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We present the results that are necessary in the ongoing lattice calculations of the gluon parton 
distribution functions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-
gluon correlator functions and identify those that contain the invariant amplitude determining the 
gluon PDF in the light-cone z2 → 0 limit. One-loop calculations have been performed in the coordinate 
representation and in an explicitly gauge-invariant form. We made an effort to separate ultraviolet (UV) 
and infrared (IR) sources of the ln

(−z2
)
-dependence at short distances z2. The UV terms cancel in the 

reduced Ioffe-time distribution (ITD), and we obtain the matching relation between the reduced ITD 
and the light-cone ITD. Using a kernel form, we get a direct connection between lattice data for the 
reduced ITD and the normalized gluon PDF. We also show that our results may be used for a rather 
straightforward calculation of the one-loop matching relations for quasi-PDFs.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Lattice calculations of parton distribution functions (PDFs) are 
now a subject of considerable interest and efforts (see Ref. [1]
for a recent review and references to extensive literature). Mod-
ern efforts aim at the extractions of PDFs f (x) themselves rather 
than their xN moments. On the lattice, this may be achieved by 
switching from local operators to current-current correlators [2]. A 
further idea is to start with equal-time correlators [3].

X. Ji, in the paper [4] that strongly stimulated further devel-
opment, made a ground-breaking proposal to consider equal-time 
versions of nonlocal operators defining PDFs, distribution ampli-
tudes, generalized parton distributions, and transverse momentum 
dependent distributions. In the case of usual PDFs, the basic con-
cept of Ji’s approach is a “parton quasi-distribution” (quasi-PDF) 
Q (y, p3) [4,5], and PDFs are obtained from the large-momentum 
p3 → ∞ limit of quasi-PDFs.

Other approaches, such as the “good lattice cross sections” [6,
7], the Ioffe-time analysis of equal-time correlators [3,8,9] and the 
pseudo-PDF approach [10–12] are coordinate-space oriented, and 
extract parton distributions taking the short-distance z3 → 0 limit.

Both the p3 → ∞ and z3 → 0 limits are singular, and one needs 
to use matching relations to convert the Euclidean lattice data into 
the usual light-cone PDFs. In the quasi-PDF approach, such rela-
tions were studied for quark [4,13–15] and gluon PDFs [16–18], 
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for the pion distribution amplitude (DA) [19] and generalized par-
ton distributions (GPDs) [19–21].

Within the pseudo-PDF approach, the matching relations were 
derived for non-singlet PDFs [22–25,15]. The strategy of the lattice 
extraction of non-singlet GPDs and the pion DA using the pseudo-
PDF methods was outlined in a recent paper Ref. [26], where the 
matching conditions for these cases have been also derived. In the 
present paper, our main goal is to describe the basic points of the 
pseudo-PDF approach to extraction of unpolarized gluon PDFs, and 
also to find one-loop matching conditions.

In the gluon case, the calculation is complicated by strict re-
quirements of gauge invariance. In this situation, a very effective 
method is provided by the coordinate-representation approach of 
Ref. [27]. It is based on the background-field method and the 
heat-kernel expansion. It allows, starting with the original gauge-
invariant bilocal operator, to find its modification by one-loop cor-
rections. The results are obtained in an explicitly gauge-invariant 
form.

In this approach, there is no need to specify the nature of ma-
trix element characteristic of a particular parton distribution. This 
means that one and the same Feynman diagram calculation may 
be used both for finding matching conditions for PDFs (given by 
forward matrix elements), and for DA’s and GPDs corresponding 
to non-forward ones (see Ref. [26] for an illustration of how this 
works for quark operators).

The paper is organized as follows. In Section 2, we analyze the 
kinematic structure of the matrix elements of the gluonic bilocal 
operators, and identify those that contain information about the 
twist-2 gluon PDF.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Next, we discuss one-loop corrections. In Section 3, we analyze 
the gauge-link self-energy contribution and specific properties of 
its ultraviolet and short-distance behavior. Our results for the ver-
tex corrections to the gluon link are given in Section 4 in the form 
that is valid both in forward and non-forward cases. The “box” di-
agram is discussed in Section 5. Since our results in this case are 
rather lengthy, we present just some of them, and in the forward 
case only. The gluon self-energy corrections are discussed in Sec-
tion 6.

The subject of Section 7 is the structure of perturbative evo-
lution of the gluon operators and matching conditions. Section 8
contains a summary of the paper.

2. Matrix elements

The nucleon spin-averaged matrix elements for operators com-
posed of two-gluon-fields (with all four indices non-contracted) 
are specified by

Mμα;λβ(z, p) ≡ 〈p| Gμα(z) [z,0] Gλβ(0)|p〉 , (2.1)

where [z, 0] is the standard straight-line gauge link in the gluon 
(adjoint) representation

[x, y] ≡ Pexp
{

ig

1∫
0

dt (x − y)μ Ãμ(tx + (1 − t)y)
}

. (2.2)

The tensor structures for a decomposition over invariant ampli-
tudes may be built from two available 4-vectors pα , zα and the 
metric tensor gαβ . Incorporating the antisymmetry of Gρσ with 
respect to its indices, we have

Mμα;λβ(z, p) =(
gμλpα pβ − gμβ pα pλ − gαλpμpβ + gαβ pμpλ

)
Mpp

+ (gμλzαzβ − gμβ zαzλ − gαλzμzβ + gαβ zμzλ

)
Mzz

+ (gμλzα pβ − gμβ zα pλ − gαλzμpβ + gαβ zμpλ

)
Mzp

+ (gμλpαzβ − gμβ pαzλ − gαλ pμzβ + gαβ pμzλ

)
Mpz

+ (pμzα − pαzμ

) (
pλzβ − pβ zλ

)
Mppzz

+ (gμλgαβ − gμβ gαλ

)
Mgg , (2.3)

where the amplitudes M are functions of the invariant interval z2

and the Ioffe time [28] (pz) ≡ −ν (the minus sign is introduced 
for further convenience).

Since the matrix element should be symmetric with respect to 
interchange of the fields (which amounts to {μα} ↔ {λβ} and z →
−z), the functions Mpp , Mzz , Mgg , Mppzz and Mpz −Mzp are 
even functions of ν , while Mpz +Mzp is odd in ν .

The usual light-cone gluon distribution is obtained from
gαβ M+α;β+(z, p), with z taken in the light-cone “minus” direc-
tion, z = z− . We have

gαβ M+α;β+(z−, p) = −2p2+Mpp(ν,0) , (2.4)

i.e., the PDF is determined by the Mpp structure,

−Mpp(ν,0) = 1

2

1∫
−1

dx e−ixνxf g(x) . (2.5)

Thus, we should choose the operators with the sets {μα; λβ} that 
contain Mpp in their parametrization.

Note that it is the density of the momentum G(x) ≡ xf g(x) car-
ried by the gluons rather than their number density f g(x) that is 
a natural quantity in this definition of the gluon PDF. In the lo-
cal z− = 0 (or ν = 0) limit, the x-integral gives the fraction of the 
hadron’s plus momentum carried by the gluons. In the absence 
of gluon-quark transitions, this fraction is conserved, which puts 
a restriction on the gg-component of the Altarelli-Parisi [29] ker-
nel. Namely, it should have the plus-prescription property when 
applied to G(x).

Due to antisymmetry of Gρσ with respect to its indices, 
the values α = + and β = + are excluded from the summa-
tion in Eq. (2.4). Furthermore, since g−− = 0, the combination 
gαβ M+α;β+(z, p) includes only summation over transverse in-
dices i, j = 1, 2, i.e. reduces to gij M+i; j+(z, p) ≡ M+i;+i(z, p) (we 
switched here to Euclidean summation over i), for which we have

M+i;+i = M0i;0i + M3i;3i + (M0i;3i + M3i;0i) . (2.6)

In the local z3 = 0 limit, these three combinations are proportional 
to E2⊥ , B2⊥ and the third component (E × B)3 of the Poynting vec-
tor, respectively.

The decomposition of these combinations (with summation 
over i) in the basis of the M structures is

M0i;i0 =2p2
0Mpp + 2Mgg , (2.7)

M3i;i3 =2p2
3Mpp + 2z2

3Mzz

+ 2z3 p3
(
Mzp +Mpz

)− 2Mgg , (2.8)

M0i;i3 =2p0
(

p3Mpp + z3Mpz
)

, (2.9)

M3i;i0 =2p0
(

p3Mpp + z3Mzp
)

. (2.10)

All of them contain the Mpp function defining the gluon dis-
tribution, though with different kinematical factors. Unfortunately, 
none of them is just Mpp : they all contain contaminating terms. 
Moreover, the M3i;i3 matrix element (proposed originally [4] for 
extractions of the gluon PDF on the lattice) contains three contam-
inations, while the others have just one addition. In particular, the 
matrix element M0i;i0 has Mgg as a contaminating term. It is easy 
to see that

M ji;i j ≡ 〈p| G ji(z)Gij(0) |p〉 = −2Mgg , (2.11)

where the summation over both i and j is assumed. Hence, the 
combination

M0i;i0 + M ji;i j =2p2
0Mpp (2.12)

may be used for extraction of the twist-2 function Mpp .
Combining together matrix elements of different types, one 

should take into account that, off the light cone, these matrix el-
ements have extra ultraviolet divergences related to presence of 
the gauge link. Due to the local nature of ultraviolet divergences, 
each matrix element, for any set of its indices {μα; λβ}, is multi-
plicatively renormalizable with respect to these divergences [30]. 
However, choosing different sets of {μα; νβ}, we get, in general, 
different anomalous dimensions.

Thus, it is not evident a priori which linear combinations 
of these matrix elements are multiplicatively renormalizable. In 
Ref. [31], it was established that the combinations represented 
in Eq. (2.6), namely, M0i;i0, M3i;i3, M0i;i3 + M3i;i0 (and also 
M0i;i3 − M3i;i0), with summation over transverse indices i, are each 
multiplicatively renormalizable at the one-loop level.

Furthermore, the combination Gij Gij (with summation over 
transverse i, j) equals to 2G12G12, whose matrix elements are mul-
tiplicatively renormalizable. As we will see, it has the same one-
loop UV anomalous dimension as M0i;i0, hence the combination of 
Eq. (2.12) is multiplicatively renormalizable at the one-loop level. 
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Fig. 1. Self-energy-type correction for the gauge link.

A possible subject for further studies is to investigate if this is true 
in higher orders.

The combination gαβ M3α;3β , containing a covariant summation 
over α and β , was also found to be multiplicatively renormalizable. 
It is given by

gαβ M3α;3β =
(

2p2
3 − m2

)
Mpp + 3z2

3Mzz

+ 3p3z3
(
Mzp +Mpz

)+ p2
0z2

3Mppzz − 3Mgg , (2.13)

and has the largest number (four) of contaminations.
The function gαβ M0α;0β , also involving a covariant summation, 

was used in the first attempt [32] of the lattice extraction of the 
gluon PDF. However, as noted in Ref. [31], it is not multiplicatively 
renormalizable.

In any theory with a dimensionless coupling constant, the ma-
trix elements M(z, p) contain ∼ ln

(−z2
)

terms corresponding to 
perturbative (or “DGLAP” for Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi [33,29,34]) evolution. One may wonder which combinations 
have a diagonal DGLAP evolution at one loop.

To answer these questions, we have calculated the modification 
of the original bilocal operator by one-loop gluon exchanges.

3. Link self-energy contribution and ultraviolet divergences

The simplest diagram corresponds to the self-energy correction 
for the gauge link (see Fig. 1). Its calculation is the same as in case 
of the quark bilocal operators (see, e.g., Ref. [23]). At one loop, one 
should just the change the color factor C F → C A . Thus, we have

�	(z) =(ig)2 C A
1

2

1∫
0

dt1

1∫
0

dt2 zμzν Dc
μν [z(t2 − t1)] , (3.1)

where Dc
μν(z) = gμν/4π2z2 is the Feynman-gauge gluon propaga-

tor in the coordinate representation. The resulting integrals over 
the link parameters t1, t2

1∫
0

dt1

1∫
0

dt2

(t2 − t1)2
(3.2)

diverge when t1 ∼ t2, i.e., when the endpoints t1z and t2z of the 
gluon propagator are close to each other. So, one may suspect that 
this divergence has an ultraviolet origin. To see that this is the 
case, we use the dimensional regularization (DR) [35] in the UV 
region, switching to d dimensions. As a result, the gluon propa-
gator in the coordinate space acquires an extra factor (−z2)2−d/2. 
This results in an extra (t2 − t1)

2−d/2 factor in Eq. (3.2), and the 
integral there converges for sufficiently small d.

To preserve gauge invariance, our calculations were made using 
massless gluons and the dimensional regularization. However, in 
the case of the link self-energy diagram, the use of DR (which is 
basically just a mathematical trick) is rather misleading in a couple 
of points.

The relevant subtleties may be illustrated by using the Polyakov 
prescription 1/z2 → 1/(z2 −a2) for the gluon propagator in the co-
ordinate representation [36] (see also Refs. [37,23]). It softens the 
gluon propagator at intervals −z2 � a2, and eliminates its singular-
ity at z2 = 0. In this respect, it is similar to the UV regularization 
produced by a finite lattice spacing, and gives

�	(z,a) = − g2 C A
z2

8π2

1∫
0

dt1

1∫
0

dt2

z2(t2 − t1)2 − a2 . (3.3)

The regularized integral vanishes on the light cone z2 = 0 and con-
verges for spacelike z. Taking z = z3 and calculating the integrals 
gives [37,23]

�	(z3,a) = − C A
αs

2π

[
2

z3

a
tan−1

( z3

a

)
− ln

(
1 + z2

3

a2

)]
. (3.4)

The result contains a linear ∼ 1/a divergence that is missed if one 
uses the DR. Furthermore, for a fixed a and small z3 it behaves like 
z2

3/a2, i.e., �	(z, a) vanishes for z3 = 0, as expected: there is no 
link if z3 = 0. It also vanishes on the light cone z2 = 0.

The fact that �	(z3 = 0, a) = 0 means that, for a
fixed a, this term gives no corrections to the local limit of the 
Gμα(z) [z, 0] Gλβ(0) operator, e.g., to the energy-momentum tensor 
(EMT). Since the matrix element of the EMT gives the fraction of 
the hadron momentum carried by the gluons, the link self-energy 
correction does not change this fraction. This is a natural phe-
nomenon in the absence of the gluon-quark transitions.

However, if one formally takes the a → 0 limit for a fixed 
z3 in Eq. (3.4), then ln

(
1 + z2

3/a2
)

converts into the expression 
ln
(
z2

3/a2
)

singular for z3 = 0. Similarly, using the DR, one faces 
an outcome proportional to

(−z2μ2
UV)εUV/εUV = 1/εUV + ln

(
−z2μ2

UV

)
+ . . . , (3.5)

where μUV is the scale accompanying this UV dimensional regu-
larization. Again, the starting expression vanishes for z2 = 0, but 
renormalizing it by a subtraction of the 1/εUV pole, one may ap-
parently conclude that, in addition to the UV divergence, this dia-
gram contains a singularity on the light cone z2 = 0.

For this reason, in our DR results we will explicitly separate 
the z2-dependence induced by the UV singular terms (that actually 
vanish on the light cone) and that present in the DGLAP-evolution 
logarithms ln

(−z2μ2
IR

)
, where μIR is the scale associated with the 

DR regularization of the collinear singularities.
The main difference is that if, instead of DR, one regularizes 

collinear singularities by using a physical IR cut-off � (like nonzero 
gluon virtuality or gluon mass), the one-loop result, proportional 
to the modified Bessel function K0(

√−z2�2), remains singular for 
z2 = 0, unlike the UV-induced logarithm ln

(
1 − z2/a2

)
.

In the case of the link self-energy diagram, we have UV singu-
larities only. Its correction to the Gμα(z)Gλβ(0) operator is given 
by

− g2Nc

4π2[(−z2μ2
UV + iε)] d

2 −2

�
(
d/2 − 1

)
(3 − d)(4 − d)

Gμα(z)Gλβ(0) , (3.6)

where the 1/(3 − d)(4 − d) factor results from the integral

1∫
0

dt1

t1∫
0

dt2 (t1 − t2)
2−d = 1

(3 − d)(4 − d)

produced by the DR of the gluon propagator Dc(t1z − t2z). The 
pole for d = 3 (d = 4) corresponds to the linear (logarithmic) UV 
divergence in Eq. (3.4).
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Fig. 2. Vertex diagrams with gluons coming out of the gauge link.

4. Vertex contributions

There are also vertex diagrams involving gluons that connect 
the gauge link with the gluon lines, see Fig. 2.

We use the method of calculation described in Ref. [27]. It is 
based on the background-field technique, with the gluon propaga-
tor taken in the “background-Feynman” (bF) gauge [27]. It should 
be noted that the three-gluon vertex in the bF gauge is different 
from the usual Yang-Mills vertex (see e.g. [38]). Therefore, the re-
sults obtained for separate diagrams in the bF gauge differ from 
those obtained in the usual Feynman gauge and only the sum of 
all diagrams must be the same.

4.1. UV divergent term

Clearly, the gluon exchange produces a correction just to one of 
the fields in the Gμα(z)Gλβ(0) operator, while another remains in-
tact. In particular, the diagram 2a changes Gμα(z) into the sum of 
two terms. One of them contains UV divergences, while the other 
one is UV finite.

The UV-divergent term is given by

Nc g2

8π2

�(d/2 − 1)

(d − 2)(−z2)d/2−1

1∫
0

du
(

u3−d − u
)

× (zαGzμ(ūz) − zμGzα(ūz)
)

, (4.1)

where Gzσ ≡ zρ Gρσ and ū ≡ 1 − u. The overall d-dependent fac-
tor here is finite for d = 4, but the u-integral diverges at the lower 
limit. Thus, just like in the case of the link self-energy diagram, the 
divergence appears in the integral over a dimensionless parameter 
t specifying the location of the endpoint of the gluon line on the 
gauge link. The divergence disappears if one uses the UV regular-
ization by taking d = 4 − 2εUV, which converts it into a pole at 
εUV = 0.

Since the UV divergence comes from the u → 0 integration, we 
can isolate it by taking ū = 1 in the gluonic field, which gives

Nc g2

4π2

�(d/2 − 1)

(d − 2)(−z2)d/2−1

(
1

4 − d
− 1

2

)
× (zαGzμ(z) − zμGzα(z)

)
. (4.2)

The remainder is given by

Nc g2

8π2

�(d/2 − 1)

(d − 2)(−z2)d/2−1

1∫
0

du
[

u3−d − u
]
+(0)

× (zαGzμ(ūz) − zμGzα(ūz)
)

, (4.3)

where the plus-prescription at u = 0 is defined as

1∫
0

du [ f (u)]+(0) g(u) =
1∫

0

du f (u)[g(u) − g(0)] . (4.4)

At first sight, the field Gμα(z) = zαGzμ(z) − zμGzα(z) accompa-
nying the UV pole in Eq. (4.2) does not look like the field Gμα(z) in 
the original operator. Thus, one may worry that we are not dealing 
here with a multiplicative UV renormalization. So, let us perform 
an explicit check for our particular case when z = {0, 0, 0, z3}.

To begin with, we see that Gμα(z) = 0 when both μ and α are 
transverse indices i, j. This corresponds to a multiplicative renor-
malization with the anomalous dimension (AD) equal to zero.

Take now μ = 0. Then G0α(z) = zαGz0(z), so that G0i(z) =
0 while G03(z) = z2

3G30(z) = −z2
3G03(z). Finally, if μ = 3, then 

G3α(z) = −z3Gzα(z) = −z2
3G3α(z), which gives G3i(z) = −z2

3G3i(z)
and G30(z) = −z2

3G30(z) (same result as above).
Thus, for all the cases, Gμα(z) is a multiple of Gμα(z). Namely, 

when one of the indices equals 3, we have a nontrivial anomalous 
dimension, since G3α(z) = −Gα3(z) = −z2

3G3α(z). In all other cases, 
we have a trivial (vanishing) AD, since Gi j(z) = 0 and G0i(z) = 0.

As mentioned, the link self-energy diagram has both linear 
and logarithmic UV divergences, while the vertex diagrams have 
just logarithmic UV divergences. Adding the logarithmic UV diver-
gence coming from the link self-energy to the UV divergences of 
the vertex diagrams, we find, in particular, that the matrix ele-
ments M0i;i0 and Mij;i j have the logarithmic AD due to the link 
self-energy diagram only. Call it γ . Comparing overall factors in 
Eqs. (3.6) and (4.2), we conclude that M3i;i3 has the logarithmic 
AD equal to 2γ and matrix elements M0i;i3 ± M3i;i0 have the loga-
rithmic AD equal to 3

2 γ . In addition, all of these structures acquire 
at one loop the same factor due to the linear UV singularity.

4.2. Evolution term

Our calculations show that the second, UV finite term from the 
diagram 2a is given by

Nc g2

8π2

�(d/2 − 2)

(d − 3)(−z2)d/2−2

1∫
0

du
[

u3−d − 1
]
+(0)

× Gμα(ūz)Gλβ(0) . (4.5)

Note that the gluonic operator in Eq. (4.5) has the same tensor 
structure as the original operator Gμα(z)Gβν(0) differing from it 
just by rescaling z → ūz. There is no mixing with operators of a 
different type. The u-integral in this case does not diverge for d =
4, but the overall �(d/2 − 2) factor has a pole 1/(d − 4).

Formally, there is also a pole 1/(d − 3), corresponding to a lin-
ear UV divergence. However, the singularity for d = 3 is eliminated 
by the 

[
u3−d − 1

]
combination in the integrand. One may say that 

the linear divergences present in “u3−d” and “−1” parts cancel 
each other.

In the calculation of Refs. [31,18] performed using the usual 
Feynman gauge, the linear singularities cancel between contribu-
tions of two different diagrams shown in Fig. 1 of Ref. [18]. In our 
calculation, based on the bF gauge, the sum of these diagrams is 
represented by just one vertex diagram, so that the cancellation 
occurs inside the contribution (4.5) of that diagram.

The remaining 1/(d − 4) pole corresponds to a collinear diver-
gence developed because all the propagators correspond to mass-
less particles. Taking a nonzero gluon mass λ, one would get a 
finite result containing K0(

√−z2λ) (see, e.g., Ref. [23] for a discus-
sion of the quark vertex diagram in a similar context).

Still, K0(
√−z2λ) is only finite as far as z2 is finite. The IR cut-

off does not eliminate the logarithmic singularity ln
(−z2λ2

)
that 

K0(
√−z2λ) has on the light cone. In the z = z3 case, z2

3 works 
like an ultraviolet cut-off for this singularity. This may be con-
trasted with the UV divergent contributions, where the UV cut-off 
is provided by the Polyakov regularization parameter a (or lattice 
spacing aL ) while z2

3 appears on the IR side of the relevant loga-
rithm ln

(
z2/a2

)
.
3



I. Balitsky et al. / Physics Letters B 808 (2020) 135621 5
Fig. 3. Box diagram.

Fig. 4. Gluon self-energy-type insertions into the right leg.

5. Box diagram

There is also a contribution given by the diagram in Fig. 3 con-
taining a gluon exchange between two gluon lines. This diagram 
does not have UV divergences, but it has DGLAP ln z2

3 contribu-
tions. In contrast to the vertex diagrams, the original Gμα(z)Gνβ(0)

operator generates now a mixture of bilocal operators correspond-
ing to various projections of Gμα(ūz)Gνβ(0) onto the structures 
built from vectors p, z and the metric tensor g .

In particular, in the case of the original 〈p| G0i(z)G0i(0) |p〉 ma-
trix element, the box diagram contribution is expressed through 
matrix elements of 〈p| G0i(uz)G0i(0) |p〉, 〈p| G3i(uz)G3i(0) |p〉,
〈p| G30(uz)G30(0) |p〉 and 〈p| Gij(uz)Gij(0) |p〉 types. All these ma-
trix elements also appear in the box diagram if one starts with the 
〈p| G3i(z)G3i(0) |p〉 matrix element. Thus, in both cases we have a 
complicated mixing of different types of operators.

The situation is simpler for matrix elements

M±
03(z, p) ≡ 〈p| G0i(z)Gi3(0) ± G3i(z)Gi0(0) |p〉 . (5.1)

Namely, for M+
03(z, p) (or M−

03(z, p)) combination, the box diagram 
contribution is expressed through M+

03(uz, p) (or M−
03(uz, p)) only. 

However,

M−
03 ≡ M0i;i3 − M3i;i0 =2p0z3

(
Mpz −Mzp

)
, (5.2)

does not contain the twist-2 function Mpp , and is of no interest. 
For M+

03(z, p), the box contribution is given by

Nc g2�(d/2 − 1)

4π2
(−z2

)d/2−2

1∫
0

du

(
ūu + 2

3
ū3
)

M+
03(uz, p)

+ Nc g2�(d/2 − 2)

4π2
(−z2

)d/2−2

1∫
0

du [ū(1 + u2) − u]M+
03(uz, p) . (5.3)

Here, the �(d/2 − 2) terms are singular for d = 4, which results 
in ln

(−z2
)

terms generating the DGLAP evolution. The �(d/2 − 1)

terms are singular for d = 2, which corresponds to the fact that 
the gluon propagator in two dimensions has a logarithmic ln

(−z2
)

behavior in the coordinate space. For d = 4, these terms are finite. 
Note that, unlike the vertex part, the box contribution does not 
have the plus-prescription form.

6. Gluon self-energy diagrams

One may expect that the plus-prescription form would ap-
pear after the addition of the gluon self-energy diagrams, one of 
which is shown in Fig. 4a. These diagrams have both the UV and 
collinear divergences. On the lattice, the UV divergence is regular-
ized by the lattice spacing. In a continuum theory, one may use 
the Polyakov prescription 1/z2 → 1/(z2 − a2) for the gluon prop-
agator. The collinear divergences may be regularized by taking a 
finite gluon mass λ. The result is a ln

(
a2λ2

)
contribution. How-

ever, it does not have the z-dependence, and apparently cannot 
help one to build the plus-prescription form for the ln z2

3 part of 
the box contribution.

A possible way out is to represent ln
(
a2λ2

)
as the difference 

ln
(
z2

3λ
2
)− ln

(
z2

3/a2
)

of the evolution-type logarithm ln
(
z2

3λ
2
)

and 
a UV-type logarithm ln

(
z2

3/a2
)
. The latter can be added to the UV 

divergences of the diagrams 1 and 2 corresponding to link self-
energy and vertex corrections. The ln

(
z2

3λ
2
)

part is then added to 
the evolution kernel.

To be on safe side with gauge invariance, we use the dimen-
sional regularization. Then the analog of the ln

(
a2λ2

)
logarithm is 

a pole 1/(2 − d/2) sometimes written as 1/εUV − 1/εIR. For our 
purposes, it is more convenient to symbolically write it in a form 
similar to ln

(
a2λ2

)
. Changing λ → μIR and a → 1/μUV we get 

ln
(
μ2

IR/μ2
UV

)
, and then split this into the difference ln

(
z2

3μ
2
IR

) −
ln
(
z2

3μ
2
UV

)
.

We should also take into account the diagrams (one of them is 
shown in Fig. 4b) with an extra gluon line going out of the link-
gluon vertex. The combined contribution of the Fig. 4 diagrams and 
their left-leg analogs is given by

g2Nc

8π2

1

2 − d/2

[
2 − β0

2Nc

]
Gμα(z)Gλβ(0) , (6.1)

where β0 = 11Nc/3 in gluodynamics, so that the terms in the 
square bracket combine into 1/6. As discussed above, we will treat 
1/(2 − d/2) as ln

(
z2

3μ
2
IR

)− ln
(
z2

3μ
2
UV

)
.

7. DGLAP evolution structure

7.1. When DGLAP is diagonal in pure gluodynamics

The M+
03 ≡ M0i;i3 + M3i;i0 combination defined by Eq. (5.1) con-

tains the twist-2 amplitude Mpp ,

M+
03 = 4p0 p3Mpp + 2p0z3

(
Mpz +Mzp

)
, (7.1)

though with a higher-twist admixture Mzp + Mpz . In the local 
limit, the relevant operator is proportional to the 3rd component 
of the Poynting vector

S3 = (E × B)3 = E1 B2 − B1 E2 = −(G01G13 + G32G20) .

As already mentioned, the box part of the one-loop correc-
tion to the matrix element M+

03(z3, p) in pure gluodynamics has 
a simple DGLAP structure1 (5.3). Combining all the gluon one-loop 
corrections to it, we get, in the MS scheme,

g2Nc

8π2

1∫
0

du

{[(
3

2
− 1

6

)
ln
(

z2
3μ

2
UVe2γE /4

)
+ 2

]
δ(ū)

−2 log
(

z2
3μ

2
IRe2γE /4

)[ (1 − uū)2

ū

]
+

(7.2)

+
[

u − 3
u

ū
− 4

log(ū)

ū

]
+

+ 2

(
ūu + 2

3
ū3
)}

M+
03(uz, p) .

The first line here comes from the UV-singular contributions. It 
contains the δ(ū) factor which reflects the local nature of the UV 

1 This simplicity may be violated in higher orders.
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divergences and converts M+
03(uz, p) into M+

03(z, p). The second 
line contains the Altarelli-Parisi (AP) kernel

B gg(u) =2

[
(1 − uū)2

1 − u

]
+

. (7.3)

It has the plus-prescription structure reflecting the fact that, in 
the local limit, Mpp(z, p) is proportional to the matrix element 
of the gluon energy-momentum tensor. From now on, “+” means 
the plus-prescription at 1.

The third line contains z3-independent terms coming from the 
vertex diagrams (these have the plus-prescription form) and from 
the box diagram. The latter may be written as a sum of the term 
2 
(

ūu + 2
3 ū3

)
+ that has the plus-prescription form and the term 

2
3 δ(ū) that may be combined with the UV terms.

7.2. Reduced Ioffe-time distribution

The combination Mpz + Mzp is an odd function of ν = z3 p3. 
Writing it as 2z3 p3m+

zp(ν, z2
3), we have

M+
03(z3, p) = 4p3 p0[Mpp(ν, z2

3) + z2
3 m+

zp(ν, z2
3)] . (7.4)

Dividing out the kinematical factor 4p3 p0, we deal with

M̃pp(ν, z2
3) ≡ Mpp(ν, z2

3) + z2
3 m+

zp(ν, z2
3) , (7.5)

which is a function of ν and z2
3. Now, just like in the quark case 

considered in Refs. [10,12], we can introduce the reduced Ioffe-
time distribution

M̃(ν, z2
3) ≡ M̃pp(ν, z2

3)

M̃pp(0, z2
3)

. (7.6)

Since M̃pp(ν, z2
3) is obtained from the multiplicatively renormaliz-

able combination M+
03, the UV divergent Z(z2

3μ
2
U V ) factors gener-

ated by the link-related and gluon self-energy diagrams cancel in 
the ratio (7.6). As a result, the small-z2

3 dependence of the reduced 
pseudo-ITD M̃(ν, z2

3) comes from the logarithmic DGLAP evolution 
effects only. Moreover, M̃pp(0, z2

3) has no DGLAP logarithmic de-
pendence on z2

3, because of the plus-prescription nature of the AP 
kernel B gg(u).

Thus, neglecting O(z2
3) terms, we conclude that, in pure gluody-

namics, M̃(ν, z2
3) satisfies the evolution equation

d

d ln z2
3

M̃(ν, z2
3) = − αs

2π
Nc

1∫
0

du B gg(u)M̃(uν, z2
3) (7.7)

with respect to z2
3. This relation is modified when gluon-quark 

transitions are present.

7.3. Gluon-quark mixing

In the MS scheme, the contribution to M+
03 from the gluon-

quark diagram shown in Fig. 5 is given by

g2C F

4π2z3

1∫
0

du

[
−2u − ln

(
z2

3μ
2
IRe2γE /4

)
[2ū + δ(ū)]

]
Oq(uz3) ,

(7.8)

where Oq(z3) is a singlet combination of quark fields,

Oq(z3) = i

2

∑
f

(
ψ̄ f (0)γ0ψ f (z3) − ψ̄ f (z3)γ0ψ f (0)

)
, (7.9)
Fig. 5. Gluon-quark mixing diagram.

with f numerating quark flavors. Note that Oq(z3) vanishes for 
z3 = 0. Expanding Oq(z3) in z3

Oq(z3) = z3
i

2

∑
f

ψ̄ f (0)γ0
↔
∂ 3ψ f (0) +O(z3

3) , (7.10)

we see that the lowest term is proportional to the quark part of 
the energy-momentum tensor. This term is accompanied by the z3
factor which cancels the overall 1/z3 factor in Eq. (7.8).

The matrix element of Oq(z3) can be parametrized by

〈p|Oq(z3)|p〉 = 2p0

1∫
0

dx sin(xp3z3)qS(x) (7.11)

where f S (x) =∑
f [q f (x) + q̄ f (x)] is the singlet quark distribution. 

To extract the overall z3 factor, we rewrite

〈p|Oq(z3)|p〉 = 2p0 p3z3

1∫
0

dy

1∫
0

dα cos(αyν) y f S(y) (7.12)

where ν = p3z3, as usual. This gives

1

z3

1∫
0

du A(u) 〈p|Oq(uz3)|p〉

= 2p0 p3

1∫
0

dwIS(wν)A(w) (7.13)

for u-integrals of Eq. (7.8) type. Here

IS(ν) =
1∫

0

dy cos(yν) y f S(y) (7.14)

is the singlet quark Ioffe-time distribution, and

A(w) =
1∫

w

du A(u) . (7.15)

For the evolution kernel B gq(u) ≡ 2ū + δ(ū), we get

Bgq(w) =
1∫

w

du B gq(u) = 1 + (1 − w)2 . (7.16)

7.4. Matching relations

A disadvantage of the M+
03(z3, p) combination is that it vanishes 

when p3 = 0 (see Eq. (7.4)). Thus, to extract M̃pp(ν, z2
3) for ν = 0, 

one should make measurements of M+
03(z3, p) for a few low values 

of p3, divide p3 out, and extrapolate the results to p3 = 0. This 
procedure leads to additional systematic uncertainties.

Fortunately, the combination M0i;i0 − Mij;i j = 2p2
0Mpp of 

Eq. (2.12), being proportional to p2, does not have this problem. 
0
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Furthermore, it gives the twist-2 amplitude Mpp without contam-
inations. The amplitude Mpp(ν, z2

3) obtained in this way may be 
used to form the reduced pseudo-ITD M(ν, z2

3), as in Eq. (7.6).
Using the results of our calculations for the one-loop correc-

tions to M0i;i0 and Mij;i j , and keeping just the Mpp term in the 
correction (while skipping the “higher twist” terms Mzz , Mzp , 
Mpz , Mppzz) we obtain the matching relation

M(ν, z2
3)Ig(0,μ2) = Ig(ν,μ2) − αs Nc

2π

1∫
0

du Ig(uν,μ2)

×
{[

ln
(

z2
3μ

2e2γE /4
)

+ 2
]

B gg(u) + 4

[
log(ū)

ū

]
+

+ 2

3

[
1 + 6u − 6u2 − u3

]
+

}
− αsC F

2π
ln
(

z2
3μ

2e2γE /4
)

×
1∫

0

dw
[
IS(wν,μ2) − IS(0,μ2)

]
Bgq(w) (7.17)

between the “lattice function” M(ν, z2
3) and the light-cone ITDs 

Ig(ν, μ2) and IS (ν, μ2). The first of them is related to the gluon 
PDF f g(x, μ2) by

Ig(ν,μ2) = 1

2

1∫
−1

dx eixν xf g(x,μ2) . (7.18)

Since xf g(x, μ2) is an even function of x, the real part of Ig(ν, μ2)

is given by the cosine transform of xf g(x, μ2), while its imaginary 
part vanishes. The factor Ig(0, μ2) has the meaning of the fraction 
of the hadron momentum carried by the gluons, Ig(0, μ2) = 〈x〉μ2 .

Thus, Eq. (7.17) allows to extract the shape of the gluon distri-
bution. Its normalization, i.e., the value of 〈x〉μ2 should be found 
by an independent lattice calculation, similar to that performed in 
Ref. [39]. The singlet quark function IS (wν, μ2) that appears in 
the O(αs) correction should be also calculated (or estimated) in-
dependently.

Substituting Eq. (7.18) into the matching condition (7.17), we 
can rewrite the latter in the kernel form [26]

M(ν, z2
3) =

1∫
0

dx
xf g(x,μ2)

〈x〉μ2
R gg(xν, z2

3μ
2)

+
1∫

0

dx
xf S(x,μ2)

〈x〉μ2
R gq(xν, z2

3μ
2) , (7.19)

where the kernel R gg(xν, z2
3μ

2) is given by

R gg(y, z2
3μ

2) = cos y − αs

2π
Nc

{[
ln

(
z2

3μ
2 e2γE +1

4

)
+ 2

]
R B(y)

+ R L(y) + RC (y)

}
, (7.20)

with R B(y) being the cosine Fourier transform of the B gg kernel

R B(y) =
1∫

0

du B gg(u) cos(uy) . (7.21)

Its
te
fu
gi

1∫
0

Si
u)

R

fo
Ex

by
Eq
PD
an
fro
pr
tic

7.

So
qu
as
fo

Q

th
p3

z3

J1

−

Th

Z

Th
x)
ar
te
y/

Z

 calculation is straightforward, and the result is expressed in 
rms of cos y, sin y and the integral cosine Ci(y) and sine Si(y)

nctions. The latter come from the 1/(1 − u) part of B(u), which 
ves

du

[
1

1 − u

]
+

cos(uy) = sin(y)Si(y)

+ cos(y) [Ci(y) − log(y) − γE ] . (7.22)

milarly, R L(y) is the cosine transform of the 4[(ln(1 − u)/(1 −
]+ term. It is given by a hypergeometric function

L(y) = 4 Re
[

iyeiy
3 F3(1,1,1;2,2,2;−iy)

]
. (7.23)

The RC (y) and R gq(y) kernels are given by the cosine trans-
rms of 2

3

[
1 + 6u − 6u2 − u3

]
+ and 

[
1 + (1 − u)2

]
+ , respectively. 

pressions for them involve cos y, sin y and inverse powers of y.
The important point is that the R(y, z2

3μ
2) kernels are given 

 explicit perturbatively calculable expressions. Using them and 
. (7.19) one may directly relate M(ν, z2

3) and the light-cone 
Fs. Then, assuming some parameterizations for the f g(x, μ2)

d f S (x, μ2) distributions, one can fit their parameters and αs

m the lattice data for M(ν, z2
3) using Eqs. (7.19), (7.20). This 

ocedure is essentially the same as that used in the “good lat-
e cross sections” approach [6,7].

5. Matching relations for quasi-PDFs

The kernel relation (7.19) directly connects M(ν, z2
3) with PDFs. 

, there is no need to introduce intermediate functions, such as 
asi-PDFs. Still, our results for particular matrix elements, such 
 Eq. (7.2) for M+

03(z3, p), may be used to get matching conditions 
r quasi-PDFs. The latter are generically defined [4] as

(y, p3) = p3

2π

∞∫
−∞

dz3M(z3, p) e−iyp3 z3 . (7.24)

To proceed, one should write the amplitudes M(z3, p) through 
e kernel relation (7.19) with R(xν, z2

3μ
2) expressed in terms of 

and z3, call it J (x, p3, z3). The structure of its dependence on 
at one loop may be read off Eq. (7.2). For the gg part,

gg
(x, p3, z3) =

(
γU ln z2

3 + CU

)
eixp3 z3

1∫
0

du
[

ln z2
3 B gg(u) + C(u)

]
eiuxp3 z3 . (7.25)

e 1-loop quasi-PDF matching kernel is then given by

gg
1 (y, x, p3) = p3

2π

∞∫
−∞

dz3 J gg
1 (x, p3, z3) e−iyp3 z3 . (7.26)

e CU and C(u) contributions of J gg
1 (x, p3, z3) produce CU δ(y −

and C(u)δ(y − ux) terms. Hence, the resulting parts of Q (y, p3)

e visible in the “canonical” 0 ≤ |y| ≤ 1 region only. However, the 
rms with ln z2

3 give nonzero contributions in the y/x > 1 and 
x < 0 regions as well, namely

gg
1 (y, x, p3)|y/x>1 = 1

|x|

⎡⎣− γU

η − 1
+

1∫
0

du
B gg(u)

η − u

⎤⎦ , (7.27)



8 I. Balitsky et al. / Physics Letters B 808 (2020) 135621
where η = y/x. The Z gg
1 (y, x, p3)|y/x<0 term is given by the same 

expression, but with the opposite sign. Note that these contri-
butions are completely determined by the AP kernel B gg(u) and 
the UV constant γU . Knowing them, one derives from Eq. (7.27)
a general constraint on the results for Z gg

1 (η, 1, p3)|η>1 and 
Z gg

1 (η, 1, p3)|η<0 obtained by any Feynman diagram calculation. 
Using explicit form of B gg(u), we find

1∫
0

du
B gg(u)

η − u
= 2

(1 − ηη̄)2

η − 1
ln

η − 1

η

+ 11

6

1

η − 1
+ η(2η − 1) + 11

3
. (7.28)

For large η, this expression tends to zero as O(1/η2). It should 
be stressed that such a behavior results from any kernel B(u) that 
has the plus-prescription form.

This observation and the explicit expression given by Eq. (7.28)
may be used to check the gluon-gluon matching kernels in 
Refs. [17,18]. Our check shows that Z gg

1 (y, 1, p3)|y>1 correspond-
ing to Eq. (64) of Ref. [18] does not satisfy the constraint (7.27). 
The difference is by a constant term (-2/3) that leads to a linear 
divergence in the integral of Z gg

1 (y, 1, p3)|y>1 over y. The same 
difference (with the opposite sign) appears in the Z gg

1 (y, 1, p3)|y<0
term in Eq. (64) of Ref. [18]. Apparently, these differences result 
from the use of the off-shell external gluon fields in the calcula-
tions of Ref. [18], but a discussion of this topic is outside of the 
scope of our paper.

8. Summary

In this paper, we have presented the results that form the basis 
for the ongoing efforts to calculate gluon PDF using the pseudo-
PDF approach.

In particular, we gave a classification of possible two-gluon cor-
relator functions. We have identified those of them that contain 
the invariant amplitude Mpp(ν, −z2) that determines the gluon 
PDF in the light-cone z2 → 0 limit. Since this limit is singular, one 
needs the matching conditions that relate Mpp(ν, z2

3) to the light-
cone PDF f (x, μ2).

To this end, using the method of Ref. [27], we have performed 
calculations of the one-loop corrections to the gauge-invariant cor-
relator of two gluon field-strength tensors, with all Lorentz indices 
explicit. To preserve gauge invariance, we have used the dimen-
sional regularization.

Since the DR produces the same form ln z2
3μ

2 both for loga-
rithms related to the UV singularities and for those reflecting the 
DGLAP evolution, we have made an effort to separate these two 
sources of the ln z2

3-dependence at small z2
3. When we form a 

reduced ITD M(ν, z2
3), the UV-related contributions are canceled, 

and only the DGLAP-related terms remain in the matching relation 
between the reduced ITD and the light-cone ITD.

The matching relation may be also written in a kernel form 
(7.19) that directly connects lattice data on M(ν, z2

3) with the nor-
malized gluon PDF xf g(x, μ2)/〈x〉μ2 . The average gluon momentum 
fraction 〈x〉μ2 needs to be extracted from a separate lattice calcu-
lation.

We have also demonstrated that our results may be used for 
a rather straightforward calculation of the one-loop corrections to 
quasi-PDFs, providing new insights concerning their structure that 

may be used to check the results for the gluon quasi-PDF matching 
conditions.

In a future publication, we plan to present more details of our 
calculations, and to give a complete result for the box diagram, in 
particular for the non-forward kinematics that are needed in lat-
tice calculations of distribution amplitudes and GPDs. We also plan 
to include calculations for gluon-quark and quark-gluon terms.
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