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Whether one is interested in accessing the excited spectrum of hadrons or testing the standard model of
particle physics, electroweak transition processes involving multihadron channels in the final state play an
important role in a variety of experiments. Presently the primary theoretical tool with which one can study
such reactions is lattice QCD, which is defined in a finite spacetime volume. In this work, we investigate the
feasibility of implementing existing finite-volume formalism in realistic lattice QCD calculation of
reactions in which a stable hadron can transition to one of several two-hadron channels under the action of
an external current. We provide a conceptual description of the coupled-channel transition formalism, a
practical road map for carrying out a calculation, and an illustration of the approach using synthetic data for
two nontrivial resonant toy models. The results provide a proof of principle that such reactions can indeed
be constrained using modern-day lattice QCD calculations, motivating explicit computation in the near
future.
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I. INTRODUCTION

A primary mechanism for producing the excited reso-
nances of quantum chromodynamics (QCD) is a high-
energy reaction where a current lying outside of the strong
interaction sector interacts with a stable hadron. When the
produced hadron resonance then decays into a pair of stable

hadrons, we refer to this as a 1!J 2 process, and we would
like to be able to describe such processes from first
principles within QCD. A particularly important case,
which we examine in this paper, has the resonance able
to decay into more than one final-state hadron-hadron
system, that is to say a coupled-channel situation. A
contemporary experimental example might be the claim
of pentaquark resonances in the J=ψp final state, produced
in Λb hadronic decays [1,2], which can in principle also be
produced in photoproduction off a proton, γp → J=ψp [3].
The resonances observed lie in an energy region where
coupled channels like D̄Σc open up, necessitating a
coupled-channel approach in photoproduction. Other
potential applications include semileptonic weak decays

of b- or c-quark containing hadrons which typically have
sufficient energy to access more than one hadron-hadron
final state [4,5].

Amplitudes describing 1!J 2 processes potentially allow
access to information that may shed light on the internal
structure of resonances. With an explicit parametrization of
the transition amplitude it is possible to analytically
continue to the complex values of the hadron-hadron
energy. If the system resonates we expect a pole singularity,
and the residue of that pole has an interpretation in terms of
the transition form factor of the resonance. By examining
the dependence of this form factor on the current virtuality,
it may be possible to infer information about the spatial
distribution of constituents of the resonance.
Lattice QCD offers the only first-principles approach to

computation of transition matrix elements within QCD, but
by necessity, these calculations are done in a finite spatial
volume, and this leads to effects which are in general not
simply small corrections to infinite-volume quantities. The
finite-volume effects are in fact dominant features that need
to be handled carefully using a rigorous formalism. It is
these effects that we will explore in this paper.
In order to study processes in which one or several

hadron-hadron final states are produced when a current is
absorbed by a stable hadron, a two-stage lattice QCD
computation is required. In the first stage, the hadron-
hadron scattering matrix (without involvement of the
current) is determined. This is an increasingly common
calculation in which the finite-volume spectrum is extracted
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from a matrix of two-point correlation functions. A
“diagonalization” of this matrix through the solution of a
generalized eigenvalue problem leads to the spectrum (from
the eigenvalues) and “optimal” operators for each energy
level as a linear combination of the basis operators (through
the eigenvectors) [6–9]. The energy levels provide con-
straint on the scattering matrix [10–13], but in practice
exploiting the relationship between the finite-volume spec-
trum and the desired scattering amplitudes requires resorting
to construction of energy-dependent parametrizations for the
amplitudes [14]. More constraint is provided by having more
energy levels, and this can be achieved by computing in
multiple lattice volumes and/or by considering hadron-
hadron systems with net momentum (“in-flight”). This
methodology has proven useful and has allowed for the
determination of numerous coupled-channel scattering
amplitudes via lattice QCD [15–21]. For a recent introduc-
tory review on these concepts see Ref. [22].
The second stage, in which the current is introduced,

involves computation of three-point correlation functions
with source and sink hadronic operators having definite
values of three-momentum allowed on a cubic lattice. The
source operator is chosen to be one which interpolates the
initial state stable hadron, and the sink operator is ideally
constructed to interpolate only a single one of the finite-
volume eigenstates having the quantum numbers of the
final state hadron-hadron system. A powerful approach to
achieve this is to make use of the “optimal” operators found
in the two-point variational calculation described above
[23–25]. At intermediate times between the source and
sink, the relevant current is inserted, and by analyzing the
insertion time dependence, a matrix element describing the
transition at one particular kinematic point can be extracted.
Through the use of multiple three-momenta at source

and sink, and by considering finite-volume energy levels
which span a range of energies, we can obtain a sampling of
both the current-virtuality and scattering energy depend-
ence of the transition process, but only once the effects of
the finite volume are accounted for.
The relevant formalism to map finite-volume matrix

elements into infinite-volume matrix elements already
exists. References [26,27] generalize the original idea of
the “Lellouch-Lüscher” factor [28] to be applicable in

essentially all cases of 1!J 2 transition amplitudes. The
formalism has been applied to explicit lattice QCD results
so far only in the case where elastic ππ is the sole relevant
scattering channel. First implementations of the Lellouch-
Lüscher formalism were performed in K → ππ weak decay
studies [29–32], where the physical process is constrained
to lie at only a single kinematic point. References [33–35]
considered γπ → ππ with JP ¼ 1−, extracting the infinite-
volume transition matrix elements as a function of Eππ and
photon virtuality. By analytically continuing to the ρ
resonance pole at a complex value of Eππ , the resonance
transition form factor for ρ → πγ was determined. In this

paper we will explore how calculations like these can be
extended into the coupled-channel sector, where a reso-
nance might have decays to more than one hadron-hadron
final state.
The formalism for the coupled-channel case is already

laid out [26,27], but in this paper we will present some
observations which provide a conceptual interpretation of
the approach, as well as providing a proposal for practical
implementation. Our aim is to investigate whether contem-
porary lattice QCD calculations can obtain sufficient
constraint so that coupled-channel transition amplitudes
can be reliably determined. Our exploration will come in
the form of toy models of two-channel resonant scattering.
We will propose explicit scattering and transition ampli-
tudes, and from them generate synthetic finite-volume
spectra and matrix-element data simulating the situation
in a typical lattice QCD calculation. We will then analyze
the synthetic data using the finite-volume techniques to
establish that the essential features of the original ampli-
tudes can be reproduced. This procedure parallels that
presented in Ref. [14] for analysis of coupled-channel
finite-volume spectra, which proved to be a realistic
prediction of how explicit lattice QCD calculations would
later be handled [15–21].
In this paper, we consider the simplest nontrivial

scenario for 1!J 2 reactions. We work in a situation where
the scattering channels are composed of identical spinless
particles, and for the kinematics considered, up to two
channels will be open which are completely saturated by
the l ¼ 0 partial wave. We will consider toy models in
which a single resonance couples to both decay channels—
we focus our attention on resonant systems not just because
of their physical interest, but also because they are
potentially challenging owing to their rapid energy depend-
ence. If the procedure to be presented is successful for
resonant processes, nonresonant systems should not present
difficulties.
In Sec. II we discuss how 1!J 2 coupled-channel proc-

esses are described in infinite and finite volumes, before
presenting in Sec. III a pair of relevant toy models and their
finite-volume spectra and matrix elements. In Sec. IV we
generate synthetic data for these toy models which resem-
ble those accessible in contemporary lattice QCD calcu-
lations, and show how starting with these data we would go
about determining the infinite-volume transition matrix
elements. In Sec. V we summarize, and make projections
for likely explicit lattice QCD applications of the meth-
odology we have laid out. In the Appendixes we provide
some supporting illustrations of properties of the Lellouch-
Lüscher factor in several cases including those where a
channel is kinematically closed, where multiple partial
waves must be considered, and where a bound state appears
far below any decay channel. A discussion of the possibility
of defining a version of the Lellouch-Lüscher factor at
energies away from solutions of the finite-volume
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quantization condition is presented, where we conclude that
this cannot be done in a unique way. We also illustrate the
rather unique properties of one of the simplest parametriza-
tions of a coupled-channel resonance, the Flatté amplitude,
presenting some caveats regarding the flexibility of such a
form in the description of scattering and transition
amplitudes.

II. 1 → 2 PROCESSES IN INFINITE
AND FINITE VOLUME

We will concern ourselves with processes in which a
current acting upon an initial single-hadron state induces a
transition into a hadron-hadron sector, where strong rescat-
tering may occur. In the cases we wish to focus upon, the
S-matrix describing the rescattering in a given partial-wave
features multiple kinematically accessible hadron-hadron
channels, a situation described as coupled-channel scatter-
ing. We will consider only cases in which the scattering
particles carry no intrinsic spin, although removing this
restriction is quite straightforward [13,36]. We begin by
specifying the relevant kinematics and properties of the
hadron-hadron scattering amplitudes.

A. 2 → 2 scattering in infinite volume

Wewill mostly follow the notation used in Refs. [26,27],
where indices a, b label hadron-hadron channels, and l and
ml refer to the total and azimuthal components of the
angular momentum for a system projected into a definite
partial wave. The two hadrons in each channel do not need
to be identical, but for simplicity in this study they will be,
with mass ma in channel a. Quantities measured in the
center-of-momentum frame of the hadron-hadron system
are labeled by a star, e.g.,

q⋆a ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

a

q
; ð1Þ

is the relative momentum, where s ¼ E⋆2. The correspond-
ing phase space for identical particles1 is

ρaðsÞ ¼
q⋆a

16π
ffiffiffi
s

p ; ð2Þ

and aboveN open thresholds, it is convenient to introduce a
matrix ρ, defined as

ρ ¼ diagðρ1; ρ2;…; ρNÞ:

The S-matrix and the scattering amplitude, MðsÞ, are
related in general via

S ¼ 1þ 2i
ffiffiffi
ρ

p
M

ffiffiffi
ρ

p
;

and taking advantage of rotational symmetry in an infinite
volume, the scattering amplitude can be partial-wave
expanded and the resulting independent partial-wave
amplitudes labeled by l. In particular, we label the
scattering amplitude coupling channels a and b in the l
partial wave as Mab;lðsÞ. Time-reversal symmetry ensures
that M is a symmetric matrix in channel space.
Unitarity in the coupled-channel case can be expressed

as a constraint on the imaginary part of the matrix inverse
of Ml,

Im½M−1
l ðsÞ�ab ¼ −δabρaðsÞΘðs − sthra Þ; ð3Þ

where the step function ensures that the imaginary part is
zero below the kinematic threshold,

ffiffiffiffiffiffiffi
sthra

p
¼ 2ma.

While elements of the scattering matrix can be obtained
physically only for real values of s above kinematic
thresholds, it proves relevant to consider amplitudes more
generally as functions of complex s, and in particular to pay
attention to their singularities. Unitarity and the presence of
the square root in Eq. (1) ensure the scattering matrix has
branch point singularities at each kinematic threshold, and
this renders MðsÞ a multivalued complex function which
can be described by a Riemann sheet structure. In addition
to branch cuts coming from unitarity, pole singularities can
be present and depending upon their location, they can be
interpreted as representing stable bound states or unstable
resonances. Near to a resonance pole located atffiffiffiffiffi
sR

p ¼ mR � i 1
2
Γ, the scattering matrix takes the form

MabðsÞ ∼
cacb
sR − s

; ð4Þ

where the complex-valued ca is interpreted as the coupling
of the resonance to channel a. In this expression we have
left the angular momentum dependence implicit, but for
spinless scattering particles, a resonance only appears for a
single value of l, fixed by the angular momentum of the
resonance. These resonance poles are objects of central
interest in the study of hadron spectroscopy.2

B. 1 → 2 transition amplitudes in infinite volume

We consider the process in which a single stable hadron
of mass M with four-momentum Pi is acted upon by
a current to become a hadron-hadron system with
four-momentum Pf and invariant-mass squared s ¼ P2

f.

We will adopt a notation where 1!J 2 amplitudes,Hμ, carry

1An additional factor of 2 appears in the case of nonidentical
particles.

2Other singularities can also be present in MðsÞ but are
usually of lesser importance in determining resonance properties:
projection into partial waves obscures the role of crossing
symmetry, such that unitarity in the crossed channels leads to
cutlike singularities, known as left-hand cuts which appear in the
partial-wave projected amplitudes for values of s typically well
below kinematic thresholds.
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an explicit Lorentz index, motivated by the most likely
application to vector or axial-vector currents, however the
bulk of our results will be applicable to a more general class
of currents. Since the amplitude describes a situation where
a particular hadron-hadron channel is produced in the final
state, the amplitude will carry a single channel label, Hμ

a.
Unlike the amplitudes describing 2 → 2 scattering, because
the current has nontrivial rotational properties, the partial-
wave projected transition amplitudes in general depend on
the azimuthal component, ml. A somewhat overcomplete
notation featuring the current virtuality,Q2 ≡ −ðPf − PiÞ2,
Hμ

a;lml
ðPf; Pi;Q2; sÞ, will often be simplified by sup-

pressing arguments or indices irrelevant to the discussion
at that point.
In terms of matrix elements of local currents in an infinite

volume, these amplitudes can be expressed as

Hμ
a;lml

ðPf; Pi;Q2; sÞ ¼ ∞hPf; almljJ μðx ¼ 0ÞjPii∞;
ð5Þ

where the argument of the current, x ¼ 0, is introduced to
emphasize that the current is evaluated at the origin. The
initial state jPii∞, is an infinite-volume single-particle on-
shell state which has the standard relativistic normalization.
Because the state is on-shell, its energy is completely
determined from its spatial momentum, Pi, and the mass of
the particle. The final state, ∞hPf; almlj, is a two-particle
state in channel awith definite angular momentum ðl; mlÞ.
In the center-of-momentum frame, one can construct such a
state by partial-wave projecting products of single-particle
states, which can then be boosted to an arbitrary frame (see,
for example, Appendix D in Ref. [33]). Because the energy
of a two-particle state is not fixed by its spatial momenta,
these states in general must be labeled by their four-
momenta, Pf, where P2

f ¼ ðE⋆Þ2 ¼ s. 3

Unitarity provides a constraint on transition amplitudes
which can be satisfied by expressing them as [26,37]

Hμ
a;lml

ðPf; Pi;Q2; sÞ ¼X
b

Aμ
b;lml

ðPf; Pi;Q2; sÞ 1

q⋆lb
Mba;lðsÞ; ð6Þ

where the unitarity branch cuts required to be present in H
are housed in M. The function A which depends both on
the virtuality Q2 and the invariant mass s, does not have
unitarity branch cuts in s and as such A should be a real

smooth function of s above thresholds.4 The factor 1
q⋆lb

is

required to deal with the mismatch between the threshold
behaviors of H and M, where Mab;l ∼ q⋆la q⋆lb while
Ha;lml

∼ q⋆la .
While A lacks s-channel singularities in s, it can have

singularities in the virtuality variable Q2. One example is
when Q2 has a timelike value large enough to produce a
pair of hadrons there will be a branch point reflecting
unitarity in the scattering of those two particles. In this
paper we will not concern ourselves with analytic structure
in Q2 as in our eventual lattice QCD application we will
typically be restricted to values of Q2 away from such
singularities.
The l; ml subscript on H indicates that our approach is

to first perform a partial-wave projection of the final
hadron-hadron system, and to then express the dependence
on the Lorentz structure of the current in terms of Lorentz-
covariant kinematic structures and Lorentz-invariant ampli-
tudes for a final state of angular-momentum l. A simple
example illustrates the method, and provides a physically
relevant case for later study: We will consider stable scalar
hadrons labeled χ;φ1;φ2, and a conserved vector current
(whose quanta are labeled γ), working in an energy region
where the processes χγ → φ1φ1 and χγ → φ2φ2 are kin-
ematically allowed. We will focus on S-wave (l ¼ 0)
scattering in the hadron-hadron channels such that
Eq. (6) becomes

Hμ
a;00 ¼

X
b

Aμ
b;00Mba;0;

where M is the S-wave scattering matrix in the
ðφ1φ1;φ2φ2Þ channel space. Considering the first element,
Aμ

1;00, describing primary production of the φ1φ1 channel,
we can perform a Lorentz decomposition using the fact that
the initial and final states are both scalars to write

Aμ
1;00ðPf; Pi;Q2; sÞ ¼
ðPi þ PfÞμF 1ðQ2; sÞ þ ðPf − PiÞμG1ðQ2; sÞ;

which simplifies when conservation of the vector current is
applied, to give

Aμ
1;00ðPf; Pi;Q2; sÞ ¼�
ðPi þ PfÞμ þ

s −M2

Q2
ðPf − PiÞμ

�
F 1ðQ2; sÞ:

3From Eq. (5), one can verify the dimensions of the transition
amplitude, Hμ. The relativistic single-particle states have energy
dimensions of ½E�−1, and consequently the two-particle states
have dimensions ½E�−2. If we assume the current to be the
electromagnetic current, the dimensions of the current are ½E�−3,
and consequently the amplitude is dimensionless.

4Note that Eq. (6) is not a unique solution to the unitarity
condition. An alternative solution, commonly applied in the case
of elastic scattering is the Omnès solution [38], constructed from
a dispersive integral featuring the scattering phase. This solution
has the same imaginary part, but differs in the real part, and the
net difference between our choice and this alternative is the
particular form of the smooth function multiplying it.
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In this case there is just a single Lorentz-invariant form
factor F 1ðQ2; sÞ multiplied by a kinematic factor. A
decomposition of the same form applies to the second
channel such that

Aμ
a;00ðPf; Pi;Q2; sÞ ¼�
ðPi þ PfÞμ þ

s −M2

Q2
ðPf − PiÞμ

�
F aðQ2; sÞ; ð7Þ

which implies5

Hμ
a;00ðPf;Pi;Q2; sÞ ¼�
ðPi þPfÞμ þ

s−M2

Q2
ðPf −PiÞμ

�X
b

F bðQ2; sÞMba;0:

ð8Þ
In amoregeneral case, for eachpartialwavelwecanwrite

a general decomposition as a sum of kinematic factors
multiplying linearly independent form factors. Care is
required to account for factors of q⋆ that might appear in
the Lorentz-covariant kinematic factors so that the correct
threshold behavior appears in Eq. (6). When l > 0, the
dependence on ml enters via the presence of final-state
polarization tensors, ϵν…ðPf;mlÞ, in the kinematic factors.
As was the case for the 2 → 2 scattering matrix M, the

1!J 2 transition amplitude H can be considered to be a
function of complex s, and in particular as indicated by
Eq. (6) and the text immediately after, we expectH to have
the same pole singularities as M, but with different
residues, that we can express generically for s ∼ sR as

HaðsÞ ∼
cafRðQ2Þ
sR − s

; ð9Þ

where fRðQ2Þ has an interpretation as the transition form
factor of the resonance. Expressed in terms of the function
A we have

fRðQ2Þ ¼
X
b

cbAbðQ2; sRÞ; ð10Þ

where the possible complex values of fcbg and A off the
real axis make it clear that fRðQ2Þ need not be real valued.
Because A lacks the unitarity cut, it is a continuous
function in the complex-s plane, and as a result, its analytic
continuation to sR is trivial.

C. Finite-volume formalism

The relationship providing the connection between the
2 → 2 scattering matrix and the discrete spectrum of energy

eigenstates in a finite volume, E⋆
nðP; LÞ, can be expressed

in the form of a single equation [10–13],

det ½F−1ðE⋆;P;LÞ þMðE⋆Þ� ¼ 0; ð11Þ

where in general F and M are matrices in the space of
scattering channels and partial waves. The discrete ener-
gies, E⋆

nðP; LÞ, correspond to the solutions of this equation.
The corresponding energies in the rest frame of the lattice
are trivially obtained from the energies in the center-of-
momentum frame, En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE⋆

nÞ2 þ jPj2
p

.
Equation (11) is a generalization of Lüscher’s original

relation between the finite-volume spectrum and the
scattering amplitude for energies where a single channel
is kinematically open [39]. Projection into irreducible
representations of the cubic symmetry relevant to most
lattice QCD calculations can be straightforwardly achieved.
An increasingly common approach to application of this
relation, when a set of discrete energy levels have been
determined in an explicit lattice QCD calculation, is to
propose energy-dependent parametrizations of M [14].
The free parameters in these forms are then varied, solving
Eq. (11) for a discrete spectrum at each iteration, with a
comparison to the computed spectrum performed in the
form of a χ2. Minimization of this χ2 leads to a best
available description of the scattering matrix. This
approach is described in some detail in Ref. [22].
In this paper we seek to extend the application of such a

finite-volume technique to the case of 1!J 2 coupled-
channel transition amplitudes, where the new input is a
set of matrix-element values extracted from three-point
correlation functions computed using lattice QCD. The
formalism presented in Refs. [26,27] provides the relation-
ship between current matrix elements computed in finite

volume and the infinite volume 1!J 2 transition amplitudes,
H, that we introduced in the previous section.

The relation takes the form

jhEn;PfjJ μðx ¼ 0ÞjPiiLj ¼
1

L3
ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2En

p ½Hμ · R̃n ·Hμ�1=2; ð12Þ

where the final state is one of the discrete energy levels of
this finite-volume system, having an energy which solves
Eq. (11), and the initial state is a single on-shell hadron.6

Both finite-volume eigenstates are normalized to unity. The
matrix R̃n sandwiched between H and its transpose is the
Lellouch-Lüscher factor, introduced in Ref. [26], which is
the residue of the finite-volume hadron-hadron propagator

5For the electromagnetic current, this decomposition would
imply that the F b have dimensions of ½E�−1.

6The single hadron state in a finite volume will have a mass
which is equal to the infinite volume mass up to exponentially
small corrections.
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at the finite-volume energy, En. R̃n is a matrix in partial
waves and channels, defined by

R̃nðP; LÞ≡
2En · lim

E→En

ðE − EnÞðF−1ðE⋆;P;LÞ þMðE⋆ÞÞ−1;

ð13Þ

where the energies in the numerator are evaluated in the rest
frame of the lattice. This matrix, R̃n ¼ 2En ·Rn, whereRn
is the more commonly presented object given in, for
example, Eq. (5) of Ref. [27]. The prefactor of 2En is
introduced in order for the denominator of Eq. (12),
L3

ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2En

p
, to provide a convenient normalization

relating single-particle finite-volume states and their
infinite-volume counterparts. For single hadron states we
have the following relation:

jPii∞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
2EiL3

q
jPiiL;

where the equivalence indicates that their matrix elements
for local currents are the same up to exponentially sup-
pressed corrections. Similarly, were the two-hadron state to
couple to a deeply bound state, it would be the case thatffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p
would provide the necessary normalization to

relate finite- and infinite-volume matrix elements.
In the case of elastic scattering with only a single relevant

partial wave, there is a helpful conceptual interpretation offfiffiffiffiffiffiffi
R̃n

p
as the normalization in a finite volume of the

haggdron-hadron state, jEniL, i.e.,7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

q
jEniL ∼

ffiffiffiffiffiffiffi
R̃n

q
jφφðE⋆ ¼ E⋆

nÞi∞; ð14Þ

and it is interesting to consider if such a picture still holds in
the coupled-channel case (still assuming dominance of a
single partial wave). An important observation is that the
matrix R̃n, whose dimension is simply the number of open
channels, only has rank ¼ 1 at the energies, E⋆

n, which
solve the quantization condition, Eq. (11) [26]. The
reduction in rank can be seen by exploring the eigenvector
decomposition8 of F−1 þM, where the symmetry of the
matrices ensures the orthogonality of the eigenvectors:

F−1 þM ¼
X
i

λiviv
⊺
i ;

where the eigenvalues and eigenvectors vary with energy.
In order that det½F−1 þM� ¼ 0 we require at least one

eigenvalue to be zero at E ¼ En. In fact, only a single
eigenvalue can be zero, and we label this eigenvalue by
i ¼ 0. In the case that more than one eigenvalue vanished at
some energy, the corresponding pole in energy would be of
order higher than one and would lead to a correlation
function time dependence incompatible with the time
evolution of discrete energy eigenstates.
Expanding λ0ðEÞ about the zero at E ¼ En gives

λ0ðEÞ ¼ ðE − EnÞ
dλ0
dE

����
En

þOðE − EnÞ2;

and from this and Eq. (13) it is clear that R̃n is rank-one:

R̃n ¼
2E⋆

n

λ⋆0 0
v0v

⊺
0;

where v0 is shorthand for the unit normalized eigenvector
evaluated at En, and where we have used the fact that

2E ·

�
df
dE

�
−1

¼ 2E⋆ ·
�

df
dE⋆

�
−1
;

and have introduced a ⋆0 notation to indicate differentiation
with respect to E⋆,

λ⋆00 ≡ dλ0
dE⋆

����
E⋆
n

:

This eigendecomposition provides us with the concep-
tual picture we desired,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

q
jEniL ∼

ffiffiffiffiffiffiffiffi
2E⋆

n

λ⋆0 0

s X
a

ðv0ÞajφaφaðE⋆ ¼ E⋆
nÞi∞;

which makes it clear that the finite-volume eigenstates
cannot be interpreted as being associated with any one
particular hadron-hadron channel, rather they are linear
superpositions of all channels, with weights given by the
eigenvector corresponding to the zero eigenvalue. The
prefactor which features the slope of the eigenvalue with
respect to energy provides the effective finite-volume
normalization of the state, and this can take a value very
different to unity.
In practice it is more convenient to use a slightly different

decomposition of R̃n, one which makes use of the
eigenvector decomposition of F þM−1:

F þM−1 ¼
X
i

μiwiw
⊺
i :

7This expression is conceptually useful in the case of 1!J 2
processes, but it is not an identity. For example, it fails to capture
OðL−3Þ corrections present for finite-volume matrix elements

associated with 2!J 2 reactions [40–42].
8Discussion of the use of eigenvector decomposition in order

to efficiently solve Eq. (11) in coupled-channel situations can be
found in Ref. [43].
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Since trivially

F þM−1 ¼ FðF−1 þMÞM−1;

it follows that μ0ðEÞ will have a zero at E ¼ En just as
λ0ðEÞ did, and then since ðF þM−1Þw0 ¼ 0 at that energy,
we have Fw0 ¼ −M−1w0. Using the symmetry of the
matrices, w⊺

0F ¼ −w⊺
0M

−1, and we find that Eq. (13) can
be expressed as

R̃n ¼ 2En · lim
E→En

ðE − EnÞ ·M−1ðF þM−1Þ−1F

¼
�
−
2E⋆

n

μ⋆0 0
�
M−1w0w

⊺
0M

−1; ð15Þ

where all objects are evaluated at E ¼ En. An example of
the numerical determination of μ0 and w0 is presented in
Appendix A where the slope of the zero-crossing eigen-
value is observed to be negative.
A major advantage of the form in Eq. (15) is that it

explicitly removes the potentially rapidly energy-varying
factor of M from H, leaving only the slowly varying A,

jhEn;PfjJ μð0ÞjPiiLj

¼ 1

L3
ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2En

p
ffiffiffiffiffiffiffiffiffiffiffiffi
−
2E⋆

n

μ⋆0 0

s
w⊺

0 ·

�
1

q⋆l
Aμ

�
; ð16Þ

and this makes clear the importance of the quantitiesw0 andffiffiffiffiffiffiffiffiffiffi
− 2E⋆

n
μ⋆
0
0

q
for each finite-volume energy level: the first

indicates the relative contribution of the various open
channels to the finite-volume matrix element, while the
second makes the (potentially large) finite-volume correc-
tion to the absolute normalization.

When considering finite-volume energy levels which lie
below some of the channel thresholds, the matrix F þM−1

remains real and symmetric, and the eigenvectors remain
orthogonal, so the picture presented above still holds.
Elements of F tend to constant values at energies well
below a closed threshold in such a way that the closed
channel decouples from the scattering system. Details are
presented in Appendix A.
While at low energies we expect the lowest l values to

dominate, in general multiple partial waves will be present,
and below kinematic thresholds, we can encounter situa-
tions where F þM−1 is symmetric, but not purely real. A
concrete example might be πK scattering in the A1 irrep in
moving frames, where both S-wave and P-wave scattering
are present. The symmetry of the matrices ensures that
the eigenvectors remain orthogonal (w⊺

i · wj ¼ δij) but
in this case, the P-wave components of w0 are now pure
imaginary. This does not spoil the reality of the object
H · R̃n ·H in Eq. (12) owing to the compensating factor
1=q⋆ present for a P-wave in Eq. (6).

Should a scattering system feature a stable bound state in
a particular partial wave, lying well below all kinematic
thresholds, the properties of F are such that Eq. (12)
reduces to the volume-independent result we would expect
for a transition between stable hadrons. More discussion is
presented in Appendix A.9

In the remainder of this paper we will present examples
of the implementation of the approach presented in this
section. The idea is that the scattering matrix for some
number of coupled hadron-hadron channels is determined
using energy-dependent parametrizations ofM to describe
finite-volume spectra, along the lines described in detail in
Ref. [22]. The eigendecomposition of F þM−1 can then
be carried out for the parametrized M at each solution of
det½F þM−1� ¼ 0 corresponding to a calculated finite-
volume energy level. By evaluating the eigenvalues in the
neighborhood of the finite-volume energy, one can com-
pute the derivative of the eigenvalue and hence an imple-
mentation of Eq. (16) can be set up for each calculated
finite-volume matrix element. These are linear equations
featuring unknowns, Aa;lml

ðQ2; sÞ, as well as the known
finite-volume matrix elements (coming from explicit lattice
QCD computation of three-point correlation functions). By
parametrizing the Q2- and s-dependence, we can minimize
a χ2 built out of all the implementations of Eq. (16) for the
various kinematic points computed.
We will illustrate the approach using some simple toy

models of coupled hadron-hadron scattering showing that
with a modest number of computed finite-volume transition
matrix elements, the corresponding infinite-volume result
can be determined. Having constrained such transition
amplitudes in cases where the scattering system features
a resonance, we will also demonstrate that the continuation
to the resonant pole can be performed leading to the
transition form factor of the resonance.

III. TOY MODELS OF SCATTERING AND
TRANSITIONS IN INFINITE AND FINITE

VOLUME

We choose to model a system of two coupled hadron-
hadron channels, ðφ1φ1;φ2φ2Þ, where φ1, φ2 are scalar
mesons with masses m1; m2 ¼ 1.25m1 respectively. These
channels can be reached from a production process γχ
where χ is a scalar meson of massM ¼ 1.25m1, and where
γ represents the action of a conserved vector current.
We will examine two simple toy models describing
coupled-channel resonant scattering in S-wave and the
corresponding transition amplitudes describing γχ → φ1φ1

and γχ → φ2φ2.

9For a recent discussion of this scenario in the context of 2!J 2
matrix elements see Ref. [44].
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A. Toy-model scattering amplitudes

We can ensure coupled-channel unitarity, described by
Eq. (3), by making use of a K-matrix parametrization in

M−1 ¼ K−1 − iρ;

whereK is a symmetric matrix taking real values for all real
energies. We will explore two models in which the K-
matrix has elements

KabðsÞ ¼
gagb
m2 − s

þ γab; ð17Þ

where constants m; g1; g2; γ11; γ12; γ22 are parameters. We
will see that two different choices of values for these lead to
qualitatively rather different amplitudes.
First we construct a resonant amplitude with very strong

coupling between the channels, featuring a cusp-like
enhancement at the second threshold. The parameters
values fm=m1¼2.60, g1=m1¼15, g2=m1 ¼ 19, γ11 ¼ 0.1,
γ12 ¼ 30, γ22 ¼ 11g, generate this amplitude, where the
elements of the resulting M are shown for real scattering
energies in Fig. 1(a).
While a cusp in φ1φ1 → φ1φ1 is generically expected at

the opening of the φ2φ2 channel, due to the square root in
ρ2ðsÞ, the strength of the observed feature, and the rapid
turn-on of amplitudes leading to the φ2φ2 final-
state suggests resonant behavior, and indeed this
amplitude is found to have a nearby pole singularity atffiffiffiffiffi
sR

p
=m1 ¼ 2.59 − i

2
0.13 on unphysical sheet II.10 This pole

has couplings c1, c2 which have comparable magnitudes,
indicating that this resonance couples strongly to both
channels.
Our second amplitude choice, which we will describe as

Flatté-like, reflects a more straightforward picture of a
coupled-channel resonance. Using the parameter values

fm=m1 ¼ 2.80;g1=m1¼ 10;g2=m1¼ 5;γ11¼ 0.01;γ12¼ 0;
γ22¼ 0.5g, we obtain the M elements shown in
Fig. 1(b), which we observe to be simply an isolated
“bump” lying above both thresholds. Examined for com-
plex values of the energy, the bump reflects the presence of
a sheet III pole lying very close to the real energy axis atffiffiffiffiffi
sR

p
=m1 ¼ 2.80 − i

2
0.21.11 The pole couplings c1, c2,

which are close to being real, have magnitudes which
closely reflect the hierarchy selected for the K-matrix
parameters g1, g2, indicating a significantly weaker cou-
pling of the resonance to φ2φ2 relative to φ1φ1.
This second amplitude is Flatté-like in that were it not for

the small nonzero values of γ11, γ22, it would be of the form

MFl:
ab ¼

gagb
DðsÞ ;

where DðsÞ ¼ m2 − s − ig21ρ1ðsÞ − ig22ρ2ðsÞ;

commonly referred to as the Flatté-form [45]. Such an
amplitude intuitively describes a single resonance coupled
to two channels with no “background,” but its simplicity
gives rise to some rather peculiar properties. These follow
from the fact that the scattering matrix factorizes, such that
even in an N-channel case where M ¼ gg⊺D−1ðsÞ with
g ¼ ðg1; g2…gNÞ, the matrixM has a rank of only 1, having
one nonzero eigenvalue with eigenvector g, and N − 1 zero
eigenvalues with eigenvectors orthogonal to g.12

Given an amplitude parametrization, and a set of
parameter values, we can solve the quantization condition,
Eq. (11), in several volumes and moving frames.13

The volumes and frames selected are designed to mimic
accessible cases considered in contemporary lattice QCD
calculations [15–21]. For the cusp-like and Flatté-like

(a) (b)

FIG. 1. (a) Cusp-like and (b) Flatté-like scattering matrices shown as a function of E⋆ via ρ21jM11j2 (blue), ρ1ρ2jM12j2 (green), and
ρ22jM22j2 (red). Open circles on the axis indicate kinematic thresholds for channels 1 and 2.

10For a two-channel scattering system, there are three un-
physical Riemann sheets. Above the first threshold, but below the
second, sheet II is closest to physical scattering, while above both
thresholds, the proximal sheet is III. A more detailed discussion of
sheet structure can be found in Ref. [22] and references therein.

11An additional “mirror” pole, less relevant to the bump region
by virtue of being more distant, is present on sheet II.

12One immediate consequence of this is that M−1 does not
exist at any energy for the Flatté amplitude. The small nonzero γ
values in our amplitude choice regulate the singular nature such
that M−1 does exist.

13The subduction into ½000�Aþ
1 and moving frame A1 irreps is

trivial for these purely S-wave amplitudes.
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amplitudes, the resulting finite-volume spectra are shown
in Fig. 2.

B. Toy-model transition amplitudes and finite-volume
matrix elements

Equation (8) relates the transition amplitudes Ha to the
scattering matrix M and Lorentz-invariant transition form
factors F aðQ2; sÞ. In order to proceed further with our toy-
modeling exercise, we must make explicit choices for the
current-virtuality (Q2) and scattering energy (s) depend-
ence of the form factors.
In principle, the form factors are subject to constraints,

for example those arising from unitarity applied to the
crossed channels. In this first investigation we will not
attempt to implement these constraints, which primarily
impact significantly timelike (negative) values of Q2,
instead focusing on values ofQ2 in or close to the spacelike
region. Our intention is to test the practicality of extracting
the form factors from finite-volume matrix elements, and
for this exercise their detailed analytical structure in Q2 is
not of primary interest.
With this discussion in mind, we can construct a range of

parametrizations for the form factors, similar to the ones
used to describe γπ → ππ in Refs. [33,34]. We discuss this
broad class of parametrization in Sec. IVA, where they will
be used in fits. Here we select one parametrization, which
will serve as our underlying model from which we generate
synthetic data:

F̃ aðQ2; sÞ ¼ m1

fð0Þa þ fð1Þa
s
m2

1

Q2 þm2
Q

; ð18Þ

where the fðiÞa coefficients are dimensionless. As previously
mentioned, s-channel unitarity applied to the transition

amplitudes, HaðsÞ, ensures that the form factors do not
have any singularities in s, justifying a polynomial-in-s
construction. The choice of a simple pole in Q2 generates a
typical monotonically decreasing behavior in the spacelike
region. It is worth noting that this parametrization does
respect one analytic property of the form factors, namely
that any singularities in Q2 be independent of the hadron-
hadron channel produced—this is manifest in the fact that
the pole location, m2

Q, does not carry a channel index.
We select parameter values fmQ¼3.5m1;f

ð0Þ
1 ¼12.25;

fð1Þ1 ¼0.1;fð0Þ2 ¼1;fð1Þ2 ¼0.4g, and with our model choices
forF andM in hand, we can construct transition amplitudes
according to Eq. (8). Given that the overall kinematic
prefactor is in general nonzero and finite, we can divide
the transition amplitude by this factor. For convenience, we
will define

Kμ ≡ ðPi þ PfÞμ þ
s −M2

Q2
ðPf − PiÞμ; ð19Þ

and using this the dynamical quantity that one hopes to
constrain is the scalar ratioHμ=Kμ. The energy dependence
of these amplitudes at a sample set of Q2 values is shown
in Fig. 3.
Note that the similarity of our Flatté-like amplitude, M,

to a factorizing rank-one form has an important impact on
the properties of the transition amplitude. For the Flatté
amplitude, the combination

X
b

F bMFl:
ba ¼ ðF⊺ · gÞgaD−1ðsÞ;

which in the two-channel case depends upon F 1, F 2 only
in the combination g1F 1 þ g2F 2, and as such one should

(a) (b)

FIG. 2. Orange curves indicate the finite volume spectra obtained by solving Eq. (11) for the (a) “cusp-like” and (b) “Flatté-like”
amplitudes described in the text. Each panel shows the spectrum for a different total momentum P ¼ 2π

L ½nxnynz�. Blue and red lines
show the spectrum of φ1φ1 and φ2φ2 states that would be present in a noninteracting theory. In (a) the points with error bars show a
synthetic spectrum on three volumes generated with statistical uncertainties, to be described in Sec. IV. In (b) the points without error
bars show the exact spectrum on a single volume to be considered in Sec. IV.
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not expect to be able to determine F 1, F 2 separately.
14 The

intuitive origin of this effect is that rather than the general
case of γχ producing either φ1φ1 or φ2φ2 which then
rescatter into each other, for the Flatté amplitude, in effect
γχ at any real energy can only produce “the resonance” [in
this case meaning the energy dependence D−1ðsÞ rather
than the complex-s pole]. This suggests an interpretation of
g1F 1 þ g2F 2 as an effective coupling gðγχ → ‘R’Þ. In a
more general amplitude, this exact factorization would hold
only at the complex resonance pole position, s ¼ sR, and in
principal it should be possible to determine F 1, F 2

separately for real energies for generic amplitudes.
Our approach to generating synthetic finite-volume

matrix-element data is to make use of Eq. (16). For our
toy-model amplitudes we can find the values of μ⋆0 0 and w0

for each finite-volume energy level shown in Fig. 2. Given
the parametrizations of F 1;2 described above, we can hence
construct matrix-element values for a number of discrete
kinematical points where the initial χ state has an allowed
lattice momentum,

Pμ
i ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ

�
2π

L

�
2

jnj2
s

;
2π

L
n

!
;

and where the final state is one of the finite-volume energy
eigenstates from Fig. 2.
In generating the possible kinematic points, we limit the

spatial momentum of the initial/final states and the current to
have jnj2 ≤ 4, and we restrict to a region of virtuality
−2.5m2

1 <Q2< 2.5m2
1, and final-state energy E⋆ < 3.5m1.

The resulting set of points is comparable to those which can
be obtained in contemporary lattice QCD calculations, while
still giving a broad range of kinematic constraint on the
desired transition amplitudes. Figure 4 illustrates the

kinematic coverage for the Flatté-like amplitude using only
a singlevolume ofL ¼ 5=m1—the cusp-like amplitude has a
comparable coverage.
In performing a global analysis of matrix elements over a

range of kinematic points, it is convenient to extract the
trivial kinematic factor present in Eq. (7). We achieve this
by defining

FLðQ2; sÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
−
2E⋆

n

μ⋆0 0

s
w⊺

0 · F ðQ2; sÞ; ð20Þ

and using this Eq. (16) becomes

jhEn;PfjJ μð0ÞjPiiLj ¼
1

L3
ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2En

p KμFL;

where the normalizations are such that in the limit of an
infinitesimally narrow resonance,FLðQ2; sÞ coincides with

(a) (b)

FIG. 3. Transition matrix elements for (a) cusp-like and (b) Flatté-like amplitudes using the form-factor model in Eq. (18). Plotted is
the ratio jHμ=Kμjρ, which removes the trivial kinematic factor, for production of channel 1 (blue) and channel 2 (red). The amplitudes
are plotted as functions of the final-state energy for two values of the current virtuality, Q2.

FIG. 4. The distribution of kinematically accessible points for
the Flatté-like amplitude for a single volume of L ¼ 5=m1. The
legend labels the total momentum of the final hadron-hadron state
in units of 2π=L. The channel thresholds are depicted by the
vertical dashed lines. The black points are retained after appli-
cation of kinematic cuts as described in the text.

14In this two-channel case, there is a single orthogonal
combination g2F 1 − g1F 2 which is inaccessible.
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the definition of the 1!J R form factor, treating R as a stable
particle.15

Figure 5 illustrates the behavior of μ⋆0 0 and w0 for the
Flatté-like and cusp-like models in a volume L ¼ 5=m1 for
the rest frame and one moving frame. For each finite-

volume energy level, we provide the value of
ffiffiffiffiffiffiffiffiffiffi
− 2E⋆

n
μ⋆
0
0

q
and

the relative sizes of ðw0Þ1 and ðw0Þ2.16 These illustrate two

important features of the coupled-channel finite-volume
formalism: First, that the magnitude of the finite-volume

scaling characterized by
ffiffiffiffiffiffiffiffiffiffi
− 2E⋆

n
μ⋆
0
0

q
is in general not close to

unity, and varies significantly level by level—this is just
one indication of serious systematic errors that can be
introduced if matrix elements of unstable hadrons are
studied ignoring effects due to the finite volume of the
lattice. Second, we see a very different behavior for w0

depending on the model. For the cusp-like model the
relative sizes of the components of the eigenvector,
ðw0Þ1; ðw0Þ2, change depending upon the energy level,
indicating that each discrete finite-volume energy is sensi-
tive to a different linear combination of F 1, F 2 evaluated at
that energy. On the other hand, for the Flatté-like

(a) (b)

(c) (d)

FIG. 5. Finite volume spectrum for L ¼ 5=m1 in two frames for (a) and (c) cusp-like, and (b) and (d) Flatté-like amplitudes. Shown

alongside each energy level are the corresponding values of
ffiffiffiffiffiffiffiffi
−2E⋆

n
μ⋆
0
0

q
(black numbers, in units ofm1), w0 (pie chart, blue for channel 1, red

for channel 2), and FL [as defined in Eq. (20), green points]. The pie charts shown indicate ðw0Þi
ðw0Þ1þðw0Þ2, and the discrete Q2 values

correspond to the set of kinematic points previously plotted in Fig. 4. The origin of the error bars shown for the FL points will be
described in Sec. IV.

15For the electromagnetic current, FL is dimensionless, as
expected for transition form factors coupling scalar initial/final
states.

16The figure shows pie charts constructed as ðw0Þi
ðw0Þ1þðw0Þ2 to show

the relative sizes of ðw0Þ1, ðw0Þ2, but in Eq. (20), the unit-
normalized vector (w⊺

0 · w0 ¼ 1) should be used.
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amplitude, the ratio ðw0Þ2
ðw0Þ1 appears to take essentially the

same value for every energy level, one which is extremely
close to the value of g2g1. This was to be expected, and simply
reflects the impact of the near-rank-one nature of the Flatté-
like amplitude on the finite-volume spectrum. In
Appendix B we show that an N-channel Flatté amplitude
will always have w0 ∝ g for every finite-volume energy
eigenstate. Our addition of small values for γ11, γ22 has a
negligible impact onw0 in the energy region we consider. A
consequence of this is to ensure that our previous expect-
ation, that only the combination g1F 1 þ g2F 2 should be
accessible, remains true in a finite volume.

IV. EXTRACTION OF INFINITE-VOLUME
TRANSITION MATRIX ELEMENTS FROM

SYNTHETIC FINITE-VOLUME DATA

With our toy models defined, we may generate synthetic
data with errors designed to resemble that which can be
obtained in contemporary lattice QCD calculations, and
with that data in hand we can attempt to reconstruct the s
andQ2 dependence of the input transition amplitudes using
parametrizations. We will consider two situations: the first
assumes (unrealistically) that we know the exact scattering
amplitude, such that only the form factors need to be
parametrized, while in the second, more realistic case, we
must also determine MðsÞ using finite-volume spectrum
data with errors.

A. Idealized situation

We explore the sensitivity of the finite-volume process to
the transition form factors by first assuming that the
scattering matrix MðsÞ is known exactly, but that we still
have only a limited number of finite-volume matrix
elements evaluated at final-state energies corresponding
to the discrete spectrum in a finite volume. We choose to
use only those kinematic points presented in Fig. 4, and
generate synthetic data for FL defined in Eq. (20) by
drawing from a Gaussian probability distribution such that
the points have a 5% error and a random fluctuation of the
mean value commensurate with that. For simplicity, the
values at different kinematics are treated as being
uncorrelated.
This procedure applied to the cusp-like amplitude leads

to values of FL at 80 kinematic points across 22 E⋆
n levels,

and for the Flatté-like amplitude, 92 values across 24 E⋆
n

levels. For comparison relatively recent lattice QCD cal-
culations of elastic πγ → ππ [34,35], each on a single
volume, featured 42 and 48 kinematic points respectively.
Considering that a coupled-channel system inevitably leads
to an increase in the density of finite-volume energy levels
and hence the number of accessible kinematic points, our
dataset appears to be a quite reasonable estimate of the
number of points that will be available in forthcoming
calculations.

Given these FL data, we minimize a χ2 assuming a
parametrization for the channel form factors F a¼1;2ðQ2; sÞ,
treating this form as essentially unknown. As such we
explore a range of possible parametrizations. In all cases, a
low-order polynomial in s is considered, consistent with a
lack of s-channel singularities (with one caveat, see below).
In Q2, polynomials, a simple pole and exponential forms
are used. The following form captures the variations:

F aðQ2;sÞ¼ bð0Þa þbð1Þa · sþbð2Þa · s2þcð1Þa ·Q2þcð2Þa ·Q4

αðm2
PþQ2þda · sÞþβeQ

2=r2 þ γ
;

ð21Þ
by selecting α, β, γ to be 1 or 0. The da · s term in the
denominator does allow for (Q2-dependent) poles in s,
which can be viewed as a very crude approximation to
having a left-hand cut in the transition amplitude.
A second class of parametrization, which might be

argued to be less model dependent, makes use of a mapping
to a variable z for which a polynomial form is expected to
converge rapidly [46–48]. z is defined as

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þQ2

p
−

ffiffiffiffi
tc

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc þQ2

p
þ ffiffiffiffi

tc
p ;

where tc ¼ ð2m1Þ2 is the position of the nearest hypotheti-
cal branch-point singularity in −Q2. The coefficients in the
polynomial of z are allowed to be low-order polynomials
in s,

F aðQ2; sÞ ¼
X
n¼0

anðsÞzn

where anðsÞ ¼
X
m¼0

aðnÞm sm;

where in practice we allow up to quadratic order in each
of z, s.
We retain all parametrizations found capable of describ-

ing the finite-volume matrix element data with a χ2=Ndof
below a nominal17 cutoff of 2.5. The results are shown in
Fig. 6 for the cusp-like amplitude and in Fig. 7 for the
Flatté-like amplitude.
Figure 6 for the cusp-like amplitude shows 11 successful

descriptions which demonstrate that we can reliably recon-
struct the transition process using just the limited set of
matrix-element values on a single volume. This was perhaps
to be expected given the relatively mild s-dependence and
simple monotonic falloff in Q2 of F̃ aðQ2; sÞ.
Figure 7 for the Flatté-like amplitude shows 13 successful

descriptions, and is superficially similar to the cusp-like case

17Given our relatively simple approach to placing uncorrelated
errors on our synthetic data, one should not assign too much
meaning to the particular value of this cutoff.
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in panels (c) and (d), which show an accurate reconstruction
of the transition amplitude and the form factor at the
resonance pole. On the other hand, panel (a) has the
individual channel form factors showing a high degree of
scatter over parametrizations, to the extent that we cannot
even make qualitative statements about their behavior. In fact
we anticipated this as a feature of the near-rank-one nature of
our Flatté-like amplitude, where only the combination
g1F 1 þ g2F 2 is well defined. This quantity is plotted in
panel (c) and we see that it has a drastically reduced scatter
over parametrizations compared with panel (a).
This exercise shows that, apart from a rather unique quirk

of the Flatté-like amplitude, the set of finite-volume matrix
elements we are considering is sufficient to reconstruct the
underlying transition amplitude, making only mild assump-
tions about the behavior of the form factors. However, this is
a deliberately idealized situation in that we have assumed the
scattering matrix MðsÞ to be known exactly, while in
practical lattice QCD calculations this is not the case, as
MðsÞ has to be determined by describing finite-volume
energy spectra extracted from lattice QCD computed

two-point correlation functions. We will now extend our
synthetic data study to more closely resemble this.

B. Practical situation

In this case we restrict our attention to the cusp-like
model, noting that the Flatté-like model gives similar
results modulo the peculiarities arising from its near-
rank-one nature.
In order to mimic a realistic lattice QCD spectrum, we

take the finite-volume spectrum coming from the solution
of the quantization condition on three volumes (m1L ¼ 3,
4, 5) in five frames. The exact spectra for our cusp-like
amplitude is shown as the orange curves in Fig. 2(a), and
for each discrete energy level on the three volumes we draw
from a Gaussian probability distribution such that the error
on the energy is at the 5% level with a commensurate
random fluctuation of the mean. The resulting uncorrelated
data are shown in Fig. 2(a) as the points with error bars.
This procedure provides us with 63 energy levels, and

the selected set of volumes and frames is rather similar to

(a) (b)

(c) (d)

FIG. 6. For the cusp-like amplitude, 11 successful descriptions of the FL synthetic data using the exact M. In all panels the dashed
black line shows the exact input function. (a) The infinite-volume form factors, F 1 (blue), F 2 (red), at two values of E⋆. (b) Sums of F a
weighted by the channel couplings ga used in Eq. (17). (c) The transition amplitudes. (d) The transition form factor of the resonance
obtained from the residue at the pole, real part in purple, imaginary part in green.
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the explicit lattice QCD calculations of coupled-channel
scattering presented in Refs. [17,18]. We have a compa-
rable number of energy levels to those calculations, while
our synthetic data errors are actually somewhat larger than
those found for most levels therein.
With these energy levels in hand, we proceed assuming

that we do not know the form of the underlying scattering
matrix MðsÞ, beyond that it satisfies coupled-channel
unitarity. We propose a range of parametrizations, and
by minimizing a χ2 for each one in an attempt to describe
the spectra, obtain a set of plausible amplitudes. Seven such
amplitudes are found describing the spectra with
χ2=Ndof < 1.5. They are all K-matrix forms—several use
Eq. (17) with some elements of the γ matrix set to zero,
others generalize Eq. (17) to use a polynomial in s in place
of γ, one uses two poles in s, and two make use of a form
where the elements of K are expressed as a ratio of low-
order polynomials.
Figure 8 shows the results of these amplitudes applied

to a description of the synthetic finite-volume spectra.
The bands (1σ variation) show the amplitude obtained
using the correct M parametrization (the one used to
generate the spectra) and hence this reflects the best
possible description of the scattering system given the
noise on the finite-volume energy levels. The curves show

the other parametrizations, where we observe that in the
region where there is constraint from energy levels, the
descriptions broadly agree, differing only at a level com-
parable to the statistical fluctuations on the correct ampli-
tude. Also shown are the pole singularity location and
couplings for each parametrization, which we observe to
also be in quite reasonable agreement. These observations
regarding the description of finite-volume spectra using a
range of coupled-channel parametrizations are quite similar
to those made in Ref. [14], and subsequently observed in
several explicit lattice QCD calculations [15–21].
With a set of plausible MðsÞ forms, we can now repeat

the analysis of the previous subsection, but this time
propagating the parametrization variation of MðsÞ into
the matrix element analysis. Practically, we generate the μ⋆0 0
and w0 in Eq. (16) for each of the plausible MðsÞ models,
and for each one consider in addition the variations of
F aðQ2; sÞ parametrization detailed previously. Doing so in
a description of the synthetic FL data we find 57 combi-
nations which have a χ2=Ndof below a nominal cutoff of
2.5. The resulting amplitudes are shown in Fig. 9 where we
observe, in comparison to Fig. 6, a somewhat larger spread
in F 1;2 curves, but still relatively little variation in the
transition amplitudes, H1;2, in the energy region where
there is data providing constraint. We suggest that this is

(a) (b)

(c) (d)

FIG. 7. As Fig. 6 but for the Flatté-like amplitude where there are 13 successful descriptions of the FL synthetic data.
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due to the fact that on the real energy axis the polynomial
behavior in s of the form factors can compensate for
erroneous slow s-dependence in M caused by use of an
imperfect parametrization. Given this hypothesis we might
expect the resonance form factor, evaluated at the pole in
the complex energy plane [Eq. (10)], to show a larger
degree of parametrization variation than H1;2, since the
s-dependence “compensation” described above is only
constrained on the real energy axis. Indeed this is what
we observe in Fig. 9(c), but the degree of fluctuation is
modest, and it is clear that the Q2 behavior of the dominant
real part is reproduced, as is the large hierarchy with respect
to the imaginary part.

Similar to the spectral analysis leading to MðsÞ, one
observes that the transition amplitudes are more poorly
constrained at higher energies. This can be easily under-
stood by revisiting the synthetic data for the spectrum
shown in Fig. 2(a), where one sees that for the L ¼ 5=m1

(a)

(b)

(c)

FIG. 8. Variation in the cusp-likeMwhen describing the finite-
volume spectra by a range of parametrizations as described in the
text. (a) Colored bands (1σ variation) show the amplitude
obtained using the correct M parametrization (the one used to
generate the spectra), while curves show the central values of six
other parametrizations. (b) Second sheet pole location. (c) Pole
couplings to φ1φ1 (blue) and φ2φ2 (red).

(a)

(b)

(c)

FIG. 9. (a) Form factors, (b) transition amplitudes, and (c) tran-
sition form factor of the resonance, shown for 57 descriptions of
the synthetic finite-volume spectra and finite-volume matrix
element data, as described in the text.
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volume, there is only a single energy level above
E⋆ ¼ 3.2m1 providing constraint.
The precise degree of scatter observed is a function of the

χ2 cutoff imposed on the descriptions of the finite-volume
spectra and the finite-volume matrix element data. As this is
sensitive to how one generates the noise on the synthetic
data, and since we chose a rather simple approach, we
selected a rather loose cutoff. More careful consideration of
the statistical behavior will be justified when real lattice
QCD is in hand. But given this slight caveat, this second
analysis does expose the importance of considering the
systematic uncertainty arising from the description of the
scattering matrix when performing calculations of transi-
tion matrix elements.

V. SUMMARY

In this work we have presented a first investigation of the
implementation of the formalism derived in Refs. [26,27] for

studying 1!J 2 transition processes where the final state can
be one of several open channels. We have rewritten the
generalized Lellouch-Lüscher matrix using an eigenvalue
decomposition, which provides a relatively simple conceptual
picture, where the finite-volume hadron-hadron states are
normalized by a factor featuring the slope of the eigenvalues,
while the channel admixture is provided by the eigenvectors.
We have explained how a Lorentz decomposition for

these transition amplitudes can be performed, parametriz-
ing the dynamics of such processes in terms of Lorentz
scalar functions that can be understood as energy-
dependent form factors. We have performed this decom-
position explicitly for the simplest nontrivial case, where
the current is a conserved Lorentz vector and the initial and
final states are scalars.
We built a pair of toy models each featuring a single

resonance coupled to two meson-meson scattering chan-
nels, and demonstrated that even with a realistically limited
number of matrix-element values with reasonable uncer-
tainties, one can extract the transition amplitudes, and also
place significant constraints on the resonance transition
form factors through analytic continuation of the ampli-
tudes into the complex energy plane.
Within this toy-model analysis we observed a systematic

uncertainty in the transition process which arises from
parametrization variation when describing the scattering
amplitude, constrained by the finite-volume spectrum. For
kinematical regions where there are significant numbers of
synthetic spectrum points and matrix elements, the sys-
tematic error in the amplitudes is comparable to the
statistical, while in kinematical regions where there are
fewer constraints, the systematic errors due to the para-
metrization choice is likely to dominate the error budget.
The toy-model examples considered here are expected to

be most immediately relevant for transition amplitude
studies involving the a0 resonance. In particular, two
phenomenologically interesting processes that could be

studied using these techniques are γω → ðηπ; KK̄Þ and
γϕ → ðηπ; KK̄Þ where the coupled system in the final state
features the a0 resonance in S-wave. In a previous lattice
QCD determination of the scattering amplitude, Ref. [18], a
result rather similar to the cusp-like model was found. By
studying the ω → a0 and ϕ → a0 resonance transition form
factors, identifying ω and ϕ as being predominantly of ll̄
and ss̄ construction respectively, one can begin to explore
the internal quark flavor structure of the a0.
Extensions of these ideas for baryonic systems like

γN → πN; ηN is feasible [27]. The Lorentz decomposition
and cubic subduction is more complex than the scenario
considered in this paper, but the extension is a straightfor-
ward application of known methods. The main practical
challenge for phenomenologically interesting reactions is
that three-hadron thresholds open in the energy region of
interest. For example, for physical values of the quark
masses, transitions coupling πN and ηN in the final state
will also couple to ππN. Three-body states present a new
class of challenges, but in recent years there has been
tremendous progress in the development of formalism
suitable for describing the spectrum of three particle systems
in a finite volume [49–57] which has resulted in the first
determination of a three-body scattering amplitude from
lattice QCD [58]. Most recently the first step towards
generalizing the Lellouch-Lüscher matrix for kinematics
where three-body systems can go on shell has been presented
[59]. As a result, it is not unreasonable to expect these ideas
to be extended in the upcoming years to accommodate
mixing between two- and three-particle states.
Finally, we comment that similar analysis techniques to

those proposed in this paper will be necessary in the
implementation of the already existing formalism for 2!J 2
reactions [40–42]. The finite-volume formalism, which has
already gone through rigorous formal testing [42,44], when
combined with an understanding of the analytic structure of
the subsequent amplitudes [37] will provide access to the
elastic form factors of narrow hadron resonances. Such
quantities provide a set of novel observables, not accessible
in experiment, which can inform our understanding of the
internal structure of unstable excited hadrons.
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APPENDIX A: PROPERTIES OF R̃n

The matrix whose eigenvalues and eigenvectors we need
in order to construct R̃n is FðE⋆;P;LÞ þM−1ðE⋆Þ. This
features FðE⋆;P;LÞ which houses “kinematic” finite-
volume functions and which is diagonal in channel space,
but in general has entries connecting different partial
waves. Its definition and the technology to subduce it into
irreducible representations of cubic symmetry can be found

in the Appendix of Ref. [22]. In short, the elements of the
matrix F subduced into irrep Λ are of the form

FΛ
ln;l0n0 ¼ iρðδll0δnn0 þ ifΛln;l0n0 Þ;

where the embedding label n is required in cases where l
subduces more than once into Λ.

1. Properties of F+M− 1 for a single partial wave

We can illustrate some properties of the matrix F þM−1 using the example of two coupled channels in a single partial
wave of angular momentum l. The phase space ρ and the finite-volume functions f are real above kinematic threshold for
each channel, and imaginary below. Hence for energies lying above both kinematic thresholds, assuming time-reversal
symmetry such that M is symmetric,

F þM−1 ¼
"
iρ1ð1þ if1Þ 0

0 iρ2ð1þ if2Þ

#
þ
"
−iρ1 þ ReðM−1Þ11 ReðM−1Þ12

ReðM−1Þ12 −iρ2 þ ReðM−1Þ22

#

¼
"
−ρ1f1 þ ReðM−1Þ11 ReðM−1Þ12

ReðM−1Þ12 −ρ1f1 þ ReðM−1Þ22

#
;

where use has been made of the unitarity condition, Eq. (3). Clearly F þM−1 is real and symmetric, ensuring that its
eigenvectors are orthogonal, w⊺

i · wj ¼ δij.

In practice we may have to evaluate R̃n at a finite-volume energy which lies above threshold for some channels, but
below the threshold for others. In our two-channel illustration we can consider the energy region above the threshold for
channel 1, but below the threshold for channel 2. In that case,

F þM−1 ¼
"
iρ1ð1þ if1Þ 0

0 iðiρ̂2Þð1þ iðif̂2ÞÞ

#
þ
"
−iρ1 þ ReðM−1Þ11 ReðM−1Þ12

ReðM−1Þ12 ReðM−1Þ22

#

¼
"
−ρ1f1 þ ReðM−1Þ11 ReðM−1Þ12

ReðM−1Þ12 ρ̂2ðf̂2 − 1Þ þ ReðM−1Þ22

#
;

where ρ̂2; f̂2 are real functions. It is clear that F þM−1 is still real and symmetric and its eigenvectors remain orthogonal.
An interesting case is when we remain above threshold for channel 1, but are far below threshold for channel 2, as here

we would expect the physics of scattering in channel 2 to become irrelevant. The property of the finite-volume functions
required here is that far below the threshold for channel a, fa → i, and hence Fa → 0. It follows that

F þM−1 →

"
−ρ1f1 þ ReðM−1Þ11 ReðM−1Þ12

ReðM−1Þ12 ReðM−1Þ22

#
;

and if we compute the determinant of this matrix we obtain

detðF þM−1Þ ¼ M11

detM

�
iρ1ð1þ if1Þ þ

1

M11

�
;

where we recognize the object in square brackets as the corresponding quantization condition if only channel 1 existed and
not channel 2. So, as expected, far below the threshold for channel 2, the finite-volume spectrum is controlled only by
channel 1. It is straightforward to show that in this case the relevant eigenvector at the finite-volume energy is

w0 ∝
� ðM−1Þ22
−ðM−1Þ12

�
;
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but because the combination M−1w0 appears in the
construction of R̃n, Eq. (15), and

M−1w0 ∝
� ðM−1Þ11 ðM−1Þ12
ðM−1Þ12 ðM−1Þ22

�� ðM−1Þ22
−ðM−1Þ12

�

¼
�
detM−1

0

�
;

we see that channel 2, as anticipated, decouples completely
from the problem.

2. Properties of F+M− 1 for multiple partial waves

While F þM−1 is always a symmetric matrix, it is not
guaranteed in general that all elements are real. An
illustration is provided by the case of a single scattering
channel in which the scattering particles have differing
masses and can scatter in two partial waves. Considering
the l ¼ 0ðSÞ and l ¼ 1ðPÞ partial waves in the ½110�A1

irrep, the relevant f-functions below the kinematic thresh-
old are shown in Fig. 26 of Ref. [22]. We observe that fSS
and fPP are imaginary and positive, while fSP is real and
positive. Since the phase space below threshold is imagi-
nary and positive, ρ ¼ iρ̂, and the diagonal M−1 is real
below threshold, we have

F þM−1 ¼
"
−ρ̂ð1 − f̂SSÞ þ 1

MS
−iρ̂fSP

−iρ̂fSP −ρ̂ð1 − f̂PPÞ þ 1
MP

#
;

which is symmetric but not real. The symmetry is sufficient to
ensure that the eigenvectors are orthogonal, w⊺

i · wj ¼ δij,
but note that we must unit normalize with the transpose and
not the Hermitian conjugate. In fact from the form of the
matrix having real diagonal elements and imaginary off-
diagonal elements, it is clear that the normalized eigenvector
having zero eigenvalue will take the form

w0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − a2
p

�
b

ia

�
;

where we see that the P-wave component is imaginary. We
might worry that this will cause a problem in Eq. (16) as this
should be a real-valued matrix element. In fact there is no
problembecauseof the required factor 1

q⋆ for aP-wave,which
below kinematic threshold provides a compensating factor
of i.
Within this illustrative example, we can also consider

how the presence of a deeply bound bound state would
manifest in a finite volume. Far below the kinematic
threshold, as can be seen in Fig. 26 of Ref. [22],
f̂SS → 1, f̂PP → 1, fSP → 0, such that FþM−1→M−1

and the dependence on the finite volume disappears. Since

M is diagonal in partial waves, the eigenvalues are trivially
1

MS
; 1
MP

with eigenvectors ð1
0
Þ, ð0

1
Þ respectively.

If we place a deeply bound pole in S-wave by writing

MSðE⋆Þ ¼ g2

m2
bs−E

⋆2, then the finite-volume energy will be at

E⋆
n ¼ mbs, and

R̃n ¼
�
−
2mbs

μ⋆0 0
�
M−1w0w

⊺
0M

−1

¼ ðm2
bs − E⋆2Þ2

g2

�
1 0

0 0

�
:

Then using Eq. (12) we have

hJ i ¼ 1

L3
ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2Ef

p m2
bs − E⋆2

g
HS;

and it is natural to writeHS ¼ gh
m2

bs−E
⋆2 where h is interpreted

as the coupling for ðγi → bsÞ so

hJ i ¼ 1

L3
ffiffiffiffiffiffiffi
2Ei

p ffiffiffiffiffiffiffiffi
2Ef

p h;

which is what we would expect for the transition, induced
by the current, from stable single particle i, to stable single

particle (bs), where Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

bs þ P2
f

q
.

3. Zero-crossing eigenvalues of F+M− 1
The finite-volume normalization factor appearing in

Eq. (16),
ffiffiffiffiffiffiffiffiffiffi
− 2E⋆

n
μ⋆
0
0

q
requires that the slope of the zero crossing

eigenvalue of F þM−1 at E⋆
n must be negative. Indeed as

shown in Fig. 10, which illustrates the case of the cusp-like
amplitude discussed in this paper, the zero crossing
eigenvalue of F þM−1 falls off monotonically on the
intervals between noninteracting energies and crosses zero

FIG. 10. The zero-crossing eigenvalue of F þM−1, evaluated
for the cusp-like amplitude, in the irrep ½002�A1 with L ¼ 6=m1.
The vertical dashed lines indicate the noninteracting energies for
this system. The other eigenvalue of this two-channel system
takes values of much larger magnitude than the scale of this plot.
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with a negative slope. This proves to be the case for every
amplitude we have considered, and is presumably a general
property.

4. R̃-matrix away from finite-volume energies

An approach which has been followed in past elastic
calculations [33–35] is to generalize the factorRn such that
it is a continuous function of energy. This can be seen in
Eqs. (19) and (20) of Ref. [34] where the variable rðEÞ
takes value 1 at the energies En satisfying the quantization
condition, but varies from 1 away from these energies. The
motivation for this choice was to be able to evaluate the
finite-volume normalization factor at the actual computed
lattice QCD energies. In fact, this is not a unique procedure,
and can lead to an uncontrolled systematic error, as we will
now illustrate for the more general case of coupled-channel
transition amplitudes.
Suppose we take the defining equation for R̃n,

R̃nðP;LÞ≡2En · lim
E→En

ðE−EnÞðF−1ðE⋆;P;LÞþMðE⋆ÞÞ−1;

and consider there to be a generalization,

R̃ðE;P; LÞ≡ 2En · ðE − EnÞðF−1ðE⋆;P;LÞ þMðE⋆ÞÞ−1;

valid in an energy region around each En, and which is
equal to R̃n when E ¼ En. We might consider this to be a
way to obtain the Lellouch-Lüscher factor at lattice QCD
energies, even when the scattering model in finite volume
does not exactly match those energies (Elat: ≠ En).
One immediate issue with this is that there is not a unique

matrix function with this property—for example,

R̃0 ≡ −2En · ðE − EnÞM−1ðF þM−1Þ−1M−1

is also equal to R̃n when E ¼ En. This follows from the
fact that at this energy,

R̃n ¼
2E⋆

n

λ⋆0 0
v0v

⊺
0

and because at this energy ½F−1 þM�v0 ¼ 0,

F−1v0¼−Mv0; v0 ¼−FMv0; v⊺0¼ v⊺0ð−MFÞ:

The last of these expressions makes it clear that there are an
infinite number of such variations on R̃ possible, generated
by left multiplying with arbitrary powers of ð−FMÞ or
right multiplying by powers of ð−MFÞ. Focusing on just
R̃ and R̃0 is sufficient to illustrate the point, that as shown
in Fig. 11, these matrices can differ significantly at energies
away from E ¼ En. In addition, the property that R̃n is
rank-one does not hold for R̃ at generic energy values away
from E ¼ En, and as such the conceptually vital property of

factorization which allows Eq. (16) to be extracted from
Eq. (12) is removed.
This observation has an impact in practical lattice QCD

calculations in the following way: in the approach we have
proposed in this paper, the Lellouch-Lüscher factor is only
ever evaluated at finite-volume energies, E⋆

n, which corre-
spond to solutions of the quantization condition for the
parametrization of M being used to describe the lattice
QCD spectrum data. In this case there is no ambiguity in
the definition, as only R̃n ever appears. Of course these
energies for the parametrized amplitude will typically not
be exactly equal to the computed lattice QCD energies,
rather as a set they form the best overall description of the
spectrum under a χ2 minimization. An apparently appeal-
ing alternative approach is to evaluate R̃ðEÞ at the lattice
QCD energies, but one sees immediately that in this case
the problem of selecting a particular representation of R̃
arises, and the value of the finite-volume correction
depends explicitly upon that choice. Furthermore, the
ambiguity in the choice of representation of R̃ affects
the propagation of uncertainty from the spectrum energies
into the transition amplitude H such that the uncertainties
of the observable quantity will depend (unreasonably) upon
which representation of R̃ is chosen.

APPENDIX B: FLATTÉ AMPLITUDE IN A
FINITE VOLUME

A scattering matrix of Flatté type in N-channels can be
written

MFl:ðE⋆Þ ¼ g
1

DðE⋆Þg
⊺;

where the real-valued couplings to each channel
appear in a vector g⊺ ¼ ðg1; g2;…; gNÞ and where
DðE⋆Þ ¼ m2 − E⋆2 − i

P
a g

2
aρaðE⋆Þ. Trivially we observe

this matrix has one nonzero eigenvalue g⊺·g
DðE⋆Þ with

FIG. 11. R̃ and R̃0 as defined in the text calculated with the
cusp-like amplitude in the ½000�A1 irrep in a volume L ¼ 5=m1.
The vertical lines indicate the locations of the finite-volume
spectrum, E⋆

n .

CONSTRAINING 1þ J → 2 COUPLED-CHANNEL … PHYS. REV. D 104, 054509 (2021)

054509-19



eigenvector g, and N − 1 zero eigenvalues with eigenvec-
tors orthogonal to g.
In a finite volume, the quantization condition

det½F þM−1� ¼ 0 can equivalently be written
det½MF þ 1� ¼ 0, and for the Flatté amplitude,

MFl:F þ 1 ¼ 1

DðE⋆Þ ðgg
⊺FðE⋆;P;LÞ þDðE⋆ÞÞ;

and hence

g⊺ðMFl:F þ 1Þg ¼ g⊺ · g
DðE⋆Þ ðg

⊺FðE⋆;P;LÞgþDðE⋆ÞÞ:

It follows that if we perform an orthogonal transformation on
the matrix MFl:F þ 1 using a basis of vectors given
by g and N − 1 vectors orthogonal to g (and each other),
we will obtain a matrix which is the identity apart
from one diagonal element which takes the value
g⊺·g
DðE⋆Þ ðg⊺FðE⋆;P;LÞgþDðE⋆ÞÞ. Upon taking the

determinant it is clear that the finite-volume spectrum is
given by solutions of

X
a

g2aFaaðE⋆;P;LÞ ¼ −DðE⋆Þ:

For the corresponding zero eigenvalue of F þM−1,
ðMF þ 1Þw0 ¼ 0 so

ðgg⊺F þDÞw0 ¼ 0;

and given the condition for a zero eigenvalue,
DðE⋆Þ ¼ −g⊺FðE⋆;P;LÞg, we have

ðgg⊺F − g⊺FgÞw0 ¼ 0;

which by inspection is solved by w0 ¼ g, manifestly inde-
pendent of the particular energy level under consideration.
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