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We present a comprehensive analysis of the γW interference radiative correction to the neutron β-decay
matrix element. Within a dispersion relations approach, we compute the axial-vector part of the γW box

amplitude □γW
A in terms of the isoscalar part of the FγW

3 interference structure function. Using the latest

available phenomenology for FγW
3 from the nucleon elastic, resonance, deep-inelastic, and Regge regions,

we find the real part of the box correction to be □γW
A ¼ 3.90ð9Þ × 10−3. This improved correction gives a

theoretical estimate of the CKM matrix element jVudj2 ¼ 0.94805ð26Þ, which represents a 4σ violation of
unitarity.
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I. INTRODUCTION

Probing the unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix provides a stringent
test of the Standard Model of nuclear and particle physics.
The highly dominant CKMmatrix element Vud is present in
any charged current process involving the coupling
between u quarks, d quarks, and W bosons. Any measured
charged current cross section with proton and neutron
initial or final states will therefore be sensitive to the precise
value of Vud.
The empirical relationship between Vud and the mea-

surements performed in superallowed β-decays is given
by [1]

jVudj2 ¼
0.97148ð20Þ

1þ ΔV
R

; ð1Þ

where ΔV
R is a radiative correction term. Superallowed

β-decays involve transitions between isospin-1 and spin-
parity JP ¼ 0þ → 0þ nuclei, and currently provide the
most precise extraction of Vud, with some 20 accessible
superallowed transitions measured over the past 40 years
[2]. The measurements of transition energies, half-lives,
and branching ratios, together with nuclear corrections,

determines the numerator of (1) and its accompanied
uncertainty. The constancy of this quantity among the
many different superallowed β-decays, each having its own
unique nuclear corrections, has been a testament to the
success of these experiments.
Radiative corrections to β-decays generally fall into

two categories: outer corrections, which include energy-
dependent terms (such as bremsstrahlung), and inner cor-
rections, which can be computed to high precision and
are typically incorporated into effective couplings. The
relevant inner correction ΔV

R includes the charged current
axial-vector box contribution, denoted by □γW

A , involving
the exchange of a W boson and a photon between the
leptons and hadrons (axial here refers to the coupling of
the W to the hadron). This correction is not protected
from the effects of the strong interaction, and has an
associated hadronic uncertainty which needs to be accu-
rately estimated.
Several recent attempts have been made to reduce the

uncertainties on Vud through more constrained determi-
nation of the γW box diagram [3–7]. Unlike most other
one-loop radiative effects in β-decay, the γW box contri-
bution depends on details about hadron structure and
nonperturbative QCD dynamics. Consequently, calcula-
tions of the γW box corrections involve modeling the
long-distance parts of the Wþn → γp amplitude. In 2006,
Marciano and Sirlin [3] evaluated the γW box contribution
using a form factor approach, together with nonperturbative
hadronic phenomenology, giving a Vud extraction that was
consistent with top row CKM unitarity. More recently,
Seng et al. [6,7] evaluated the γW correction using a
dispersion relation approach. This new analysis led to an
approximately 15% increase in the value of the box
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contribution over that in Ref. [3], leading to an ≈4σ
deviation from the top row unitarity. Subsequently,
Czarnecki et al. [5] updated the analysis of Ref. [3] using
improved phenomenological input, resulting in an ≈2.5σ
shortfall of unitarity.
It was also shown by Seng et al. [7] that the elastic

contribution of □γW
A to superallowed nuclear β-decays

should take into account the so-called elastic quenching
effect, which increases the numerator of Eq. (1) by ≈0.07%.
Later, Gorchtein [8] pointed out that the separation of inner
and outer corrections implied by Eq. (1) is not completely
justified. This amounted to the introduction of a new,
energy-dependent correction, which effectively cancels
the quenching correction, but increases the uncertainty
on the right-hand side of Eq. (1) by a factor of 3. We use the
Particle Data Group’s version of Eq. (1) but also discuss
these recent updates in Sec. IV.
In this paper, we perform an independent, comprehen-

sive analysis of the axial-vector part of the γW box
amplitude, □γW

A , within a dispersion relation framework,
focusing in particular on a systematic assessment of
uncertainties arising from nonperturbative QCD physics
inputs. The main uncertainty in the calculation comes from
the FγW

3 ðW;Q2Þ structure function, for which no direct
experimental information is available. [Interference γW
structure functions are not measurable in inclusive deep-
inelastic scattering (DIS), but may be accessible through
weak deeply virtual Compton scattering [9].] We use
model-independent relations between γW and γZ interfer-
ence structure functions, as well as input from neutrino and
antineutrino inclusive DIS, to provide indirect constraints
on FγW

3 .
In particular, while the largest contribution to □γW

A
comes from the DIS region at large four-momentum
transfers Q2 and final state invariant masses W, where
FγW
3 can be well described in terms of leading-twist parton

distribution functions (PDFs), significant strength also
comes from the Regge region at high W but low Q2,
where the structure function is subject to much greater
uncertainty. Taking all the kinematic regions into account,
our analysis gives a total correction □γW

A ¼ 3.90ð9Þ×
10−3, which is larger than recent results [4–7], and leads
to a discrepancy of ≈4σ with Standard Model unitarity for
the top row of the CKM matrix.
This paper is organized as follows. In Sec. II we present

the theoretical framework for computing the γW box
correction in terms of the interference structure functions
using dispersion relations, and give model-independent
relations between the γW, γZ, and charged current proton
and neutron structure functions FW�

3 . The nonperturbative
inputs into the calculation are described in Sec. III, where
we discuss the model dependence of the contributions from
the nucleon elastic, resonance, Regge, and DIS regions.
The numerical results of our calculations for the γW box

correction are presented in Sec. IV, and the consequences
for the resulting Vud CKM matrix element are discussed in
detail. Finally, in Sec. V we summarize our findings and
outline some avenues for future work. Appendix contains
the details of the derivation of the FγW

3 structure function in
the DIS region in terms of leading twist PDFs.

II. DISPERSIVE APPROACH TO
THE γW BOX AMPLITUDE

In this section we outline the theoretical framework
which we use for the calculation of the one-loop elec-
romagnetic contribution to neutron β-decay, and describe
the methodology of the model-independent dispersive
approach employed to compute the correction □γW

A . It is
convenient to consider an equivalent forward-angle scatter-
ing process, such as νen → e−p, and the associated
correction MγW (shown in Fig. 1) to the Born amplitude
for a pure Fermi transition

MW ¼ Vud

�
GFffiffiffi
2

p
�
ψeðkÞγμð1 − γ5ÞψνeðkÞ2Pμ; ð2Þ

where GF is the Fermi decay constant and k and P are the
lepton and hadron four-momenta, respectively. Following
PDG notation [1], the cross section for scattering of a
massless lepton of helicity λ ¼ �1 can be expressed in
terms of products of leptonic and hadronic tensors asso-
ciated with the coupling of exchanged γ and W bosons.
From the optical theorem, the imaginary part of MγW can
be written in terms of the cross section for all possible final
hadronic states,

2ImMγW ¼ Vud4π

Z
d3k0

ð2πÞ32Ek0

�
4πα

Q2

�

×

�
GFffiffiffi
2

p 1

1þQ2=M2
W

�
Lμν
γWW

γW
μν ; ð3Þ

where α is the electromagnetic fine structure constant and
MW is the W boson mass. The leptonic tensor is given by

FIG. 1. One-loop electroweak correction to the scattering
process νeðkÞ þ nðPÞ → e−ðkÞ þ pðPÞ in the forward limit,
involving the absorption of a W boson (q) and a virtual photon
(−q). The corresponding crossed-box diagram is not shown.
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LγW
μν ¼ ð1 − λÞLγ

μν; ð4aÞ

Lγ
μν ¼ q2gμν þ 4kμkν − 2kμqν − 2kνqμ − iλϵμνðkqÞ; ð4bÞ

where q ¼ k − k0 is the virtual four-momentum transfer,
with Q2 ≡ −q2, and we use the notation ϵμνðkqÞ ≡
ϵμναβkαqβ, with ϵ0123 ¼ −1.
The hadronic tensor is given by

WγW
μν ¼ 1

4π

Z
d4xeiq·xhpjT½JWμ ðxÞJγνð0Þ�jni; ð5Þ

where the electromagnetic and charge-raising weak cur-
rents can be written (for three flavors) in terms of quark
currents as

Jγμ ¼ euūγμuþ edd̄γμdþ ess̄γμs; ð6aÞ

JWμ ¼ ūγμð1 − γ5Þd: ð6bÞ

For spin-independent transitions, the tensor WγW
μν is usually

decomposed in terms of the interference electroweak
structure functions FγW

i ,

WγW
μν ¼ −gμνF

γW
1 þ PμPν

P · q
FγW
2 − i

ϵμνðPqÞ
2P · q

FγW
3 : ð7Þ

Our focus here is on the FγW
3 contribution, involving the

axial-vector hadronic coupling of the W boson. Making a
change of variables

d3k0

ð2πÞ32Ek0
→

1

32π2k · P
dW2dQ2; ð8Þ

setting λ ¼ −1, and evaluating the denominator k · P ¼
ME in the rest frame of the neutron, we find

ImMγWðEÞ ¼
αGFffiffiffi
2

p
ME

Z
s

M2

dW2

Z
Q2

max

0

dQ2
FγW
3 ðW2; Q2Þ
1þQ2=M2

W

×

�
2ME

W2 −M2 þQ2
−
1

2

�
; ð9Þ

where W2 ¼ ðPþ qÞ2 is the invariant mass squared of the
intermediate state hadronic system, s ¼ ðkþ PÞ2 ¼ M2 þ
2ME is the lepton-nucleon invariant mass squared,
Q2

max ¼ 2MEð1 −W2=sÞ, and M is the nucleon mass.
The structure function FγW

3 ðW2; Q2Þ is a function of the
invariant mass squared, W2, of the exchanged boson and
hadron and of the exchanged boson virtuality, Q2.
Defining the correction □γW

A to the Born amplitude via

MW þMγW → MWð1þ□γW
A Þ; ð10Þ

the correction to ΔV
R from the γW box is therefore given by

2□γW
A . After some elementary trace algebra, we find for the

imaginary part of □γW
A :

Im□γW
A ðEÞ ¼ α

32ðMEÞ2
Z

s

M2

dW2

Z
Q2

max

0

dQ2
FγW
3 ðW2; Q2Þ
1þQ2=M2

W

×

�
2ME

W2 −M2 þQ2
−
1

2

�
: ð11Þ

It has been known for some time [10–12] that the isovector
part of the electromagnetic current does not contribute to
the γW box in a direct loop integral approach at zero
energy, such as for β-decay. In the dispersive formulation,
Seng et al. [6,7] showed that the isoscalar and isovector
electromagnetic currents for the γW box scattering ampli-
tude have opposite crossing symmetries under E → −E. In
terms of □γW

A ðEÞ, this results in the dispersion relations

Re□γWð0Þ
A ðEÞ ¼ 2

π

Z
∞

0

dE0 E0

E02 − E2
Im□γWð0Þ

A ðE0Þ; ð12aÞ

Re□γWð1Þ
A ðEÞ ¼ 2E

π

Z
∞

0

dE0 1

E02 − E2
Im□γWð1Þ

A ðE0Þ;

ð12bÞ

where the superscripts (0) and (1) refer to the isoscalar and
isovector electromagnetic current contributions to FγW

3 ,

which are denoted as Fð0Þ
3 and Fð1Þ

3 , respectively, in keeping
with the notation of Seng et al. [7]. From Eqs. (12) it is
clear that the real part of the isovector contribution vanishes

at zero energy, Re□γWð1Þ
A ðE ¼ 0Þ ¼ 0. To avoid unneces-

sary clutter in our notation, we will henceforth denote the

real part of the isoscalar contribution, Re□γWð0Þ
A ðE ¼ 0Þ, as

simply □γW
A .

Following the approach of earlier work on the γZ
interference correction □γZ

A [13,14], the triple integral
for □γW

A can be simplified by changing the order of
integration so that the energy integral can be performed
analytically. A further change of variable from W2 to the
Bjorken scaling variable x ¼ Q2=ðW2 −M2 þQ2Þ gives
the compact expression

□γW
A ¼ α

2π

Z
∞

0

dQ2
1

Q2ð1þQ2=M2
WÞ

Z
1

0

dxFð0Þ
3 ðx;Q2Þ

×
1þ 2r
ð1þ rÞ2 ; ð13Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p
. Written in this way, the inte-

grand can be expanded in a series of Nachtmann moments

of the structure function Fð0Þ
3 [6,13]. At highQ2, the leading

order lowest moment is related to the Gross-Llewellyn-
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Smith (GLS) sum rule and is independent of hadronic
structure.

Before we continue with modeling Fð0Þ
3 ðx;Q2Þ in dif-

ferent kinematic regions, it is worthwhile to note the
relationship with other axial-vector interference structure
functions. Seng et al. [6,7] demonstrated that the □γW

A box
correction is related through isospin symmetry to the axial
□γZ

A box corrections studied in earlier work on parity-
violating electron-proton scattering [13–15]. In our nota-
tion, they give the relations

Fð0Þ
3 ¼ FγZ

3p − FγZ
3n; ð14aÞ

FW
3 ≈ FγZ

3p þ FγZ
3n; ð14bÞ

where we define FW
3 ≡ 1

2
ðFWþ

3 þ FW−

3 Þ in terms of the axial
νp and ν̄p charged current structure functions FWþ

3 and
FW−

3 , respectively [1]. To be consistent with PDG con-

ventions, our definition of Fð0Þ
3 is 4 times larger than that

used in Refs. [6,7]. The relation in Eq. (14) is a conse-
quence of isospin symmetry, while that in Eq. (14b) is only
an approximate equality due to the different contributions
of strange and heavier quarks to FW�

3 and FγZ
3 .

III. γW INTERFERENCE STRUCTURE
FUNCTION

The most uncertain part of the calculation of the γW box
correction in Eq. (13) is the interference structure function

Fð0Þ
3 . The precision to which this function can be estimated

will ultimately determine the precision of the γW correction
to the Vud matrix element. Since the empirical and

theoretical information on Fð0Þ
3 depends somewhat on

kinematics, it is useful to consider the structure function
in four specific regions of W2 and Q2:

(i) elastic (“el”), for W2 ¼ M2;
(ii) deep-inelastic scattering (“DIS”), for W2 ≥ W2

0

and Q2 ≥ Q2
0;

(iii) Regge (“Reg”), for W2 ≥ W2
0 and Q2 ≤ Q2

0;
(iv) resonances ð“res”Þ þ backgroundð“bgd”Þ for

W2
π ≤ W2 ≤ W2

0, where Wπ ¼ M þmπ.
These regions are illustrated in Fig. 2. In our analysis we

use as our nominal boundary separating the DIS and Regge
regions the value Q2

0 ¼ 2 GeV2, but vary this between
Q2

0 ¼ 1 and 2 GeV2 to test the stability of the results. The
boundary between the low-W nucleon resonance and high-
W DIS and Regge regions is set to the traditional value of
W2

0 ¼ 4 GeV2 [16–18]. In this section we discuss in detail

the existing constraints on Fð0Þ
3 in the various regions, and

estimate their uncertainties.

A. Elastic contribution

The contributions to the Fð0Þ
3 structure function from

region (i) can be written in terms of the elastic electroweak
form factors as [6,7,13,14]

Fð0Þ
3ðelÞðQ2Þ¼−½Gp

MðQ2ÞþGn
MðQ2Þ�GAðQ2ÞQ2δðW2−M2Þ:

ð15Þ

For use in Eq. (13), we note that Q2δðW2 −M2Þ ¼
xδð1 − xÞ. For the elastic magnetic form factors of the
proton and neutron we use the recent parametrization from
Ref. [19], which accounts for two-photon exchange effects
in its extraction.
The largest contributor to the uncertainty in the elastic

contribution is the Q2 dependence of the axial-vector form
factor, GAðQ2Þ. We consider the two-component para-
metrization for GA given by Megias et al. [20],

GAðQ2Þ ¼ −
gA

ð1þ c1Q2Þ2
�
1 − c2 þ c2

m2
A

m2
A þQ2

�
; ð16Þ

where gA ¼ 1.2756ð13Þ is the nucleon axial coupling [1],
mA ¼ 1.23ð4Þ GeV is taken to be the mass of the axial
a1ð1260Þ meson, and c1 and c2 are fitting parameters.
Setting c2 ¼ 0 and c1 ¼ 1=m2

A gives the commonly used
dipole form factor parametrization, with mA now taken to
be a free parameter.
Historically, the world average of simple dipole fits to

GAðQ2Þ from both neutrino scattering and electroproduc-
tion experiments has been established by Bernard et al.
[21]. There is still ongoing debate on the value of the axial
mass parameter mA, and whether neutrino scattering or
electroproduction is a more accurate method for its extrac-
tion. An attempt was made by Bhattacharya et al. [22] to
analyze the axial form factor in a model-independent

el
as

ti
c

DIS

res

Regge

resonance + 
background

FIG. 2. Kinematical regions of Q2 and W2 into which con-

tributions to the Fð0Þ
3 structure function are separated: nucleon

elastic (W2 ¼ M2), resonanceþ background (W2
π ≤ W2 ≤ W2

0),
Regge (W2 > W2

0; Q
2 < Q2

0), and DIS (W2 > W2
0; Q

2 > Q2
0).
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approach, with comparisons to previous work, and this was
ultimately used in the analysis of Seng et al. [6,7]. The form
of Eq. (16) is motivated by the attempt to incorporate pion
loop corrections to the axial form factor, and can be applied
to either neutrino scattering or pion electroproduction data
with its fitting parameters c1 and c2.
Taking into consideration all of the possible ðc1; c2Þvalues

given in Ref. [20], the elastic contribution is found to be
□γW

A ðelÞ ¼ 1.05ð3Þ × 10−3, where the uncertainty is two parts

systematic and one part statistical. The sensitivity of□γW
A ðelÞ to

the axial mass parameter mA for a dipole form factor is
illustrated in Fig. 3 over the range of possible values in use.
Using the form of GAðQ2Þ from Ref. [22] leads to a nearly
equivalent central value, but with twice the uncertainty.
One can also conservatively take the average of the twomA

world averages in Ref. [21] by setting mA ¼ 1.05ð5Þ GeV.
The result of doing so again reveals a nearly equivalent
□γW

A ðelÞ central value as that obtained using the GAðQ2Þ of
Megias et al. [20] andBhattacharya et al. [22]. Since all three
approaches [20–22] give results that are consistent, we opt to
use the central value fromMegias et al. [20] and increase the
uncertainty slightly to reflect the limitations of the other
approaches. We therefore take □γW

A ðelÞ ¼ 1.05ð4Þ × 10−3 as

the main result for the elastic intermediate state contribution
in our analysis.

B. DIS contribution

The contribution to □γW
A from the DIS region (ii) can be

written as

□γW
A ðDISÞ ¼

1

2π

Z
∞

Q2
0

dQ2
αðQ2Þ

Q2ð1þQ2=M2
WÞ

×
Z

x0

0

dxFð0Þ
3 ðDISÞðx;Q2Þ 1þ 2r

ð1þ rÞ2 ; ð17Þ

where x0 ¼ Q2=ðW2
0 −M2 þQ2Þ is the upper limit on the

x integration corresponding to the minimum value of W2

given by W2
0 (see Fig. 2). Setting W2

0 ¼ 4 GeV2 excludes
contributions from the nucleon resonance region, which
cannot be described in terms of structure functions evalu-
ated from PDFs. In practice, variations of W2

0 between
≈3 and 12 GeV2 have little effect on the shape of
unpolarized PDFs [16] and can be compensated by shuf-
fling strength between the DIS continuum and the
nonresonant background contributions, leaving the total
essentially unchanged. The lower Q2 boundary of the DIS
region, denoted by Q2

0, ensures that the integral (17) is
dominated by the leading twist part of the γW structure
function, with negligible Oð1=Q2Þ power corrections from
higher twist contributions. In our numerical analysis we
explore the stability of the results with respect to variations
of the boundary between Q2

0 ¼ 1 and 2 GeV2.
To account for the large variation of αðQ2Þ in DIS

kinematics, we follow the practice introduced in the
corresponding □γZ

A calculations [13,14] and include the
running of αðQ2Þ under the Q2 integral in Eq. (17). To do
this we use the parametrization of Jegerlehner [23], which
partially accounts for two-loop effects in the photon
propagator and results in a 4% enhancement over using
a fixed αð0Þ. Equivalently, this corresponds to using a
constant value of α set at a scale Q2 ≈ 12.8 GeV2, which is
close to the weighted average ofQ2 in the integrand of (17).
In the DIS region, where perturbative QCD is appli-

cable, the Fð0Þ
3 ðDISÞ structure function can be written in

factorized form as a convolution of valence uv ≡ u − ū and
dv ≡ d − d̄ quark PDFs and the nonsinglet Wilson coef-
ficient function (see Appendix for details of the derivation),

Fð0Þ
3 ðDISÞðx;Q2Þ ¼ 1

3

Z
1

x

dz
z
C3ðx=z;Q2Þðuv − dvÞðz;Q2Þ;

ð18Þ

where we have set eu þ ed ¼ 1=3. The coefficient function
C3 describes the hard scattering of the virtual photon from
the parton, and up to Oðα2sÞ corrections is given in the MS
scheme by [24]

C3ðz;Q2Þ ¼ δð1 − zÞ þ αsðQ2Þ
4π

�
2ð1þ zÞ ln z

1 − z
−
4 ln z
1 − z

þ 2ðzþ 2Þ

−
�
2π2

3
þ 9

�
δð1 − zÞ þ

�
4 lnð1 − zÞ

1 − z

�
þ
−

3

ð1 − zÞþ

�
þOðα2sÞ; ð19Þ

0.8 0.9 1.0 1.1 1.2 1.3

0.95

1.00

1.05

1.10

FIG. 3. Dependence of the elastic intermediate state contribu-
tion □γW

A ðelÞ to the γW box diagram on the dipole axial mass
parameter mA (solid blue line), including the 1σ uncertainty band
for mA ¼ 1.05ð5Þ GeV (pink bands).
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where the “þ” terms are understood as distributions which
are made finite in the limit as x → 1 inside any integral over

x. The x dependence of xFð0Þ
3 ðDISÞ is illustrated in Fig. 4 for

different sets of PDFs obtained by several groups from
global QCD analyses [25–28]. Since the valence u and d
quark distributions are fairly well constrained experimen-
tally, the differences between the various parametrizations

are relatively small, with xFð0Þ
3 ðDISÞ peaking around x ≈ 0.2

and dropping rapidly as x → 0.
In the high-Q2 limit, when both x0 → 1 and r → 1, the

integral over x in Eq. (17) takes the simple form

Z
1

0

dxFð0Þ
3 ðDISÞðx;Q2Þ ¼ 1

3

�
1 −

αsðQ2Þ
π

þOðα2sÞ
�
; ð20Þ

so that the area under each of the curves in Fig. 4 is fixed at
a given Q2. Higher order corrections to Eq. (20) have been
computed to Oðα4sÞ [29,30] and used in Ref. [5] in their
calculation of □γW

A . On the other hand, the approximation
in Eq. (20) assumes negligible contributions from the
region x > x0 in Eq. (17), which can introduce errors into
the calculation. In our analysis we therefore compute the
integrals in (17) exactly at finite Q2, using the explicit form
of the OðαsÞ correction in Eq. (19), and quantify the
omitted large-x contribution explicitly.
We also note that Ref. [7] gives the □γW

A correction as
being proportional to the lowest Nachtmann moment of
u − d̄. This disagrees with the structure function relation-
ship in Eq. (14), which is quite general. In fact, such a
combination of PDFs is equal to uv þ ðū − d̄Þ, from which
the second term is non-negligible. To make matters worse,
the distribution of ū − d̄ is poorly constrained within
globally determined PDFs, and its large uncertainty would

overwhelm the sought precision of the Vud extraction (see
Appendix).
Since we do not have direct empirical information on γW

interference structure functions, it was suggested by Seng

et al. [6,7] to use Eqs. (14) to relate Fð0Þ
3 to the FW�

3

structure functions measured in inclusive neutrino scatter-
ing, for which data do exist, albeit not very precise and only
on nuclear targets. In particular, Ref. [7] considered the

integrated value of Fð0Þ
3 ðDISÞ as in Eq. (20) and related this to

the integrated value of the FW
3 ðDISÞ structure function, which

is given by the GLS sum rule as the lowest moment of the
valence uv þ dv distributions in the proton,

Z
1

0

dxFW
3 ðDISÞðx;Q2Þ ¼ 3

�
1 −

αsðQ2Þ
π

þOðα2sÞ
�
: ð21Þ

Furthermore, they assumed that the ratio of 9 between
Eqs. (20) and (21) also holds as a function of x. In Fig. 5 we
explore this assumption by examining the x dependence of

the ratio FW
3 ðDISÞ=F

ð0Þ
3 ðDISÞ, computed from the PDF para-

metrizations of Ref. [26] for several fixed values ofQ2 from
1 to 4 GeV2. Compared with the constant ratio of 9, which
is also shown for reference, the calculated ratio exceeds this
by up to ≈50% at intermediate values of x ∼ 0.1, but
underestimates it at low (x≲ 10−4) and high (x≳ 0.1) x
values, such that the ratio of the integrated strengths of

FW
3 ðDISÞ and Fð0Þ

3 ðDISÞ averages to around 9. In our numerical

analysis below, we consider both scenarios, in which

Fð0Þ
3 ðDISÞ is computed entirely from leading twist PDFs,

and also where it is related to the charged current structure
functions by the constant overall factor of 9.

FIG. 4. Comparison of the xFð0Þ
3 ðDISÞ structure function versus x

for several PDF parametrizations at fixedQ2 ¼ 9 GeV2, from the
CJ15 [25] (solid red line), MMHT14 [26] (dot-dashed green line),
ABKM09 [27] (dashed blue line), and JAM19 [28] (dotted black
line) global QCD analyses.

FIG. 5. Comparison of the FW
3 ðDISÞ=F

ð0Þ
3 ðDISÞ structure function

ratio versus x for fixed values of Q2 ¼ 1 (dashed blue line), 2
(dot-dashed green line), and 4 GeV2 (solid red line) using the
PDF parametrizations from Ref. [26], and compared with the
constant ratio of 9 (horizontal black line) motivated by the ratio of
integrated functions, Eqs. (20) and (21).
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Putting these effects together, we find that for
Q2

0 ¼ 2 GeV2 the contribution from the DIS region (ii) to
the γW box correction is□γW

A ðDISÞ ¼ 2.29ð3Þ × 10−3, which

is ∼2 times larger than the elastic contribution in Sec. III A.
Setting the boundary at Q2

0 ¼ 1 GeV2 would result in an
≈6% increase in the correction, which, however, would
be compensated somewhat by a larger contribution from
the Regge region to be discussed in Sec. III C below. The
total uncertainty on this estimate is a quadrature sum of a
1% uncertainty from omitted higher-order perturbative
QCD contributions and a 0.5% uncertainty associated
with the numerical value of the strong coupling, αs. The
main difference between our determination of □γW

A ðDISÞ
and that of Refs. [6,7] is in the latter’s assumption of the
validity of perturbative QCD over all x values up to
x ¼ 1, and subsequent use of perturbative QCD sum
rules which have corrections computed to higher orders.
In practice, however, the difference between the two
approaches is found to be fairly small for the final value
of □γW

A ðDISÞ.

C. Regge contribution

While some empirical guidance is available for the DIS

and elastic contributions to the Fð0Þ
3 structure function, there

are even fewer direct constraints in the Regge region (iii) at
highW2 (W2 ≥ W2

0) and lowQ2 (Q2 ≤ Q2
0), corresponding

to low values of x. Some data do exist on the charged
current FW

3 structure function from bubble-chamber neu-
trino and antineutrino scattering experiments at CERN
[31,32] in the range 0.1≲Q2 ≲ 100 GeV2.
In Ref. [7], Seng et al. use a Regge model which includes

the exchange of two vector mesons, identified with ρ and a1
mesons. Fitting to the Nachtmann moments of the FW

3

structure function data [32], they obtain reasonably good
descriptions of the x-integrated data, albeit within large
uncertainties. In our present approach, we use the full
information from the same experiment, on both the x and
the Q2 dependence of the data, in order to better constrain

the Fð0Þ
3 structure function. An analysis of the choice to fit

the x-integrated data using the compartmentalization in
Fig. 2 has been done in Ref. [33].
We use a hybrid Regge model for the nonsinglet

structure function which builds in the known x dependence
of the valence quark distributions at low x (high W),
together with an interpolation mapping on to the expected
behavior as Q2 → 0 and Q2 → Q2

0. Such a behavior is
realized in the Regge model of Capella et al. [34], in which
the charged current neutrino structure function is para-
metrized by the form

FW
3 ðRegÞðx;Q2Þ ¼ Apþnx−αRð1 − xÞc

�
Q2

Q2 þ Λ2
R

�
αR
: ð22Þ

For the small-x exponent αR we use the value αR ¼ 0.477
from Ref. [34] obtained from Regge model descriptions of
high-energy photon-hadron and hadron-hadron scattering
data. Fitting the data from Ref. [32] to the form (22), with
the constraint that FW

3 ðRegÞðx;Q2
0Þ ¼ FW

3 ðDISÞðx;Q2
0Þ along

the boundary Q2
0 ¼ 2 GeV2, we find good agreement with

the data for values of the large-x exponent c ¼ 0.63ð1Þ, the
low-Q2 interpolation mass parameter ΛR ¼ 0.50ð7Þ, and
the normalization Apþn ¼ 2.22ð4Þ. The constraint from the
matching with the DIS region at Q2 ¼ Q2

0 is significant,
partly due to the large relative weight of the DIS data
arising from the small uncertainties on the valence quark
PDFs from global QCD analyses. In practice, we find that
the γW box correction is rather insensitive to the value of c,
as may be expected for low-x dominance of this contribu-
tion, but is moderately sensitive to both Apþn and ΛR.
Extending the model (22) to the isoscalar electromag-

netic current, we parametrize the Regge contribution to the

Fð0Þ
3 structure function by an analogous form,

Fð0Þ
3 ðRegÞðx;Q2Þ ¼ Ap−nx−αRð1 − xÞc

�
Q2

Q2 þ Λ2
R

�
αR
; ð23Þ

assuming that the exponent c is the same for protons and

neutrons, and theQ2 → 0 behavior of Fð0Þ
3 ðRegÞ is the same as

FW
3 ðRegÞ. For the normalization Ap−n in Eq. (23) we use the

ratios depicted in Fig. 5 to obtain Fð0Þ
3 ðRegÞ for Q

2 ≥ Q2
0 and

W2 ≥ W2
0 with either the constant proportionality

Ap−n ¼ 1

9
Apþn ð24Þ

or the x-dependent ratio at the Q2 ¼ Q2
0 boundary

Ap−n ¼ Apþn
Fð0Þ
3 ðRegÞ

FW
3 ðRegÞ

����
Q2¼Q2

0

: ð25Þ

For the central value of our calculation of □γW
A ðRegÞ we use

the constant proportionality in Eq. (24). We estimate the
systematic uncertainty on this by taking the difference with
the result using the x-dependent ratio in Eq. (25).
The resulting matching between the structure functions

in the Regge region, Fð0Þ
3 ðRegÞ, and the DIS region, Fð0Þ

3 ðDISÞ, is
illustrated in Fig. 6 as a function of Q2, for several fixed
values of W2 from W2 ¼ 4 GeV2 to 50 GeV2. Within
the uncertainties of the parameters of the Regge model, a
fairly smooth matching can be achieved between the Regge
and DIS regions around Q2 ≈ 2 GeV2. Note also that the

Fð0Þ
3 structure function increases to a constant value in the

limit Q2 → 0, given by Fð0Þ
3 ðx;Q2 → 0Þ ¼ Ap−n½ðW2 −

M2Þ=Λ2
R�αR . The total Regge region contribution to the
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γW box is then found to be □γW
A ðRegÞ ¼ 0.37ð7Þ × 10−3,

where ≈40% of the uncertainty comes from the fit
parameters, and ≈60% is from the systematic model
uncertainty.
Following the suggestion by Czarnecki et al. [5], we

also considered an extension of the model of Ref. [7]
to include a third vector meson. However, we found this
did not give any significant improvement in the least
squares fit to the data, and no noticeable improvement
to the accuracy of □γW

A ðRegÞ. A new set of higher precision

data in the Regge region would be required in order to
further discriminate between the specific models consid-
ered here.

D. Resonance and background contributions

For the resonance region contributions □γW
A ðresÞ from

W2 ≤ W2
0, we consider both explicit resonance states and

a nonresonant background on top of which these sit. The
separation of these two contributions to the cross section is
generally not unique, so that it necessary to discuss the two
components in the same theoretical framework.

1. Resonances

Since only the isoscalar electromagnetic current is
relevant for the γW box correction, isospin 3=2 resonances
do not contribute, so that only isospin-1=2 intermediate
states need be considered. Specifically, we include the
positive parity Roper resonance P11ð1440Þ and the negative
parity D13ð1520Þ and S11ð1535Þ states.
Using the standard notation for the nucleon→ resonance

R transition form factors [35–37], the contribution to the

Fð0Þ
3 ðresÞ structure function from the spin-3=2 D13ð1520Þ

resonance is given by

Fð0Þ
3ðD13Þ ¼

2CA
5 ν

3MMR
½CV

3Mð2MRðMR −MÞ −MνþQ2Þ

þMMRνðCV
4 þ CV

5 Þ − CV
4MRQ2�RðW;MRÞ;

ð26Þ

where MR denotes the mass of the resonance, ν ¼ ðM2
R −

M2 þQ2Þ=ð2MÞ is the energy transfer in the target rest
frame, and CV

3;4;5 and CA
5 are the vector and axial vector

form factors. For the spin-1=2 resonances, the structure
function contribution is

Fð0Þ
3ðP11=S11Þ ¼ −

FAν

2M
½FV

1Q
2 þ 2FV

2MðMR �MÞ�RðW;MRÞ;
ð27Þ

where FV
1;2 and FA are the corresponding vector and axial

vector transition form factors, and the � signs in the
parentheses correspond to the P11 and S11 states, respec-
tively. The function RðW;MRÞ represents the finite width of
the resonance, which we parametrize by a Breit-Wigner
shape of width ΓR,

RðW;MRÞ ¼
MRΓR

π

1

ðW2 −M2
RÞ2 þM2

RΓ2
R
: ð28Þ

For the axial vector transition form factors CA
5 and FA we

use the parametrization of Leitner et al. [38]. For the vector
transition form factors, we take the combinations CV

i ¼
Cp
i þ Cn

i and FV
i ¼ Fp

i þ Fn
i , with the Cp;n

i and Fp;n
i form

factors determined from the MAID2009 electromagnetic
helicity amplitudes [39]. In practice, the vector form factors
are very similar in both Ref. [38] and Ref. [39]. We also
examined the effect of using instead the more recent
helicity amplitudes from CLAS at Jefferson Lab [40],
but obtained almost identical results. The relationships
between form factors and helicity amplitudes are given in
Appendix B of Ref. [38].
The relative sizes of the P11ð1440Þ, D13ð1520Þ, and

S11ð1535Þ resonance contributions to Fð0Þ
3 ðresÞ are shown in

Fig. 7 at Q2 ¼ 1 GeV2 as a function ofW2. This illustrates
the dominance of the (positive) D13 state contribution
compared with the somewhat smaller (negative) contribu-
tions from the P11ð1440Þ and S11ð1535Þ resonances. Using
the expressions in Eqs. (26) and (27) in Eq. (13), we find
the contribution to □γW

A from the D13ð1520Þ resonance to
be 0.055 × 10−3, with the P11ð1440Þ and S11ð1535Þ res-
onances contributing −0.008 × 10−3 and −0.003 × 10−3,
respectively. Combined, the total resonance contribution is
then found to be □γW

A ðresÞ ¼ 0.04ð1Þ × 10−3, which is much

smaller than the other contributions. We have estimated a
25% overall uncertainty, arising primarily from the axial
vector transition form factors.

FIG. 6. Matching of the Fð0Þ
3 structure function between the

Regge region (red lines and bands) and DIS region (green lines
and bands) versus Q2 for fixed W2 ¼ 4 GeV2 (dotted lines),
10 GeV2 (solid lines), and 50 GeV2 (dashed lines).
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2. Nonresonant background

In addition to the excited state resonances that populate
the low-W region, with their prominent peaks and valleys,
the physical spectrum also includes contributions from the
nonresonant background on top of which the resonances
sit. Of course, it is also clear that any separation of the
resonant and nonresonant contributions to the cross section
is not unique and necessarily model dependent. Never-
theless, the background is generally understood to be
associated with nonresonant multihadron dynamics, which
produce a spectrum that is relatively smooth inW2 and Q2,
reminiscent of the DIS continuum characterizing the
higher-W region, W2 > 4 GeV2, in Fig. 2.
Indeed, one approach adopted in the literature (see, e.g.,

Ref. [6]) has been to extrapolate structure functions from

the DIS regime to the W2 < W2
0 region assuming a smooth

functional form for the x → 1 behavior. However, this
introduces an uncontrolled approximation since the DIS
function is not constrained by data at such low W values,
where incoherent scattering from uncorrelated partons
can no longer be considered as a good approximation.
Instead, in our analysis we adapt the Christy-Bosted para-
metrization [41] of the nonresonant (NR) background for
the transverse electromagnetic cross section, σNRT . If we
further assume, based on valence quark model arguments

[33], that at fixed Q2 the shape of the Fð0Þ
3 background is

similar to that of the electromagnetic Fγ
1 structure function

background, Fð0Þ
3 ðbgdÞ ∝ Fγ

1 ðbgdÞ, then in analogy with [41]

the background contribution can be written as

Fð0Þ
3 ðbgdÞðW2; Q2Þ ¼ ηSðQ2ÞW

2 −M2

8π2α

�
1þ W2 −W2

π

Q2 þ Λ2
NR

�
−1X2

i¼1

σNR;iT ðW −WπÞiþ1=2

ðQ2 þ aTi ÞfTi ðQ2Þ : ð29Þ

Here, the exponent in the denominator of the sum is
fTi ðQ2Þ≡ bTi þ cTi Q

2 þ dTi Q
4, and the numerical values

of the fit parameters faTi ; bTi ; cTi ; dTi ;Λ2
NR; σ

NR;i
T g are given

in Ref. [41]. The overall factor ηSðQ2Þ is determined by

matching Fð0Þ
3 ðbgdÞ along the boundary W2 ¼ W2

0 with the

corresponding Regge and DIS region functions, Fð0Þ
33 ðRegÞ

and Fð0Þ
3 ðDISÞ, along the Q2 < Q2

0 and Q2 > Q2
0 boundaries,

respectively. The matching function ηSðQ2Þ is illustrated in
Fig. 8 as a function of Q2, for the Regge and DIS regions.
At intermediate Q2 values, Q2 ≈ 2–8 GeV2, the matching
function is within ≈10% of unity, but decreases more

steeply as Q2 → 0. To estimate the uncertainty on Fð0Þ
3ðbgdÞ,

we compare Eq. (29) with the extrapolated Fð0Þ
3 ðDISÞ over the

regionW2 ≤ W2
0 and find their difference to be on the order

of 5%. A graphical representation of this difference can be
found in Ref. [33].

The resulting matching of the Fð0Þ
3 structure function

between the resonance þ background region (iv) and
the DIS region (ii) and Regge region (iii) is illustrated in
Fig. 9 as a function of W2 for various fixed values of Q2,
from Q2 ¼ 0.05 GeV2 to Q2 ¼ 4 GeV2. Beyond Q2 ≈
10 GeV2 the resonance contributions become very small.
The matching of the structure functions at W2 ¼ 4 GeV2

FIG. 8. Matching function ηSðQ2Þ versus Q2, which allows the

nonresonant background function Fð0Þ
3 ðbgdÞ to match onto the

Regge region Fð0Þ
3 ðRegÞ (red line) and DIS region Fð0Þ

3 ðDISÞ (green

line) functions at the W2
0 ¼ 4 GeV2 boundary.

FIG. 7. Contributions to the Fð0Þ
3 ðresÞ structure function at Q2 ¼

1 GeV2 from the three dominant I ¼ 1=2 resonances, including
the spin-3=2 D13ð1520Þ (solid red line), the spin-1=2 P11ð1440Þ
(dotted blue line), and S11ð1535Þ (dashed green line) resonances,
determined from electromagnetic MAID2009 helicity amplitudes
[39] and axial transition form factors from Leitner et al. [38].
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suggests a relatively smooth transition from the resonance
region at low W to the higher-W regions described by the
Regge and DIS parametrizations at low and highQ2 values,
respectively. Note that the kink at Q2 ¼ 2 GeV2 is an
artifact of matching the DIS and Regge models in an
averaged manner over a range of W2 values. As a result,
FγW
3 ðDISÞ and FγW

3 ðRegÞ do not agree exactly at W2
0 ¼ 4 GeV2,

although the discontinuity is very small.

Integrating the Fð0Þ
3 ðbgdÞ structure function (29) into

Eq. (13), we find the total nonresonant background
contribution the γW box correction is □γW

A ðbgdÞ ¼
0.15ð1Þ × 10−3, of which ≈95% comes from the region
Q2 > 2 GeV2. For the combined resonance and back-
ground contributions, where the former is dominated by

the D13 state, integrating over the sum Fð0Þ
3 ðresÞ þ Fð0Þ

3 ðbgdÞ in
(13) yields the total W2

π ≤ W2 ≤ 4 GeV2 region contribu-
tion to the γW box correction of 0.19ð2Þ × 10−3.

IV. IMPACT OF THE γW BOX ON Vud
DETERMINATION

Putting together the contributions from the various
regions in Fig. 2, the total □γW

A correction from the elastic,
resonance, DIS, and Regge regions is summarized in
Table I. For our nominal boundary between the DIS and
Regge regions of Q2

0 ¼ 2 GeV2, we find the total box
correction to be □γW

A ¼ 3.90ð9Þ × 10−3, of which ≈59%
comes fromDIS and≈27% from elastic intermediate states.
The effect of lowering the DIS-Regge boundary to Q2

0 ¼
1 GeV2 is to increase the DIS contribution by ≈3%–4% of
the total □γW

A , with an almost identical compensating
decrease in the Regge component, rendering the sum
almost unchanged. This provides confidence in the robust-
ness of our calculation of the total □γW

A correction, which

FIG. 9. (a) Matching of the Fð0Þ
3 structure function in the

resonanceþ background region (blue lines and bands) versusW2

with the Regge region structure function Fð0Þ
3 ðRegÞ at fixed Q2 ¼

0.05 GeV2 (dotted lines), 0.75 GeV2 (solid lines), and 2 GeV2

(dashed lines). (b) Matching to the DIS region structure function

Fð0Þ
3 ðDISÞ at fixed Q2 ¼ 2 GeV2 (dashed lines), 3 GeV2 (solid

lines), and 4 GeV2 (dotted lines).

TABLE I. Summary of corrections to □γW
A (in units of 10−3) from the various kinematic regions in Fig. 2. To

compare the results of the present analysis (SBM) with previous results from SGRM [7] and CMS [5], the Q2 > Q2
0

part of the nonresonant background is combined with the DIS contribution, and theQ2 < Q2
0 part of the background

is combined with the Regge contribution. The DIS contributions marked with an asterisk (*) have been calculated
with α ¼ αð0Þ. The elastic contribution marked with (†) has been calculated over Q2 ≤ Q2

0. The final two rows give
results for ΔV

R and jVudj2, and our central results are highlighted in boldface.

□γW
A ð×10−3Þ SBM SGRM [7] CMS [5]

Q2
0 [GeV2] 2.0 1.0 2.0 1.1

Elastic 1.05(4) 1.05(4) 1.06(6) † 0.99(10)
Resonance 0.04(1) 0.04(1) � � � � � �
DISþ ðQ2 > Q2

0Þ bgd 2.29(3) 2.43(5) *2.17(0) *2.29(2)
Reggeþ ðQ2 < Q2

0Þ bgd 0.52(7) 0.39(5) 0.56(8) 0.25(2)
Total 3.90ð9Þ 3.91(9) 3.79(10) 3.52(11)
ΔV

R 0.02472ð18Þ 0.02474(18) 0.02467(22) 0.02426(32)
jVudj2 0.94805ð26Þ 0.94803(26) 0.94809(28) 0.94847(35)
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has relatively weak dependence on how the individual
pieces are computed.
Our total γW correction is ≈10% larger than the

Czarnecki et al. (CMS) [5] result and ≈3% larger than
the Seng et al. (SGRM) [7] value. To identify the sources of
the differences, we note that the boundaries between the
various regions in Refs. [5,7] are not identical to those in
Fig. 2. In particular, SGRM integrate the Regge and DIS
contributions down to the inelastic threshold. To make a
more direct comparison, we add in Table I the low-Q2

(Q2 < Q2
0) part of the nonresonant background to the

Regge contribution and add the high-Q2 (Q2 > Q2
0) part

of the background to the DIS component. Compared with
the SGRM result [7], which also usesQ2

0 ¼ 2 GeV2 for the
Regge-DIS boundary, our Q2 > Q2

0 contribution is larger
by 0.12 × 10−3, which accounts for most of the difference
in the totals. SGRM [7] also isolate a “single pion”
contribution, which is calculated using chiral perturbation
theory, whereas we effectively account for this in the
nonresonant background. Finally, SGRM and CMS com-
pute their DIS contributions with a constant α ¼ αð0Þ and
this marks an important difference to our results within
Table I. However, if the running of αðQ2Þ is taken
into account via Eq. (17), the resulting 4% enhancement
brings their contributions in agreement with ours within
uncertainties.
By contrast, the CMS [5] analysis begins their pertur-

bative threshold at Q2
0 ¼ 1.1 GeV2, so that the relative

contributions from the low-Q2 and high-Q2 regions can be
more directly compared with our results for Q2

0 ¼ 1 GeV2

in Table I. Both the Q2 < Q2
0 and Q2 > Q2

0 contributions
from CMS are smaller than those in our analysis, especially
the low-Q2 result, leading to the ≈10% smaller value
in Ref. [5] for the total □γW

A correction. An additional
consideration of the comparison between the different
calculations is that the elastic contribution in Ref. [5] is
only integrated over a limited range of Q2, whereas in
Ref. [7] and in our analysis the elastic contribution is
integrated over all Q2. This is a small effect, as we find that
approximately 98% of □γW

A ðelÞ is accounted for over

Q2 ≤ 1.1 GeV2. What can be seen from the results in
Table I, however, is that the value of □γW

A has increased
substantially compared to the previously adopted value of
3.26ð19Þ × 10−3 from Marciano and Sirlin [3], but the
uncertainty on this correction has decreased by a factor
of ∼2.
The impact of our calculated γW correction on the CKM

matrix element Vud can be quantified by noting the relation
between □γW

A and the total inner radiative correction ΔV
R in

the denominator of Eq. (1). To lowest order [11,12],

ΔV
R ¼ α

2π

�
3 ln

MW

M
− 4 ln cW

�
þ 2□γW

A ð30aÞ

¼ α

2π

�
3 ln

MZ

M
− ln cW

�
þ 2□γW

A ; ð30bÞ

where cW ¼ MW=MZ and α is taken at the Thomson limit,
Q2 ¼ 0. The leading lnMZ=M term in Eq. (30b) can then
be resummed with the aid of a renormalization group
analysis, as in Ref. [42], with the resulting replacement

1þ 2α

π
ln
MZ

M
→ 1.02248: ð31Þ

Incorporating the resummed result (31) in Eq. (30b),
together with other small corrections, leads to the simple
relationship

ΔV
R ¼ 0.01691þ 2□γW

A : ð32Þ

Using our preferred value for the total □γW
A ¼ 3.90ð9Þ ×

10−3 in Eq. (32), together with Eq. (1), we obtain our best
estimate for the Vud CKM matrix element,

jVudj2 ¼ 0.94805ð26Þ: ð33Þ

This result is approximately 4σ below the expected value
based on the unitarity prediction jVudj2 þ jVusj2 þ
jVubj2 ¼ 1. A comparison of this result to CMS and
SGRM is given in Table I and is depicted graphically in
Fig. 10. As there is some tension between the value of jVusj
obtained from Kμ2 and Kl3 decays, we have shown both in
this figure.
We also note that Refs. [5,7] take a different approach to

accounting for higher order effects than in our analysis,
resulting in slightly different expressions for ΔV

R than in
Eq. (32). In particular, CMS [see Eq. (19) of [5] ] apply

FIG. 10. Comparison of the jVudj2 matrix element from the
present work (SBM) with values derived from the analyses of
Refs. [7] (SGRM) and [5] (CMS). The vertical blue and green
bands denote the values of 1 − jVusj2 − jVubj2 obtained using
data from Kμ2 and Kl3 decays, respectively, together with
jVubj ¼ 0.0038ð2Þ [1]. The gap between our value of jVudj2
and the bands suggests a violation of CKM unitarity at the
(3–5)σ level.
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enhancement factors of 1.022 and 1.065 to the contribu-
tions in Table I with Q2 below and above Q2

0, respectively.
Last, we consider the effect of the Vud extraction using

the results of Ref. [8]. The net effect of that work would
change the numerator of Eq. (1) from 0.97148(20) to
0.97150(60). Our Eq. (33) would then change from
jVudj2 ¼ 0.94805ð26Þ to 0.94810(60), and the substantial
increase in the uncertainty would reduce the violation of
unitarity to the 2σ level.

V. CONCLUSIONS

In this work we have presented a comprehensive
new analysis of the γW interference contribution to
the neutron β-decay matrix element using a dispersive
relations framework that has previously been applied
successfully for γZ box corrections. The evaluation of
the γW correction relies on knowledge of the isoscalar part

of the parity-odd γW structure function, Fð0Þ
3 , which is not

directly accessible experimentally, but can be modeled
from existing phenomenology.

Separating the Fð0Þ
3 structure function into distinct

contributions from the nucleon elastic, resonance, deep-
inelastic, and Regge regions, we have used the latest
phenomenological and theoretical constraints to compute
the contributions from each region and estimate the
associated uncertainties. We find the real part of the box
correction to be Re□γW

A ¼ 3.90ð9Þ × 10−3, with the main
contribution (∼60%) coming from the high-Q2, high-Q2

DIS region, with the next largest contribution (∼30%)
coming from elastic intermediate states. The largest uncer-
tainty comes from the Regge region, which we estimate is
∼15%, followed by the nucleon elastic contribution. While
the detailed breakdown into the various components
depends on the choices of the boundaries between the
regions, the total correction is fairly robust and only weakly
dependent on the decomposition.
The new, improved correction is larger than that found in

recent analyses [3,5–7] (though consistent within uncer-
tainties with the SGRM result [7]). The resulting value of
the CKM matrix element jVudj2 ¼ 0.94805ð26Þ extracted
via superallowed β-decays represents a 4σ violation of
unitarity.
It has been suggested recently [43] that the γW box

diagram can be computed in lattice QCD using the
Feynman-Hellmann theorem. Direct calculation is rather
challenging, and the simpler γW correction to the rate of the
semileptonic pion decay was calculated in Ref. [44]. Using
a combination of dispersion theory and phenomenology,
the results of this lattice study of the pion were converted to
the more relevant case of the neutron [45], confirming the
top-row CKM unitarity deficit, but to a lesser extent (∼2σ).
Future lattice calculations of semileptonic baryon decays
would be able to test the unitarity violations explicitly.
Although difficult to determine empirically, the FγW

3

structure function could also be inferred from model-
independent relations between γW and γZ interference
structure functions, as well as input from neutrino and
antineutrino inclusive DIS.
As an alternative to evaluating the radiative correction

□γW
A within the dispersion relations approach that we have

adopted here, we note that the γW box correction may be
expressed directly in terms of the weak deeply virtual
Compton tensor. This tensor has been expressed by Psaker
et al. [9] in terms of flavor nondiagonal generalized parton
distributions (GPDs) via the appropriate Compton form
factors. These Compton form factors could in principle be
extracted from neutrino-induced virtual Compton scatter-
ing, although the technical difficulties of such experiments
are currently formidable. On the other hand, using the
isospin rotations discussed in Ref. [46], the flavor non-
diagonal GPDs can be related to their more common flavor-
diagonal counterparts. Proposals to determine these GPDs
in charged current electron and positron induced reactions
are being discussed at Jefferson Lab and the Electron Ion
Collider, with the availability of both types of beams
allowing additional flavor separation [47,48].
Finally, we reiterate the observation of Hardy and

Towner [2] that improvements to ΔV
R are the highest

priority in any real improvement in the unitarity test from
0þ → 0þ β-decay. We note that there is significant varia-
tion in the literature [5,7,12,49,50] in the treatment of
effects beyond leading order in α in the γW box, as well as
other contributions to ΔV

R . This suggests that such higher
order effects are worthy of further theoretical consideration.
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APPENDIX: RELATIONS BETWEEN γW, γZ,
AND W� DIS STRUCTURE FUNCTIONS

In this Appendix we derive relations between parity-
violating leading twist structure functions for charged
current neutrino and antineutrino scattering, γZ interfer-
ence, and the nondiagonal γW case relevant for the present
analysis of the γW box correction. For simplicity, we
consider the structure functions at lowest order in αs, which
allows them to be expressed entirely in terms of PDFs.
Inclusion of higher order corrections is straightforward,
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and involves generalizing the relations by convolutions
between the PDFs and hard scattering cross sections.
To relate the flavor nondiagonal structure functions to

the flavor diagonal structure functions that appear in
inclusive DIS processes, we consider the transition n →
p matrix element of nonlocal, leading-twist light-cone
operators separated by a lightlike distance z. Following
the discussion of Mankiewicz et al. [46], at forward angles,
this can be written as

hpðPÞjÔudð0; zÞjnðPÞijz2¼0

∼
Z

1

0

dx½e−ixðP·zÞfudðxÞ � eixðP·zÞf̄udðxÞ�; ðA1Þ

where hpðPÞj and jnðPÞi represent proton and neutron
states, respectively, with momentum P, and fud and f̄ud

denote flavor nondiagonal quark and antiquark distribu-
tions, respectively, for n → p transitions, evaluated at
parton momentum fraction x. The sign in front of the
f̄ud distribution is determined by the charge conjugation
properties of the leading twist operator in the local limit.
The quark bilinear operator Ôqq0 ð0; zÞ is defined as a
product of two quark fields of flavor q and q0, separated
by a lightlike distance z,

Ôqq0 ð0; zÞ ¼ ψqð0ÞΓψq0 ðzÞjz2¼0; ðA2Þ

for a given Dirac operator Γ. As discussed by Mankiewicz
et al. [46], isospin symmetry relations relate the flavor
nondiagonal matrix elements to flavor diagonal ones via

hpjÔudjni ¼ hpjÔuujpi − hpjÔddjpi
¼ hnjÔddjni − hnjÔuujni ðA3Þ

in the proton and neutron, respectively. The relations (A3)
then imply simple relations between the flavor nondiagonal
and flavor diagonal distribution functions, and hence

between the FγW
3 and FγZ

3 structure functions. In particular,
for the isoscalar electromagnetic current contribution to the
FγW
3 structure function, from Eq. (A3) we can write

Fð0Þ
3 ðxÞ ¼ ðeuþ edÞðfudðxÞ− f̄udðxÞÞ

¼ ðeuþ edÞ½ðfuuðxÞ−fddðxÞÞ− ðf̄uuðxÞ− f̄ddðxÞÞ�
¼ ðeuþ edÞ½ðuðxÞ− ūðxÞÞ− ðdðxÞ− d̄ðxÞÞ�; ðA4Þ

where we have used the relations fqqðxÞ≡ qðxÞ and
f̄qqðxÞ≡ q̄ðxÞ, together with isospin symmetry for PDFs
in the proton and neutron, un ¼ dp ≡ d and dn ¼ up ≡ u.
For the isovector electromagnetic current contribution to

FγW
3 , we have the combination

Fð1Þ
3 ðxÞ ¼ ðeu − edÞðfudðxÞþ f̄udðxÞÞ

¼ ðeu − edÞ½ðfuuðxÞ−fddðxÞÞþ ðf̄uuðxÞ− f̄ddðxÞÞ�
¼ ðeu − edÞ½ðuðxÞþ ūðxÞÞ− ðdðxÞþ d̄ðxÞÞ�: ðA5Þ

By crossing symmetry, the structure function Fð1Þ
3 does not

contribute to Re□γW
A ðE ¼ 0Þ. Interestingly, the Fð1Þ

3 struc-
ture function is related to the Gottfried sum rule integrand
[51], which involves the isovector electromagnetic F1 (or
F2) structure function,

Fγp
1 ðxÞ−Fγn

1 ðxÞ ¼ ðe2u − e2dÞ½ðuðxÞþ ūðxÞÞ− ðdðxÞþ d̄ðxÞÞ�
¼ ðeuþ edÞFð1Þ

3 ðxÞ; ðA6Þ

which has been studied experimentally in inclusive charged
lepton DIS from protons and deuterons [52].
For the parity-violating γZ interference structure func-

tion FγZ
3 ¼ P

q 2eqg
q
Aðq − q̄Þ [1], where gqA ¼ � 1

2
for u-

and d-type quarks, respectively, we have explicitly for
proton and neutron targets,

FγZ
3pðxÞ ¼ euðuðxÞ − ūðxÞÞ − edðdðxÞ − d̄ðxÞÞ − esðsðxÞ − s̄ðxÞÞ þ ecðcðxÞ − c̄ðxÞÞ; ðA7aÞ

FγZ
3nðxÞ ¼ euðdðxÞ − d̄ðxÞÞ − edðuðxÞ − ūðxÞÞ − esðsðxÞ − s̄ðxÞÞ þ ecðcðxÞ − c̄ðxÞÞ; ðA7bÞ

with es ¼ ed ¼ −1=3 and ec ¼ eu ¼ 2=3. Taking sums and differences of the proton and neutron functions, one has

FγZ
3pðxÞ − FγZ

3nðxÞ ¼ ðeu þ edÞ½ðuðxÞ − ūðxÞÞ − ðdðxÞ − d̄ðxÞÞ�; ðA8aÞ

FγZ
3pðxÞ þ FγZ

3nðxÞ ¼ ðeu − edÞ½ðuðxÞ − ūðxÞÞ þ ðdðxÞ − d̄ðxÞÞ�
− 2esðsðxÞ − s̄ðxÞÞ þ 2ecðcðxÞ − c̄ðxÞÞ

¼ ðuðxÞ − ūðxÞÞ þ ðdðxÞ − d̄ðxÞÞ þ 2

3
ðsðxÞ − s̄ðxÞÞ þ 4

3
ðcðxÞ − c̄ðxÞÞ: ðA8bÞ
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For charged-current DIS, the parity-violating inclusive
νp and ν̄p structure functions, denoted by FWþ

3p and
FW−

3p , respectively, provide additional combinations of
PDFs not accessible with neutral currents. Taking the
sum of the νp and ν̄p (or, in fact, νn and ν̄n) structure
functions, we have

FW
3 ðxÞ≡ 1

2
½FWþ

3p ðxÞ þ FW−

3p ðxÞ� ¼ 1

2
½FW−

3n ðxÞ þ FWþ
3n ðxÞ�

¼ ðuðxÞ − ūðxÞÞ þ ðdðxÞ − d̄ðxÞÞ
þ ðsðxÞ − s̄ðxÞÞ þ ðcðxÞ − c̄ðxÞÞ: ðA9Þ

Comparing Eq. (A9) with Eqs. (A8) and (A4), we can write
the relations between the γW, γZ, and W� structure
functions as

Fð0Þ
3 ðxÞ ¼ FγZ

3pðxÞ − FγZ
3nðxÞ; ðA10aÞ

FW
3 ðxÞ ≈ FγZ

3pðxÞ þ FγZ
3nðxÞ; ðA10bÞ

where the first result holds in general, while the second
result holds only if one ignores strange and charm
contributions.

Finally, we compare the above relations with the results
obtained by SGRM [7], who, after adjusting for a different
normalization from ours, give the relation

Fð0Þ
3;SGRM ¼ 1

2
ðeu þ edÞðu − d̄Þ

¼ 1

2
ðeu þ edÞ½ðu − ūÞ þ ðū − d̄Þ�: ðA11Þ

This is in disagreement with the result in Eq. (A4) and with
the relation in Eq. (A10). However, this does not affect their
numerical results for two reasons. First, they assume a
symmetric sea, ū ¼ d̄, and second, their formulation makes

use of the integral
R
1
0 dxF

ð0Þ
3 ðxÞ. When combined with the

first assumption, this integrates to ðeu þ edÞ, which is the
same as would be obtained by integrating Eq. (A4). On
the other hand, the assumption that ū ¼ d̄ is not consistent
with global QCD analyses of high-energy scattering data,
which generally find an enhancement of d̄ over ū at values of
x≳ 0.01 and give integrated values for the lowestmoment ofR
1
0 dxðū − d̄Þ ∼ −0.1. The values of the moment have large
uncertainty, however, due to assumptions about extrapolation
into the unmeasured region at low x [25–28,53], and it is not
even clearwhether the integral down tox ¼ 0 converges [54].
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