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In this work we present a precise and model-independent dispersive determination from data of the
existence and parameters of the lightest strange resonance κ=K�

0ð700Þ. We use both subtracted and
unsubtracted partial-wave hyperbolic and fixed-t dispersion relations as constraints on combined fits to
πK → πK and ππ → KK̄ data. We then use the hyperbolic equations for the analytic continuation of the
isospin I ¼ 1=2 scalar partial wave to the complex plane, in order to determine the κ=K�

0ð700Þ andK�ð892Þ
associated pole parameters and residues.
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Despite the fact that quantum chromodynamics (QCD)
was formulated almost half a century ago, some of its
lowest lying states still “need confirmation” according to
the Review of Particle Properties (RPP) [1]. This is the case
of the lightest strange scalar resonance, traditionally known
as κ, then K�

0ð800Þ, and renamed K�
0ð700Þ in 2018.

Light scalar mesons have been a subject of debate since
the σ meson [now f0ð500Þ] was proposed by Johnson and
Teller in 1955 [2]. Schwinger in 1957 [3] incorporated it as
a singlet in the isospin picture and pointed out that its strong
coupling to two pions would make it extremely broad and
difficult to find. A similar situation occurs when extending
this picture to include strangeness and SU(3) flavor
symmetry. Actually, in 1977 Jaffe [4] proposed the exist-
ence of a scalar nonet below 1 GeV including a very broad
κ=K�

0ð700Þ meson. Of this nonet, the f0ð980Þ and a0ð980Þ
were easily identified in the 1960s. However, the
σ=f0ð500Þ and κ=K�

0ð700Þ have been very controversial
for decades because they are so broad that their shape is not
always clearly resonant or even perceptible. Moreover, it
was proposed [4,5] that these states might not be “ordinary
hadrons,” due to their inverted mass hierarchy compared to
usual quark-model quark-antiquark nonets. In terms of
QCD it has also been shown that their dependence on the
number of colors is at odds with the ordinary one [6–8].
From the point of view of Regge theory, a dispersive
analysis of the σ=f0ð500Þ and κ=K�

0ð700Þ shows that they
do not follow ordinary linear Regge trajectories [9,10].

Definitely, both the σ=f0ð500Þ and κ=K�
0ð700Þ do not

display prominent Breit-Wigner peaks and their shape is
often distorted by particular features of each reaction. Thus,
it is convenient to refer to the resonance pole position,
ffiffiffiffiffiffiffiffiffispole

p ¼ M − iΓ=2, which is process independent. HereM
and Γ are the resonance pole mass and width. Note that
poles of wide resonances lie deep into the complex plane
and their determination requires rigorous analytic contin-
uations. This is the first problem of most σ=f0ð500Þ and
κ=K�

0ð700Þ determinations: Simple models continued to the
complex plane yield rather unstable results. In addition,
many models assume a particular relation between the
width and coupling, not necessarily correct for broad states,
or impose a threshold behavior incompatible with chiral
symmetry breaking. These are reasons why Breit-Wigner-
like parametrizations—devised for narrow resonances—are
inadequate for resonances as wide as the σ=f0ð500Þ and
κ=K�

0ð700Þ. In contrast, dispersion relations solve this first
problem by providing the required rigorous analytic con-
tinuation. In practice, they are more stringent and powerful
for two-body scattering.
The second problem is that meson-meson scattering data

are plagued with systematic uncertainties, since they are
extracted indirectly from meson-nucleon to meson-meson-
nucleon experiments. Inconsistencies appear both between
different sets and even within a single set. Thus, for very
long, a rough data description was enough for simple
models to be considered acceptable, making model-based
determinations of the σ=f0ð500Þ and κ=K�

0ð700Þ even more
unreliable. Moreover, fairly good-looking data fits come
out inconsistent with dispersion relations, as shown in
Ref. [11]. We will see here how they lead to very unstable
κ=K�

0ð700Þ pole determinations.
Once again dispersion theory helps overcoming this

second problem, by providing stringent constrains between
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different channels and energy regions. This explains the
interest on dispersive studies in the literature: for
ππ [12–21], for πN [22–24], for eþe− → πþπ− [25], for
γð�Þγð�Þ → ππ [26–29], for πK [30–34], and for ππ → KK̄
[35] scattering. Actually, partial-wave dispersion relations
implementing crossing correctly have been decisive in the
2012 major RPP revision of the σ=f0ð500Þ, changing its
nominal mass from 600 to 500 MeV and decreasing its
uncertainties by a factor of 5. In contrast, the κ=K�

0ð700Þ
still needs confirmation in the Review of Particle Physics.
Note that a κ=K�

0ð700Þ pole is found as long as the
isospin-1=2 scalar-wave data is reproduced and the
model respects some basic analyticity and chiral symmetry
properties [36–43]. Furthermore, its pole must lie below
900 MeV [44]. However, the pole position spread is very
large when using models, as seen in Fig. 1 which shows the
κ=K�

0ð700Þ poles listed in the RPP, together with a
shadowed rectangle standing for the RPP uncertainty
estimate. Note that Breit-Wigner poles, displayed more
transparently, have a very large spread and differ substan-
tially from those having some analyticity and chiral
symmetry properties built in.
Some of those RPP poles used dispersive or complex

analyticity techniques, although with approximations for
the so-called “unphysical” cuts below threshold, which are
the most difficult to calculate. In the πK case, these are a
“left” cut, due to thresholds in the crossed channels,
and a circular one due to partial-wave integration. Thus
Fig. 1 shows results from NLO chiral perturbation theory

(ChPT) unitarized with dispersion relations for the inverse
partial-wave (inverse amplitude method) [43] or for the
partial wave with a cutoff [45]. In both cases the unphysical
cuts are approximated with NLO ChPT.
The most sound determination of the κ=K�

0ð700Þ pole so
far is the dispersive analysis by Descotes-Genon et al. [34],
also shown in Fig. 1, which uses crossing to implement
rigorously the left cut. The pole is obtained using as
input a numerical solution in the real axis of Roy-
Steiner equations obtained from fixed-t dispersion rela-
tions. Unfortunately these fixed-t Roy-Steiner equations do
not reach the κ=K�

0ð700Þ-pole region in the complex plane.
Remarkably, in Ref. [34] it was shown that the κ=K�

0ð700Þ
region is accessible with partial-wave hyperbolic dispersion
relations. These were then used to obtain the pole, although
starting from the solutions from the fixed-t ones. Note that
this is a “solving relations” approach, since no data was
used as input in the πK elastic region around the nominal
κ=K�

0ð700Þ mass, but only data from other channels and
other energies as boundary conditions to the integral
equations. In this sense, Ref. [34] provides a model-
independent prediction. Despite this rigorous result, the
κ=K�

0ð700Þ still needs confirmation, and we were encour-
aged by RPP members to carry out an alternative dispersive
analysis using data, as previously done by our group for the
σ=f0ð500Þ [49]. The present work, which follows a
“constraining data” approach instead of a “solving rela-
tions” approach, provides such an analysis.
It is worth noticing that the κ=K�

0ð700Þ pole is consistent
with πK scattering lattice calculations [50,51]. For unphys-
ical pion masses of ∼400 MeV, it appears as a “virtual”
pole below threshold in the second Riemann sheet, con-
sistently with expectations from unitarized NLO ChPT
extrapolated to higher masses [52]. However, using pion
masses between 200 and 400 MeV the pole extraction
using simple models is again unstable [53]. This makes the
approach followed in the present work even more relevant,
since in the future lattice will provide data at physical
masses and energies around the κ=K�

0ð700Þ region that
will require a constraining data technique for a model-
independent description and its complex plane continuation.
Let us then describe our approach. In Ref. [11] we first

provided unconstrained fits to πK data (UFD) up to 2 GeV,
for partial waves fIlðsÞ of definite isospin I and angular
momentum l, paying particular attention to the inclusion of
systematic uncertainties. As usual, the total isospin ampli-
tude FIðs; t; uÞ, where s, t, u are the Mandelstam variables,
is the sum of the partial-wave series. It was then shown that
they did not satisfy well forward dispersion relations
(FDRs, t ¼ 0). However, we used these FDRs as con-
straints to obtain a set of constrained fits to data (CFD),
satisfying FDRs up to 1.6 GeV while still describing fairly
data fairly well. Note that our “conformal CFD” para-
metrization of the low-energy isospin 1=2 scalar-wave
already contains a κ=K�

0ð700Þ pole, shown in Fig. 1.

FIG. 1. K�
0ð700Þ pole positions. Selected from the Review of

Particle Physics [1,11,34,43,45–48]. We also show our results
using Roy-Steiner equations, using as input our UFD or CFD
parametrizations. Red and blue points use for F− a once-
subtracted or an unsubtracted dispersion relation, respectively.
This illustrates how unstable pole determinations are when using
simple fits to data. Only once Roy-Steiner equations are imposed
as a constraint (CFD), both pole determinations fall on top of each
other. This final pole position is the main result of this work.
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This is still a model-dependent extraction from a particular
parameterization only valid up to ∼1 GeV.
Later on Ref. [48], we used sequences of Padé approx-

imants built from the CFD fit to extract a new pole. This
“Padé result” in Fig. 1 does not assume any relation
between pole position and residue, thus reducing dramati-
cally the model dependence. The value came out consistent
within uncertainties with the dispersive result in Ref. [34]
and triggered the recent change of name in the 2018 RPP
edition from K�

0ð800Þ to K�
0ð700Þ. However, it is not fully

model independent, since the Padé series is truncated and
cuts are mimicked by poles.
Thus, we present here the κ=K�

0ð700Þ pole obtained from
a full analysis of data constrained to satisfy not only FDRs
as in Ref. [11], but also both the S and P partial-wave (Roy-
Steiner) dispersion relations. The latter are obtained either
from fixed-t or hyperbolic dispersion relations (HDR),
along ðs − aÞðu − aÞ ¼ b hyperbolae, where s, u are the
usual Mandelstam variables. In Ref. [34] it was shown that
the convergence region of the latter in the a ¼ 0 case
reaches the κ=K�

0ð700Þ pole.
The price of using partial-wave dispersion relations is

that they require input from the crossed channel ππ → KK̄,
whose partial waves gIl have the same two problems of
being frequently described with models and the existence
of two incompatible data sets (see Ref. [35] for details). In
addition, there is an “unphysical” region between the ππ
and KK̄ thresholds, where data do not exist, but is needed
for the calculations. Fortunately, Watson’s theorem implies
that the phase there is the well-known ππ phase shift, which
allows for a full reconstruction of the amplitude using the
Mushkelishvili-Omnés method. Thus, in Ref. [35] we
rederived the HDR partial-wave projections both for ππ →
KK̄ and πK → πK, but choosing the center of the hyper-
bolas in the s, t plane to maximize their applicability
region. Once again we found that simple fits to data do not
satisfy well the dispersive representation, but we were able
to provide constrained parametrizations of the two existing
sets describing S-wave data up to almost 2 GeV, consis-
tently with HDR up to 1.47 GeV within uncertainties.
These are called CFDB and CFDC and are part of our input
for the πK HDR, although we have checked that using one
or the other barely changes the κ=K�

0ð700Þ pole. Note that,
contrary to previous calculations, we also provide uncer-
tainties for ππ → KK̄. Those for the g11 wave are very
relevant for the κ=K�

0ð700Þ pole, particularly in the
unphysical region, where there is no data to compare with
and the dispersive output leads to two different solutions
when using one or no subtractions. Thus, we have also
imposed in our CFD that the once and nonsubtracted
outputs should be consistent within uncertainties, which
had not been done in previous calculations.
For our purposes, the most relevant partial wave is f1=20

whose UFD is shown in Fig. 2. As explained in Ref. [11]
this wave is obtained by fitting data measured in the

f1=20 þ f3=20 =2 and I ¼ 3=2 combinations [54–59]. It is
also relevant that, as shown in Fig. 2, the I ¼ 1=2 vector
wave UFD describes well the scattering data, in contrast to
the solution [34]. The rest of the unconstrained partial-
waves and high-energy input parameterizations are
described in Ref. [11] for πK and [35] ππ → KK̄. Minor
updates will be detailed in a forthcoming publication [60].
However, as seen in the upper panel of Fig. 3 when the

UFD is used as input, the dispersive representation is not
satisfied within uncertainties. Actually, the fixed-t HDR
output does not lie too far from the UFD input, but the
outputs using an unsubtracted or once-subtracted HDR for
F− ≡ ðF1=2 − F3=2Þ=3 come on opposite sides and far from
the input UFD parametrization.
It is now very instructive to see how unstable is the pole

parameter extraction from one fit that looks rather reason-
able, as the UFD does. Thus, in Fig. 1 we show the
κ=K�

0ð700Þ pole position calculated either using the HDR
without subtractions for F− (hollow blue) or with one
subtraction (hollow red). Note that we use the same UFD
input in the physical regions but the two poles come out
incompatible. This is mostly due to the pseudophysical
region of the g11 partial wave. The extraction would be even
more unreliable if a simple model parametrization was used
for the continuation to the complex plane instead of using a
dispersion relation.
Thus, in order to obtain a rigorous and stable pole

determination, we have imposed that the dispersive repre-
sentation should be satisfied within uncertainties when
fitting data. To this end, we have followed our usual

FIG. 2. CFD versus UFD phase shifts δIl of f1=20 ðsÞ (top) and
f1=21 ðsÞ (bottom).
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procedure [11,17,35], defining a χ2-like distance d̂2

between the input and the output of each dispersion relation
at many different energy values, which is then minimized
together with the data χ2 when doing the fits.
We minimize simultaneously 16 dispersion relations.

Two of them are the FDRs we already used in Ref. [11].
Four HDR are considered for the ππ → KK̄ partial waves:
Namely, once subtracted for g00, g02, g11 and another
unsubtracted for g11, as we did in Ref. [35]. Note that here
we also consider the once-subtracted case for g11. In addition
we now impose ten more dispersion relations within
uncertainties for the S and P πK partial-waves. Four of
them come from fixed-t and hyperbolic once-subtracted
dispersion relations for Fþ ¼ ðF1=2 þ 2F3=2Þ=3, whereas
the other six are two fixed-t and another four HDR for F−,
either nonsubtracted or once subtracted. The HDRs appli-
cability region in the real axis was maximized in Ref. [35]
choosing a ¼ −13.9m2

π . We will, however, use here
a ¼ −10m2

π as it still has a rather large applicability region
in the real axis and ensures that the κ=K�

0ð700Þ pole and its
uncertainty fall inside the HDR domain. For the πK S1=2

wave, most of the dispersive uncertainty comes from the
πK S waves themselves when using the subtracted F−,

whereas a large contribution comes from g11 for the
unsubtracted.
The details of our technique have been explained in

Refs. [11,35]. The resulting constrained fits to data (CFD)
differ slightly from the unconstrained ones, but still
describe the data. This is illustrated in Fig. 2, were we
see that the difference between UFD and CFD is rather
small for the P wave, both providing remarkable descrip-
tions of the scattering data. In contrast, in Fig. 2 we see that
the CFD S-wave is lower than the UFD around and below
the κ=K�

0ð700Þ nominal mass, but still describes well the
experimental information. Also, Table I shows how the S-
wave scattering lengths change from the UFD to the CFD.
Note that our CFD values are consistent with previous
dispersive predictions [33], confirming some tension
between data and dispersion theory versus recent lattice
results [61–66]. Including those lattice values together with
data leads to constrained fits satisfying dispersion relations
substantially worse.
Other waves suffer small changes from UFD to CDF, but

are less relevant for the κ=K�
0ð700Þ (see Ref. [60]). All in

all, we illustrate in the lower panel of Fig. 3 that when the
CFD is now used as input of the dispersion relations the
curves of the input and the three outputs agree within
uncertainties.
With all dispersion relations well satisfied we can now

use our CFD as input in the HDR and look for the
κ=K�

0ð700Þ pole. Results are shown in Fig. 1, this time
as solid blue and red symbols depending on whether they
are obtained with the unsubtracted or the once-subtracted
F−. Contrary to the UFD, the agreement between both
determinations when using the CFD set is now remarkably
good. Precise values of the pole position and residue for our
subtracted and unsubtracted results are listed in Table II,
together with the dispersive result of Ref. [34] and our Padé
sequence determination [10].
Now, let us recall that the unsubtracted result depends

strongly on the ππ → KK̄ pseudophysical region,

FIG. 3. Different dispersive outputs for the f1=20 ðsÞ partial wave,
versus the input from the data parametrization. Upper panel:
Unconstrained fits to data (UFD). Note the huge discrepancies
between the curves. Lower panel: Constrained fits to data (CFD).
Now all curves agree within uncertainties. We only show the Roy
Steiner results for f1=20 ðsÞ because these are the ones relevant for
the κ=K�

0ð700Þ, but the CFD consistency is very good for the
other dispersion relations and partial waves. Namely, the average
χ2=dof per dispersion relation is 0.7, whereas the average χ2=dof
is 1.4 per fitted partial wave.

TABLE I. S-wave scattering lengths (mπ units).

UFD CFD Ref. [33]

a1=20
0.241� 0.012 0.224� 0.011 0.224� 0.022

a3=20
−0.067� 0.012 −0.048� 0.006 −0.0448� 0.0077

TABLE II. Poles and residues of the κ=K�
0ð700Þ. The last two

lines are our dispersive outputs. The last one is our final result.

ffiffiffiffiffiffiffiffiffispole
p (MeV) jgj (GeV)

K�
0ð700Þ [34] ð658� 13Þ − ið279� 12Þ � � �

K�
0ð700Þ [48] ð670� 18Þ − ið295� 28Þ 4.4� 0.4

K�
0ð700Þ 0-sub ð648� 6Þ − ið283� 26Þ 3.80� 0.17

K�
0ð700Þ 1-sub ð648� 7Þ − ið280� 16Þ 3.81� 0.09
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particularly on g11, whose unsubtracted dispersion relation
error band is almost twice as big as the subtracted one.
Moreover, under the change of a, the subtracted result, both
in the real axis and for the pole, barely changes, whereas the
unsubtracted one only changes slightly (a few MeV for the
pole). Therefore although both are compatible, we consider
the once-subtracted case more robust and thus our final
result.
Let us remark that our dispersive pole obtained from data

also agrees with the solution in Ref. [34], although our
width uncertainties are larger. In part, this is because we
have estimated uncertainties for all our input.
For completeness, we have also calculated the param-

eters of the vector K�ð892Þ pole, since we also describe
the data there. We find ffiffiffiffiffisp

p ¼ð890�2Þ−ið25.6�1.2ÞMeV
and its dimensionless residue jgj ¼ 5.69� 0.12.
In summary, we have shown that simple, unconstrained

fits to the existing πK and ππ → KK̄ data fail to satisfy
hyperbolic and fixed-t dispersion relations and yield rather
unreliable κ=K�

0ð700Þ pole determinations. However, we
have obtained fits to data constrained to satisfy those two
hyperbolic dispersion relations, together with other forward
and fixed-t dispersion relations. These constrained fits
provide a rigorous, precise, and robust determination of
the κ=K�

0ð700Þ pole parameters. We think these results
should provide the needed confirmation that, according to
the Review of Particle Physics and the hadronic commu-
nity, was needed to establish firmly the existence and
properties of the κ=K�

0ð700Þ.
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