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1 Introduction

Parton distributions form the core of our theoretical understanding of the inner workings

of hadrons [1]. They encode how the momentum and angular momentum is distributed

among quarks and gluons inside a hadron. As such there exists an intense high precision

experimental program devoted to their determination and it is the concurrent goal of

theoretical nuclear physics to compute these quantities from first principles QCD. As they

constitute genuinely non-perturbative objects, lattice QCD calculations appear as a very

promising route in achieving this goal.

All current methods for extracting parton distribution functions (PDF) or distribution

amplitudes (DA) from lattice QCD require the solution of an inverse problem involving

a Fourier or a Laplace or a Mellin transform of a certain class of hadronic position space

matrix elements, either at the stage of correlation functions or when analyzing matrix

elements [2–8]. These novel methods allow lattice QCD calculations to go beyond the

traditional computation of the lowest moments [9–12]. Let us focus on two related methods,

called the pseudo-PDF [7] and the quasi-PDF [5]. Both involve the hadron matrix element

of space-like separated quark fields connected with a Wilson line and a γ matrix. For

simplicity, we will use the example of the flavor iso-vector unpolarized quark PDFs. In this

case the relevant matrix element has the following Lorentz decomposition

〈h(p)|ψ̄(z)
τ3

2
γαW (z; 0)ψ(0)|h(p)〉 = pαM(ν, z2) + zαN (ν, z2) , (1.1)
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where p is an arbitrary hadron momentum, z is a space-like separation, τ3 denotes a flavor

Pauli matrix, γα refers to a gamma matrix acting in spin space, W (z; 0) to the 0→ z Wilson

line, and ν = p ·z represents a Lorentz invariant quantity known as the Ioffe time. Through

a choice of p, z, and α one is able to formally isolate the term containing leading twist

contributionsM(ν, z2), which is referred to as the Ioffe time pseudo-PDF [13]. In practice,

the typical choices for a lattice calculation would be p = (E, 0, 0, p3), z = (0, 0, 0, z),

and α = 0.

Using the pseudo-PDF formalism discussed in [14–16], the real component of this term,

MR(ν, z2), is matched to the MS Ioffe time PDF, QR(ν, µ2), via a perturbative kernel, up

to power corrections proportional to Λ2
QCDz

2. The MS Ioffe time PDF on the other hand

is related to the valence quark PDF, qv(x, µ
2), through the Fourier transformation

QR(ν, µ2) ≡
∫ 1

0
dx cos(νx) qv(x, µ

2) , (1.2)

as was shown in [13, 17].

In the quasi-PDF formalism, originally proposed in [5], the PDF is extracted from the

lattice calculated MR(ν, z2) in a particular frame where the hadron momentum is in a

single direction, such as p = (E, 0, 0, p3). This matrix element is related to the quasi-PDF,

q̃v(y, p3), via the Fourier transformation

MR(ν,
ν2

p2
3

) ≡
∫ ∞

0
dy cos(νy)q̃v(y, p3) . (1.3)

The quasi-PDF can then be connected to the PDF, up to power corrections proportional

to Λ2
QCDp

−2
3 , using a perturbative kernel as discussed in [16, 18, 19]. Immediately after the

presentation of the basic idea a plethora of works [13, 17, 20–29] explored the properties

of the new methodologies as well as of other approaches [8, 30–33]. We refer the reader

to [34–36] for three detailed reviews of the topic.

This study will be concerned with the reconstruction of the PDF from the MS Ioffe

time PDF, but many of the conclusions are also applicable to the reconstruction of quasi-

PDFs from the lattice calculated matrix element. In inverting eq. (1.2) to obtain qv(x, µ
2),

there exist two challenges. First being that the required integral over ν does not extend

over the full Brillouin zone. The second is that in practice only a small number of points

along ν can be computed. As we will discuss in more detail below, taken together these

issues render the extraction highly ill-posed and we explore several regularization strategies

on how to nevertheless reliably estimate the PDF from the data at hand.

To assess the viability of different reconstruction approaches in practice and to elu-

cidate their systematic uncertainties, we will carry out tests based on two different mock

data sets. The first test scenario is based on experimentally determined PDFs for which it

has been found that a simple Ansatz is able to approximate their functional form quite well

p(x) =
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
xa(1− x)b . (1.4)

Based on phenomenological fits the expectation is that, for scales µ > 2GeV, the physical

PDF shows a divergence close to x = 0, while vanishing at x = 1. This requires that a < 0
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while b > 0. In mock scenario A, we insert into eq. (1.2) such experimentally determined

PDF’s, which in turn tests the case a < 0.

On the other hand at very low scales µ2, lattice results in the quenched approximation

and with heavy pions [13] suggest that a may become positive instead. Thus for mock

scenario B we deform by hand the experimental PDF data so that it goes to zero at the

origin. This scenario B with its different functional form serves as a gauge of the robustness

of the methods we are testing. Also, scenario B is reminiscent of the quasi-PDF case which

is known to converge in the limit of y going to zero.

This article starts out with the study of the direct inversion in section 2, followed by

the recapitulation of the main ideas of advanced reconstructions in section 3. In section

4 we present extensive numerical experiments of all methods employing mock data and

section 5 summarizes our conclusions.

2 Direct inversion

In order to invert the relations (1.2) and (1.3) direct approaches have been proposed and

implemented in the literature [37]. While at first sight these amount to technically straight

forward prescriptions, we argue below that in realistic settings the underlying ill-posed

inverse problem renders them unsuitable to produce satisfactory results.

While eq. (1.2) is a Fourier transform and inverting may be considered a simple task,

the facts that the range of ν extends only over a finite interval different from the full

Brillouin zone and that our data for QR are discrete, makes its inversion highly ill-posed.

Let us explore this issue in more detail by naively discretizing the integral in the interval

x ∈ [0, 1], considering Nx + 1 points in a trapezoid integration rule. In that case

∆x =
1

Nx
, xk = k∆x =

k

Nx
(2.1)

and

QR(ν) =
∆x

2
cos(νx0) qv(x0) +

Nx−1∑
k=1

∆x cos(νxk) qv(xk) +
∆x

2
cos(νxNx) qv(xNx) . (2.2)

Now let us further assume that we have an equal amount of Nν + 1 data points for QR(ν).

Then we can determine exactly the unknown values of the function qv(xk) by solving a

simple linear system of equations. We define the vector Q with components

Qk = QR(νk) (2.3)

where νk are the values of the Ioffe time for which data is available. Also let q be the vector

with components the unknown values of qv(xk) i.e.

qk = qv(xk). (2.4)

Then eq. (2.2) can be written in matrix form as

Q = C · q, (2.5)

– 3 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
7

+++++++++++++++++++++++++
+
+
+++++++++++++

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯
⨯
⨯⨯⨯⨯⨯⨯⨯

***************************************
*



+ ν=[0,10]

⨯ ν=[0,20]

* ν=[0,100]

 ν=[0,40π]

0 10 20 30 40
10-61

10-41

10-21

10-1

k

|λ
k
|

++++++++++++++++++++++++
+
+
++++++++++++++

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯
⨯
⨯⨯⨯⨯⨯⨯⨯⨯

***************************************
*



+ ν=[0,10]

⨯ ν=[0,20]

* ν=[0,100]

 ν=[0,40π]

0 10 20 30 40
10-62

10-42

10-22

10-2

k

|λ
k
|

Figure 1. Eigenvalues λk of the Kernel matrix for the direct inversion method on the left and the

derivative inversion method on the right calculated with different discretization intervals of ν. Note

that only for the case corresponding to a genuine discrete Fourier transform, ν = [0, 40π], do all the

eigenvalues remain of the same order. All other ranges show exponentially suppressed eigenvalues.

The realistic case of ν = [0, 20] already shows a significant degradation of the eigenvalue spectrum.

with C being the coefficient matrix with matrix elements,

Ckl = ∆x cos(νkxl) =
1

Nx
cos(νkxl) for l ∈ [1, Nx − 1],

Ckl =
1

2
∆x cos(νkxl) =

1

2

1

Nx
cos(νkxl) for l = 0, Nx . (2.6)

However, eq. (2.5) may be badly conditioned rendering the computation of q a difficult task.

As a concrete example we take an idealized situation of having in our possession Nν = 40

data points for QR over the four different intervals I0 = [0, 10], I1 = [0, 20], I2 = [0, 100],

I3 = [0, 40π]. Interval I3 is special in the sense that with a redefinition of x one may

rewrite eq. (1.2) in the form of a genuine discrete Fourier transform, which we know is well

conditioned. And indeed as shown in the left panel of figure 1, for ν ∈ I3 the eigenvalues

λk of the matrix C are all of the same order (O(0.1)). Once the resolved ν region is shrunk

below the full Brillouin zone, the cosine functions no longer constitute linearly independent

basis functions and the columns of C become linearly dependent, which manifest itself in

eigenvalues that are exactly zero and eigenvalues that are exponentially suppressed.

The exponential decay of the eigenvalues tells us that the inversion problem is ill-

conditioned and that a direct inversion will become impractical once the ν range is signif-

icantly smaller than the full Brillouin zone. To make this explicit we carry out a direct

inversion of mock data.

For this illustration we take eq. (1.4) with parameters a = −1
4 and b = 3. Ideal data

for QR are obtained based on the three different discretization intervals I1, I2 and I3. The

ideal data are then distorted by Gaussian noise corresponding to constant and uncorrelated

relative errors on the averaged data of ∆QR/QR = const. The matrix inverse is computed

via a singular value decomposition, where only singular values which are larger than 10−4

are inverted.

In figure 2 the results of the direct inversion are shown, with the ideal data results

depicted by red circles and the original q(x) as gray dashed line. The leftmost panel

– 4 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
7

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

q(
x)

x

original q(x)
ΔD/D=10-2

ΔD/D=10-3

ideal data

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

x

original q(x)
ΔD/D=10-4

ΔD/D=10-5

ideal data

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

x

original q(x)
ΔD/D=10-5

ΔD/D=10-6

ideal data

Figure 2. Direct inversion results for different discretization intervals of ν (left ν = [0, 40π], center

ν = [0, 100], right ν = [0, 20]). The matrix inverse is regularized by retaining only the singular

values of C that are larger than 10−4. Note the different size of the relative errors needed, to obtain

a well behaved result (left ∆QR/QR = 10−2, center ∆QR/QR = 10−5, right ∆QR/QR = 10−6).

corresponds to the well conditioned case of I3, where the reconstruction based on ideal

data works flawlessly and even produces accurate results already for a relative large error

on the input data of ∆QR/QR = 10−2. One exception is the point at x = 0, which formally

would have to diverge.

The shorter the ν interval becomes the worse the reconstruction results, where even for

ideal data having an error on the level of standard machine precision we obtain artificial

fluctuations of the reconstructed PDF. At the same time, significantly smaller relative

errors on the input data is required for a reasonably stable reconstruction to ensue. For

ν = [0, 100] we already need ∆QR/QR = 10−5, while for ν = [0, 20] even the ∆QR/QR =

10−6 result only gives an approximate PDF with significant unphysical fluctuations.

One may attempt to improve the results of the direct inversion by considering a higher

order integration scheme. At large values of ν, the integrand is a highly oscillatory function

due to the presence of cos(νx). As a result, an integration algorithm that approximates

the integrand by a low degree polynomial is bound to fail at large values of ν. We can

improve on this by designing a better integration rule that performs similarly for all values

of ν. We know that the oscillatory nature of the integrand is due to the cos(νx) term and

that the unknown function qv(x) is slowly varying in the interval [0, 1]. Therefore we will

approximate qv(x) with a linear interpolation and perform the integral exactly leaving the

result to linearly depend on the unknown values of the function qv(x) on the grid points

xk. A linear interpolation f(x) for the function qv(x) is given by

f(x) =
x− xk

xk+1 − xk
qv(xk+1) +

xk+1 − x
xk+1 − xk

qv(xk) for x ∈ [xk, xk+1] . (2.7)

In order to compute the exact integral of the interpolating function we need to define

I0(a, b, ν) =

∫ b

a
dx cos(νx) =

1

ν
[sin(νb)− sin(νa)] ,

I1(a, b, ν) =

∫ b

a
dxx cos(νx) =

1

ν
[b sin(νb)− a sin(νa)] +

1

ν2
[cos(νb)− cos(νa)] . (2.8)

– 5 –
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Note that both integrals are finite for ν = 0,

I0(a, b, 0) = b− a,
I1(a, b, 0) =

1

2

[
b2 − a2

]
. (2.9)

With these results at hand we can now write down the improved integration rule,

QR(ν) =

∫ 1

0
dx cos(νx)qv(x) ≈

∫ 1

0
dx cos(νx)f(x). (2.10)

The approximate integral is now a sum of integrals on the intervals [xk, xk+1]. To simplify

expressions we introduce the notation

Ii(k, ν) ≡ Ii(xk, xk+1, ν) for i = 0, 1 . (2.11)

With this notation we have

QR(ν) ≈
Nx−1∑
k=0

[
I1(k, ν)− xk I0(k, ν)

xk+1 − xk
qv(xk+1) +

xk+1 I0(k, ν)− I1(k, ν)

xk+1 − xk
qv(xk)

]
, (2.12)

or

QR(ν) ≈ x1 I0(0, ν)− I1(0, ν)

x1 − x0
qv(x0)

+

Nx−1∑
k=1

[
I1(k − 1, ν)− xk−1 I0(k − 1, ν)

xk − xk−1
+
xk+1 I0(k, ν)− I1(k, ν)

xk+1 − xk

]
qv(xk)

+
I1(Nx − 1, ν)− xN−1 I0(N − 1, ν)

xN − xN−1
qv(xN ) . (2.13)

Note that for ν = 0 the above expression simplifies to the trapezoid rule for the parton

density qv(x).

Using the same notation as before, we can now compute the matrix elements of the

coefficient matrix C as

Clk =
I1(k − 1, νl)− xk−1 I0(k − 1, νl)

xk − xk−1
+
xk+1 I0(k, νl)− I1(k, νl)

xk+1 − xk
for k ∈ [1, N − 1],

Clk =
x1 I0(0, νl)− I1(0, νl)

x1 − x0
for k = 0,

Clk =
I1(N − 1, νl)− xN−1 I0(N − 1, νl)

xN − xN−1
for k = N . (2.14)

We have tested this improved integration method and compared it to the trapezoid

rule. It turns out that the relative integration error for typical functions qv(x) with 10

interpolating points continuously grows with ν for the trapezoid rule and reaches 100%

at ν = 15. On the other hand the improved integration, which performs similarly with

the trapezoid rule at small ν, at ν = 15 has 65% relative error which remains almost

unchanged up to ν = 100. The improved integration achieves a constant relative error

– 6 –
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as a function of ν at large ν for any number of interpolating points. On the other hand

the trapezoid rule has a relative error that always increases with ν for any number of

interpolating points. Therefore, this improved integration scheme achieves its design goal

of having a constant integration error for all values of ν. We could further improve the

integration by using a second order interpolation formula therefore producing a generalized

Simpson’s rule. Perhaps this is needed because the number of points we have is very

limited. However, it may be that the largest systematic in our problem is the truncation

at relatively small values of ν and further improvement of the integration scheme will not

affect this systematic. The proposed integration scheme can prove valuable because it can

significantly reduce the number of points required to discretize the integral resulting a

smaller maximum value of ν for which the problem is no longer ill-defined.

It has been proposed in [37], that the unphysical oscillations in the related quasi-PDF

inverse problem can be controlled by considering the derivative of the integral equation

with respect to ν or z3. Even if the derivative method results in a smoother curve, it does

not alleviate the ill-posed nature of the problem. Assuming that the derivative can be

calculated explicitly or accurately, eq. (1.2) becomes

∂Q(ν) = −
∫ 1

0
dxx sin(νx)q(x), (2.15)

which can be discretized as before to

∂Q = (∂C) · q, (2.16)

with ∂C being the coefficient matrix with matrix elements,

[∂C]kl = −∆xxl sin(νkxl) = − 1

Nx
xl sin(νkxl) for l ∈ [1, Nx − 1],

[∂C]kl = −1

2
∆xxl sin(νkxl) = −1

2

1

Nx
xl sin(νkxl) for l = 0, Nx . (2.17)

Using the same intervals of ν and x mentioned above, one can find that the eigenval-

ues of this matrix, shown in figure 1, have the same pattern of exponential decay which

characterizes an ill-conditioned inverse problem.

Our numerical experiments indicate that for realistic scenarios encountered in lattice

studies, for which we foresee ν ∈ [0, 20] and ∆QR/QR = 10−2 − 10−3, a direct inversion

is not feasible and more sophisticated regularization schemes of the ill-defined inversion

problem are needed. In particular we have observed that the truncation in ν, results in a

reconstructed PDF with unphysical fluctuations. This is an effect similar to that observed

in [37]. In addition we also see that any non-analytic behavior of q(x), e.g. a divergence at

x = 0 will pose a difficulty for (direct) inversion methods and needs to be considered with

care. Therefore in the main part of this paper we will explore several modern methods

for treating inverse problems and compare their efficiency in dealing with the uncertainties

introduced by the truncation of the integration regime.

– 7 –
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3 Advanced PDF reconstructions

The fundamental difficulty of solving an ill-posed inverse problem lies in the fact that the

input data by themselves do not single out a unique answer. To give meaning to the PDF

extraction the inversion needs to be regularized, i.e. we need to provide criteria on how to

choose a single PDF from an infinite number of possible solutions reproducing the discrete

and noisy input.

Naive methods, such as the direct inversion and the derivative method, introduce a

regularization by removing small singular values of the kernel or by setting data to zero

at large distances. However, as we have shown above these approaches also introduce an

uncontrolled systematic error, which is difficult to remedy.

A straightforward example of a stable solution to the inverse problem, which was used

in [13, 17], is to parametrize the solution with a functional form, such as (1.4), containing

a small number of parameters. One can then use this functional form to fit the data using

a χ2 minimization. This approach typically results in smaller statistical errors, however, it

introduces a model systematic that one may control by varying the functional form used

in the model. As the flexibility of the parametrization increases the model systematic is

reduced and the ill-posed nature of the inverse problem becomes more apparent.

More sophisticated methods often use some additional prior information to constrain

the results in order to improve the robustness of the result and provide controlled systematic

error estimates.

In the following, we discuss three extraction methods that do not presuppose a func-

tional form of the encoded PDFs or have a very flexible functional form parametrizing the

solution. Each of these methods regulates the inverse problem in different ways. The first,

the Backus-Gilbert method, regulates the problem by minimizing the statistical variance

of the solution. The second, a neural network parametrization, that provides a flexible

parametrization given by specific choices of network geometry and activation functions.

The third class of methods, is based on Bayesian inference, that rely on Bayes theorem to

systematically incorporate prior information, such as e.g. positivity or smoothness of the

solution. In addition, the Bayesian inference methods introduce a default model, which

represents the prior information in that this model is the correct solution in the absence

of any data. Non Bayesian approaches, while not explicitly mentioning prior information

often incorporate additional knowledge about the problem at hand in an indirect fashion.

One such way is to apply a preconditioning to the inverse problem, in case that a relatively

good guess of the form of the solution is available. In a Bayesian method such information

would instead be supplied in the form of a default model.

Let us discuss the preconditioning, which we will employ in order to improve the

results of the Backus-Gilbert and neural network methods. The main ingredient is to

define a rescaled Kernel and rescaled PDF h(x)

Kj(x) ≡ cos(νjx)p(x) and , h(x) ≡ qv(x)

p(x)
, (3.1)

where p(x) corresponds to an appropriately chosen function that makes the problem easier

to solve. In particular, we wish to incorporate into p(x) most of the non-trivial structure

– 8 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
7

of q(x), such that h(x) is a slowly varying function of x and contains only the deviation of

q(x) from p(x).

As discussed in the introduction, it has been found that the Ansatz eq. (1.4) describes

phenomenological PDFs rather well. Integrated over the cosine, it yields the function

Qp(ν, a, b) = π2−a−b−1Γ(a+ 1)Γ(b+ 1)

× 2F̃3

(
a+ 1

2
,
a+ 2

2
;

1

2
,

1

2
(a+ b+ 2),

1

2
(a+ b+ 3);−ν

2

4

)
(3.2)

where 2F̃3 is the generalized hypergeometric function. One can find a good choice for the

parameters a and b by first fitting the Ioffe-time PDF data with eq. (3.2). The choice of

preconditioning function or default model will influence the result of the reconstruction

and it is therefore necessary to explore the stability of the end result on that choice.

3.1 Backus-Gilbert method

One approach to inverse problems, which has been used in a number of engineering and

physics applications, is the Backus-Gilbert method [38–41]. Like many approaches to the

inverse problem, the Backus-Gilbert method provides a unique solution to the ill posed

problem given some condition. This method differs from other regularizations, which im-

pose a smoothness criterion on the resulting function q(x), by imposing a minimization

condition of the variance of the resulting function. The Backus-Gilbert method has been

studied previously in [42] as a solution to an inverse problem for extracting PDFs from

other types of lattice calculated hadronic matrix elements.

Let us start from the preconditioned expression (3.1) with a rescaled PDF h(x) that

is only a slowly varying function of x. Hence our inverse problem becomes

dj ≡ QR(νj) =

∫ 1

0
dxKj(x)h(x) . (3.3)

The Backus-Gilbert method introduces a function ∆(x− x̄) that is written as

∆(x− x̄) =
∑
j

aj(x̄)Kj(x) , (3.4)

where aj(x̄) are unknown functions to be determined. It then estimates the unknown

function as a linear combination of the data,

ĥ(x̄) =
∑
j

aj(x̄)dj , or q̂v(x̄) =
∑
j

aj(x̄)djp(x̄) . (3.5)

Given the above definitions, if ∆(x− x̄) were to be a Dirac δ-function then ĥ(x̄) would be

equal to h(x̄). If ∆(x− x̄) approximates a δ-function with a width σ, then the smaller σ is,

the better the approximation of ĥ(x) to h(x). In other words, if ĥσ(x) is the approximation

resulting from ∆(x) with a width σ then

lim
σ→0

ĥσ(x) = h(x) . (3.6)
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With this in mind the Backus-Gilbert method minimizes the width σ given by

σ =

∫ 1

0
dx(x− x̄)2∆(x− x̄)2 . (3.7)

Note that other choices for the definition of the width can be used. This choice makes

the resulting integrals easy to compute and the minimization problem becomes quadratic

in the unknown values aj . Furthermore, if ∆(x) is to approximate a δ-function then one

has to impose the constraint ∫ 1

0
dx∆(x− x̄) = 1 . (3.8)

Using a Lagrange multiplier λ one can minimize the width and impose the constraint by

minimizing

χ[a] =

∫ 1

0
dx(x− x̄)2

∑
j,k

aj(x̄)Kj(x)Kk(x)ak(x̄) + λ

∫ 1

0
dx
∑
j

Kj(x)aj(x̄) . (3.9)

By setting the derivative to zero with respect to aj(x̄) we get

∂χ[a]

∂aj(x̄)
= 2

∫ 1

0
dx(x− x̄)2

∑
k

Kj(x)Kk(x)ak(x̄) + λ

∫ 1

0
dxKj(x) = 0 , (3.10)

which results to ∫ 1

0
dx(x− x̄)2

∑
k

Kj(x)Kk(x)ak(x̄) = −1

2
λ

∫ 1

0
dxKj(x) . (3.11)

Let’s now define the matrix M with matrix elements

Mjk =

∫ 1

0
dx(x− x̄)2Kj(x)Kk(x) , (3.12)

the vector u with components

uj =

∫ 1

0
dxKj(x) , (3.13)

and promote aj(x̄) to a vector a. With these definitions the minimization condition takes

the matrix equation form

Ma = −1

2
λu (3.14)

or

a = −1

2
λM−1u . (3.15)

Imposing the normalization condition for ∆(x) we get

λ = −2
[
uTM−1u

]−1
, (3.16)

therefore,

a =
1

uTM−1u
M−1u . (3.17)
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We can now obtain an estimate of the unknown function using eq. (3.5). We can also

compute the width of the function ∆(x) which is otherwise known as the resolution function.

The width of the distribution ∆(x− x̄) is given by

σ(x̄) = aTMa . (3.18)

Note that the width is dependent on x̄ because a depends on x̄ and represents the resolution

of the method at x = x̄. Features of the unknown function at scales shorter than σ(x̄) will

not be resolved and thus the method works better when the unknown function is smooth.

This approach is known to fail when the matrix M becomes singular, and thus various

techniques for regularizing the inversion of M have been proposed. As mentioned before,

minimization of the variance of the resulting solution leads to a regularization of the matrix

M with the covariance matrix of the data. This is implemented by the substitution

M→M + ρC , (3.19)

where C is the covariance matrix of the data and ρ is a small free parameter. The larger

ρ the better conditioned the matrix M and the lower the resolution of the method is. A

similar method is the Tikhonov regularization [43, 44], where one makes the substitution

M→M + ρ1 , (3.20)

where 1 is the identity matrix and ρ a small adjustable parameter. In this case all the sin-

gular values of M are lifted resulting in a well-defined matrix M. However, the Tikhonov

regularization does not minimize the variance of the resulting solution of the inverse prob-

lem as the covariance matrix regularization does. Again larger values of ρ result in better

regulated matrices at the cost of reduced resolution.

Another regularization method similar to Tikhonov is the method we adopted for our

experiments. We just project out the singular vectors with singular values smaller than

a given cut-off ρ which we choose. For our problem we have noticed that the Tikhonov

regularization and the approach we chose result in nearly identical solutions of the inverse

problem. Furthermore, the covariance matrix regularization for appropriate values of the

parameter ρ produces very similar results as the other two methods for our problem.

Therefore, we decided to use our simple approach for regulating the matrix M and present

results of our experiments using this SVD cutoff method.

The Backus-Gilbert method provides a unique solution to the inverse problem de-

manding that the solution maximizes a stability criterion. The method has a tunable free

parameter, ρ, which provides a trade off between stability and resolution. This freedom

can lead to a bias from the user, but the Backus-Gilbert method provides the variance and

the resolution function as quantitative measures to assure a proper analysis is performed.

It should be noted that the forms of preconditioning functions, p(x), are restricted in the

Backus-Gilbert method. The preconditioning function must be chosen such that integrals

of the preconditioned kernels which define M and u remain finite. Furthermore, it should

be noted that a good preconditioning function makes the remainder smooth, as a result

the demand for high resolution is less pressing the better the preconditioning is.
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3.2 Neural network reconstruction

Neural networks can be used as a rather flexible parametrization of functions and thus

have been used in the literature to address various inverse problems. Neural networks do

not provide any explicit constraints such as a smoothness condition or minimization of a

variance, as the Backus-Gilbert method does but instead it is the depth and structure of

their layers that limits what functional forms may be encoded. Hence, neural networks

provide a very general parametrization of the unknown function, without forcing a model

dependent form such as eq. (3.2), for a statistical regression. Neural networks have e.g.

been used in the literature to extract PDFs from experimental data. The pioneering work

of [45] is now one of the established approaches in obtaining PDFs from cross section data

by the NNPDF collaboration [46–49]. In this work, we explore the use of neural networks

in solving the inverse problem at hand. The specific neural network implementation used

in this work is known as a multilayer feedforward neural network.

A neural network is composed of a system of interconnected nodes, called the neurons.

The connection between neuron pairs is called the synapsis. The output of each neuron,

called the activation, is typically a non-linear transformation of its input, which is called

the activation function of that neuron. The input for each neuron is a weighted sum of

the activations of the connected neurons shifted by some real number, which is called the

threshold or bias of the neuron. The weights and the thresholds are the free parameters

which will be determined by the training procedure.

In a multilayer neural network, the neurons are organized into distinct layers whose

neurons are not directly connected to each other. In a multilayer feedforward network, the

layers are ordered and each neuron on a given layer is only connected to the neurons on

the previous and subsequent layers. The geometry of these networks, shown in figure 3, is

described by a list of numbers, N1, . . . , NL, giving the number of neurons on each of the

L layers. The first layer, ξ(1), is a given input vector of length N1 and the final layer, ξ(L)

is the output vector of length NL, also called the response of the neural network. All other

layers are referred to as hidden layers. The activation of the i-th neuron on the l-th layer

of the network is given by the recursive relationship

ξ
(l)
i = g

(l)
i

Nl−1∑
j

w
(l)
ij ξ

(l−1)
j − θ(l)

i

 . (3.21)

Specified by the geometry, activation functions, thresholds, and weights, a multilayer

feedforward neural network can be considered a parametrization of a function from IRN1 →
IRNL . For a given geometry and a set of activation functions, the thresholds and weights

can be chosen for the network to approximate a given continuous function. For the case

of reconstructing the rescaled PDF h(x), which is a single valued function with a single

argument, the geometry is restricted to have N1 = 1 and NL = 1. It should be noted

that NNPDF has also used log 1
x as a second argument in the input layer [50], which is

important to reproduce the small x behavior of the PDF. However, in our case our data

are not sensitive to small x and thus using log 1
x at the input layer is not essential.
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...

... . . . ...
x

ξ
(2)
1

ξ
(2)
2

ξ
(2)
N2

ξ
(3)
1

ξ
(3)
N3

ξ
(L−1)
1

ξ
(L−1)
NL−1

q(x)

Input layer Ouput layer

1 − N2 − N3
. . . NL−1 − 1

Hidden layers

Figure 3. A neural network can be used as a general parametrization of an unknown function from

IRN1 → IRNL . For the case of a PDF, a single valued function of a single argument, the input and

output layers have only one neuron.

A neural network can be used to perform a regression by choosing the thresholds

and weights with a training procedure. During the training procedure, the weights and

thresholds are modified to minimize some error function, which describes the difference

between the response of the neural network and some desired output. When using a neural

network to perform a statistical regression, a common choice of error function is the χ2

function, e.g.

χ2({w}, {θ}) =

N∑
k=1

(
Qk −

∫ 1

0
dxKk(x)h(x; {w}, {θ})

)2

/σ2
k , (3.22)

where Qk are N data points with standard deviations σk and h is the output layer of the

neural network given an input layer x, weights {w}, and thresholds {θ}. Using a neural

network to parametrize the unknown function may result in a χ2({w}, {θ}) with a large

number of local minima. Some of these local minima are trivial multiplicities due to sym-

metries a neural network has under permutations of the weights and thresholds. However,

the possibility of multiple non-trivial local minima exists resulting in many realizations

of the network that reproduce the data equally well. In these cases special care has to

be taken to avoid “over-fitting” and several methods to do so have been developed in the

literature [50].

These roughly equivalent minima can be found by a training procedure such as a ge-

netic algorithm. A genetic algorithm is an iterative process based upon the idea of natural

selection. Each iteration, also called a generation, begins with a sample of possible net-

works, called a population. A fitness function is evaluated for each of the networks, which

in this case is the error function χ2({w}, {θ}). Those networks which are the “least fit”, i.e.

largest χ2, are removed from the population. The surviving population is then “mutated”

by randomly changing their parameters, i.e. weights and thresholds, to create the starting

population for a new generation. This procedure is iterated for enough generations that a

final population covers a sufficient number of minima with sufficiently small values of the

error function.
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The genetic algorithm used in this study is based upon simulated annealing. The initial

population is created from N0
rep sets of initial weights and thresholds which are generated

from a random normal distribution with a wide initial search width, σ0.

{w}(0)
i , {θ}(0)

i ∼ N (0, σ0) (3.23)

where {w}(0)
i and {θ}(0)

i are the parameters of the i-th neural network in the initial pop-

ulation. The weights and thresholds of this initial population of neural networks is the

starting point for minimizing with respect to χ2 to some new values {w′}(0)
i and {θ′}(0)

i .

The resulting neural networks which are the least fit, i.e. that have the largest χ2, are

removed from the population and not used in the next generation. The surviving neu-

ral networks are then mutated by adjusting their weights and thresholds by some small,

Gaussian distributed amount with a mutation width σ,

{w}(g)i ∼ {w′}
(g−1)
i (1 + ηN (0, σ)) {θ}(g)i ∼ {θ′}

(g−1)
i (1 + ηN (0, σ)), (3.24)

where η is the relative size of the mutation, {w}(g)i and {θ}(g)i are the initial parameters of

the i-th neural network in the g-th generation and {w′}(g)i and {θ′}(g)i are the parameters of

the i-th surviving neural network in the g-generation after minimization. This procedure

of minimization and removal is repeated for Ngen generations. After enough generations

have passed, the populations of neural networks will all exist in various minima of χ2 which

can be used to estimate the PDF.

Many other training procedures exist which all have different methods of identifying

minima, both stochastic and deterministic. An example of such a procedure is the ap-

proach the NNPDF collaboration is taking in obtaining PDFs from experimental data [50].

Though different training procedures vary in their efficiency for finding minima, they should

eventually all converge on the same set of minima of the error function.

Neural networks provide a rather general solution to the inverse problem. The large

number of highly interconnected parameters allows for a model independent result, but the

complexity of the hidden layers do not give any insight to what effects underlie that result.

3.3 Bayesian PDF reconstruction

The third approach to inverse problems we discuss, which has proven to be versatile in

practice, is Bayesian inference. It acknowledges the fact that the inverse problem is ill-

defined and a unique answer may only be provided once further information about the

system has been made available. This method does not require any explicit constraints,

though it may benefit from them, nor does it require any functional form, even one as

flexible as a neural network. This method finds the most probable value of q(x) given

the data and whatever prior information is provided. Other regularization methods may

often be rewritten in terms of Bayesian reconstruction with the constraints treated as

prior information.

Formulated in terms of probabilities, one finds in the form of Bayes theorem that

P [q|Q, I] =
P [Q|q, I]P [q|I]

P [Q|I]
. (3.25)
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It states that the so called posterior probability, P [q|Q, I], for a test function q to be the

correct x-space PDF, given a lattice calculated Ioffe time PDF Q and additional prior

information I may be expressed in terms of three quantities. The likelihood probability

P [Q|q, I] denotes how probable it is to find the data Q if q were the correct PDF. Ob-

taining the most probable q by maximizing the likelihood is nothing but a χ2 fit to the Q
data, which as we saw from the direct inversion is by itself ill-defined. The second term

of importance is the prior probability P [q|I], which quantifies, how compatible our test

function q is with respect to any prior information we have. In particular such information

can be related to the appearance of non-analytic behavior of q(x) at the boundaries of

the x interval or the positivity of the PDF. P [Q|I], the so called evidence represents a q

independent normalization.

For sampled (lattice) data, due to the central limit theorem, the likelihood probability

may be written as the quadratic distance functional P [Q|q, I] = exp[−L],

L =
1

2

∑
k,l

(Qk −Qqk)C−1
kl (Ql −Qql ), (3.26)

where Qqk are the Ioffe-time data arising from inserting the test function q into eq. (1.2) and

Ckl =
1

Nm(Nm − 1)

∑
h

(
Qhk −Qk

)(
Qhl −Ql

)
, (3.27)

denotes the covariance matrix of the Nm measurements of simulation data Qhk .

For the regularization of the inversion task, we now have to specify an appropriate

prior probability P [q|I] = exp[αS[q,m]]. Prior information enters in two ways here: on

the one hand the (unique) extremum of the S functional is given by the so called default

model m, which, by means of Bayes theorem, represents the most probable answer in the

absence of data. On the other hand the functional form of S encodes which solutions are

admissible to the inverse problem, e.g. enforcing positivity.

In a Bayesian approach the preconditioning discussed in the beginning of this section

is naturally incorporated not via a modification of the Kernel but via the specification of

an appropriate default model. Actually dividing out a fitted Ansatz p(x) from the Kernel

and using a constant default model is equivalent to working with the original Kernel and

simply assigning m(x) = p(x). In other words, in the Bayesian approach we select the most

appropriate default model from a best fit of eq. (3.2) to the Ioffe time data and estimate the

dependence of the end result qBayes(x) on the choice of m by repeating the reconstruction

with default models arising from a slight variation of the best fit parameters in eq. (3.2).

Based on different sets of prior information, different regularization functionals have

been derived in the literature. Note that due to Bayes theorem, in the “Bayesian continuum

limit” i.e. the combined limit of the number of supplied datapoints becoming infinite and

the uncertainty on the data going to zero, all reconstructions will lead to the same solution.

A good choice of regulator functional and the availability of valid prior information can

help us approach this solution more closely even for data that are coarse and noisy. Indeed

if an accurate approximate solution is already available we can use Bayesian methods that
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imprint this prior information strongly onto the end result (steep S[q]), while in cases

where only unreliable prior information is available one wishes to use a method that lets

the data “speak” as freely as possible without distorting them through the default model

(weaker S[q]).

The reconstruction of PDF’s from Ioffe-time PDF data benefits from the availability

of good prior information in the form of the empirically obtained eq. (1.4). This situation

is quite different from other inverse problems, e.g. the reconstruction of hadronic spectral

functions, where little to no relevant information about the spectral structures of interest

is known. We therefore foresee that methods with a steep prior probability will fare better

than those that are explicitly designed to minimize the impact of the default model.

The first example is the well known Maximum Entropy Method [51, 52], which features

the Shannon-Jaynes entropy as regulator

SSJ[q,m] =
∑
n

∆xn

(
qn −mn − qnlog

(
qn
mn

))
. (3.28)

Its functional form has been derived using arguments from two-dimensional image recon-

struction and it is designed to introduce as least as possible additional correlations into the

end result, beyond what is encoded in the input data. The standard MEM implementation

restricts the space of solutions to those close to the default model, meaning that for a

small number of available input points its result will lie close to the function m. While it

has been shown [53] that this implementation of the MEM in general fails to recover the

global extremum of the posterior, for a default model that is close to the correct result,

the outcome is often satisfactorily accurate.

We contrast the MEM to another Bayesian approach simply named Bayesian recon-

struction (BR) [54], which has been derived by requiring positive definiteness of the re-

sulting q, smoothness of q, where the data Q do not provide constraints on its form, as

well as independence of the resulting q on the units used to express Q. The resulting

regulator reads

SBR[q,m] =
∑
n

∆xn

(
1− qn

mn
+ log

(
qn
mn

))
. (3.29)

It has been shown that this regulator also leads to a unique extremum of the posterior

and since in contrast to the MEM no flat direction appears in SBR, the search space does

not need to be restricted. The BR method had been developed in particular for inverse

problems, where only scarce or unreliable prior information is available, imprinting the

form of m as weakly as possible onto the end result. We expect thus that in the present

case with good prior information available, this method will produce less accurate results

than the MEM, as it does not leverage the information in m as strongly.

Note that in the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter, which weighs the influence of simulation data and prior information. It

has to be taken care of self-consistently. In the MEM it is selected, such that the evidence

has an extremum. In the BR method, we marginalize the parameter α a priori, i.e. we
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integrate the posterior with respect to the hyperparameter, assuming complete ignorance

of its values P [α] = 1.

Up to this point we have only considered regulators for the reconstruction of positive

definite functions. It is fathomable though that one has to deal with PDF reconstructions

where positive definiteness does not hold, such as for spin dependent PDFs. In that case

the regulator (3.29) is not applicable. A choice of regulator often employed in the literature

in such a situation is the quadratic one, which corresponds to a modified form of Tikhonov

regularization

SQDR[q,m] =
∑
n

∆xn

(
qn −mn

)2
. (3.30)

It is a comparatively strong regulator and imprints the form of the default model signifi-

cantly onto the end result. Marginalizing the hyperparameter α with a flat prior probability

P [α] = 1 is hence not possible in this case. Indeed integrating over the normalized prior

probability with respect to α leads to a delta function that fixes the end result to ρ = m

everywhere. Instead one uses the “historic MEM” approach [51, 52], where α is chosen such

that for the corresponding reconstruction qα the likelihood takes on the value L[qα] = Nν .

As in the following we are able to utilize default models, which are already close to the

correct result, the use of this regulator is justified.

Again we can compare this approach to one specifically designed to keep the influence

of the default model to a minimum, i.e. to imprint its functional form as weakly as possible

on the end result. To this end we resort to an extension of the BR method (3.29) to

non-positive functions. The corresponding

SGBR[q,m] =
∑
n

∆xn

(
− |qn −mn|

hn
+ log

( |qn −mn|
hn

+ 1

))
, (3.31)

keeps the advantageous properties of the original BR prior, e.g. smoothness and scale

invariance at the price of having to introduce another default model related function h. It

may be thought of as the confidence we have in our default model. Note that for h = m

one obtains a regulator, which for q > 0 and q > m takes on the form of the standard BR

prior and mirrors it for q < m. In order to obtain the full uncertainty budget of the end

result obtained with the generalized BR prior, one has to vary not only the default model

but also the function h. Eq. (3.31) also admits for an a priori integrating out of α.

Once L, S and m have been provided, the most probable PDF q, given simulation data

and prior information is obtained by numerically finding the extremum of the posterior

δP [q|Q, I]

δq

∣∣∣∣
q=qBayes

= 0. (3.32)

It has been proven that if the regulator is strictly concave, as is the case for all the regulators

discussed above, there only exists a single unique extremum in the space of functions q on

a discrete ν interval.

Note that as long as positive definiteness is imposed on the end result, the space of

admissible solutions is significantly reduced. On the other hand, regulators admitting also q
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functions with negative contributions have to distinguish between a multitude of oscillatory

functions, which if integrated over, resemble a monotonous function to high precision.

We will observe the emergence of ringing artifacts for the quadratic and generalized BR

prior below.

Other regularizations may be reformulated in the spirit of the Bayesian strategy. To

give meaning to the inversion task they introduce in addition to the likelihood another

functional which encodes prior information or prior expectations on the end result. In

the standard Tikhonov approach e.g. the condition is that the values of q shall have the

smallest possible magnitude. While they do not rely on an explicitly formulated default

model, they contain the prior information implicitly in the form of their regularization

functional. Otherwise they could not provide a unique regularized answer to the task. The

benefit of the Bayesian method is that all prior information is made explicit, so that the

dependence of the end result on the regularization may be thoroughly and fully tested.

4 Mock data tests

In this section, the methods constructed above are tested using data for the Ioffe time PDFs

constructed from the phenomenological PDFs. Using the software package LHAPDF [55]

and the dataset NNPDF31 nnlo as 0118 from the NNPDF collaboration [46], we Fourier

transform numerically the iso-vector quark PDFs and obtain data for the QR(ν) at Q2 =

2 GeV2. This data set will be called scenario A. The second dataset, scenario B, is created

by multiplying the NNPDF data by Nx, where N is a normalization to fix the valence quark

sum rule. This modification forces the PDF to vanish as x approaches zero. This scenario

is reminiscent of the quasi-PDF case which is finite at low y before the matching procedure

is applied. These data sets contain a number of replicas that can be used to obtain errors

on the PDFs. The standard deviation over the ensemble of replicas represent the 68%

confidence interval. The PDFs and Ioffe time PDFs for these two cases are plotted in

figure 4. For the various tests, the Ioffe time PDF will be sampled in the ranges mentioned

above to study the dependence on the maximum available Ioffe time.

4.1 Backus-Gilbert

The first advanced reconstruction technique to be tested is the Backus-Gilbert method. All

integrals are computed numerically in double precision to tolerance 1.0 × 10−16. In order

to regularize the matrix M an SVD cut-off of ρ = 1× 10−8 is used as discussed in pervious

sections.1 With this set up, a resolution function width, σ(x̄), of O(10−2) is obtained for

most of x < 0.75 gradually increasing after that reaching O(10−1) for x = 1.0. With the

ensemble of replicas, one can also compute the covariance matrix of the data and therefore

use the covariance matrix regularization for the Backus-Gilbert method. We have done that

as well as employ the Tikhonov regularization and obtained results that are similar with

the results we discuss here where the SVD cutoff method was used to regularize the matrix

inverse. In order to obtain the statistical error-band and the mean for the reconstructed

1We have also tested using the Moore-Penrose pseudo inverse instead and got similar results.
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Figure 4. The two mock datasets used for testing the methods. The PDF on the left. The Ioffe

time PDF on the right. Scenario A (red band) will test the case of a PDF which diverges at small

x and scenario B (blue band) will test the case of a PDF which converges at small x.

curve we take the standard deviation and the mean of the ensemble of reconstructed curves.

The resulting statistical error-band represents a 68% confidence level.

After performing several numerical experiments on the Backus-Gilbert method, we

have concluded that the use of a preconditioning function p(x) is essential in obtaining

an accurate determination of the PDF. The reconstructions of the PDF from data with

νmax = 10 and no preconditioning function are shown in figure 5. The reconstructed PDF

is consistent with the mock PDF for x > 0.3, but deviates from it in the low x region. This

result is expected, because the low x region is dominated by the Ioffe time distribution

at large Ioffe times which are not present in the input data. Also in figure 5, the fidelity

of the reconstruction is tested by taking the Fourier transform of the reconstructed PDF

and comparing to the data used to generate it which shows agreement across the range of

Ioffe time.

As argued earlier, preconditioning is essential in improving the Backus-Gilbert extrac-

tion of the PDF. In order to test its effectiveness, the preconditioning function defined in

eq. (1.4) is used with a range of exponents a and b that allows for all the integrals that

define M and u to be convergent. For scenario A we achieved the best reproduction with

a = −0.35 and b = 2 while for scenario B with a = 0.3 and b = 2. In order to get a handle

of possible systematics due to preconditioning we varied the exponents a and b in the in-

tervals [−0.25,−0.4] and [1, 4] respectively for scenario A. Correspondingly for scenario B

we varied the exponents in the intervals [0.2, 0.35] and [1.5, 3].

As one can see, for both scenarios, a wide range in x is well reproduced and deviations

from the original data begins to appear for x < 0.2. Perhaps, these deviations are expected

due to the rather small maximum value of ν used in this example, νmax = 10. However,

this aggressive cutoff for ν is realistic for lattice calculations. In addition, the number of

selected points, which is 12, is also a number that is plausible for present lattice QCD

calculations. From these results we can conclude that the fidelity of the reconstruction

can be improved significantly by choosing appropriate preconditioning functions. The best
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Figure 5. x-space PDF’s reconstructed using the Backus-Gilbert (BG) method from Nν = 12

Ioffe-time data points on the interval ν = [0, 10] (top) as well as the input data (gray crosses)

compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels. The

plots in the left column show the results for mock data based on a phenomenological PDF, while the

right column from the modified scenario where the PDF vanishes at the origin. In both scenarios

no preconditioning has been employed.

reconstruction is obtained using a preconditioning function that is chosen to roughly fit the

data. In this case the resulting reconstruction is indistinguishable from the original data

for nearly all the range of x with the largest deviations occurring for x < 0.1. Therefore,

we conclude that the Backus-Gilbert reconstruction with an appropriate preconditioning

function is well suited for the reconstruction of the PDFs from the limited data for the

Ioffe time PDFs that are provided by present day lattice QCD calculations.

Finally, we explore the dependence of the reconstruction on the maximum value of ν.

Experiments are performed with νmax = 20 and νmax = 100. In all cases the data points

were selected to be uniformly spread in the interval with a separation δν = 10/11. The

results are shown in figure 7. The best result that is in agreement with the input PDF

within errors across the whole range of x is obtained from the experiment with νmax = 100.

However, this is an unrealistically large range in ν unlikely to be accessible in contemporary

lattice QCD calculations. As νmax is lowered then the reconstruction deteriorates. However,
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Figure 6. x-space PDF’s reconstructed using the Backus-Gilbert (BG) method from Nν = 12

Ioffe-time data points on the interval ν = [0, 10] (top) as well as the input data (gray crosses)

compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels. The

plots in the left column show the results for mock data based on a phenomenological PDF, while the

right column from the modified scenario where the PDF vanishes at the origin. The reconstruction

was performed with preconditioning exponents a = −0.35 and b = 2 for scenario A and a = 0.3

and b = 2 for scenario B.

even for νmax = 20 the results seem to agree with the input with the exception of one small

region x = [0.05, 0.1] where we observe a one σ deviation. Overall, the νmax = 20 result

is only very slightly better than the case of νmax = 10 which was presented in figure 6.

Therefore, we conclude that extending the range of ν slightly beyond ν = 10 will have only

small improvement in the determination of the PDF. Our conclusion from this analysis is

that 12 points for ν ∈ [0, 10] seems to be adequate to obtain a good reconstruction of the

underlying PDF. This finding is rather encouraging for present day calculations as it is

possible to cover the range of ν ∈ [0, 10] with about 12 points in lattice QCD calculations.

4.2 Neural network reconstruction

In this section, the neural network method described above is tested to reconstruct the

mock PDFs. The data used for this reconstruction is the mock scenario A and B in the

smallest range of ν, ν ∈ [0, 10], discretized into Nν = 12 points. For this study, we chose
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Figure 7. x-space PDF’s reconstructed using the Backus-Gilbert (BG) method from Nν = 23

Ioffe-time data points on the interval ν = [0, 20] (top) and from Nν = 112 Ioffe-time data points

on the interval ν = [0, 100] (bottom). The plots in the left column show the results for mock data

based on a phenomenological PDF, while the right column from the modified scenario where the

PDF vanishes at the origin. The reconstruction was performed with preconditioning exponents

a = −0.35 and b = 2 for scenario A and a = 0.3 and b = 2 for scenario B. It is noteworthy

that by having lattice data up to νmax = 20 one can achieve a very good reconstruction with the

BG method.

the hyperbolic tangent as activation function for all the nodes in the hidden layers. The

activation function for the final layer is linear with the threshold value fixed to zero. For

a single hidden layer of size N2, the neural network parametrizes the PDF as

q(x) =

N2∑
i=1

w
(3)
1,i tanh(w

(2)
i,1 x+ θ

(2)
i )) , (4.1)

while for two hidden layers of sizes N2 and N3

q(x) =

N3∑
j=1

w
(4)
1,j tanh

(
N2∑
i=1

w
(3)
j,i tanh(w

(2)
i,1 x+ θ

(2)
i ) + θ

(3)
j

)
. (4.2)

The neural network behavior is governed by the collective interactions of all the weights,

thresholds, and connections, not on any individual neurons. Slight modifications of the
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geometry, such as adding or removing a neuron, will have little change in the final result.

To test this point, 1-3-1, 1-4-1, and 1-2-2-1 geometries are tried, all resulting in similar

PDFs. No preconditioning function will be used in this test. A preconditioning function

of the form in eq. (1.4) can be set to prefer certain features, such as the PDF vanishing in

the limit x → 1 by using b > 0 or a divergence as x → 0 by using a < 0. Remarkably the

neural network was able to reproduce both these high and low x features without the need

of any constraint or prior information.

The training procedure described above has a number of tunable parameters, but the

end result does not depend very strongly on any particular parameter. For this study, the

initial search width, σ0, is set to 5, the mutation width, σ, is set to 1, and the mutation

size, η, is set to 0.05. From most starting points in any given generation, the minimization

procedure sends the χ2 to very small values. In case this does not occur, the minimization

is restarted. Three checks on χ2 are performed and if the value is too large then the

mutation and minimization steps are performed again. First if the χ2 is greater than 10−2,

then the mutation and minimization steps are repeated with the same mutation width and

size. Second if the χ2 is greater than 10−1, then the mutation and minimization steps

are repeated with the same mutation width and a size of 0.025. Third if the χ2 is still

greater than 10−1, then the mutation and minimization steps are repeated with the same

mutation width and a size of 0.0125. The above minimization strategy was used in two

stages. First we used the global average of all available data and began with 45 initial

neural networks and removed 2 every generation for 10 generations until 25 neural network

replicas remained, {qi(x)}. The response of the surviving population is shown in figure 8

for each of the geometries studied. The standard deviation of the response of these neural

networks is used to estimate the systematic error in this method of regression.

σsys = StdDev
[
qi(x)

]
; i = 1 . . . Nrep (4.3)

In the second stage, we perform the minimization on each of the N = 100 mock Ioffe

time PDF replicas2 in order to estimate the statistical fluctuations of the resulting function.

Starting with each of the networks in the final population, each PDF replica is used as the

training data for another minimization to create the PDF replica dependent networks of

the final population, {q(b)
i (x)}. The variance of the response averaged over the members

of the final population across the different PDF replica dependent networks is used to

estimate the statistical error,

σstat = StdDev

[
1

Nrep

Nrep∑
i=1

q
(b)
i (x)

]
; b = 1 . . . N. (4.4)

The average response of the PDF replica dependent networks and the combined systematic

and statistical errors are shown in figure 9. As anticipated, the errors tend to grow at

small-x. Since the input data is over a truncated region of ν, the information of the low-x

behavior is lost. The neural networks are able to precisely reconstruct the large-x region

2These are the replicas the NNPDF collaboration provides in their data set. In realistic lattice calcula-

tions these replicas would be a set of jackknife or bootstrap samples of the matrix elements.
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Figure 8. The genetically trained neural nets. The blue band is the original data. The curves are

the responses for the final population of genetically trained neural networks. The left column is

with NNPDF data. The right column is with modified data. The first row has a network geometry

of 1-3-1. The second row has a geometry of 1-4-1. The third row has a geometry of 1-2-2-1.
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Figure 9. The genetically trained neural nets. The blue band is the original data. The red band

is the reconstructed PDF with statistical and systematic errors. The left column is with NNPDF

data. The right column is with modified data. The first row has a network geometry of 1-3-1. The

second row has a geometry of 1-4-1. The third row has a geometry of 1-2-2-1.

while in the low-x region the flexible parametrization allows for a wide range of functions

that can reproduce the data. One can also see that the various network geometries all give

comparable results for the reconstructed PDF.
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Figure 10. The genetically trained neural nets. The grey points are the original data while the

red points are the ones reconstructed by the NN. The left column is with NNPDF data. The right

column is with modified data. The first row has a network geometry of 1-3-1. The second row has

a geometry of 1-4-1. The third row has a geometry of 1-2-2-1.
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Figure 11. The PDF reconstructions from preconditioned Neural Networks (top). The grey points

are the original data while the red points are the ones reconstructed by the NN (bottom). The left

is scenario A and the right is scenario B.

Next we consider how a preconditioning function affects the reconstructions. Using the

function defined in eq. (1.4), the preconditioning function for scenario A with a = −0.25

and b = 2 and for scenario B with a = 0.3 and b = 2. Both of these cases were tested

on the 1-3-1 geometry. The reconstructed PDFs, shown in figure 11, are not significantly

different for the majority of the large x region. For scenario A, the low x behavior is

slight improved compared to the case without preconditioning. This behavior is perhaps

to be expected, because the preconditioned neural network is parameterizing a much slower

varying function in that region compared to the divergent PDF.

Our conclusion is that for ranges of ν which are realistic in modern lattice calculations,

a neural network is capable of reconstructing the PDF for a wide range of x without the

need of preconditioning, though the neural networks can benefit from it. This study of

neural network parametrization of the PDF is by no means complete. There are a number

of choices that were made which may not be optimal. It is clear that a more dedicated

study of this approach is required in order to understand its full potential. However, we

find the results obtained here very encouraging and thus we plan to further investigate this

approach in a future publication.

– 27 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
7

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5  10  15  20

a=-0.43 b=1.33

Q
R

(ν
,µ

2 )

ν

mock data A

fit with (3.2)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20

scale x4, a=0.55 b=1

Q
R

(ν
,µ

2 )

ν

mock data B

fit with (3.2)

Figure 12. Mock data Q(ν) in the interval I3 from (left) realistic PDF data [mock scenario A]

and (right) a modified scenario with the PDF vanishing at the origin [mock scenario B]. In red we

show the corresponding best fit of the noisy data with eq. (3.2).

4.3 Bayesian analysis

Finally, mock data tests of the Bayesian strategy outlined above are carried out to deter-

mine the feasibility of extracting the x-space PDF q(x) from the Ioffe-time data Q(ν) in

realistic settings for applications to lattice generated data. The x interval is discretized in

Nx = 2000 steps to have fine enough resolution of the possibly highly oscillating cosine.

To remain as close as possible to the situation encountered with real data, we first carry

out a simple fit on the noisy mock Ioffe-time data, based on the Ansatz eq. (1.4) via the

expression in eq. (3.2).

In both scenarios A and B we find that the simple functional form (3.2) allows us to

capture the overall features of the Ioffe-time data very well, as shown in figure 12. The best

fit result for q(x) is shown in figure 13 as a red curve and compared to the actual mock

PDF, given as gray dashed line. At intermediate-x values, the best fit in both scenarios

deviates from the correct q(x) but close to x = 0 provides a rather good description. This

is exactly what we have in mind: the fit will provide us with prior information about the

non-analytic behavior of the function, which we can use as default model in the Bayesian

reconstruction. The Bayesian approach will then imprint the information encoded in the

simulation data as deviations from the default model onto the end result.

Note that in order to use the best fit q(x) as default model we need to modify its

functional form at the boundaries of the x-interval in both cases. If there is e.g. a pole

at the origin, then the value of m is not well defined there. On the other hand if the

function vanishes exactly at the origin, then the prior assumption of positive definiteness

in some of the Bayesian methods is not fulfilled. Therefore we set m(0) = qbest fit(∆x)/2.

To further understand how strongly our end result depends on the choice of default model,

we also carry out reconstructions with other functions than the best fit one, two of which

are obtained from varying the best fit parameters by factors of two and one function simply

being the constant m(x) = 1.
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Figure 13. Best fit PDF (red solid line) from (left) realistic PDF data [mock scenario A] and

(right) a modified scenario with the PDF vanishing at the origin [mock scenario B]. The actual

mock PDF in the former cases is given as gray solid line. To determine the dependence of our

results on the choice of default model, three further choices for m are plotted, two arising from

varying the best fit parameters by factors of 2, one being the constant default model m=1.

We start with the most realistic and most challenging setting, where the input data

ν is in the range I1, i.e. ν = [0, 10] discretized with Nν = 12 points, very similar to

what is currently available in lattice QCD simulations. Due to the availability of a good

approximate solution obtained from the fit with eq. (1.4), provided as default model, we

first consider the Maximum Entropy Method, whose results are presented in figure 14

The original mock q(x) is shown on the top of figure 14 as a gray dashed line, and the

MEM reconstruction based on the best fit default model in red. The red errorband denotes

the statistical uncertainty, while the blue band arises from the default model dependence.

In the bottom row panels the input Ioffe-time data (gray) as well as the data corresponding

to the Bayesian reconstruction (red) are shown. We find that the reproduction for both

scenario A and scenario B is excellent, i.e. the MEM is able to utilize the approximate

solution provided by the default model to regularize the inverse problem and reproduce the

input PDF within uncertainties. If one inspects the reconstruction in scenario B carefully

around the maximum one finds that the MEM solution slightly underestimates the mean

below x = 0.25 and overestimates it for x > 0.25. The deviation however is minute.

Let us compare how the BR method fares. In this method the information of the default

model is more weakly incorporated. The corresponding results are shown in figure 15 and

yield, as expected, a less accurate reproduction of the input data. While for scenario

A it reproduces the PDF within uncertainties, the reconstruction of scenario B shows

undulations around the correct result. Close to the maximum at intermediate x the mean

is found to be underestimated.

This result is not surprising but the appearance of differences in the results from

different Bayesian regulators urges us to figure out how far we have to improve the input

data for both results to provide a reproduction of the correct result within uncertainties.

To this end we have also carried out reconstructions based on the larger interval ν = [0, 20]
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Figure 14. x-space PDF’s reconstructed using the Maximum Entropy method (MEM) from Nν =

12 Ioffe-time data points on the interval ν = [0, 10] (top) as well as the input data (gray crosses)

compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels. The

plots in the left column denote the results for mock data based on a phenomenological PDF, while

the right column from the modified scenario where the PDF vanishes at the origin. (top) The

original mock PDF is given as gray dashed line and the result based on the MEM method with the

best fit default model as solid red line. Statistical uncertainty is visualized by a red, systematic

uncertainty from the choice of default model by a blue errorband respectively. (bottom) The red

crosses denote the Ioffe-time data obtained from folding the spectral reconstruction with the cosine

kernel, the gray data corresponds to the input.

with the same number of Nν = 12 Ioffe-time data-points. The results of the MEM and

BR method are shown in figure 16 and reflect that the improvement in input data has

significantly reduced the errors of the reconstruction so that now both methods lie within

the uncertainty of the original input data. It is still the case that the MEM utilizes the

provided prior information to a stronger extent than the BR method and produces slightly

more accurate results in this setting. A further extension of the interval to ν = [0, 10]

and increasing the number of available points to Nν = 100 confirms this trend, improving

the accuracy of the reconstructions in particular around the maximum of the PDF in

scenario B.
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Figure 15. x-space PDF’s reconstructed using the Bayesian reconstruction (BR) method from

Nν = 12 Ioffe-time data points on the interval ν = [0, 10] (top) as well as the input data (gray

crosses) compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels.

Let us turn our attention now to the Bayesian reconstruction methods, which do not

require the positivity of the PDF. The first uses the quadratic prior combined with the

“historic MEM” procedure to choose the hyperparameter α. Results for both the realistic

PDF mock scenario A (left column) and the mock scenario B (right column) are given in

figure 17. Since this method also imprints the default model information strongly on the

end result, it is not surprising that the reconstruction of scenario A also works excellently

here. For scenario B we find that while the overall shape has been reproduced in an

acceptable manner, the small x < 0.1 region is overestimated, while close to the maximum

of the PDF the solution underestimates the correct value. It is reassuring to see that with

only Nν = 12, the presence of accurate prior information is able to efficiently suppress the

many possible oscillatory solutions, which could also reproduce the provided input data.

Let us consider as a last item the reconstruction based on the generalized BR method

with h = m, whose results are given in figure 18. To understand the performance of this

method, we note that it has been designed for cases, where no reliable prior model is

available and where thus the influence of m on the end result needs to be held as small as

possible. We find that for both scenarios A and B the reconstructions are, as expected, less
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Figure 16. x-space PDF’s reconstructed using the Maximum Entopy Method (top) as well as the

Bayesian reconstruction (BR) method (bottom) from Nν = 12 Ioffe-time data points on the interval

ν = [0, 20].

accurate than for the quadratic prior. In particular we see that excursions into negative

values occur at some x, which in turn lead to overestimation of values at different x. Note

that the obtained reconstructions however lead to Ioffe-time data that reproduce the input

data very accurately.

It is possible to improve the accuracy of the generalized BR method by changing the

value of the default model confidence function h, which essentially makes the regulator

steeper and steeper, i.e. imprinting the default model more and more strongly. Our inten-

tion of showing the generalized BR method with a weak regulator is to emphasize the role

accurate prior information has in approaching the correct reconstruction result.

In summary, we find that due to the availability of accurate prior information on the

true shape of the PDF via fits with eq. (1.4), Bayesian methods that are designed to imprint

prior information strongly on the end result outperform those that minimize the influence

of the default model. I.e. in case of a rather small interval ν = [0, 10] and number of data

points Nν = 12, the Maximum Entropy Method provides the most accurate results for both

scenario A and B (figure 14). The BR method is competitive in scenario A but shows a

larger deviation from the true result for scenario B (figure 15). Increasing the extent of the
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Figure 17. x-space PDF’s reconstructed using a quadratic prior Bayesian (QDR) method from

Nν = 12 Ioffe-time data points on the interval ν = [0, 10] (top) as well as the input data (gray

crosses) compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels.

ν interval and the number of data points consistently shows that both methods approach

the correct solution in the “Bayesian continuum limit”.

When comparing methods without the requirement of positivity we find that the

quadratic prior still fares excellently with scenario A but shows some deviations, in partic-

ular at small x values in scenario B. As expected and by construction, the generalized BR

method with the choice h = m shows the weakest dependence on the used default model

but at the same time also provides the least accurate reconstructions.

The success of the MEM relies on the availability of very good prior information. On

the other hand the BR method is constructed to imprint the default model on the end

result in a weaker fashion than the MEM (lower curvature of the prior functional). Hence

we plan to deploy it together with the MEM when investigating actual lattice QCD data in

the future. The reason is that as long as the asymptotics of the PDF at x = 0 and x = 1 are

adequately provided, the BR method is expected to be able to maintain its reconstruction

quality in case that in a genuine lattice data based reconstruction the quality of the default

model at intermediate x values will be worse than in the above tests.
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Figure 18. x-space PDF’s reconstructed using the generalized Bayesian reconstruction (GBR)

method from Nν = 12 Ioffe-time data points on the interval ν = [0, 10] (top) as well as the input

data (gray crosses) compared to the data arising from the reconstructed PDF (red crosses) in the

bottom panels.

If on the other hand a non-positive q function is concerned and accurate prior infor-

mation is available, then we can utilize the quadratic prior even in cases that only a small

number of data points are available. The generalized BR method to become competitive

requires a more careful treatment of the default model confidence function h in this context.

4.4 Restricted χ2 sampling

In order to clarify the role of different prior information on the success of the reconstruction,

we perform a further numerical experiment on our mock data sets. Here we consider

positivity as the only property of the PDF known a priori. The ill-posedness of the inversion

is related to the many local extrema in the likelihood. If we work with a constant prior

probability, the resulting posterior probability will just be a flat distribution, unable to

provide meaningful insight. This fact has been explicitly tested and confirmed. It is

interesting to then ask, whether the restriction to positive PDF’s limits the number of

local extrema in L, such that all of their contributions taken together in a statistical

fashion will lead to a meaningful posterior?

– 34 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
7

To explore this idea, the MC-Stan library, a modern tool for statistical inference, can

be used. It implements an efficient hybrid Monte-Carlo algorithm, specifically a no-U-Turn

sampler, which allows the sampling of a wide variety of joint probability distributions of

random variables. The applicability of the machinery of HMC arises from identifying its

Hamiltonian with the logarithm of the joint probability distribution (for technical details

see ref. [56]). Using its high level programming language, the test can be formulated by

identifying each of the (appropriately decorrelated) Ioffe-time mock data points with an

individual Gaussian distribution. Its mean is expressed in terms of the PDF q(x) and the

cosine integral Kernel, the spread by the corresponding data uncertainty. Positivity of

the PDF is enforced by restricting its sampling to values larger than zero a priori. The

complete STAN model reads

data {

int NNu; int Nx; matrix[NNu, Nx] Kernel;

vector[NNu] Q;

vector[NNu] Uncertainty;

}

parameters {

vector<lower=0>[Nx] q;

}

model {

Q ~ normal(Kernel * q, Uncertainty);

}

For the Kernel we discretize the x-range with Nx = 1000 points and consider two sets of

input data for each scenario A and B. As realistic test case we use again the a ν ∈ [0, 10]

with Nν = 12 points (see figure 19), exactly as has been used in the Bayesian reconstruction,

as well as the ideal case of Nν = 100 points with νmax = 100 (see figure 20). The sampling

is performed over 20 chains of HMC trajectories, each with 1500 steps in MC time, 500

of which are discarded as warmup phase. The mean value of q(x) over the 20 chains is

shown as the red data points, while its erroband is obtained from the usual variance among

different chains. As we do not imprint any further prior information, execept positivity, and

we assume that positive holds exactly, there is no further systematic error to be considered

for this reconstruction.

We find that positivity alone is a powerful regulator, as sampling of the restricted χ2

functional reveals. Even though we did not specify any further constraints, the posterior

probability for each q(xi) leads to a well defined mean, its variance of course depends on the

number and quality of the provided input data. In the ideal case of νmax = 100 we manage

to reproduce the PDF for scenario A excellently, for scenario B however ringing artifacts

remain clearly visible. On the other hand νmax = 20, as expected leads to results that are

less accurate than those obtained by the advanced Bayesian reconstruction methods or the

neural network.

We thus learn that the additional prior information encoded in the Bayesian recon-

struction manages to provide meaningful regularization to the problem beyond positivity.
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Figure 19. Reconstructed PDF (red dashed) from restricted sampling of the χ2 functional based

on Nν = 12 Ioffe-time data points on the interval ν = [0, 10]. Mock scenario A is shown on the left,

scenario B on the right. While positivity alone already provides a powerful regularization, for this

realistic scenario we do observe deviations from the correct result, especially for scenario B.
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Figure 20. Reconstructed PDF (red dashed) from restricted sampling of the χ2 functional based

on Nν = 100 Ioffe-time data points on the interval ν = [0, 100]. Mock scenario A is shown on the

left, scenario B on the right. In this almost ideal setting, positivity alone provides a regularization

that is sufficient for a reasonable determination of the PDF of scenario A, while it is unable to

suppress ringing artifacts in scenario B.

At the same time it also tells us that the neural network approach is able to extract more

relevant prior information for a regularization than just positivity, i.e. it goes beyond a

simple χ2 fit.

5 Summary and conclusion

In this work, we studied the general problem of extracting the full x-dependence of PDFs

or DAs which are defined by the Fourier transform of a position space hadronic matrix

element computed by means of lattice QCD. We have identified the two main challenges

that one encounters during the computation of the aforementioned Fourier transform. The

first one is related to the range of integration being restricted compared to a genuine
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Fourier transform and the second issue is that one has to perform such a task with only

a few data points at hand. We explicitly have showed direct inversion methods fail at

performing their task and the same also holds for trivial modifications thereof. However,

as we demonstrated, advanced reconstruction methods open new paths towards obtaining

PDFs and DAs from lattice QCD data. The methods that we tested here are the Backus-

Gilbert method, a reconstruction which is based on neural networks, and a set of Bayesian

reconstructions, including the MEM and the BR method.

We explicitly tested all these methods using mock input data computed using PDFs

extracted from experiment that diverge at x = 0 as well as an artificial variation of these

PDFs where the behavior at small x was modified to make the PDF vanish at x = 0. It

is clear that one can not probe the x = 0 region employing calculations at finite lattice

spacing, which imposes a natural cutoff to the highest available momentum, in plain analogy

to a scattering experiment. However, one can use advanced reconstruction methods that

can determine the unknown PDFs with well defined estimates of the uncertainties.

In order to obtain a realistic impression of the method efficiencies we carried out

an analysis using O(10) points for ν ∈ [0, 10]. We find that such a limited set of data,

which can be reached using current lattice QCD calculations, already leads to satisfactory

reconstruction results for the underlying PDF for x > 0.1. The goal to double the available

amount of Ioffe time input points to O(20) is realistic and achievable in the near future,

given reasonable computational resources. However, tripling or quadrupling the maximum

Ioffe time accessible would require a concerted effort by the lattice community working

on PDFs. We have explicitly shown that an increase in the available range of ν values to

νmax = 20 significantly further reduces the uncertainty of the reconstruction for all three

tested approaches, the Backus-Gilbert method, the neural network reconstruction, as well

as the Bayesian methods.

For the case of the Backus-Gilbert reconstruction we saw that preconditioning the ill-

defined problem was mandatory for obtaining the correct result in the small-x region. With

a preconditioning that incorporated many of the relevant features of the final result, already

a naive application of the algorithm was sufficient for obtaining a good reconstruction

of the intermediate and large-x region. An advantage of the Backus-Gilbert method is

its simplicity (linear problem) and the fact that it is numerically the cheapest of all to

implement. On the other hand the relative lack of freedom in terms of preconditioning due

to restrictions being imposed by the requirement of convergence of the involved integrals

represents a minor downside of this approach.

The method of neural network parametrization also provided faithful reconstructions

and has thus been shown to be a competitive candidate for solving the inverse problem for

PDFs on the lattice. In this study, we have only explored a limited number of its facets,

noticing that all three different geometries that we tested lead to fully equivalent results

for the reconstructions of scenarios A and B. Furthermore, a small improvement of the

reconstruction in the small x region can be achieved when preconditioning is employed as

in the Backus-Gilbert method.

The Bayesian methods included the traditional Maximum Entropy Method (MEM) and

the Bayesian reconstruction (BR) method. A fit of the input data with eq. (1.4) already
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provides a very good estimate of the shape of the underlying PDF and this information can

be incorporated into the Bayesian methods as a default model. Hence, as expected, those

Bayesian methods that are designed to imprint the information of the default model more

strongly onto the end result (e.g. MEM) outperform those designed to keep the influence

of the default model to a minimum (e.g. BR). We found that already with O(10) points

for ν ∈ [0, 10] the MEM excellently reproduced the PDF of both scenario A and scenario

B. The BR method is competitive in scenario A but showed larger deviations from the

correct result for scenario B. Extending the range of ν to larger values and providing more

input points consistently improves the reconstructions, approaching the correct result in

the “Bayesian continuum limit”.

When utilizing Bayesian methods that do not presuppose positive PDFs, the inverse

problem is even more ill-posed. We have found that the quadratic prior Bayesian method

performs remarkably well, as it also imprints the information provided by the default model

strongly on the end result. It thus outperformed the generalized BR method for the case

of a small number of input points O(10). Also in general PDFs, increasing the range in

available ν significantly reduced the uncertainties and made the results of different methods

approach each other, as well as the correct result.

In order to further explore the role of prior information we performed an HMC sampling

of the associated χ2 functional employing the MC-Stan library. These studies indicated

that the positivity constraint alone is a powerful regulator. At the same time we conclude

that the additional prior information included in Bayesian methods and the Backus-Gilbert

method are essential in producing a faithful reconstruction on the underlying PDF. Further

studies using the HMC sampling approach are underway both in BR-MEM and the neural

network methods.

We plan to apply the reconstruction approaches discussed in this paper in future

publications that will employ realistic results from lattice calculations. We encourage

other lattice practitioners to implement these methods, because in our opinion the system-

atic artifacts related to the Fourier transform among the numerous systematics that one

has to face in the lattice studies of PDFs, are the ones that can not be dealt by brute

force methods.
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