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A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean
spacetime and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the
kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects
of strongly coupled intermediate channels are included. These channels can consist of nonidentical
particles with arbitrary intrinsic spins. The result accommodates general Lorentz structures as well as
nonzero momentum transfer for the two external currents inserted between the single-hadron states. The
formalism, therefore, generalizes the work by Christ et al. [Phys. Rev. D 91, 114510 (2015)] and extends
the reach of lattice quantum chromodynamics (QCD) to a wide class of new observables beyond meson
mixing and rare decays. Applications include Compton scattering of the pion (πγ⋆ → ½ππ; KK� → πγ⋆),
kaon (Kγ⋆ → ½πK; ηK� → Kγ⋆), and nucleon (Nγ⋆ → Nπ → Nγ⋆), as well as double-β decays, and
radiative corrections to the single-β decay, of QCD-stable hadrons. The framework presented will
further facilitate generalization of the result to studies of nuclear amplitudes involving two currents from
lattice QCD.
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I. INTRODUCTION

Long-range electroweak matrix elements play a central
role in modern hadronic physics, from precision tests of the
Standard Model (SM) to investigations into the inner
structure of strongly interacting particles. In this work, a
subset of such matrix elements are considered, defined with
a single incoming and a single outgoing hadron, coupled to
two local currents that are displaced in time. Key examples
of processes for which these types of matrix elements are

needed include Compton scattering, double-β decays,
radiative corrections to single-β decays, K-K oscillations,
and rare meson decays:

(i) Deeply virtual Compton scattering, i.e., the con-
version from a virtual photon to a real photon via
scattering off a charged hadron (γ�h → γh), allows
one to extract the generalized parton distributions of
the target, as proposed by Ji [1]. Such a process can
be studied at leading order in quantum electrody-
namics (QED) by performing appropriate Fourier
transforms of matrix elements involving time-
displaced electromagnetic currents.

(ii) A large experimental effort is dedicated to searches
for a lepton-number-violating process in nature,
namely the neutrinoless double-β decay of certain
nuclear isotopes; e.g., see Refs. [2–5]. If observed,
such a decay would establish that neutrinos are
Majorana fermions. In order to understand the impli-
cation of a potential observation for extensions of
the Standard Model, reliable theoretical constraints
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on the relevant QCD matrix elements are necessary.

Moreover, as a supplement to the direct extraction of
nucleon matrix elements, nuclear effective field
theories [6–10] indicate that the πþ → π− inversion,
as well as short distance nuclear effects, may be
important contributions to the nn → ppee conver-
sion process. In fact, calculations of the matrix
elements relevant for these processes have already
started [11–14], and a class of these computations
require bilocal matrix elements [12–16].

(iii) Interest in constraining radiative corrections to
nuclear β decays has grown in recent years in light
of a discrepancy among theoretical determinations
[17–19], leading to ∼2–3σ deviation in the Cabibbo-
Kobayashi-Maskawa unitary test from Vud. As an
indirect input to calibrate several contributions to the
β-decay calculations, constraining the time-ordered
product of a weak and an electromagnetic current
between a neutron and a proton state, for a number
of fixed momentum transfers, would be immensely
valuable [20].

(iv) In the strange and charmed mesonic sector, bilocal
matrix elements can be used to compute the mass
splittings between neutral mesons. Another set of
observables based on this class of matrix elements
arises in rare decays of such mesons, including K →
πlþl− and K → πνν, relevant to searches of CP
violation. These processes are currently being mea-
sured, for example, in the NA62 experiment
at CERN.1

At present, the most reliable approach to determine such
matrix elements from the underlying theory is lattice QCD,
a numerical method for statistically estimating QCD
correlation functions using Monte Carlo importance sam-
pling. However, since lattice-QCD calculations are neces-
sarily performed in a finite Euclidean spacetime,2 the
relation between the calculated quantity and the physical
observable is not always straightforward.
The formalism for extracting long-range matrix elements

from finite-volume Euclidean correlation functions was
first derived in Refs. [29–31], in order to determine the
long-range contributions to the KL-KS mass splitting and
the CP-violating parameter ϵK. This framework has
enabled determinations of the mass splitting of neutral
kaons via lattice QCD [32–35]. Long-range matrix ele-
ments occurring in rare decays of the kaon, such as in K →
πlþl− and K → πνν processes [36–39], and hadronic

double-β decays [12,13,15,16] have also been studied in
recent years with lattice QCD.
In this paper, we generalize the previous work to

incorporate matrix elements with multiple two-particle
intermediate states propagating between the two currents.
The result presented holds for kinematics for which any
number of two-hadron states can go on shell. We further
accommodate particles with intrinsic spin as well as
channels with nonidentical particles. In addition, the two
local currents in this work are allowed to have a generic
structure, including any number of Lorentz indices and
nonzero energy and momentum injection. Finally, the
expressions presented account for the unphysical mixing
of different angular momentum states due to the reduced
symmetry of a cubic volume, as well as the physical mixing
of different orbital angular momenta in systems with
nonzero spin. As a nontrivial check, given these general
considerations, the result obtained is proved to satisfy the
unitarity of the physical amplitude to all orders. The general
form presented is an essential step toward extensions to
multihadron bilocal matrix elements.
In order to explore some of the key ideas of Refs. [29–

31], as well as the general framework of the present study, it
is useful to begin with the spectral decomposition of the
Euclidean finite-volume matrix element

Z
d3xe−iq·xhM;LjJEðτ; xÞJð0ÞjM;Li

¼ L3
X
n

e−τðEn−MÞhM;LjJð0ÞjPn; LihPn; LjJð0ÞjM;Li;

ð1Þ

where Jð0Þ is a generic local current and JEðτ; xÞ≡
eHτJð0; xÞe−Hτ defines its Euclidean time translation. In
writing Eq. (1), two important assumptions are made: First,
we neglect the effects of the finite temporal direction,
focusing only on the spatial volumewith periodicity L. This
is well motivated as lattice-QCD calculations typically
work with T > L such that the finite-T effect is a
subleading uncertainty. Second, we have introduced a
finite-volume single-hadron state, denoted jM;Li, and
formally defined by the L-dependence of its eigenvalue,
EðLÞ∶ limL→∞EðLÞ ¼ M, where M is the physical mass.3

For the purpose of the introduction only, the state is
assumed to have a vanishing spatial momentum. The
introductory example is further simplified by taking the
two currents to be the same and to be Hermitian. These
restrictions will be removed in arriving at the main result of
this work. Finally, it should be stressed that the complete set
of states inserted on the right-hand side of Eq. (1) is a

1Further examples can be found, e.g., in a series of recent
USQCD whitepapers [20–23].

2For exploratory studies of real-time dynamics in simple
theories with classical computations based on Monte Carlo
methods, and with quantum computations based on direct
implementation of the Hamiltonian time evolution, see Refs. [24–
28]. The generalization of these methods to QCD remains
formally and practically challenging.

3For a fixed value of spatial momentum, as well as fixed
internal quantum numbers, this defines a unique state. In theories
without a mass gap, e.g., QCDþ QED, this separation fails and
the distinction is less straightforward.
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proper sum, since the finite-volume boundary conditions
lead to a discrete spectrum. The sum runs over an infinite
tower of states with the same quantum numbers as
Jð0ÞjM;Li. Due to the Fourier transform in Eq. (1), the
inserted states are understood to be projected to a definite
spatial momentum, Pn ¼ q.
The corresponding infinite-volume Minkowski observ-

able that we aim to determine is given by

T ðω;qÞ ¼ − lim
ϵ→0þ

lim
L→∞

2ML6
X
n

jhPn; LjJð0ÞjM;Lij2
ω − ½EnðLÞ −M� þ iϵ

;

ð2Þ
where 2ML3 accounts for the normalization of jM;Li and
an extra factor of L3 results from performing the spatial
Fourier transform.4 Thus, the task at hand is to relate
Eqs. (1) and (2). The basic approach for achieving this can
be understood as a two-step procedure. First, one must
replace the τ-dependent exponentials (e−Enτ) with poles
[1=ðω − EnÞ]. In the case that ωþM < E, this is achieved
by applying the integral operator

R∞
0 dτeωτ. However, as

stressed in Refs. [29–31], many interesting cases arise
where the low-lying finite-volume states are below the
target ω value, so that the indicated integral is exponentially
divergent.
Various approaches have been considered to treat this

problem [29–31,36–38]. In the present work, we are
particularly inspired by the techniques that have been
applied for the hadronic vacuum polarization (HVP) con-
tribution to the anomalous magnetic moment of the muon
[42–48], as well as the incredible success in extracting
excited finite-volume states to determine hadronic scatter-
ing amplitudes [49]. Following these ideas, one can
envision solving the generalized eigenvalue problem
(GEVP) on a matrix of lattice-QCD correlators, in order
to reliably determine as many low-lying energies, EnðLÞ,
and matrix elements, jhPn; LjJð0ÞjM;Lij2, as possible.
These can then be subtracted from Eq. (1), rendering theR
∞
0 dτeωτ integral convergent. In a second step, the sub-
tracted terms are added back in after integration, but with
the exponential time dependence replaced by a pole, as
detailed in Sec. II. The result of this construction is an
intermediate quantity, denoted by TLðω; qÞ:

TLðω; qÞ≡ −2ML6
X
n

jhPn; LjJð0ÞjM;Lij2
ω − ½EnðLÞ −M� : ð3Þ

These manipulations address the effects of the Euclidean
signature, but not yet those arising from the finite volume.

The remaining task is then to determine the correction term
ΔTLðω; qÞ≡ T ðω; qÞ − TLðω; qÞ, to be added to the sum
over finite-volume poles to reach the final physical result.
As a special case, it is instructive to consider ΔTLðω; qÞ
when the value of ωþM is taken below all single- and
multihadron thresholds. In this case, the integral over
eðωþM−EnÞτ converges for all En. It turns out that in this
kinematic region, ΔTL ¼ Oðe−mLÞ, where m is the mass of
the lightest degree of freedom, i.e., the pion in QCD.
In Sec. II, we provide a closed form for ΔTLðω; qÞ in the

case that the center-of-mass energy of the incoming current
plus hadron is above any number of two-particle thresholds
but is below the three-hadron production thresholds. This
correction can be obtained, up to neglectedOðe−mLÞ terms,
provided that the relevant 2 → 2 scattering amplitudes and
1 → 1 and 1 → 2 transition amplitudes are determined.
This can be achieved through independent, dedicated
lattice-QCD calculations based on well-established meth-
ods. In particular, by applying Lüscher-like formalisms
[50–58], one can determine the infinite-volume scattering
amplitudes of general two-hadron states from finite-volume
spectra; see Refs. [59–71] for recent examples. This
approach has been further generalized to give relations
between finite-volume matrix elements and electroweak
amplitudes [43,56,72–77].5 The upshot is that the required
methodology for extracting all the ingredients ofΔTLðω; qÞ
is already established.
Finally, the formalism presented can be used to reduce

systematic uncertainties of long-range matrix elements of
hadrons even below two-particle thresholds by identifying
and removing contributions from intermediate states that
cannot go on shell. A similar approach has been applied to
lattice-QCD calculations of the muonic HVP, where the
knowledge of the ππ → ππ and γ� → ππ amplitudes allows
one to estimate the finite-volume effects, as suggested in
Refs. [42,43] and implemented in Refs. [48,81].
This paper is organized as follows: Sec. II presents the

main results, including the framework that enables the
determination ofΔTL. Section III contains the derivation of
ΔTL, relying largely on combining existing ideas in the
literature to determine scattering and transition amplitudes
in the single- and two-hadron sectors. In Sec. IV, a strong
check on the formalism is presented showing that the result
obtained is consistent with unitarity constraints on the
infinite-volume amplitude. In order to demonstrate an
application of the formalism, in Sec. V we present an
example with a single-channel intermediate state and
evaluate numerically all the building blocks for a specific
toy example. We conclude in Sec. VI with a summary and
outlook.

4In fact we will use a different but equivalent form for the
infinite-volume amplitude in the following sections. We present
this version only because it gives additional intuition on the
relation between the finite- and infinite-volume amplitudes. For
detailed discussion on the form of T given here, and prospects for
directly evaluating Eq. (2) numerically, see Refs. [40,41].

5For recent reviews on these formal developments and
their numerical implementations, we point the readers to
Refs. [49,78–80].
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II. THE RELATION BETWEEN FINITE-VOLUME
EUCLIDEAN AND INFINITE-VOLUME

MINKOWSKI AMPLITUDES

The main result of this work can be compactly written as

T ðω; qÞ ¼
Z

∞

−∞
dτ eωτ½GLðτ; qÞ −G<N

L ðτ; qÞ�

þ ½T<N
L ðω; qÞ þ ΔTLðω; qÞ�M;H: ð4Þ

Here, the dependence of the functions on the four-momenta
of the initial and final states is left implicit. The left-hand
side is the desired infinite-volume Minkowski amplitude,
and the right-hand side is a carefully constructed combi-
nation of finite-volume Euclidean and Minkowski quan-
tities, which all can be obtained from finite-volume
Euclidean correlation functions. In a nutshell, GL is a
finite-volume Euclidean matrix element, G<N

L is a
reconstruction of its low-lying states (using, e.g., GEVP
methods), T<N

L is a corresponding sum of the low-lying
finite-volume poles and ΔTL is the correction term to
remove finite-volume effects. The aim of this section is to
provide the exact definitions of these functions and the
relations among them. As a final general comment, one
must note that for kinematics where intermediate two-
particle states may go on shell, the last two terms, T<N

L and
ΔTL, contain poles that must exactly cancel. For this
reason, the two quantities must be treated consistently.
This is indicated by the square brackets and the subscript
M, H, referring respectively to the relevant 2 → 2 and
1 → 2ð2 → 1Þ scattering amplitudes. This point will be
explained in detail toward the end of this section.
We first introduce the basic kinematic notation used

throughout. The three-momentum of the incoming hadron
state is denoted by Pi and that of the outgoing state by Pf.
The corresponding four-momentum of the initial state is
then given by

Pμ
i ≡ ðEi;PiÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ P2
i

q
;Pi

�
; ð5Þ

with an analogous relation for the final state given by
i → f. Here, Mi and Mf are the physical particle masses.
The infinite-volume hadronic states are denoted by jPii and
hPfj and satisfy the standard relativistic normalization:

hPjP0i ¼ 2Eð2πÞ3δ3ðP − P0Þ: ð6Þ

Next we introduce two local, Minkowski-signature
currents J AðxÞ and OBðxÞ, with xμ ≡ ðt; xÞ. Here, A and
B are collective indices that specify the quantum numbers
of the currents. They can specify scalar, axial, vector,
tensor, or other types of currents. The underlying Lorentz
structure plays no role in the following discussions. The
goal is to relate a finite-volume Euclidean correlation

function to the infinite-volume amplitude appearing on
the left-hand side of Eq. (4), defined as

T ðω; qÞ≡ i
Z

d4x eiωt−iq·xhPfjTfJ AðxÞOBð0ÞgjPiiconn;

ð7Þ

where again the Pi and Pf dependence on the left-hand side
is implicit. Here T denotes the standard time ordering6 and
the subscript “conn.” indicates that only the connected
contributions to the matrix element are considered. This
distinction is only relevant in the forward limit when
Pi ¼ Pf.
In a finite cubic volume, with periodicity L in each of the

three spatial directions, the L-dependent shifts to the
masses, Mi and Mf, are exponentially suppressed, scaling
as e−mL where m is the mass of the lightest low-energy
degree of freedom in the theory. Here we assume mL ≫ 1,
such that these corrections can be neglected. Thus the four-
vectors Pi and Pf also label the finite-volume states,
denoted by jPi; Li for the incoming hadron and hPf; Lj
for the outgoing. In the convention of this work, finite-
volume states are normalized to unity,

hP;LjP0; Li ¼ δP;P0 ; ð8Þ

keeping in mind that in a periodic cubic volume
three-momenta satisfy P ¼ 2πn=L and P0 ¼ 2πn0=L, with
n; n0 ∈ Z3.
Introducing J E

Aðτ; xÞ andOE
Bðτ; xÞ as Euclidean counter-

parts of the local currents in Eq. (7),

J E
Aðτ; xÞ≡ eHτJ Að0; xÞe−Hτ;

OE
Bðτ; xÞ≡ eHτOBð0; xÞe−Hτ; ð9Þ

one can define the lattice-QCD correlator most closely
related to T as

GLðτ; qÞ≡ 2L3
ffiffiffiffiffiffiffiffiffiffi
EiEf

p Z
L
d3x e−iq·x

× hPf; LjTEfJ E
Aðτ; xÞOE

Bð0ÞgjPi; Li; ð10Þ

where TE denotes Euclidean time ordering. In the forward
limit, the disconnected contribution,

Gdisc
L ðτ; qÞ≡ 2L3

ffiffiffiffiffiffiffiffiffiffi
EiEf

p hPf; LjPi; Li
Z
L
d3x e−iq·x

× h0jTEfJ E
Aðτ; xÞOE

Bð0Þgj0i; ð11Þ

must be subtracted from Eq. (10) in order to obtain the
purely connected piece of the matrix element as required by

6Not to be confused with the temporal length of spacetime that
was introduced earlier.

RAÚL A. BRICEÑO et al. PHYS. REV. D 101, 014509 (2020)

014509-4



Eq. (7). For notational brevity, the hadron momentum
labels Pi and Pf are also omitted from the arguments of the
correlation functions.
To understand the issues in extracting T from G, it is

instructive to first perform a spectral decomposition of the
latter. Defining

cn ≡ 2L3
ffiffiffiffiffiffiffiffiffiffi
EiEf

p Z
L
d3x e−iq·x

× hPf; LjJ Að0; xÞjn; Lihn; LjOBð0ÞjPi; Li; ð12Þ

cn ≡ 2L3
ffiffiffiffiffiffiffiffiffiffi
EiEf

p Z
L
d3x e−iq·x

× hPf; LjOBð0Þjn; Lihn; LjJ Að0; xÞjPi; Li; ð13Þ

one obtains

GLðτ; qÞ≡
X∞
n¼0

cnΘðτÞe−½EnðL;PfþqÞ−Ef �jτj

þ
X∞
n¼0

cnΘð−τÞe−½EnðL;Pi−qÞ−Ei�jτj: ð14Þ

The finite-volume states jn; Li and jn; Li in Eqs. (12) and
(13), and therefore the cn and cn coefficients in Eq. (14),
differ in general not only due to differing three-momenta
but also because the internal quantum numbers of the
currents may be distinct. For example, processes such as
K → πγ are described by setting one current to the
electromagnetic current and the other to the weak
Hamiltonian, symbolically J A ¼ jμ and OB ¼ HW . For
such a process, cn;μ receives contributions from states with
zero strangeness (such as ππ states), whereas cn;μ contains
intermediate states with strangeness equal to −1 (such as
Kπ states).
Depending on the detailed choices of states, currents,

and kinematics in Eq. (14), finite-volume energies may
exist for which EnðL;Pi−qÞ≤Ei−ω or EnðL;Pf þ qÞ ≤
Ef þ ω, where ω is the energy carried away by the current
J A. As a consequence, intermediate states can go on shell,
generating the long-distance parts of these matrix elements.
Such states are responsible for the dominant difference
between finite-volume Euclidean and infinite-volume
Minkowski correlation functions and are the focus of this
work. To separate on- and off-shell states, it is useful to
introduce cutoff indices, NðωÞ and NðωÞ, such that for n ≥
NðωÞ and n ≥ NðωÞ, one has EnðL;Pi − qÞ þ ω > Ei and
EnðL;Pf þ qÞ − ω > Ef, respectively; i.e., the finite-
volume intermediate states are off shell up to a current
energy of ω. Taking NðωÞ and NðωÞ larger than the
minimum requirements poses no problem, and as explained
in more detail below, will likely be advantageous in
practical implementations.

With this discussion, one can define

G<N
L ðτ; qÞ≡XN−1

n¼0

cnΘðτÞe−½EnðL;PfþqÞ−Ef �jτj

þ
XN−1

n¼0

cnΘð−τÞe−½EnðL;Pi−qÞ−Ei�jτj; ð15Þ

T≥N
L ðω; qÞ≡

Z
∞

−∞
dτ eωτ½GLðτ; qÞ − G<N

L ðτ; qÞ�; ð16Þ

where to keep the notation simple, the superscripts< N and
≥ N are taken to be the representative of both the N and N
dependence of the functions, and the ω dependence of N
and N is left implicit. As mentioned in the Introduction, the
cn (cn) coefficients for the intermediate states 0 to N − 1
(N − 1) can be separately evaluated in a dedicated
lattice-QCD calculation of three-point functions formed
with optimized operators; see Eqs. (12) and (13). In
Eq. (16), the subtracted integral is convergent by con-
struction, as NðωÞ and NðωÞ are chosen such that
eωτ½GLðτ; qÞ −G<N

L ðτ; qÞ� decays with increasing jτj. The
result of the integration carries no memory of the Euclidean
signature and thus brings us closer to the stated goal of
recovering T . However, the approach is clearly incomplete,
since the intermediate states labeled from 0 to N − 1
(N − 1) are not accounted. Additionally, the finite-L effects
have yet to be addressed.
One can now define

T<N
L ðω; qÞ≡XN−1

n¼0

cn
EnðL;Pf − qÞ − ðEf þ ωÞ

þ
XN−1

n¼0

cn
EnðL;Pi þ qÞ − ðEi − ωÞ ; ð17Þ

which can naively be constructed using exactly the coef-
ficients and energies defining G<N

L ðτ; qÞ. As explained
below, in practice one must take a slightly different
approach to properly treat finite-volume effects. Note that
T≥N
L ðω; qÞ, defined in Eq. (15), satisfies the same decom-

position as that given here for T<N
L ðω; qÞ, but with the sums

running from N, N to ∞. Thus, the combination

TLðω; qÞ≡ T<N
L ðω; qÞ þ T≥N

L ðω; qÞ ð18Þ

gives the sum over all finite-volume poles from 0 to∞ and
differs from the target quantity, T ðω; qÞ, only by the finite-
volume effects encoded in ΔTLðω; qÞ.
As stressed in the beginning of this section, the two-

particle poles within T<N
L must be exactly canceled by those

inΔTL. This is essential because (i) these poles are artifacts
of the particular volume, L, and cannot be part of the
physical quantity T , and (ii) the formalism holds for values
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of ω arbitrarily close to, indeed exactly coinciding with, the
poles in a given lattice volume. Note that the same is not
true for the poles within T≥N

L ðω; qÞ, which are safely above
the range of allowed ω values. The requirement of exact
cancellation of divergences in T<N

L and ΔTL means that
these two quantities must be treated in a consistent way. To
explain this properly, we first need to give some details on
the construction of ΔTLðω; qÞ.
Both the generalized Lüscher and Lellouch-Lüscher

formalisms are by now well understood, and here only
the key equations are provided for completeness. First, the
Lüscher formalism provides a relationship between the
finite-volume spectrum in the two-particle regime and
the infinite-volume amplitude. This can be written as [58]

det ½F½x�ðL;PnÞ−1 þM½x�ðPnÞ� ¼ 0; ð19Þ

where the superscript ½x� is set equal to either J jPii
or OjPii and serves as an indicator of the internal
quantum numbers for the two-particle states. Here, M½x�
is the infinite-volume 2 → 2 scattering amplitude
and F½x� is a known kinematic function, given explicitly
in Eq. (43) of Sec. III. As explained in detail in that section,
the matrix and determinant space used here is a Kronecker-
product space of ðorbital angular momentumÞ ⊗ ðspinÞ ⊗
ðflavor channelsÞ. Depending on the time ordering of the
currents, the quantization condition is to be evaluated at

either Pn ¼ Ei − ω or Pn ¼ Ef þ ω, where qμ ≡ ðω; qÞ is
the four-momentum of the current J A. One must then
identify the set of solutions, in P0

n ¼ Ei − ω or else
P0
n ¼ Ef þ ω, for which the left-hand side vanishes.

This gives the finite-volume spectra, denoted by
EnðL;Pi − qÞ (for ½x� ¼ ½J jPii�) and EnðL;Pf þ qÞ
(for ½x� ¼ ½OjPii�).
From the same building blocks that define the quantiza-

tion condition, one can construct a matrix, F , that plays an
important role throughout this work:

F ½x�ðL;PÞ≡ 1

F½x�ðL;PÞ−1 þM½x�ðPÞ ; ð20Þ

where ½x� and P≡ ðE;PÞ are taken as generic represent-
atives of the two-particle quantum numbers and momenta.
This matrix has poles, En, whenever Eq. (19) is satisfied,
and the corresponding residues define the generalized
Lellouch-Lüscher matrices [73,75]

R½x�
n ðL;PÞ≡ lim

E→En

½ðE − EnÞF ½x�ðL; PÞ�: ð21Þ

These factors allow one to relate finite- and infinite-
volume matrix elements. For the present setup the relevant
relations are

2EiL6hn; LjOBð0ÞjPi; Li2 ¼ H½O�
2→1ðPf þ qÞ ·R½OjPii�

n ðL;Pf þ qÞ ·H½O�
1→2ðPf þ qÞ; ð22Þ

2EfL6hPf; LjJ Að0Þjn; Li2 ¼ H½J �
2→1ðPf þ qÞ ·R½OjPii�

n ðL;Pf þ qÞ ·H½J �
1→2ðPf þ qÞ; ð23Þ

2EiL6hn; LjJ Að0ÞjPi; Li2 ¼ H½J �
2→1ðPi − qÞ ·R½J jPii�

n ðL;Pi − qÞ ·H½J �
1→2ðPi − qÞ; ð24Þ

2EfL6hPf; LjOBð0Þjn; Li2 ¼ H½O�
2→1ðPi − qÞ ·R½J jPii�

n ðL;Pi − qÞ ·H½O�
1→2ðPi − qÞ; ð25Þ

where various infinite-volume 1þ J → 2 transition ampli-
tudes are introduced, e.g.,

H½O�
1→2ðPf þ qÞ≡ hPf þ q; outjOBð0ÞjPii; ð26Þ

H½J �
2→1ðPf þ qÞ≡ hPfjJ Að0ÞjPf þ q; ini; ð27Þ

H½J �
1→2ðPi − qÞ≡ hPi − q; outjJ Að0ÞjPii; ð28Þ

H½O�
2→1ðPi − qÞ≡ hPfjOBð0ÞjPi − q; ini: ð29Þ

The amplitudes defined with an “out” state are understood
as column vectors and those with an “in” state as row
vectors, acting on the space of angular momentum, spin,
and flavor of the two-hadron state.
Now given a set of finite-volume energies, EnðL;Pi − qÞ

and EnðL;Pf þ qÞ, and the various finite-volume matrix
elements noted above, one can constrain all quantities
needed to remove the finite-volume effects from TLðω; qÞ,
to extract T ðω; qÞ. The correction is given by

ΔTLðω; qÞ≡H½J �
2→1ðPf þ qÞ · F ½OjPii�ðL; Pf þ qÞ ·H½O�

1→2ðPf þ qÞþH½O�
2→1ðPi − qÞ · F ½J jPii�ðL; Pi − qÞ ·H½J �

1→2ðPi − qÞ;
ð30Þ
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where each term on the right-hand side has the structure
½row vector� × ½matrix� × ½column vector�, defined in the
space of two-particle degrees of freedom.
In practice, the determination of the scattering ampli-

tudes, M, as well as the transition amplitudes, H, will
generally require fits of all finite-volume data to a set of
parametrizations. Given a particular fit, one can then
recover the finite-volume matrix elements, and thus the
coefficients cn and cn, as well as the corresponding finite-
volume energies. It follows that the sum over low-lying
poles, T<N

L ðω; qÞ, can be evaluated in two ways, either
directly from the finite-volume data or from the energies
and matrix elements predicted through a global fit. Given
the statistical nature of the lattice-QCD data, for this
analysis it is crucial that the second approach is used.
Only in this way does one assure an exact cancellation of
the poles in ΔTL and T<N

L is reached. This requirement of a
common parametrization for these two pieces is empha-
sized in Eq. (4) by theM;H subscript. The cancellation of
poles will also be illustrated in Sec. V for a particular
example.
This completes the discussion of the procedure involved

in extracting the infinite-volume amplitude T using the
inputs that are defined in a finite Euclidean spacetime, as
summarized in Eq. (4). The quantities that must be
evaluated in implementing this procedure, as well the
relationships among them, are depicted in Fig. 1 for further
clarity.

III. FINITE-VOLUME CORRECTIONS TO THE
FOUR-POINT CORRELATION FUNCTION

In this section, the expression for the additive finite-
volume function, ΔTLðω; qÞ, given in Eq. (30), is derived.
The derivation requires a diagrammatic representation of
finite-volume correlation functions, first laid out for sys-
tems with identical scalar particles by Lüscher in Ref. [50],
and Lellouch and Lüscher in Ref. [72], and presented in a
purely quantum-field-theoretic context by Kim, Sachrajda,
and Sharpe (KSS) in Ref. [52]. The approach of KSS is also
the starting point of Ref. [31] in the analysis of long-range
effects in K-K mixing. These techniques have since been
generalized to accommodate any number of open two-
particle channels with arbitrary masses and spin [43,
53–58,73–75]. Here we adopt this formalism to extend
the work of Ref. [31].
Consider the infinite-volume Minkowski-signature cor-

relation function

CðPf;Pi;qÞ≡
Z

d4xd4yd4ze−iPi·yþiq·xþiPf ·z

× h0jTfΨ0ðzÞiJ AðxÞiOBð0ÞΨðyÞgj0i; ð31Þ

where one of the four fields is left at the origin of position
space to avoid the overall momentum-conserving delta
function. The Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula implies that this correlation function

Obtain from a direct 
lattice QCD 

calculation of 4-point 
function

Add to obtain the full 
Minkowski infinite-

amplitude

Insensitive to time 
signature 

Finite volume
Minkowski 

Infinite volume
Euclidean 

Finite volume

Constrain by fitting 
the finite-volume data 
consistently to given 
parametrization of 

infinite-volume 
amplitudes 

Subtract from the 
4-point functions 
and integrate over 
imaginary time to 

obtain:            

Construct the 
contribution from 
the N lowest-lying 
states from lattice 

QCD calculations of 
2- and 3-point 

functions

Eq. (10)

Eq. (15)

Eq. (16)

Eqs. (17),(30)

Eq. (4)

FIG. 1. GLðτ; qÞ defined in Eq. (10) is the starting point of matching the long-range bilocal matrix elements from lattice QCD to the
infinite-volume Minkowski amplitude T ðω; qÞ. The intermediate quantities that must be obtained to fulfill this mapping, and the
relations among them, are depicted in the chart. The Pi and Pf dependence of all functions is left implicit.
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has poles associated with the incoming and outgoing single-particle states, with quantum numbers set by Ψ and Ψ0. By
amputating the external legs and placing the momenta Pi and Pf on shell, one arrives at an alternative expression for iT ,
first defined in Eq. (7),

iT ðω; qÞ ¼ − lim
P0
i→EiðPiÞ;P0

f→EfðPfÞ
ðP2

i −M2
i ÞðP2

f −M2
fÞCðPf; Pi; qÞ; ð32Þ

where the fields are normalized such that hPijΨð0Þj0i ¼ h0jΨ0ð0ÞjPfi ¼ 1, and as before the Pi and Pf dependence of the
amplitude here and in Eq. (34) is left implicit.
The finite-volume counterpart of the correlation function in Eq. (31) can be written as

CLðPf; Pi; qÞ≡
Z
L
d4xd4yd4z e−iPi·yþiq·xþiPf ·zh0jTfΨ0ðzÞiJ AðxÞiOBð0ÞΨðyÞgj0iL; ð33Þ

with the momentum and position coordinates still carrying Minkowski signature. The integrals over time coordinates are as
above, but those over space coordinates are restricted to the finite cubic volume, as indicated by the L subscript. A similar
LSZ reduction can be implemented here to reach

iTLðω; qÞ≡ − lim
P0
i→EiðPiÞ;P0

f→EfðPfÞ
ðP2

i −M2
i ÞðP2

f −M2
fÞCLðPf; Pi; qÞ ð34Þ

¼ 2L3
ffiffiffiffiffiffiffiffiffiffi
EiEf

p Z
L
d4x eiωt−iq·xhPf; LjTfiJ AðxÞiOBð0ÞgjPi; LiL;conn: ð35Þ

This provides an alternative definition for TLðω; qÞ, the
finite-volume counterpart of the Compton amplitude intro-
duced in Eq. (18).
At this point, the goal is to quantify the difference

between Eqs. (32) and (35). These quantities correspond
directly to the correlation functions studied by KSS [52]
and generalized by two of us in Ref. [75]. For completeness
of the presentation, some details of the derivation will be
repeated here. The first step is to derive a diagrammatic
representation of the infinite-volume correlation function
that explicitly displays all two-particle intermediate states.
The result, illustrated in Fig. 2, can be represented
algebraically in the following compact form:

T ¼ T −
�X∞
n¼0

H½J �
2→1½− ⊗ I ⊗ M�n ⊗ I ⊗ H½O�

1→2

þ ðJ ↔ OÞ
�
; ð36Þ

where we have chosen to work directly with T instead of C
and have thus amputated all single-particle operator-
dependent terms on both sides of the equations. Here, five

new building blocks are introduced: T , H½X�
2→1, ⊗ I ⊗, M,

and H½X�
1→2 with X ¼ J or O, to be explained in turn. First,

as a general rule, we use the overline to indicate a quantity
in which all s-channel, two-particle-reducible diagrams

have been discarded. Thus H½X�
2→1 and H½X�

1→2 are generated
by first developing a diagrammatic expansion for
Eqs. (26)–(29), and then discarding all diagrams that fall
into disconnected pieces when any two lines, carrying the

total four-momentum of the system, are cut. The quantity
M, referred to as the Bethe-Salpeter kernel, is defined in
exactly the same way, but with the 2 → 2 hadronic

amplitude in place of H½X�
2→1ð1→2Þ.

7 The quantum numbers

associated with M and I (as well as those of S introduced

below) are deduced from those of H½X�
2→1ð1→2Þ present in

each term.
In Eq. (36), the various two-particle irreducible (2PI)

quantities are combined via integrals over two-particle
loops, denoted by ⊗ I ⊗. This symbol is thus built from
two fully dressed propagators, the requisite symmetry
factor and the loop integral. The ⊗ symbol is meant to
stress that the quantities are connected in a complicated
way, in particular by integration over the loop momentum.
This results in H2→1, M, and H1→2 being evaluated at off-
shell values of the momenta as well. As an explicit
example, one has

H½J �
2→1 ⊗ iI ⊗M≡X

a

ξa

Z
d4k
ð2πÞ4H

½J �
2→1ðPf;q;k;Pfþq−kÞ

×Δa1ðkÞΔa2ðPf þq−kÞ
×Mðk;Pf þq−k;Pf;qÞ; ð37Þ

where Δa1 and Δa2 are the fully dressed propagators for
particles 1 and 2 in channel a, in accord with the quantum

7This quantity was named B in Ref. [82].
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numbers of stateOjPii. ξa ¼ 1=2 if the particles in channel
a are identical and 1 otherwise. Momentum dependences
on the left and right of the semicolon in the arguments refer
to the momenta of incoming and outgoing pairs of hadrons,
respectively.
From the definitions of ⊗ I ⊗ and the various 2PI

quantities, three important identities directly emerge:

H½J �
2→1 ¼ H½J �

2→1

X∞
n¼0

½− ⊗ I ⊗ M�n; ð38Þ

H½O�
1→2 ¼

X∞
n¼0

½−M ⊗ I ⊗�nH½O�
1→2; ð39Þ

M ¼
X∞
n¼0

½−M ⊗ I ⊗�nM ¼ M
X∞
n¼0

½− ⊗ I ⊗ M�n;

ð40Þ

with analogous relations for J ↔ O in Eqs. (38) and (39).
These are used in the derivation to express the finite-
volume function, TL, in terms of the physical amplitudes
appearing on the left-hand sides. Finally, T in Eq. (36) is
defined by all diagrams not included in the other terms.
This includes all connected 2PI contributions to T as well
as diagrams that contain a single-particle intermediate state,
as shown in Fig. 2.
The purpose of the skeleton expansion for T is twofold.

First, it allows one to identify all sources of singularities, as
well as imaginary contributions to T . This will play a key
role in Sec. IV where the unitarity of the amplitudes is
established. Second, it enables identifying all powerlike

L-dependences in its finite-volume analog, TL, defined in
Eq. (34). In particular, as discussed in more detail in
Refs. [52,55–58,73,75], one can show that

TL ¼ T −
�X∞
n¼0

H½J �
2→1½− ⊗ S ⊗ M�n ⊗ S ⊗ H½O�

1→2

þ ðJ ↔ OÞ
�
: ð41Þ

Here all quantities are as above except for ⊗ S ⊗. This is
defined exactly as ⊗ I ⊗ but with the replacementR
d3k=ð2πÞ3 → ð1=L3ÞPk; see the example in Eq. (37).

The sum runs over all three-momenta allowed by the finite-
volume boundary conditions, in particular k ¼ 2πn=L
where n is a vector of integers.
Having set up the diagrammatic expansions for TL and

T , one can now substitute⊗ S ⊗¼⊗ I ⊗ þF, where F is
a finite-volume cut, defined by this relation and given more
explicitly in Eq. (43) below. In words, the substitution rule
reads: replace each sum with an integral plus a sum-integral
difference, encoded by the symbol F. Two key simplifi-
cations then arise. First, the off-shell contributions from
H1→2,M, andH2→1 lead to only exponentially suppressed
volume effects that can be neglected. As a result, all
functions adjacent to F are projected to their on-shell
momenta. Second, the propagators Δa1 and Δa2 are
expanded about their on-shell point meaning that only
the physical mass enters F. In particular, for spinning
particles, the spin structure of the propagator becomes
simple helicity projectors acting on the neighboring
functions.

Non-singular below 
three-particle thresholds

FIG. 2. A diagrammatic expansion of the Compton amplitude defined in Eqs. (31) and (32). Here, the aim is to display explicitly all
two-hadron intermediate states in the s-channel, as represented in Eq. (36). In addition, single-particle intermediate states are separated,
though these play a less important role in the finite-volume analysis of this section. The two-current vertex, as well as the 1 → 2 kernel,
contain no two-particle singularities below three-particle production thresholds. Representative contributions to the former and the latter
are shown for a given theory in the bottom-right and bottom-left panels, respectively. The black circle represents the 2 → 2 scattering
amplitude, M.

LONG-RANGE ELECTROWEAK AMPLITUDES OF SINGLE … PHYS. REV. D 101, 014509 (2020)

014509-9



Substituting ⊗ S ⊗¼⊗ I ⊗ þF in Eq. (41) and sum-
ming all ⊗ I ⊗ dependences, and upon restoring the
superscripts on all functions, one deduces

TL ¼ T −
�X∞
n¼0

H½J �
2→1½−F½OjPii�M½OjPii��nF½OjPii�H½O�

1→2

þ ðJ ↔ OÞ
�
: ð42Þ

This is the main result of the derivation, analogous to
Eqs. (44) and (84) of Refs. [52,75], respectively. Summing
the geometric series in n then directly gives Eq. (30) of
the previous section. Figure 3 provides a diagrammatic

summary of the procedure that isolates the finite-volume
effects in the four-point function to all orders.
At this point it remains only to define F½XjPii�, the

finite-volume cut matrix defined on the Kronecker-
product space of ðorbital angular momentumÞ ⊗ ðspinÞ ⊗
ðflavor channelsÞ.8 In order to provide an explicit form, one
can change to the basis of total angular momentum and use
the compact notation introduced in Ref. [75]. Let JmJ
denote the total angular momentum and its azimuthal
component and S and l the total spin and orbital angular
momentum. Also, label the channel space using indices a
and a0. Then the F½XjPii� function can be written as [58,75]

F½XjPii�
fJg;fJ0gðP; LÞ≡ ξaδaa0δSS0

X
ml;m0

l;mS

hlml; SmSjJmJihl0m0
l; S

0mSjJ0m0
Ji

×

�
1

L3

X
k

−
Z

dk
ð2πÞ3

� 4πYlml
ðk̂�aÞY�

l0m0
l
ðk̂�aÞ

2ωa12ωa2ðE − ωa1 − ωa2 þ iϵÞ
�
k�a
q�a

�
lþl0

; ð43Þ

where ξa is the symmetry factor defined after Eq. (37). Note
that the superscript ½XjPii� on F is related to the quantum
numbers of allowed two-hadron channels in this relation.
The particles in channel a are labeled with the numbers 1
and 2, and their corresponding masses are ma1 and ma2.
Then the magnitude of back-to-back three-momentum in
the center-of-mass frame is given by q�a, which is the
solution to

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 þ q�2a
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a2 þ q�2a
q

: ð44Þ

In Eq. (43), we have also introduced ωa1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a1

p
,

ωa2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − kÞ2 þm2

a2

p
, and k�a ¼ k�ak̂

�
a, with the latter

defined as the spatial part of the four-vector reached by
boosting ðωa1; kÞ with boost velocity β ¼ −P=E. E is the
total energy of two hadrons in the lab frame, i.e., E ¼ γE�.9

Equation (43) provides the final missing piece for the main
result of this work, Eq. (4).

The other necessary ingredients, namely the generalized
Lüscher and Lellouch-Lüscher formalisms have been
previously derived in Refs. [43,50–58,72–77]. For com-
pleteness, here we provide a rederivation of the most
general results, directly from Eq. (30). First, the generalized
Lüscher formalism follows from the observation that poles
in ΔTL correspond to the finite-volume energies of the
theory. As already discussed in the text around Eq. (20),
this occurs wheneverF ½x�ðL;PÞ has a divergent eigenvalue,
leading directly to Eq. (19).
Second, to obtain the generalized Lellouch-Lüscher

relation, one must match the residues at the poles defining
TL, determined in two different ways. To this end, consider
a special case of Eq. (35) for which J ¼ O, the initial and
final states are the same, and Pi ¼ Pf. In this case, one can
first aim for an expression for TL in terms of finite-volume
matrix elements. This follows directly from Eqs. (12), (13),
(17), and (18). Choosing the kinematics so that Ei − ω is
arbitrarily close to a finite-volume energy, En, one obtains

lim
Ei−ω→En

TLðPi; qÞ ¼ −
2EiL6hPi; LjJ ð0ÞjPi − q; EnihPi − q; EnjJ ð0ÞjPi; Li

ðEi − ωÞ − En
: ð45Þ

To reproduce a second expression for TL near the finite-volume pole, one notes that the poles are encoded in Eq. (30) and
thus

8The Kronecker-product symbol should not be confused with the same symbol used in this section to define loop integrals or sums.
9The � superscript, when applied to an energy or momentum, indicates that the quantity is defined in the center-of-mass frame.

By contrast, when applied to a spherical harmonic or other generic function, the � indicates a complex conjugate.
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lim
Ei−ω→En

TLðPi; qÞ ¼ − lim
Ei−ω→En

�
H½J �

1→2ðPi − qÞF ½J jPii�ðL;Pi − qÞH½J �
2→1ðPi − qÞ

�
: ð46Þ

Equating these two expressions reproduces Eqs. (22)–(25)
(upon trivial assignments of the kinematic arguments and
the operator types). Note that in Eqs. (22)–(25) the matrix
elements are squared. This follows from our assumption
that the current is Hermitian up to a possible CP-violating
phase, so that one can write J ð0Þ ¼ e−iαJ Hð0Þ with
J Hð0Þ ¼ J Hð0Þ†. If we then further adopt a phase con-
vention on the states such that the Hermitian current has a
real finite-volume matrix element, it follows that

hPi;LjJ ð0ÞjPi−q;EnihPi−q;EnjJ ð0ÞjPi;Li
¼e−2iαhPi−q;EnjJ Hð0ÞjPi;Li2¼hPi−q;EnjJ ð0ÞjPi;Li2:

ð47Þ

Before closing this section, we elaborate further on the
scope of the results derived. In particular, we note that the
general angular momentum, spin and flavor structure of the
finite-volume function, F, defined in Eq. (43), is a new
feature that substantially complicates the extraction of
Compton-like amplitudes using lattice QCD. However,
the main challenges already arise in the determination of
coupled hadronic scattering amplitudes (via the generalized
Lüscher formalism) as well as one-to-two transition ampli-
tudes (using the generalization of the Lellouch-Lüscher
relation). As a result of significant numerical and algo-
rithmic progress in recent years, implementation of these
ideas is already well underway.
The central complication, whenever multiple flavor or

angular-momentum channels need to be considered, is that
one no longer has a direct one-to-one mapping between
finite- and infinite-volume observables. In such cases, the
only known approach is to determine a large set of finite-
volume energies and matrix elements, for multiple choices
of box size and total momentum, and to subsequently

perform a global amplitude analysis using the relevant
finite-volume formalism. This was first implemented for
hadronic amplitudes with partial waves unphysically mix-
ing in the finite volume [83], and was later extended to
cases where multiple flavor channels are kinematically
allowed and must be disentangled [59,60,65,66]. Most
recently, the methods have been applied to particles with
intrinsic spin, inducing also an infinite-volume coupling
between different orbital angular momenta [67,68] and to
transition amplitudes in which states are coupled via the
spin and momentum of the external current [84,85]. This
progress provides strong empirical evidence that there is no
significant obstacle for implementing the proposed formal-
ism for Compton-like amplitudes in the kinematic region
considered in this work.

IV. UNITARITY CHECK

This section provides an additional check on Eq. (4) by
proving that the result is consistent with the S-matrix
unitarity. As was recently shown in the context of three-
particle scattering in Ref. [86], all-orders perturbation
theory can be used to directly extract all imaginary
contributions to the scattering amplitude in a given kin-
ematic region. Since the diagrammatic description emerges
from a unitary theory, the result of summing over all
contributions must automatically respect any consequence
following from the unitarity relation, i.e., S†S ¼ 1, in both
the finite and the infinite volumes. Nevertheless, it is
instructive to see how the final result directly satisfies
the expected constraint.
Let us first work out the consequences of unitary for T .

To this end, consider an all-orders expression for the
Compton amplitude in the infinite volume, as depicted
in Fig. 4. For the purpose of this check, the two local

FIG. 3. Shown is the full four-point correlation function in a finite volume. In the second line only the s-channel diagrams are shown
explicitly, and the u-channel counterparts follow by switching the current vertices. The notation is similar to that used in Fig. 2. The
vertical dashed lines denote a contribution from the finite-volume F function, defined in Eq. (43). The open circles denote the overlap of
a single-hadron state with the vacuum.
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currents are assumed to be the same and to be Hermitian
(J A ¼ OB), and the initial and final states are set to
coincide with Pi ¼ Pf.

10 When necessary, the dependence
on the kinematic variable

ffiffiffi
s

p ¼ E� is made explicit
throughout this section, while the full dependence of the
functions on kinematic variables, including on the momen-
tum transfer of the currents, will be suppressed for brevity.
In the kinematic region in which only two-particle states
can go on shell, one can analyze all diagrams by system-
atically isolating their imaginary contributions. These are
present only in the two-particle s-channel loops and are
proportional to the phase-space factor ρ, defined as

ρaðsÞ≡ q�aðsÞξa
8π

ffiffiffi
s

p : ð48Þ

The phase-space factor, ρaðsÞ, arises from the imaginary
part of the iϵ pole prescription in the two-particle loops. To
capture all contributions to the amplitude, it is convenient to
split the full iϵ integral into its real and imaginary parts.
Performing this for a purely hadronic 2 → 2 scattering
amplitude yields the standard relation

iMðsÞ ¼ iKðsÞ 1

1 − iρðsÞKðsÞ ; ð49Þ

where K is the K matrix, defined to have the same
diagrammatic expansion as the scattering amplitude, but
evaluated with the principal-value prescription for the
s-channel loops. Similarly, the principal-valued version
ofH1→2 can be denoted byH1→2, which is related toH1→2

via

iH1→2 ¼ iH1→2

1

1 − iKðsÞρðsÞ : ð50Þ

A similar relation for H2→1 can be realized in terms
of H2→1,

iH2→1 ¼
1

1 − iKðsÞρðsÞ iH2→1: ð51Þ

As with the various finite-volume quantities in
the previous section, Eqs. (49)–(51) are built from matrices
(ρ, K, and M) and column vectors (H1→2 and H1→2) on
the Kronecker-product space of ðorbital angular
momentumÞ ⊗ ðspinÞ ⊗ ðflavor channelsÞ. In the case of
two scalar particles in a single flavor channel, this space
reduces to only angular momentum and all matrices become
diagonal. Then one can draw a correspondence between a
given entry of H1→2 and M. In particular, one finds

ImMðlÞðsÞ
ReMðlÞðsÞ ¼

ImHðlÞ
1→2ðsÞ

ReHðlÞ
1→2ðsÞ

; ð52Þ

meaning that the amplitudes have the same complex phase in
each partial wave. This is Watson’s theorem, and by
returning to the general matrix space, one recovers a
simple generalization for the case of multiple two-particle
channels [73].
In direct analogy to these more standard results, one can

further determine an expression for the Compton amplitude
that is consistent with unitarity to all orders in perturbation
theory. This, in the kinematic region below three-hadron
production thresholds, divides into a purely real principal-
valued version of T , denoted T, as well as a series of ρ cuts,
analogous to those appearing in Eqs. (49)–(51), above. In
addition, one must include a single-particle piece represented
by the second and third terms on the right-hand side of
Fig. 4. To express this, let us denote by fðq2Þ the 1 → 1
matrix element with a single current insertion and label the
corresponding particle mass bym. Combining all terms gives

iT ¼
�
iTþ ifðq2Þ i

s−m2þ iϵ
ifðq2Þ

þ iH2→1

1

1− iρðsÞKðsÞρðsÞiH1→2

�
þ½s↔u�; ð53Þ

FIG. 4. Shown is the representation of the Compton-like amplitude to all orders in perturbation theory, in which the contributions from
imaginary parts (proportional to the phase-space factor ρ) are isolated. The black dots are either the full 1 → 1 vertex with a single
current insertion, if, or the 1 → 2 or 2 → 1 scattering amplitudes, iH. The gray circles define iH and iK, respectively, which are the
counterparts of transition and scattering amplitudes when the principal-valued prescription has been used in the s-channel loops. Further
detail on these quantities is given in the text.

10As discussed above, our definition of T does not include the
disconnected contribution that arises in this case.
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where s ¼ ðP − qÞ2 and u ¼ ðPþ qÞ2 are the usual
Mandelstam variables, and the last term indicates the
inclusion of terms in which the incoming and outgoing
currents are interchanged, as shown in Fig. 4.
At this point, it is apparent that iT shares certain features

with the previously considered amplitudes, M and
H1→2ð2→1Þ. First, besides the single-particle pole, the only
singularity in the amplitude arises from the phase-space
factor ρaðsÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − ðma1 þma2Þ2

p
. This threshold singu-

larity is common to all three amplitudes. Second, in the case
that a single two-particle channel is open, the third term in
Eq. (53) breaks into a sum over the angular momentum
modes and the phase of each term matches that of MðlÞ
and HðlÞ.
Below the lowest-lying two-particle threshold, iρ and

thus also M and H1→2ð2→1Þ become purely real. Similarly,
the only possible imaginary contribution to the Compton
amplitude below threshold is due to the iϵ prescription
within the single-particle pole. Above the lowest lying two-
particle threshold, iρ, M, H1→2ð2→1Þ, and T are all
complex valued. In particular, from Eqs. (49)–(51) and
(53) one can readily show that

ImMðsÞ ¼ M�ðsÞρðsÞMðsÞ; ð54Þ

ImH1→2 ¼ H1→2ρðsÞM�ðsÞ;
ImH2→1 ¼ M�ðsÞρðsÞH2→1; ð55Þ

ImT ¼ H�
2→1ρðsÞH1→2 þ ðs ↔ uÞ; ð56Þ

where ρaðsÞ≡ ρaðsÞΘðs − ðma1 þma2Þ2Þ, with Θ being
the Heaviside step function.
Having established the unitarity constraint on the various

infinite-volume amplitudes entering the formalism, it can
now be shown that Eq. (4) is consistent with these
expressions. To this end, it is sufficient to demonstrate
ImΔTL ¼ ImT , which, together with the fact that G≥N and
T<N are real, demonstrates the desired consistency. One
first notes that

ImΔTL ¼ Im½H2→1FH1→2� þ ðs ↔ uÞ ð57Þ

¼ðH2→1M−1Þ�Im
�
MF

1

M−1þF

�
ðM−1H1→2Þþðs↔uÞ;

ð58Þ

where all s dependences are dropped for brevity and we
have used the definition of F given in Eq. (20). Here, we
use the definition ImX ≡ ðX − X†Þ=ð2iÞ for a generic
matrix, X, together with the fact that H2→1M−1 and
M−1H1→2 are real valued and equal, entry by entry. The
next step is to make use of the fact thatM−1 þ F, and thus
also its inverse, are Hermitian matrices. This leads to the
substitution

2iIm

�
MF

1

M−1 þ F

�

¼ MF
1

M−1 þ F
−

1

M−1† þ F† F
†M† ð59Þ

¼ ½MF −M†F†� 1

M−1 þ F
; ð60Þ

where, in the second line, we have used
½M−1† þ F†�−1F†M† ¼ M†F†½M−1† þ F†�−1. Next one
observes that

MF −M†F†

2i
¼ Im½M�F þM†Im½F�
¼ M�ρMF þM�ρ

¼ M�ρM½M−1 þ F�; ð61Þ

where M† ¼ M�, the unitary constraint on M, Eq. (54),
as well as the relation Im½F� ¼ −Im½M−1� ¼ ρ are used.
The use of Hermitian conjugation in the definition of Im is
mainly motivated by this final step, since due to the
presence of spherical harmonics in the definition of F,
ðF − F�Þ=ð2iÞ ≠ ρ. Finally, substituting Eqs. (60) and (61)
into Eq. (58) leads to

ImΔTL ¼ H�
2→1ρH1→2 þ ðs ↔ uÞ ¼ ImT ; ð62Þ

as desired.
In summary, we have provided an expression for the

Compton amplitude, in terms of purely real building
blocks, that is exactly consistent with unitarity, and we
have used this to express ImT in terms of transition
amplitudes and phase-space factors. This expression is
shown to be consistent with Eq. (4), the main result of this
work. The decomposition of T is built from the single-
particle form factor and propagator, the phase-space factor
ρ, the amplitudes H1→2, H2→1, and M, as well as a real-
valued short distance piece, denoted by T. In fact, since all
but the last function can be obtained from two- and three-
point correlation functions in a finite-volume study, it is
natural to think of T as the target observable, the deter-
mination of which requires the method summarized by
Eq. (4). In the next section we discuss this point in further
detail and highlight one subtlety that arises when consid-
ering amplitudes for which the corresponding K matrix has
real-valued poles.

V. NUMERICAL IMPLEMENTATION

In this section, we provide a numerical example to
illustrate the approach outlined in Sec. II above and
summarized by Eq. (4). To reduce technical complications,
the example involves kinematics for which only a single
channel is open. The channel is composed of two identical
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scalars, each with mass m. It is further assumed that only
the lowest partial wave (l ¼ 0) contributes. The initial and
final single-hadron states are taken to be the same and are
put to rest. Finally, the external current is taken to be a
scalar, and as a result, the form factor fðQ2Þ and transition
amplitude Hðs;Q2Þ are scalar functions. The subscripts
1 → 2 and 2 → 1 onH will be dropped in this section. The
dependence on kinematic variables is displayed using a
Lorentz-invariant notation, where s ¼ ðP − qÞ2 is the
invariant mass of the system and q2 ¼ −Q2, where q is
the momentum transferred by the first current.
As stressed in the previous section, the formalism can

only be applied to amplitudes that exactly satisfy unitarity.
In the case of the hadronic scattering amplitude,MðsÞ, this
means one must use Eq. (49) with a real-valued KðsÞ. With
the standard relation to the scattering phase shift δðq�Þ,

KðsÞ ¼ 16π
ffiffiffi
s

p
q�

1

cot δðq�Þ
				
q�2¼s=4−m2

; ð63Þ

and the use of a Breit-Wigner parametrization for the latter,

tan δðq�Þ ¼
ffiffiffi
s

p
ΓðsÞ

m2
R − s

; ΓðsÞ ¼ g2

6π

m2
R

s
q�; ð64Þ

K is fully constrained. Here,mR is related to the mass of the
resonance and g characterizes the coupling to two-particle
states. In the numerical results, the following values are
assumed:mR ¼ 2.5m and g ¼ 3.0. As can be seen in Fig. 5,
these values lead to a standard peaklike structure near
s ¼ m2

R and a visible cusp at threshold, s ¼ 4m2.

The truncation of MðsÞ to a single partial wave reduces
the two-hadron energy quantization condition, Eq. (19), to
a simple algebraic relation,

MðsÞ ¼ −F−1ðP; LÞ; ð65Þ

that can readily be solved numerically. The corresponding
finite-volume spectrum is shown in the upper panels of
Fig. 6 for two choices of the total three-momentum.
From the unitarity constraint on the 1 → 2ð2 → 1Þ

transition amplitude, KðsÞ must be combined with the
real-valued quantity, Hðs;Q2Þ, as in Eq. (51), to obtain H.
An all-orders perturbation-theory argument requires that
for any pole singularity of KðsÞ, there must be an
associated pole singularity inHðs;Q2Þ [87]. This motivates
rewriting Hðs;Q2Þ as [84,85]

Hðs;Q2Þ ¼ Bðs;Q2ÞKðsÞ; ð66Þ

where Bðs;Q2Þ is a smooth real function. Here we take
Bðs;Q2Þ ¼ fðQ2Þ=3, where fðQ2Þ is the single-particle
form factor, which can be parametrized by a simple
monopole form,

fðQ2Þ ¼ 1

1þQ2=m2
R
: ð67Þ

The resulting functional form of Hðs;Q2Þ for a range of
kinematics is shown in the second panel of Fig. 5.
For the remainder of the discussion, we consider

kinematics for which only the s-channel contributions to
T are physical. As a result, only these can lead to power-
law finite-volume effects, and the u-channel contributions

FIG. 5. Magnitude of the scattering amplitude (upper panel) and 1þ J → 2 transition amplitude (lower panel) using mR=m ¼ 2.5 and
g ¼ 3.0 in the functions defined in the text. Three representative values of momentum transfer are shown for the transition amplitude.
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FIG. 6. Top panels: Finite-volume spectrum for two values of the spatial momentum. The blue lines show the result for the
free theory, while the red lines correspond to the interacting theory with M given in Fig. 5. Middle panels: ΔTL as defined
in Eq. (30), given M and H in Fig. 5, where initial and final states are fixed to be at rest. Bottom panels: The terms defined in the
brackets in Eq. (4).
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can be ignored. Given the specified forms of MðsÞ and
Hðs;Q2Þ, one can now determine ΔTL using Eq. (30). The
result is plotted in the middle panels of Fig. 6 for a volume
withmL ¼ 8, and two values of the total spatial momentum
of the current. The initial and final states are fixed to be at
rest. Note that the real part of ΔTL exhibits a series of poles
that coincide with the energy levels shown in Fig. 6. The
imaginary piece has a cusp at threshold and has the same
qualitative peak structure as MðsÞ and Hðs;Q2Þ. This is
consistent with the fact that ImΔTL satisfies Eq. (62).
Furthermore, given Eqs. (12) and (22), T<N

L can be con-
strained within the parametrization presented. The lower
panels of Fig. 6 plot T<N

L þ ΔTL for the two spatial
momenta considered, exhibiting the exact cancellation of
the poles that was emphasized at the end of Sec. II.
Next, we numerically demonstrate that the imaginary

part of ΔTL is equal to that of T . To proceed, T in Eq. (53)
needs to be constructed in terms of smooth functions, and
for this purpose, the issue of K-matrix poles, mentioned
briefly at the end of Sec. IV, must be addressed. Note that
when Eq. (66) is applied, the third term in brackets in
Eq. (53) develops real-valued poles corresponding to those
of the K matrix,

iHðs;Q2Þ 1

1 − iρðsÞKðsÞ ρðsÞHðs;Q2Þ

→ −Bðs;Q2ÞKðsÞBðs;Q2Þ: ð68Þ

In the full Compton amplitude, this must be exactly
canceled by a pole in T, motivating one final reparamet-
rization

Tðs;Q2Þ ¼ Bðs;Q2ÞKðsÞBðs;Q2Þ þ Sðs;Q2Þ; ð69Þ

where Sðs;Q2Þ is a smooth function in the region of
interest. We conclude that, in this kinematic region, the
analytic structure of the Compton amplitude is given in
terms of known functions, plus an additional smooth
contribution, Sðs;Q2Þ, which will be set to vanish for this
toy example. This completes our construction of a para-
metrization for the Compton amplitude, with the result
plotted in Fig. 7. This numerically confirms the result
derived in Sec. IV and summarized in Eq. (62)
that ImΔTL ¼ ImT .
To complete the illustration of the proposed formalism,

in Fig. 8, we plot the subtracted correlation function,
eωτ½GLðτÞ − G<N

L ðτÞ�, for a set of kinematics and for
various subtractions, as a function of Euclidean time.
This defines the integrand in Eq. (16) leading to T≥N

L .
While this quantity can be obtained directly from Eq. (4)
given the constrained values of T and T<N

L þ ΔTL (by
performing an inverse integral transform), one can also
approximate the function by summing up contributions
from a sufficiently large number of lowest intermediate
finite-volume states; see Eq. (14). Nine such states are used
to obtain the results of Fig. 8. The function exhibits the
expected behavior, with an increased number of subtrac-
tions accelerating the falloff at large Euclidean separations.
It must be stressed that in the case where two-particle states
can go on shell, a number of subtractions are required to
render the integral convergent. However, in practice it may
be profitable to also subtract states in the off-shell region to
accelerate the convergence and improve the overall uncer-
tainty on the resulting amplitude. This is demonstrated in

FIG. 7. Real (red line) and imaginary (blue line) parts of the Compton amplitude. The initial and final states are fixed to be at rest. The
darker lines correspond to currents that have zero momentum, and the faded lines correspond to q ¼ 2π½001�=L, where mL ¼ 8 to
match the functions illustrated in Fig. 6.
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the first panel of Fig. 8, where the chosen value of ω does
not provide sufficient energy to produce any on-shell
intermediate states in this example, but the states close
to threshold cause only slowly damping functions of τ if not
subtracted.
As a final remark, we emphasize that this numerical

example only serves as a quantitative demonstration of the
various features of the building blocks of the master
equation (4) in a toy model, which, however, was built
consistent with physically motivated scenarios. While the
approach in this section was to construct the final-volume
quantities from the knowledge of infinite-volume ampli-
tudes, in the realistic use of the formalism presented, the
known quantities will be the finite-volume two-, three- and
four-point Euclidean correlation functions, and the infinite-
volume Minkowski observable will subsequently be
deduced. In particular, one must note that in the para-
metrization of this section, the smooth function Sðs;Q2Þ is
the only unknown infinite-volume quantity whose value
cannot be fixed by the knowledge of two- and three-point
functions in the theory, and only a determination of the
four-point correlation function as defined in Eq. (10) can
constrain its value, following the procedure of this work.11

VI. CONCLUSION AND OUTLOOK

The formalism presented in this work offers a path from
Euclidean finite-volume correlation functions of time-
displaced local electroweak currents to long-range

contributions to hadronic amplitudes in an infinite
Minkowski spacetime. Given the complicated nature of
the desired amplitudes, it should not be too surprising that
the relation derived in this paper requires a detailed
understanding of various building blocks on both ends
of the mapping. Figure 9 summarizes the conclusions of
this work and provides guidance on how lattice-QCD
quantities may be used to access the physical infinite-
volume amplitudes of interest.
The main result of this work is summarized in Eq. (4). In

short, an extract of the original correlation function is
identified that is independent of the time signature in the
theory, denoted in Fig. 9 as the subtracted one-body matrix
element. This is achieved by removing contributions to the
finite-volume four-point correlation function that arise from
the lowest-lying intermediate states, including all the states
that can go on shell. A closed form for the necessary
additive piece, ½T<N þ ΔT�M;H in Eq. (4), is then provided.
Not only does this form remove all power-law finite-
volume effects below three-hadron productions thresholds
but also it restores the correct analytic structure of the
infinite-volume Minkowski amplitude. This additive piece
can be evaluated separately from dedicated lattice-QCD
studies of two- and three-point functions.
The approach of this work generalizes the formalism of

Refs. [29–31]. In particular, the results presented hold not
only for single-hadron long-range electroweak transitions
but also for transitions involving the vacuum in the initial/
final states, such as for the matrix element incurred in
studying the QCD structure of the photon [88]. Arbitrary
quantum numbers, such as spin, flavor, partial waves, and
total momentum, are incorporated in the formalism, and the
possibility of multiple coupled partial-wave or flavor

FIG. 8. Shown is the integrand of Eq. (15) for the example of this section for a range of values ofN and ω, where initial and final states
are fixed to be at rest. The color coding in the upper two panels corresponds to that of the lower panel.

11A similar consideration is presented in Refs. [12,13] in the
context of matching lattice-QCD results to an effective field
theory description of a nuclear double-β decay.
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channels in intermediate two-hadron states is accounted for.
An explicit map of the workflow for future numerical
implementation of the formalism is shown in Fig. 1, with a
reference to quantities that are defined in various equations
throughout this paper.
The general framework of this work can further serve as

guidance on how to address more complex scenarios, such
as considering two-hadron initial and final states (relevant
for neutrinoful and neutrinoless double-β decay), or
extending the kinematic reach of the problem so that more
than two hadrons can be produced on shell in the
intermediate states. Extension to kinematic regions beyond
the three-hadron productions may be possible given the
recently developed technologies for the determination of
three-hadron observables from a finite-volume study
[82,87,89–101]. More immediately, one can imagine
extending these ideas for processes such as γ�γ� → ππ,
which would be relevant for dispersive analyses
of the hadronic light-by-light contribution to muon
g − 2 [102].
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