) half plane but crosses the real axis into the

upper(lower) half plane. To remain on the same sheet, the
contour must be deformed around poles 1 and 3 as shown in
Fig. 13. Since the contour is being closed in the lower half
plane, the physical sheet is defined by the contributions
from poles 1 and 2, even though, for large λμ, it would
appear at first sight that pole 3 should be included and not
pole 1 (this problem was first encountered over 20 years
ago [72]).
The contributions from the poles 1 and 2 from each

meson exchange fix κ at two values,

κ�ω ¼ Rω � i Iω ¼ 1

2Rω
ð2R2

ω � iλ2μÞ: ð4:10Þ

These are complex conjugates, so the contribution from
each exchange is twice the real part of the contribution from
pole 1. Note the convenient simplification

Iω½I2ω þ ðRω þ κþωÞ2� ¼ 4 IωRωκ
þ
ω ¼ 2λ2μκ

þ
ω : ð4:11Þ

Hence, when p and p0 are very small, the Model D integral
in (4.4a) for ðVVÞ21 generalizes to

V4D
21 ¼ i

Z
d4k
ð2πÞ4

EcmðVDVDÞ21
8M2κðκ − EcmÞ2

¼ g4Mμ2

4
ℜ
Z
k

Ecm½ω2 − ðκþωÞ2�
2iλ2μðκþωÞ2

�½ω2 − ðκþω − EcmÞ2�ðκþω − EcmÞ−2
fλ4μ þ ½ω2 − ðκþω − EcmÞ2�2g

þ ½ω2 − ðκþω þ EcmÞ2�ðκþω þ EcmÞ−1
κþωfλ4μ þ ½ω2 − ðκþω þ EcmÞ2�2g

�

¼ −
g4

16

Z
d3k
ð2πÞ3 ṽ

4D
21 : ð4:12Þ

Note that the λμ → 0 limit of this integral is easily obtained from the limits Rω → ωþOðλ4μÞ, Iω → λ2μ=ð2ωÞ þOðλ4μÞ and
ω2 − ðκþωÞ2 → −iλ2μ þOðλ4μÞ, so that

lim
λμ→0

V4D
21 ¼ −

g4Mμ2Ecm

4

Z
k

�
1

2ω2ðω − EcmÞ2ð2ω − EcmÞ
−

1

2ω3ðωþ EcmÞð2ωþ EcmÞ
�

¼ −
g2Mμ2

8

Z
k

Ecmð8ω2 − 3ωEcm þ E2
cmÞ

ω3ðω − EcmÞ2ðωþ EcmÞð4ω2 − E2
cmÞ

ð4:13Þ

in agreement with (4.4a).
Calculation of (4.4b) directly in the limit p ¼ p0 → 0 requires evaluation of the double poles at κ ¼ κ�ω , giving

V4D
11 ¼ i

Z
d4k
ð2πÞ4

EcmðVDVDÞ11
8M2κðκ2 − E2

cmÞ
¼ g4Mμ2

4
2ℜ

Z
k

d
dκ

�
Ecmðω2 − κ2Þ2

κðκ2 − E2
cmÞðκ−ω − κÞ2½I2ω þ ðRω þ κÞ2�2

�




κ¼κþω

¼ −
g4Mμ2

4
ℜ
Z
k

iEcm½ω2 − ðκþωÞ2�N11

4λ6μðκþωÞ4½ðκþωÞ2 − E2
cm�2

¼ −
g4

16

Z
d3k
ð2πÞ3 ṽ

4D
11 ð4:14Þ

where

N11 ¼ ½ω2 − ðκþωÞ2�½ðκþωÞ2 − E2
cm�ðκþωRω þ I2ω þ 2iIωκþωÞ þ

1

2
iλ2μð3ðκþωÞ2ðω2 − E2

cmÞ þ ðκþωÞ4 − ω2E2
cmÞ: ð4:15Þ

–  R + i I

–  R – i I

R + i I

R – i Ipole #3

pole #4 pole #1

pole #2

FIG. 13. Figure showing the migration of the four poles
identified in Eq. (4.9) in the complex q0 plane. Two double
poles for I ¼ 0 are shown as overlapping dashed circles; as I
increases they migrate to the small red circles, and the contour
(red line) is deformed to avoid them.
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Here the λ2μ → 0 limit is more difficult because both
the numerator and denominator must be expanded. The
result is

lim
λ2μ→0

V4D
11 ¼ −

g4Mμ2

8

Z
k

Ecmð2ω2 − E2
cmÞ

ω4ðω2 − E2
cmÞ2

ð4:16Þ

in agreement with (4.4b). The integral for the total result is

V4
D ≡ V4D

11 þ V4D
21

¼ −
g4

16

Z
d3k
ð2πÞ3 ½ṽ

4D
11 þ ṽ4D21 �

¼ −
g4

16

Z
d3k
ð2πÞ3 ṽ

4
D: ð4:17Þ

Figure 14 shows the integrands ṽ as a function of Ecm
for values of λ ¼ 0.1, 0.5, 0.7, and 1, for the special case
when μ ¼ 1 and all three-momenta are zero. The same
figure also shows ṽ4BS, defined in Eq. (3.18), and ṽ4B,
defined Eq. (4.5).
The overlap of the lines for ṽ4B and ṽ4D for λ ¼ 0.1 show

that the results for small λμ converge smoothly to Model B.
The line for ṽ4BS shows no instability singularity, but the
production singularity remains (because no form factor is
used in the BS calculation). Note that, in the region of
moderate −0.5μ ≤ Ecm ≤ 0.5μ, the integrand for the fourth
order BS kernel is much larger than the CST kernels, which
vanish at Ecm ¼ 0 because of the cancellation theorem. As
anticipated, both the CST instability and production sin-
gularities are removed when the form factor is added, and
as λ increases the integrand shows less and less structure in
these regions.

Finally, note that the 2-boson singularities at Ecm ¼
�2Rω ≃�2μ are present in all cases. As discussed above,
these are a feature of the fourth-order integrands that,
through the principal value prescription, will still give finite
fourth order kernels.

C. Comparison of the first iteration of OBE with
irreducible fourth order kernels

I conclude this section with a discussion of the energy
dependence of the irreducible CST fourth order kernel,
V4
D, the first iteration of the OBE, both the real part of the

exact result V2×2
D (the elastic cut starts at Ecm ¼ 0) given in

Eq. (A4) and the approximate result V2×2
D0 (real every-

where) given in Eq. (A3), and the irreducible BS kernel
V4
BS defined in Eq. (3.18), all evaluated at external

momenta p ¼ p0 ¼ 0. To obtain these results the inte-
grands for each are integrated over the internal three
momentum k. The integrand for V2×2

D0 is a smooth function
easily evaluated, and the real part of V2×2

D is evaluated
using the principal value prescription to treat the elastic
scattering singularity from the propagator. The integrands
for V4

D were shown in Fig. 14 for k ¼ 0, and, because of
the form factor, have singularities only at Ecm ¼ �2Rω

which can be evaluated using the principle value pre-
scription. The integral for V4

BS is defined only for Ecm < μ.
Figs. 15 and 16 show the results.
Figure 15 shows that the choice λμ ¼ 0.1 gives a very

large kernel for jEcmj > 1, so full control the instability
and production singularities in V4

D requires a choice
λμ ≳ 0.5. With these choices the iteration of the OBE
remains significantly larger than the irreducible fourth order
kernel, justifying the conclusion that, even though the
cancellation theorem is violated except at very small energy,
the Model D treatment of OBE still accurately approximates

FIG. 14. Lines showing the integrands ṽ4BS (blue dashed), ṽ
4
B (thin red) and ṽ4D for λ ¼ 0.1 (black dotted line overlapping the thin red

line), 0.5 (black dot-dashed), 0.7 (black dashed), and 1 (black solid), all as a function of Ecm for the special case when μ ¼ 1 and
p ¼ p0 ¼ k ¼ 0. Left panel: expanded scale. Right panel: enlarged picture of the region in the square box in the left panel. Units for Ecm
are the boson mass μ.
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the description of the physics of the generalized ladder sum
to fourth order.
Fig. 16, focusing on the moderate choice λμ ¼ 0.7,

shows the comparative sizes of V2×2
D , V4

D, and V4
BS. Note

that the exact real part of V2×2
D has a zero around

Ecm ∼ 0.2μ; in this region the imaginary part is dominate
and realistic conclusions cannot be drawn without includ-
ing it. (Because of this, I focus the discussion on the energy
region −0.5μ ≤ Ecm ≤ 0.1μ.) The fourth order CST kernel
is much smaller than the BS kernel. This is emphasized in
Fig. 17 showing the ratio of the BS and Model D kernels to
the real part of exact V2×2

D (for λμ ¼ 0.7).
I conclude that the OBE approximation to the CST is

more accurate than the ladder approximation to the BS.
This result has already been proved for nonidentical
particles, but this is the first time it has been proved for
equal masse particles when symmetries are important.

–2 –1 0 1 2

–0.5

0.0

0.5

–0.5 –0.4 –0.3 –0.2 –0.1 0.0 0.1
–0.1

0.0

0.1

0.2

0.3

FIG. 16. Lines showing the integrated kernel V ¼ −16V4
BS=g

4 (blue), and for λμ ¼ 0.7, the kernels V ¼ −16V4
D=g

4 (black dashed),
V ¼ −16ðℜV2×2

D Þ=g4 (red), V ¼ −16V2×2
D0 =g4 (red, dashed). Left panel shows these on a large scale; right panel gives the details inside

the box shown in the left panel. Units for Ecm are the boson mass μ.
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–0.4

–0.2
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0.4

FIG. 15. The integrated kernels V ¼ −16V4
D=g

4 (black lines) and V ¼ −16V2×2
D =g4 (red lines) for λ ¼ 1 (dotted), 0.7 (dashed), 0.5 (dot-

dashed) and 0.1 (solid) as a function of Ecm for the special case when p ¼ p0 ¼ 0 and μ ¼ 1. Left panel: large vertical scale. Right panel:
small vertical scale. Note that, for −16V2×2

D =g4, the cases λ ¼ 0.1 and 0.5 overlap, appearing as a single line. Units for Ecm are the boson
mass μ.
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FIG. 17. Lines showing, for λμ ¼ 0.7 the ratio δV4
BS ¼

V4
BS=V

2×2
D (blue), and δV4

D ¼ V4
D=V

2×2
D (black dashed). The thin

black line which fits δV4
D is discussed in the text. Units for Ecm

are the boson mass μ.
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V. CONCLUSIONS

What I now refer to as the CST was introduced over
50 years ago and has been widely used to describe qq̄
bound states, NN scattering, deuteron and pion form
factors, and many other systems. One of its shortcomings
was the presence of unphysical instability singularities for
total energies W ≤ 2m − μ that automatically arise when
the one-boson-exchange CST equations are symmetrized
for the treatment of systems of identical particles, or the
treatment of qq̄ bound states with charge conjugation
symmetry. I emphasize that the principal issue with these
singularities is a theoretical one: while they lead to finite
results in numerical calculations they are an unpleasant
sign that something is missing and leave doubts that the
major physics is under control.
This paper shows how these singularities can be

removed by introducing a form factor of the type given
in Eq. (2.12), which depends only on q2 and one
parameter λ. Any choice of λ > 0 will eliminate the
singularity, but the results presented here suggest that
the choice λ ≃ 0.7 is large enough to smooth out the rapid
behavior of the kernel in the region of the former
singularity and also small enough to preserve the behavior
of the original OBE kernel away from this region. In
particular, for on-shell scattering (where q2 ≤ 0 always
holds), the modifications introduced by the form factor are
small. Other form factors can be added to improve
convergence, if needed. While all specific calculations
in this paper were limited to spinless theories of the ϕψ�ψ
type, the use of a form factor to eliminate singularities can
easily be extended to theories with particles that have
nonzero spins and isospins.
Conclusions about the accuracy of the OBE approxi-

mation, however, depend more specifically on the details
of the theory. For theories of the ϕψ�ψ type discussed in
this paper, Fig. 17 summarizes the errors that result from
the omission of the irreducible V4 kernels. In the BS
theory, they lead to errors as large as 10% to 30%, while in
the CST they are much smaller, varying from 0 to −10%
over a range of center of mass energies varying from 0 to
−0.5μ. The fit shown in Fig. 17 gives

δV4
D ≃ 0.15

Ecm

μ
þ 0.07

�
Ecm

μ

�
2

þ 0.45

�
Ecm

μ

�
3

: ð5:1Þ

Even though my estimates ignore the dependence of δV4

on the external momenta p and p0, the center of mass
energy, if due to the momentum of the nucleons or quarks
could be taken to be of order p2=M, so that (5.1) suggests
that the error in the CST ladder sum is of order p2=M2 and
higher, very small indeed.

In conclusion: when the CST is applied to a system of
two identical spin zero “nucleons” (or a flavor neutral spin
zero “quark-antiquark” pair) exchanging spin zero
bosons, the cancellation theorem (originally proved for
systems of nonidentical particles) is violated by the
exchange terms required to ensure the necessary sym-
metry. However, removing the singularities carried by
these exchange terms reduces the violation of the can-
cellation theorem to a very small effect. Just as in the case
of nonidentical particles, a better ladder approximation
(i.e., OBE approximation) to the sum of generalized
ladders is obtained by using the CST, rather than the
BS equation.
Do these cancellations work for more realistic theories?

In particular, can one justify a OBE approximation for the
treatment of the NN interaction? Modern studies using the
algebra of large Nc QCD are promising; see the work
of Ref. [73].
With this insight, one of the main issues with the CST

has been eliminated and the way is clear for further
applications.
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APPENDIX A: PROOF THAT THE CST
SUBTRACTED BOX HAS NO SCATTERING

SINGULARITIES

Using the OBE defined in (2.1), the iterated OBE,
consisting of both direct and exchange terms, becomes

V2×2
dir ðp̂; p̂0Þ ¼ −

1

2

Z
k
Vðp̂; k̂ÞGðk̂ÞfVðk̂; p̂0Þ

þ VðP − k̂; p̂0Þg

V2×2
ex ðp̂; p̂0Þ ¼ −

1

2

Z
k
VðP − p̂; k̂ÞGðk̂ÞfVðk̂; p̂0Þ

þ VðP − k̂; p̂0Þg ðA1Þ

where this is the first iteration of Eq. (1.10). Subtracting this
from the box contributions [(3.1a) and (3.1b) with
η ¼ 0], gives
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V4box
dir ¼ M4box

dir − V2×2
dir

¼ i
2

Z
d4k
ð2πÞ4

�
1

M2 − k2 − iϵ
−
πiδðEk − k0Þ

Ek

�
Vðp̂; kÞfVðk; p̂0Þ þ VðP − k; p̂0Þg

M2 − ðP − kÞ2 − iϵ

V4box
ex ¼ M4box

ex − V2×2
ex

¼ i
2

Z
d4k
ð2πÞ4

�
1

M2 − k2 − iϵ
−
πiδðEk − k0Þ

Ek

�
VðP − p̂; kÞfVðk; p̂0Þ þ VðP − k; p̂0Þg

M2 − ðP − kÞ2 − iϵ
; ðA2Þ

showing explicitly how the V2×2 terms cancel; the pole at k0 ¼ Ek, completing the proof.
For future reference, the explicit form of the iterated OBE contributions in the limit p, p0 → 0, as discussed in

Sec. III B, is

V2×2
D0 ¼ g4

16

Z
d3k
ð2πÞ3 ṽ

4D
2×2 ¼

g4μ2

16Ecm

Z
d3k
ð2πÞ3

�
ω2

ðλ4μ þ ω4Þ þ
ω2 − E2

cm

λ4μ þ ðω2 − E2
cmÞ2

�
2

: ðA3Þ

Note that when λμ → 0, this reduces to the limiting results of the sum of the κ ¼ 0 pole contributions in Eqs. (3.11a)–
(3.11c). However, it is easy to calculate this leading term exactly, which modifies (A3), particularly for small Ecm.
Dropping the iϵ prescription, which produces the elastic cut, gives

V2×2
D ¼ −

g4

16

Z
d3kM
ð2πÞ3Ek

�
2μ2

Wð2ek − EcmÞ
��

ω2 − e2k
λ4μ þ ðω2 − e2kÞ2

þ ω2 − ðEcm − ekÞ2
λ4μ þ ðω2 − ðEcm − ekÞ2Þ2

�
2

; ðA4Þ

where ek ¼ Ek −M. Note that ek → 0 and (A4) converges to (A3) as M → ∞.

APPENDIX B: ILLUSTRATIVE INTEGRALS

Consider the integral I1 defined below, where dk0 → dκ and ω2 ¼ μ2 þ k2. Closing the contour in the lower half
complex plane:

I1 ¼ i
Z

d3k
ð2πÞ3

Z
∞

−∞

dκ
2π

1

ðωþ κ − iϵÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
1

ðω − κ − iϵÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2

ðω − Ec þ κ − iϵÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

ðωþ Ec − κ − iϵÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
4

¼ −
Z

d3k
ð2πÞ3

�
1

2ωEcð2ω − Ec − iϵÞ −
1

2ωEcð2ωþ Ec − iϵÞ
�
: ðB1Þ

This displays the fact that the production singularity
comes from a pinch between pole 2 in the lower half plane
and pole 3 in the upper half plane, while the instability
singularity comes from a pinch between pole 4 in the
lower half plane and pole 1 in the upper half plane. Both
of these singularities are real and a property of the
integral.
An alternative discussion of the integral shows how the

singularities give rise to cuts. Use the Feynman parameter-
ization, and using d4k ¼ d3kdκ, I1 becomes

I1 ¼ i
Z

d4k
ð2πÞ4

Z
1

0

dz
1

½ω2 − κ2 þ zð2κEc − E2
cÞ − iϵ�2

¼ i
Z

d3k
ð2πÞ4

Z
1

0

dz
Z

∞

−∞

dκ0

½ω2 − κ02 − zð1 − zÞE2
c − iϵ�2

ðB2Þ

where κ0 ¼ κ þ zEc. Now, assuming that 4μ2 − E2
c > 0,

and introducing η ¼ 4ω2, two of the integrals are evaluated,
allowing me to cast the result into a dispersive form
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I1 ¼
Z

d3k
4ð2πÞ3

Z
1

0

dz
1

½ω2 − zð1 − zÞE2
c − iϵ�3=2

¼
Z

d3k
ð2πÞ3

1

ω½4ω2 − E2
c − iϵ�

¼ 1

4π2

Z
∞

4μ2

dηρðηÞ
η − E2

c − iϵ
; ðB3Þ

where the familiar two-body phase space factor is

ρðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − 4μ2

η

s
: ðB4Þ

While this integral was initially evaluated under the
assumption that E2

c ≤ 4μ2, the final result is a dispersion
integral showing that it can clearly be extended to larger
values of E2

c, where a two-boson production singularity
appears for Ec ≥ 2μ and an instability for Ec ≤ 2μ.

APPENDIX C: 2-BOSON SINGULARITIES IN V4
D

The 2-boson singularities arise from the contribution
V4D
21 defined in Eq. (4.12). Multiplying the numerator and

denominator by the complex conjugate of the denominator,
the absolute value squared of each term in the denominator
can be examined for zeros. The only term that leads to such
a zero is the term involving λ4μ. To simplify the discussion I

take p, p0 → 0, and denote ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

p
. Then these

terms become

jd�4 j2 ¼ fλ4μ þ ½ω2 − ðRω þ iIω � EcmÞ2�2g
× fλ4μ þ ½ω2 − ðRω − iIω � EcmÞ2�2g

¼ R2
4 þ I2

4 ðC1Þ

where

R4 ¼ λ4μ þ ½ω2 − ðRω � EcmÞ2 þ I2ω�2 − 4I2ωðRω � EcmÞ2
I4 ¼ 4ðRω � EcmÞ½ω2 − ðRω � EcmÞ2 þ I2ω�: ðC2Þ

Since jd�4 j2 is the sum of two squares, one might think it
cannot be zero, but it is possible for both terms to be zero at
the same time. Using (4.7) to replace Iω, and noting that
ω2R2

ω þ λ4μ=4 ¼ R4
ω, this occurs when

0 ¼ ω2 − ðRω � EcmÞ2 þ I2ω

¼ ω2 − ðRω � EcmÞ2 þ
λ4μ
4R2

ω
→ R2

ω − ðRω � EcmÞ2

0 ¼ λ4μ − 4I2ωðRω � EcmÞ2 → 1 −
ðRω � EcmÞ2

R2
ω

: ðC3Þ

Hence both equations are solved when

Ecm ¼∓ 2Rω or 0: ðC4Þ

These are a generalization of the 2-boson singularities
discussed in Sec. III B.
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