
 

Higher-order hadronic-vacuum-polarization contribution to the muon
g− 2 from lattice QCD

B. Chakraborty,1 C. T. H. Davies,2 J. Koponen,3 G. P. Lepage,4 and R. S. Van de Water5,*

(Fermilab Lattice, HPQCD, and MILC Collaborations)

1Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
2SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom

3INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy
4Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA

5Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA

(Received 18 July 2018; published 9 November 2018)

We introduce a new method for calculating the Oðα3Þ hadronic-vacuum-polarization contribution to the
muon anomalous magnetic moment from ab initio lattice QCD. We first derive expressions suitable for

computing the higher-order contributions either from the renormalized vacuum polarization function Π̂ðq2Þ
or directly from the lattice vector-current correlator in Euclidean space. We then demonstrate the approach

using previously published results for the Taylor coefficients of Π̂ðq2Þ that were obtained on four-flavor

QCD gauge-field configurations with physical light-quark masses. We obtain 1010aHVP;HOμ ¼ −9.3ð1.3Þ in
agreement with, but with a larger uncertainty than, determinations from eþe− → hadrons data plus
dispersion relations.
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I. INTRODUCTION

The anomalous magnetic moment of the muon (gμ − 2)
is one of the most precisely determined observables in
particle physics, having been measured with an uncer-
tainty of 0.54 parts per million by BNL Experiment E821
[1]. Because of this high experimental precision, and
because the anomaly is mediated by quantum-mechanical
loops in the standard model, the muon gμ − 2 provides
stringent constraints on new heavy or weakly coupled
particles. The present standard model theory value lies
below the BNL E821 measurement by more than three
standard deviations [2]. To identify definitively whether
this deviation is due to new particles or forces, both the
theory and measurement errors must be improved. The
Muon gμ − 2 Experiment recently began running at
Fermilab and aims to reduce experimental error by a
factor of 4 [3]. In parallel, numerous efforts are underway
by the lattice-QCD community to tackle the standard

model hadronic contributions [4–13], which are the
largest source of theory uncertainty [2].
The largest source of uncertainty in the standard model

gμ − 2 is from the Oðα2Þ hadronic vacuum-polarization
(HVP) contribution [2], aHVPμ , which is shown in Fig. 1.1

This contribution can be obtained by combining exper-
imental measurements of electron-positron inclusive scat-
tering into hadrons with dispersion relations, and recent
determinations from this approach quote errors of 0.4–
0.6% [14–16]. The most precise calculation of the leading-
order aHVPμ to date from Ref. [8] employed four-flavor
lattice QCD with physical-mass pions to achieve a total
error of ∼2%. A significant source of systematic uncer-
tainty in this and all lattice-QCD results to date is from the
use of degenerate up- and down-quark masses; phenom-
enological estimates of this error are about 1% [17–19].
Recently, we calculated the strong-isospin-breaking cor-
rection to the leading-order, light-quark-connected contri-
bution to aHVPμ directly for the first time with the physical
values of mu and md, thereby removing this important
uncertainty contribution [20]. To match the target exper-
imental precision, however, the error on aHVPμ must be
further reduced to about 0.2%.
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The Oðα3Þ “higher-order” hadronic vacuum-polarization
contribution to gμ − 2 is roughly 1.5% that of the leading-
order HVP contribution [2] and therefore only needs to be
determined to around 10% to match the projected exper-
imental precision. Experimental determinations from com-
bining electron-positron inclusive scattering into hadrons
data with dispersion relations quote errors of 0.4–0.9%
[14,16,21]. Nevertheless, it is important to check these
phenomenological values with ab iniito QCD calculations.
Moreover, if the disagreement between theory and experi-
ment persists or grows with the new Muon gμ − 2 meas-
urement, a complete first-principles standard model theory
value will be essential for drawing conclusions about the
presence or nature of new physics.
In this paper, we calculate the higher-order HVP con-

tribution to aHVPμ for the first time in lattice QCD. To enable
us to focus on the methodology and error analysis, we use
previously published lattice-QCD results for the Taylor
coefficients of the renormalized vacuum polarization func-
tion (Π̂ðQ2Þ) from Refs. [8,22–24] to construct both Padé
[23] and Mellin-Barnes approximants [25] for Π̂ðQ2Þ.

Details on the lattice-QCD calculations can be found in
these works.
This paper is organized as follows. In Sec. II, we provide

theoretical background on the hadronic-vacuum-polariza-
tion contributions to gμ − 2, and discuss our method for
calculating the higher-order contributions. Next, in Sec. III
we present our analysis and error budget. Last, in Sec. IV,
we show our final result for aHVP;HOμ and compare with
nonlattice determinations. Appendix A provides expres-
sions suitable for computing the Oðα3Þ hadronic vacuum-
polarization contribution to aHVPμ directly from lattice-QCD
simulations, while App. B provides the definition of the
N ¼ 2þ 1þ 1 Mellin-Barnes approximant for the Π̂ðQ2Þ
used in this paper. For completeness, App. C gives the
values of the quark-connected Taylor coefficients
employed in our analysis.

II. THEORETICAL BACKGROUND

The leading hadronic contribution to the muon anoma-
lous magnetic moment arises from QCD corrections to the
internal photon propagator in the Oðα2Þ one-loop muon
vertex diagram, as shown in Fig. 1. At Oðα3Þ, higher-order
hadronic contributions arise from adding a second internal
photon line (as in Fig. 2(a)), adding a lepton loop to the
existing photon line (as in Figs. 2(a) and (b)), or adding a
second insertion of the hadronic vacuum polarization
bubble on the photon line (as in Fig. 2(c)). Both the
leading- and NLO HVP contributions can be obtained, with
the help of dispersion relations, from the energy scan of the
experimental “R-ratio” [14–16,21]:

RγðsÞ≡ σðeþe− → γ� → hadronsÞ
4παðsÞ2=ð3sÞ ; ð2:1Þ

(a)

(b) (c)

FIG. 2. Higher-order hadronic-vacuum-polarization contributions to gμ − 2. For contribution (a), diagrams that are reflections across
the vertical axis through the center and diagrams in which the tree and corrected photon propagators are interchanged are not shown.

FIG. 1. Leading hadronic contribution to the muon gμ − 2. The
shaded circle denotes all corrections to the internal photon
propagator from the vacuum polarization of u, d, s, c, and b
quarks in the leading one-loop muon vertex diagram.
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where s is the square of the center-of-mass energy. Table I
shows two recent evaluations of the leading contribution
and the individual higher-order contributions from dia-
grams (a), (b), and (c) by Jegerlehner [14] and Keshavarzi
et al. [16]. The higher-order contributions are roughly 1.5%
of the leading contribution, and do not contribute substan-
tially to the total error on the standard model theory value
for aμ.
Integrals for the Oðα3Þ contributions from diagrams

(a)–(c) have been presented in the literature in terms of
RγðsÞ [26,27]. These formulations, however, are not suited
for our use, particularly in the case of contribution (a). We
therefore provide in Appendix A new expressions for these
contributions that are amenable to use with lattice-QCD
data. For each contribution, we provide two formulations

to obtain aðiÞμ ; i ¼ fa; b; cg. First, we use the following
relationship between RγðsÞ and the renormalized vacuum
polarization function [28],

Π̂ðq2Þ ¼ q2

3

Z
∞

0

ds
RγðsÞ

sðsþ q2Þ ; ð2:2Þ

to derive expressions in terms of the renormalized vacuum
polarization function Π̂ðQ2Þ≡ ΠðQ2Þ − Πð0Þ.2 These
are the higher-order analogs of the original Blum formula
for the leading HVP contribution [29], and are given in
Eqs. (A1), (A6), and (A13). We also provide expressions
for the contributions from diagrams (a)–(c) directly in terms
of the Euclidean vector-current correlator at zero momen-
tum GðtÞ using the relationship between Π̂ðQ2Þ and GðtÞ
below [28]:

Π̂ðω2Þ≡ 4π2ðΠðω2Þ − Πð0ÞÞ ð2:3Þ

¼ 4π2

ω2

Z
∞

0

dtGðtÞ
�
ω2t2 − 4sin2

�
ωt
2

��
: ð2:4Þ

These are the higher-order analogs of the time-momentum
representation formulated by Bernecker and Meyer for the

leadingHVP contribution, and are given in Eqs. (A3), (A11),
and (A14).
The higher-order HVP contributions are sensitive to the

value of the renormalized vacuum polarization function at
larger values of Q2 than the leading-order contribution.
Figure 3, left, plots the integrands for the leading-order and
higher-order contributions as a function of Q2 using the
N ¼ 2þ 1þ 1 Mellin-Barnes approximant for Π̂ðQ2Þ
from Ref. [25]. The integrand for the leading-order con-
tribution is also shown for comparison. The integrand of
contribution (a) has large positive and negative contribu-
tions below Q2 ¼ m2

μ that cancel substantially. Because of
this, the large-Q2 region is numerically important, with

about 5% of the value of aðaÞμ coming from Q2 > 10 GeV2.
The integrand of contribution (b) peaks around Q2 ¼
m2

μ=2
ffiffiffi
2

p
, and more than 95% of the value of aðbÞμ comes

from Q2 < 0.5 GeV2. The integrand of contribution
(c) peaks around Q2 ¼ 2m2

μ. Because it is proportional
to Π̂ðQ2Þ2, it decreases less rapidly with Q2 than the other

contributions; about 10% of the value of aðcÞμ comes from
Q2 > 1 GeV2. Thus, it is important to employ approximants
of Π̂ðQ2Þ that accurately reproduce the large-Q2 behavior
when calculating the higher-order contributions to aHVPμ .
The higher-order HVP contributions are sensitive to the

value of the Euclidean-time correlator at similar times as
the leading-order contribution. Figure 3, right, plots the
integrands for the leading-order and higher-order contri-
butions (a) and (b) as a function of correlator time t using
GðtÞ obtained from the spectral representation of RγðsÞ.
(The kernel for contribution (c) depends upon the product
of the correlator at two times GðtÞGðt0Þ and thus the
integrand cannot be conveyed in a one-dimensional plot.)
The leading-order (higher-order) kernels are proportional to
t (t2) at small Euclidean times, and are proportional to 1=t
(approach a constant) at large times, and the integrands all
peak at around t ∼ 0.8–1.0 fm. The contributions to aHVPμ

from correlator data beyond 4 fm, which is approximately
half the temporal extent (or less) of lattices employed in
recent g − 2 calculations, are about 0.5%or less [8,11,12,31].

III. ANALYSIS

In this section, we calculate the Oðα3Þ contributions to
aHVPμ from the diagrams in Fig. 2. First, in Sec. III A, we
describe the approximants of the renormalized vacuum
function used to calculate the higher-order HVP contribu-
tions. Next, we calculate the quark-connected contribution
from light and heavy quarks in Sec. III B Last, in Sec. III C,
we estimate the size of the quark-disconnected contribution.

A. Approximants of Π̂ðQ2Þ
We calculate the higher-order contributions to aHVPμ

using both Padé and Mellin-Barnes approximants of the

TABLE I. Determinations of the Oðα2Þ (first column) and
Oðα3Þ hadronic-vacuum-polarization contributions (remaining
columns) to gμ − 2 from recent analysis of experimental data
for the eþe− → hadrons cross section by Jegerlehner [14] (top
row) and Keshavarzi et al. [16] (bottom row).

1010aHVPμ

Lowest order (a) (b) (c) Total HO

688.07(4.14) −20.613ð130Þ 10.349(63) 0.337(5) −9.927ð67Þ
693.27(2.46) −20.77ð8Þ 10.62(4) 0.34(1) −9.82ð4Þ

2We use q2 and Q2 to denote the squared four-momenta in
Minkowski and Euclidean space, respectively.
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renormalized vacuum polarization function in the QED
integrals given in Appendix A. Both approaches employ
the Taylor coefficientsΠi of Π̂ðQ2Þ expanded aboutQ2 ¼ 0:

Π̂ðQ2Þ ¼
X∞
i¼1

ΠiQ2i ð3:1Þ

As observed in Ref. [23], theΠi are proportional to the time-
moments of the vector-current correlation function, and can
be computed with small statistical errors in lattice QCD.
Further, with both the Padé and Mellin-Barnes approches,
only the first few Taylor coefficients are needed to obtain the
leading-orderHVPwith a sub-percent systematic uncertainty
associated with the parameterization of Π̂ðQ2Þ [8,25].
Following the method introduced by the HPQCD

Collaboration [23], we construct the ½n;m� Padé approx-
imants for the renormalized hadronic vacuum polarization
function from the Πi’s. The true result for Π̂ðQ2Þ is
guaranteed to lie between the ½n; n� and ½n; n − 1� Padé
approximants. For the leading-order HVP contribution, the
Padé approximants provide a sufficiently accurate approxi-
mation of Π̂ðQ2Þ both at low and high Q2 that the
associated uncertainty in aHVPμ is below 1% by n ¼ 2

[8]. Unfortunately, however, one cannot use the ½n; n − 1�
approximants Π̂ðQ2Þ to calculate the contributions to aHVPμ

from diagrams (a) and (c). This is because Π̂½n;n−1�ðQ2Þ ∼
Q2 as Q2 → ∞, making the integrals diverge in this limit.
The integrals using the ½n; n� Padé approximants are well
behaved, but another approach is needed to quantify the
uncertainty in the higher-order contributions to aHVPμ from
the parameterization of Π̂ðQ2Þ.

Recently de Rafael and Charles et al. introduced the
method of “Mellin-Barnes approximants” to obtain aHVPμ

from the Taylor coefficients of Π̂ðQ2Þ [25,32]. This
approach uses the fact that the hadronic spectral function
ImΠ̂ðq2Þ=π in QCD is positive and approaches a constant
as Q2 → ∞ to identify a class of functions that can be
employed as successive approximants to the Mellin trans-
form MðsÞ of the hadronic spectral function. Given N
moments of the Mellin transform Mð−nÞ, the Mellin-
Barnes approximant MN smoothly interpolates between
these known values, and approaches the asymptotic value
of MðsÞ from leading-order perturbative QCD as s → ∞.
The Mellin moments are trivially related to the Taylor
coefficients of Π̂ðQ2Þ as

Mð−nÞ ¼ 4παð−1Þnð4m2
πÞðnþ1ÞΠnþ1; ð3:2Þ

The first term in the moment expansion of the hadronic
spectral function provides a rigorous upper bound on
Π̂ðQ2Þ and aHVPμ [33]. In practice, the N ¼ 1 approximant
obtained using Mð0Þ from experimental Rγ data yields a
value for the leading-order HVP contribution that already
agrees with the full result to better than 1% [25].
Figure 4 plots the Padé and Mellin-Barnes approximants

for Π̂ðQ2Þ calculated from the first four moments of RγðsÞ
[16], and compares them with the exact result obtained
from direct integration of RγðsÞ. The Mellin-Barnes
approximants are closer to the exact ΠðQ2Þ than the
Padé s because they are constrained to satisfy the asymp-
totic perturbative-QCD behavior asQ2 → ∞. However, the
rate at which the Mellin-Barnes approximants approach the
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FIG. 3. Left: integrands of Eqs. (A1) (blue dots), (A6) (green dashes), and (A13) (purple dot-dashes) obtained from theN ¼ 2þ 1þ 1

Mellin-Barnes approximant for Π̂ðQ2Þ given in Ref. [25], which employs preliminary moments of RγðsÞ provided by Keshavarzi et al.
[16]. The leading-order integrand is also shown as a solid magenta line for comparison. Right: integrands of Eqs. (A3) (blue squares) and
(A11) (green diamonds) obtained from the parameterization of RγðsÞ provided by Jegerlehner in his public alphaQED FORTRAN
package [30]. The leading-order integrand is also shown as magenta circles for comparison.
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true Π̂ðQ2Þ depends upon the specific functional form
employed at each order. In particular, the difference
between successive approximants is not guaranteed to
decrease with increasing N.
As can be seen in Fig. 4, for the realistic test case of the

renormalized vacuum polarization function from experi-
mental RγðsÞ data, the Padé and Mellin-Barnes approaches
yield almost identical results at small Q2. For the numeri-
cally important regionQ2 ≤ 0.1 GeV2 shown in Fig. 3, left,
the [2,2] Padé and 2þ 1þ 1 Mellin-Barnes approximants
agree with each other—and with the exact result—to better
than 0.15%, which is within their statistical errors. Further,
when the approximants begin to diverge significantly at
largerQ2 values, the Mellin-Barnes approximants approach
the exact Π̂ðQ2Þ from above, while the ½n; n� Padé
approximants approach it from below. (The former is an
empirical observation for the hadronic vacuum polarization
in QCD [25], and not a generic property of Mellin-Barnes
approximants.) Consequently, the estimates of both the
leading- and higher-order aHVPμ obtained from the Mellin-
Barnes and Padé approximants bracket the exact results.
Therefore, for our numerical analysis in the following
section, we take the average of the Oðα3Þ contributions to
aHVPμ obtained from the 2þ 1þ 1Mellin-Barnes and [2, 2]
Padé approximants for the central value, with error given by
half the difference. This simple estimate is sufficiently
accurate for illustrating our method for calculating the
higher-order hadronic-vacuum-polarization contribution to
the muon gμ − 2 from lattice QCD.

B. Quark-connected contribution

We calculate the Oðα3Þ quark-connected contribution to
aHVPμ using the Taylor coefficients of Π̂ðQ2Þ obtained by the
HPQCD Collaboration in Refs. [8,22–24]. The u, d, and
s-quark Taylor coefficients were calculated on the MILC
Collaboration’s QCD four-flavor gauge-field configura-
tions with highly-improved staggered (HISQ) sea and
valence quarks [35,36]. The b-quark Taylor coefficients
were also calculated on the HISQ ensembles, but with a
radiatively-improved nonrelativistic QCD action for the b
quarks [37,38]. The c-quark Taylor coefficients were
calculated with HISQ valence quarks, but on MILC’s
three-flavor ensembles with asqtad sea quarks [39–41].
The MILC ensembles are isospin-symmetric, i.e., the up
and down sea-quark masses are degenerate. The light-quark
mass varies fromml ¼ ms=5 to Nature’s valueml ∼ms=27,
making a chiral extrapolation unnecessary, and the strange-
(and charm-) sea-quark masses are fixed to close to their
physical values.
We employ light- and strange-quark Taylor coefficients

on two ensembles with physical light-quark masses and
lattice spacings a ≈ 0.15 fm and 0.12 fm from Refs. [8,23].
Table IV gives the light- and strange-quark connected
Taylor coefficients used in our analysis. The values of

ΠðudÞ
i include corrections for the finite lattice spatial volume

and nonzero lattice spacing computed at one-pion-loop
order within scalar QED [18]. We employ charm- and
bottom-quark Taylor coefficients from Refs. [22,24], which

provide values of ΠðcÞ
i and ΠðbÞ

i at the physical light-quark
mass and in the continuum. For convenience, Table V gives
the heavy-quark connected Taylor coefficients used in our
analysis.
To calculate the connected contribution to aðHOÞμ , we first

sum the individual Taylor coefficients ΠðudÞ
i , ΠðsÞ

i , ΠðcÞ
i , and

ΠðbÞ
i , and then use the total to construct the Padé and

Mellin-Barnes approximants for Π̂ðQ2Þ. Beyond N ¼ 2,
the functional forms of the Mellin-Barnes approximants are
not unique; Appendix B gives the form of Π̂2þ1þ1ðQ2Þ used
here. We then use the resulting approximants for Π̂ðQ2Þ in
the QED integrals, Eqs. (A1), (A6), and (A13), to obtain the
quark-connected contributions to aHVPμ from the diagrams
in Fig. 2. On each ensemble, and for each contribution
(a)–(c), we average the values from the Padé and Mellin-
Barnes approximants, and take half the difference between
the two as the systematic uncertainty from the parameter-
ization of Π̂ðQ2Þ. Table II gives the results on the two
ensembles employed in our analysis.
Figure 5 shows the total Oðα3Þ quark-connected con-

tribution to aHVPμ —obtained by summing contributions
(a)–(c) in the rows labeled “average” in Table II—versus
squared lattice spacing. The data do not display any
significant lattice-spacing dependence, so we fit them to
constant to obtain the continuum-limit value of aHVP;HOμ .

0 0.2 0.4 0.6 0.8 1

Q
2
 (GeV

2
)

0

1

2

3

4
-Π

(Q
2 ) 

x 
10

3

exact
[1,0]  Padé
[1,1]  Padé
[2,1]  Padé
[2,2]  Padé
N=1 M-B
N=2 M-B
N=2+1 M-B
N=2+1+1 M-B

FIG. 4. First four Padé approximants (“[1,0]–[2,2] Padé”) and
Mellin-Barnes approximants (“N ¼ 1 − N ¼ 2þ 1þ 1 M-B”)
of the renormalized vacuum polarization function calculated
from the moments of RγðsÞ analysis of Keshavarzi et al. [16].
The exact result is shown as a solid black line for
comparison [34].
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We also consider an alternative linear extrapolation in a2

to a function of the form

aHVP;HOμ

�
1þ ca2

ðaΛÞ2
π2

�
; ð3:3Þ

with Λ ¼ 500 GeV a typical QCD scale. The linear-fit
result for ca2 is consistent with zero, and for aHVP;HOμ is
close to the value from the constant fit. We therefore
conclude that discretization effects are smaller than the fit
error on aHVP;HOμ , and do not assign a separate systematic
error from this source.
The HPQCD Collaboration reduced the statistical errors

in the light-quark connected Taylor coefficients in Ref. [8]
by using fit results for the vector-current correlators for
times greater than 1.5 fm. Although the lowest-energy
states in these correlators are I ¼ 1ππ pairs, no evidence of
such states was seen in the two-point fits, and the ground-
state energies obtained are consistent with the experimental
ρ0 meson mass. The HPQCD Collaboration estimates the
contribution to the leading-order light-quark connected
contribution to aHVPμ from the omitted ππ states within
scalar QED to be 3 × 10−10. We expect ππ contributions to
be similar in size for the dominant higher-order diagrams
(a) and (b) because the integrands in Eqs. (A1) and (A6)
are proportional to Π̂ðQ2Þ, just as for the leading-order
hadronic vacuum polarization. Hence, we take the same
percentage error of 0.5% as the uncertainty in aHVP;HOμ from
ππ states below the ρ pole.
The four-flavor gauge-field ensembles employed in our

analysis have degenerate up and down sea-quark masses.
Recently, the Fermilab Lattice, HPQCD, and MILC
Collaborations calculated the strong-isospin-breaking cor-
rection to aHVPμ for the first timewith physical valuesmu and
md [20]. They obtain þ1.5ð7Þ% for the relative correction
that should be applied to the leading-order light-quark
connected contribution, in agreement with phenomenologi-
cal estimates [17–19].Hereweuseþ1.5ð1.0Þ% to correct the

continuum-limit value ofaHVP;HOμ fromFig. 5,wherewehave
taken a larger uncertainty of 1% on the relative correction to
account for the fact that the shift was not calculated directly
for the higher-order hadronic vacuum polarization.
TheQCDgauge-field ensembles employed in our analysis

do not include effects due to the quarks’ nonzero electro-
magnetic charges in Nature. The dominant QED effect in
aHVPμ arises from producing a hadron polarization bubble
consisting of a π0-γ pair. Following Hagiwara et al. [42] we
calculate the contribution toaHVP;HOμ fromeþe− → π0γ in the
region 0.6 <

ffiffiffi
s

p
< 1.03 GeV using the latest experimental

data for this channel from the SND Experiment [43]. We
obtain

ΔaðHO;π
0γÞ

μ ¼ −0.056ð8Þ × 10−10; ð3:4Þ
which is approximately 0.6% of the total quark connected
contribution. We therefore take 1% as the error from the
omission of electromagnetism in the simulations.
Finally, as discussed in Appendix A, in order to express

higher-order contribution 2(a) in Fig. 1 in terms of the
renormalized vacuum polarization function, we must drop
terms in the original integrand [26,27] that are proportional
to ðm2

μ=sÞnlog2ðm2
μ=sÞ. We have calculated the numerical

size of these terms from experimental RγðsÞ data [30] and,
although they are small, they are not negligible given the
size of our statistical and other systematic uncertainties. To
account for the omission of the “log2” in our calculation of
contribution 2(a) via Eq. (A1), we include an additional
systematic uncertainty of 1 × 10−10, which is almost twice
the size of these terms calculated from RγðsÞ data.
Table III gives the complete error budget for the

Oðα3Þ quark-connected contribution to aHVPμ . The largest

0 0.005 0.01 0.015 0.02 0.025

a
2
 (fm

2
)

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

10
10

 a
μH

V
P,

H
O

 (
co

nn
.)

constant
linear

FIG. 5. Continuum extrapolation of Oðα3Þ quark-connected
contribution to aHVPμ . The filled cyan band shows the result of our
preferred constant fit, while the solid blue lines show the result of
a linear fit to Eq. (3.3) with the slope ca2 constrained with a
Gaussian prior 0� 1.

TABLE II. Oðα3Þ hadronic-vacuum-polarization contributions
to gμ − 2 on two physical-mass HISQ ensembles obtained using
[2,2] Padé and N ¼ 2þ 1þ 1 Mellin-Barnes approximants for
Π̂ðQ2Þ. The uncertainties are from the errors on the Taylor
coefficients and, for the averages, from the use of approximants
for Π̂ðQ2Þ.

1010aHO;connμ

≈a (fm) Π̂ approx (a) (b) (c)

0.15 Padé −19.24ð32Þ 10.34(10) 0.3186(79)
M-B −20.82ð35Þ 10.40(19) 0.339(12)

Average −20.03ð82Þ 10.37(11) 0.329(12)

0.12 Padé −19.05ð29Þ 10.176(87) 0.3111(69)
M-B −20.58ð27Þ 10.23(15) 0.3307(89)

Average −19.82ð79Þ 10.204(91) 0.321(11)
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uncertainties are associated with the omitted “log2” terms
in contribution 2(a) and from the use of Padé and Mellin-
Barnes approximants for the renormalized vacuum polari-
zation function. Although the estimated uncertainties from
the omission of QED and isospin breaking in the gauge-
field configurations, and from low-lying ππ states in the
vector-current correlators, are based on calculations for the
leading-order vacuum polarization, they are about four
times smaller, and do not contribute substantially to the
total error. We obtain for the quark-connected contribution
to aHVP;HOμ with all systematics included

1010aðHO; connÞμ ¼ −9.45ð18Þlatð55ÞΠ̂−approxð1.0Þlog2 ; ð3:5Þ

where “lat.” denotes the sum of contributions associated
with the underlying lattice-QCD calculations of the Taylor
coefficients.

C. Quark-disconnected contribution

Although several lattice-QCD calculations of the lead-
ing-order quark-disconnected contribution to aHVPμ are
available [7,12,44], these publications do not provide the
Taylor coefficients of the renormalized vacuum polariza-
tion function.3 We therefore estimate the values of the
quark-disconnected Taylor coefficients assuming ground-
state dominance of the vector-current correlators as in
Ref. [44]. Using Eq. (11) of that work,

Q2ΠðdiscÞ
i

Q2ΠðconnÞ
i

¼ 1

10

�
m2jþ2

ρ f2ω
m2jþ2

ω f2ρ
− 1

�
; ð3:6Þ

with fMρ;Mωg ¼ f0.77526ð25Þ; 0.78265ð12Þg GeV from
the PDG [45] and ffρ; fωg ¼ f0.21ð1Þ; 0.20ð1Þg GeV
yields

Q2ΠðdiscÞ
1 =Q2ΠðconnÞ

1 ¼ −0.013ð12Þ; ð3:7Þ

and similar results for the higher Taylor coefficients. Both
the leading Oðα2Þ contribution to aHVPμ and the domiant
Oðα3Þ contributions from diagrams (a) and (b) are propor-
tional to the Taylor coefficient Π1 at lowest order in the
small-Q2 expansion. Further, the dominant quark-
connected contribution is from the light up and down
quarks. We therefore take −1.3ð1.2Þ% as the correction and
uncertainty due to the omission of quark-disconnected
contributions in our analysis. We note that our estimate
in Eq (3.7) is consistent with recent lattice-QCD calcu-
lations of the leading-order quark-disconnected contribu-
tion with physical-mass pions from the BMW [12] and
RBC/UKQCD Collaborations [7], who obtain for the ratio

aðLO;discÞμ =aðLO;u=d connÞμ approximately −2.0% and −1.5%,
respectively.

IV. RESULT AND OUTLOOK

The Oðα3EMÞ hadronic-vacuum polarization contribution
is a necessary ingredient in an ab initio QCD determination
of the hadronic contributions to gμ − 2. Towards this aim,
we have introduced a new method for calculating the
higher-order HVP contribution from lattice QCD, deriving
formulas in terms of either the Euclidean vector-current
correlator or the renormalized vacuum polarization func-
tion. These are given in Appendix A, and are the key results
of this work.
We demonstrate the approach using the Taylor coeffi-

cents of the renormalized vacuum polarization function at
the physical light-quark mass and two lattice spacings from
Ref. [8]. The total higher-order hadronic vacuum polari-
zation contribution to gμ − 2 is obtained by adding our
calculation of the quark-connected contribution, Eq. (3.5),
to our estimate of the quark-disconnected contribution,
Eq. (3.7). Our final result is

1010aHVP;HOμ ¼ −9.3ð0.6Þconnð0.1Þdiscð1.0Þlog2 ; ð4:1Þ

where the first two errors are from the quark-connected and
quark-disconnected contributions, respectively. We list the
error from omission of the “log2” terms separately, since it
does not arise from the use of lattice QCD to obtain the
renormalized vacuum polarization function. This error
could be eliminated with a different trick for expressing
contribution (a) in terms of Π̂ðQ2Þ than the one employed
here. Equation (4.1) is the first lattice-QCD determination
of the higher-order hadronic vacuum polarization contri-
bution to gμ − 2. It is consistent with determinations from
eþe− → hadrons data [14,16,21], but with an approxi-
mately ten times larger error.
A significant—and difficult to quantify—uncertainty in

Eq. (4.1) stems from our use of approximants for the
renormalized vacuum polarization function, which we
employ so that we can exploit already-published values
of the Taylor coefficients. Our estimated error covers the

TABLE III. Error budget for Oðα3Þ quark-connected contribu-
tion to gμ − 2.

aðHO;udÞμ (%)

Omission of log2 terms 10.6
Padé approximants 5.8
Isospin-breaking and electromagnetism 1.4
Taylor coefficients 1.2
ππ states (t�) 0.5

Total 12.2

3In Ref. [10], the BMW Collaboration provides the first two
Taylor coefficients ΠðdiscÞ

1 and ΠðdiscÞ
2 , which are not sufficient

to construct the [2,2] Padé and N ¼ 2þ 1þ 1 Mellin-Barnes
approximants.
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results for aHVP;HOμ from both the Padé and Mellin-Barnes
approaches; this is based on the empirical observation that
the exact result for Π̂ðQ2Þ obtained from RγðsÞ lies between
the two types of approximants. Fortunately, this error can
be eliminated by calculating the Oðα3EMÞ contributions
directly from the lattice vector-current correlators. We will
update our initial results using this theoretically cleaner
approach, and also analyze ensembles with finer lattice
spacings, in a future work.
Confirmation from independent lattice-QCD calcula-

tions is also essential before any results can be combined
with experimental g − 2 measurements to test the standard
model. The tools developed in this paper will enable others
to provide this.
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APPENDIX A: FORMULAS FOR HIGHER-ORDER
HVP CONTRIBUTIONS TO gμ − 2

Here we present integrals that can be used to calculate
the higher-order hadronic-vacuum-polarization contribu-
tions to gμ − 2 from lattice-QCD data. Our starting point

is the expressions derived by Krause in Ref. [27] for the
contributions from diagrams (a)–(c) in Fig. 2 in terms of
RγðsÞ [Eq. (2.1)]. Contributions (b) and (c) can be expressed
as the 1-loop QED integral for the lowest-order contribution
from Blum [29] with a simple replacement of Π̂ðQ2Þ,
whereas contribution (a) is a nontrivial result of this work.

1. Contribution (a)

A complete analytical result for the contribution from the
diagrams in (a) of Fig. 2 was first presented by Barbieri and
Remiddi in Ref. [26]; in this work they also provide an
expansion to first order in m2

μ=s. Later, in Ref. [27], Krause
derived an asymptotic expansion for the kernel function in
terms of the parameter r ¼ m2

μ=s, which is more amenable
to numerical integration. We start with the asymptotic
expression given in Eq. (7) of Krause, which contains
powers and logarithms of r.
Equation (7) does not have the form needed to exploit the

relationship between RγðsÞ and the renormalized vacuum
polarization function in Eq. (2.2). As suggested by Groote
et al. [46], however, one can exploit generating integral
representations of rn and rn logðrÞ to express the pure
polynomial and log terms in the asymptotic expansion of
the kernel function in terms of Π̂. Using Eqs. (39)–(42) of
that work, and discarding terms proportional to log2ðrÞ
yields the following integral expression for contribution (a)
in terms of the renormalized vacuum polarization function:

aðaÞμ ¼
�
α

π

�
3
Z

1

0

dx

�
ða0 þ a1xþ a2x2 þ a3x3ÞΠ̂

�
m2

μ

x

�

þ ðb0 þ b1xþ b2x2 þ b3x3Þ
x

Π̂ðm2
μxÞ

�
; ðA1Þ

with

a0 ¼ −
23

18
; b0 ¼

61791297 − 7818200π2

1200
;

a1 ¼
367

108
; b1 ¼ −

724746871

1200
þ 152879π2

2
;

a2 ¼ −
10079

1800
; b2 ¼

5364282053

3600
−
377219π2

2
;

a3 ¼
6517

900
; b3 ¼ −

70906297

72
þ 373975π2

3
: ðA2Þ

Checking the size of the omitted logarithmic terms using
experimental data for RγðsÞ [30], we find that they are
below 1 × 10−10.
Alternatively, contribution (a) is given in terms of the

Euclidean zero-momentum correlator by

aðaÞμ ¼ 4α3

π

Z
∞

0

dtt2GðtÞK̃ðaÞ
l ðtÞ; ðA3Þ
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with

K̃ðaÞ
l ðtÞ ¼ 1

t2

Z
1

0

dx

�
1

ω2

X3
i¼0

aixi
�
ω2t2 − 4sin2

�
ωt
2

��

þ 1

ω02x

X3
i¼0

bixi
�
ω02t2 − 4sin2

�
ω0t
2

���
; ðA4Þ

and

ω2 ¼ m2
μ

x
; ω02 ¼ m2

μx: ðA5Þ

The factors of t2 and 1=t2 in Eqs. (A3) and (A4),
respectively, are chosen to make the kernel function
K̃ðaÞðtÞ dimensionless. With these formulas, contribution
(a) can be obtained from a simple weighted sum of GðtÞ as
in the leading-order case.

2. Contribution (b)

We start from Eq. (9) of Ref. [27] and make the change
of variables Q2 ¼ m2

μx2=ð1 − xÞ. The contribution from
diagram (b) in Fig. 2 is then given in terms of the
renormalized vacuum polarization function by

aðbÞμ ¼ 8π2
�
α

π

�
3
Z

∞

0

dQ2KEðQ2ÞΠ̂ðQ2ÞFlðm2
e; Q2Þ;

ðA6Þ

where the lepton loop function is

Flðm2
e; xÞ ¼ −

8

9
þ β3

3
−
�
1

2
−
β2

6

�
β log

�
β − 1

β þ 1

�
; ðA7Þ

β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�
m2

e

Q2

�s
: ðA8Þ

and KEðQ2Þ is the standard kernel function introduced by
Blum in Ref. [29]:

KEðQ2Þ ¼ 1

m2
μ
· ŝ · ZðŝÞ3 · 1 − ŝZðŝÞ

1þ ŝZðŝÞ2 ; ðA9Þ

ZðŝÞ ¼ −
ŝ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 þ 4ŝ

p

2ŝ
; ŝ ¼ Q2

m2
μ
: ðA10Þ

Thus, the expression in Eq. (A6) is simply the leading-
order QED integral with the replacement Π̂ðQ2Þ → 8πα×
Π̂ðQ2ÞFlðm2

e; Q2Þ. The analogous contribution from the τ
lepton is negligible because it is suppressed by m2

μ=m2
τ.

Contribution (b) can also be obtained from a weighted
sum of the Euclidean zero-momentum correlator as in the
leading-order case:

aðbÞμ ðmlÞ ¼
8α3

π

Z
∞

0

dtt2GðtÞK̃ðbÞ
l ðt;mlÞ; ðA11Þ

with the dimensionless kernel

K̃ðbÞ
l ðt;mlÞ ¼

1

t2

Z
∞

0

dω
4π2KEðω2Þ

ω2

�
ω2t2 − 4sin2

�
ωt
2

��
× Flðm2

l;ω
2Þ: ðA12Þ

3. Contribution (c)

We start from Eq. (13) of Ref. [27]. Diagram (c) in Fig. 2
contains two hadronic insertions, and thus the contribution
depends upon the square of the renormalized vacuum
polarization function:

aðcÞμ ¼ 4π2
�
α

π

�
3
Z

∞

0

dQ2KEðQ2ÞΠ̂ðQ2Þ2: ðA13Þ

In this case, the expression in Eq. (A13) has the form of the
1-loop QED integral, but with the replacement Π̂ðQ2Þ →
4πα × Π̂ðQ2Þ2.
When contribution (c) is expressed in terms of the

Euclidean zero-momentum correlator, the two powers of
the vacuum polarization function above yield two integrals
over times t and t0:

aðcÞμ ¼ 16πα3
Z

∞

0

dtt2GðtÞ
Z

∞

0

dt0t02Gðt0ÞK̃ðcÞðt; t0Þ;

ðA14Þ

with the dimensionless kernel

K̃ðcÞðt; t0Þ ¼ 1

t2t02

Z
∞

0

dω
4π2KEðω2Þ

ω2

�
ω2t2 − sin2

�
ωt
2

��

×

�
ω2t02 − sin2

�
ωt0

2

��
: ðA15Þ

This formulation is slower to implement numerically than
the analogous formulas for contributions (a) and (b) due to
the double integral.

APPENDIX B: DEFINITION OF Π̂2 + 1 + 1ðQ2Þ
In this paper we employ a slightly different form for the

N ¼ 2þ 1þ 1 approximant for the Mellin transform of
the hadronic spectral function than of the one given in
Ref. [25], using
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M2þ1þ1ðsÞ ¼
α
P

fQ
2
f

3π

�
1

1 − s
Γða − sÞΓðb − 1Þ
Γða − 1ÞΓðb − sÞ þ Γð1 − sÞΓðc − 1Þ

Γðc − sÞ þ Γð1 − sÞΓðd − 1Þ
Γðd − sÞ

�
; ðB1Þ

with Qf the charge of each quark flavor in units of e. We obtain the coefficients a–d by solving the matching conditions

M2þ1þ1ð−nÞ ¼ MLQCDð−nÞ; n ¼ f0; 1; 2; 3g; ðB2Þ

where MLQCDð−nÞ are the lattice Mellin moments, and choosing the solution that satisfies Reða; b; c; dÞ ≥ 1,
Imða; bÞ ¼ 0, and c ¼ d�. The corresponding approximant for Π̂ðQ2Þ is then given by the following sum of generalized
hypergeometric functions:

Π̂2þ1þ1ðQ2Þ ¼ α
P

fQ
2
f

π
z

�ða − 1Þ
ðb − 1Þ 3F2

�
1 1 a

2 b
;−z

�
þ 1

ðc − 1Þ 2F1

�
1 1

c
;−z

�
þ 1

ðd − 1Þ 2F1

�
1 1

d
;−z

��
; ðB3Þ

with

z ¼ Q2

4m2
π
: ðB4Þ

APPENDIX C: QUARK-CONNECTED TAYLOR COEFFICIENTS

Here we tabulate the values of the Taylor coefficients employed in our analysis. The light-quark connected Πjs in
Table IV include corrections for finite-volume and discretization effects as described in Ref. [8]. The charm- and bottom-
quark connected Πjs in Table V have already been extrapolated to the continuum in Refs. [22,24].
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