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Baryon chiral perturbation theory (BChPT) combined with the 1=Nc expansion is applied to the SUð3Þ
vector currents. In terms of the ξ power counting linking the low-energy and 1=Nc expansions according to
OðξÞ ¼ OðpÞ ¼ Oð1=NcÞ, the study is carried out to next-to-next-to-leading order, and it includes SUð3Þ
breaking corrections to the jΔSj ¼ 1 vector charges, charge radii, and magnetic moments and radii. The
results are obtained for generic Nc, allowing for investigating the various scalings in Nc.
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I. INTRODUCTION

Vector currents, being intimately related to the flavor
SUð3Þ symmetry of QCD, represent a fundamental probe
for hadron structure as well as for the breaking of SUð3Þ by
quark masses. This is particularly interesting for baryons, in
which the electromagnetic current for nucleons, known
empirically to remarkable accuracy [1], along with the
magnetic moments of hyperons allow for an almost
complete description of all the SUð3Þ vector currents to
the order in the low-energy expansion considered in the
present work. The charged vector currents are relevant in β
decays, where both SUð3Þ breaking in the jΔSj ¼ 1
charges and weak magnetism are still open problems. To
the present level of experimental accuracy in hyperon β
decays, there is not sufficient sensitivity to the SUð3Þ
breaking in the charges [2]. The reason is that β decay has a
branching fraction of about 10−3, being dominated by the
nonleptonic component. Fortunately, lattice QCD is pro-
ducing results [3–6] which can be compared with the
predictions of the approach in the present work. The
experimental information on charge form factors is limited
to the electric form factors of nucleons and the charge
radius of the Σ−. This is, however, sufficient to predict the
rest of the charge radii, the SUð3Þ breaking effects of which
are, at the order of the present calculation, finite nonana-
lytic in quark masses. The octet baryons’ electromagnetic
(EM) magnetic moments and nucleons’magnetic radii give

an almost complete prediction for the rest of the currents
but for one low-energy constant (LEC) which requires
knowledge of at least one weak magnetic moment of a
ΔS ¼ 1 current. In the approach followed here, results
automatically extend to the vector current observables of
the decuplet baryons and to EM transitions, e.g., the M1

transition Δ → Nγ, most of which remain empirically
unknown or poorly known. The study of electric currents
in baryon chiral perturbation theory (BChPT) with inclu-
sion of the spin-3=2 baryons dates back a quarter century
[7,8], and numerous works have since been produced in
various versions of that framework; among those close in
spirit to the present one are found in Refs. [9–15], and
works with additional constraints imposed by consistency
with the 1=Nc expansion are those of Refs. [16–21]. The
present work formalizes the combination of BChPT and
the 1=Nc expansion [22] for the vector currents following
the rigorous power counting scheme of the ξ expansion
[23,24] based on the linking OðpÞ ¼ Oð1=NcÞ ¼ OðξÞ.
The combined framework was first applied to the SUð3Þ
vector charges in Ref. [20], in which the ξ expansion was
not strictly implemented; however, for the purpose of
calculating the corrections of SUð3Þ breaking to the vector
charges, restricted by the Ademollo-Gatto theorem (AGT),
such omission has no very significant effect.1 Here, a com-
plete study is presented to Oðξ3Þ and Oðξ4Þ (depending on
the observable) of the SUð3Þ vector currents. The present
work provides results for genericNc, permitting in this way
sorting out in particular the large Nc behavior of nonana-
lytic terms in ξ stemming from one-loop corrections, which
gives additional understanding, as has been shown for
instance in the case of the Gell-Mann-Okubo relation and
the σ terms discussed in Refs. [25,26]. The subject of
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1In Ref. [20], the baryon-Goldstone Boson (GB) vertices
included higher-order terms in 1=Nc.

PHYSICAL REVIEW D 101, 054026 (2020)

2470-0010=2020=101(5)=054026(14) 054026-1 Published by the American Physical Society

https://orcid.org/0000-0002-7570-7778
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.054026&domain=pdf&date_stamp=2020-03-17
https://doi.org/10.1103/PhysRevD.101.054026
https://doi.org/10.1103/PhysRevD.101.054026
https://doi.org/10.1103/PhysRevD.101.054026
https://doi.org/10.1103/PhysRevD.101.054026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


magnetic moments has been addressed in the context of the
1=Nc expansion in works limited to a tree-level expansion
in composite operators [27–30] and in works including
one-loop corrections in BChPT, Refs. [17–19,21]. In
addition to BChPT, dispersive approaches have been
implemented [31–33], in which constraints imposed by
consistency with the 1=Nc expansion have been incorpo-
rated [34–38]. Such works naturally give a range of
applicability beyond the present one, which is limited up
to the form factor radii.
This work is organized as follows. Section II presents the

baryon chiral Lagrangians needed for the present work.
Section III summarizes the one-loop corrections to the
vector currents. Section IV presents the analysis of the
vector charges and radii. Section V does the same for
the magnetic moments and radii. A summary is presented
in Sec. VI. Several Appendixes are included for the benefit
of readers intending to implement similar calculations.

II. BARYON CHIRAL LAGRANGIAN

This section summarizes the pieces of the baryon chiral
Lagrangian up to Oðξ4Þ relevant to the calculations in this
work. The details on the construction of the Lagrangians and
the notations are given in Ref. [24], and Appendix B of the
present paper displays the building blocks. To ensure the
validity of the Okubo-Zweig-Iizuka (OZI) rule for the quark
mass dependency of baryon masses, namely, that the non-
strange baryon mass dependence on ms be OðN0

cÞ, the
following combination of the source χþ is defined by [see
Eqs.(B2)and(B3)inAppendixBandalsoRef.[24]fordetails]

χ̂þ ≡ χ̃þ þ Ncχ
0þ; ð1Þ

whichisOðNcÞbuthasdependenceonms,which isOðN0
cÞ for

all states with strangeness OðN0
cÞ. For convenience,

a scale Λ is introduced and can be chosen to be a typical
QCDscale, inorder to rendermostof theLECsdimensionless.
In the calculations, Λ ¼ mρ will be chosen. The quark mass
matrix is defined byMq ¼ m0 þma λa

2
, where in the physical

case, m0 ¼ 1
3
ðmu þmd þmsÞ, m3 ¼ mu −md, and

m8 ¼ 1ffiffi
3

p ðmu þmd − 2msÞ, and the rest of thema’s vanish.

Collecting the baryons in a spin-flavor multiplet denoted
by B, and using standard notation for the chiral building
blocks (for details, see Appendix B and Ref. [24]), the
leading-order (LO) OðξÞ Lagrangian reads

Lð1Þ
B ¼ B†

�
iD0 −

CHF

Nc
Ŝ2 þ g

∘
AuiaGia þ c1

2Λ
χ̂þ

�
B; ð2Þ

where the hyperfine mass shifts are given by the second
term, Gia are the spin-flavor generators (see Appendix A),

and the axial coupling is at LO g
∘
A ¼ 6

5
gA, with gA ¼

1.2732ð23Þ being the nucleon’s axial coupling. The rel-
evant terms in the Oðξ2Þ Lagrangian are

Lð2Þ
B ¼ B†

�
c2
Λ
χ0þ þ CA

1

Nc
uiaSiTa þ κ

2Λ
BiaþGia þ � � �

�
B;

ð3Þ

where the flavor SUð3Þ electric and magnetic fields are
denoted by Eþ and Bþ and given by Eiþ ¼ F0iþ and Biþ ¼
1
2
ϵijkFjk

þ [see Eq. (B2) in Appendix B]. The term propor-
tional to κ gives at LO the magnetic moments associated
with all vector currents. The Oðξ3Þ and Oðξ4Þ Lagrangians
needed for the one-loop renormalization of the vector
currents are the following:

Lð3Þ
B ¼ B†

�
g1
Λ2

DiEa
þiT

a þ κ1
2ΛNc

BiaþSiTa þ � � �
�
B

Lð4Þ
B ¼ B†

�
1

NcΛ2
ðg2DiEa

þiS
jGja þ g3DiEa

þjfSi; Gjagl¼2Þ þ κr
Λ3

D2BiaþGia

þ 1

2Λ3
ðκ2χ0þBiaþGia þ iκFfabcχaþBibþGic þ κDdabcχaþBibþGic þ κ3χ

aþBiaþSiÞ

þ 1

2ΛN2
c
ðκ4BiaþfŜ2; Giag þ κ5BiaþSiSjGjaÞ þ � � �

�
B: ð4Þ

The LECs g1 and g2 will be determined by charge radii; the
term proportional to g3 gives electric quadrupole moments
for decuplet baryons and for transitions between decuplet to
octet baryons, which will not be discussed here; and the
term proportional to κr gives a contribution to magnetic
radii (D2Bþ ≡DμDμBþ being the covariant divergence of

the magnetic field). The rest are quark mass and higher
order in 1=Nc corrections to the magnetic moments.
Throughout, spin-flavor operators in the Lagrangians are

scaled by appropriate powers of 1=Nc such that all LECs
start at zeroth order in Nc. Of course, LECs themselves
have an expansion in 1=Nc, kept implicit, which requires
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information for Nc > 3 to be determined. In that sense, each
Lagrangian term has a leading power in 1=Nc, which is used
to assign its order in the ξ power counting, followed by
subleading terms in 1=Nc due to the expansion of the
corresponding LEC. In addition, each term in the Lagrangian
is explicitly chiral invariant, and its expansion in powers
of the Goldstone boson fields yields factors 1=Fπ ¼
Oð1= ffiffiffiffiffiffi

Nc
p Þ for each additional factor of a GB field.

For convenience, the following definition is used:

δm̂≡ CHF

Nc
Ŝ2 −

c1
2Λ

χ̂þ: ð5Þ

Note that δm̂ gives rise to mass splittings between baryons
which are the Oð1=NcÞ hyperfine term in Eq. (2) and the
Oðp2Þ quark mass term. TheOðmqNcÞ term in χ̂þ becomes
immaterial in the loop calculations as only differences of
baryon masses appear for which such terms exactly cancel.

III. ONE-LOOP CORRECTIONS TO CURRENTS

The one-loop corrections to the vector currents are given
by the two sets of gauge invariant diagrams A and B in
Fig. 1, where the vertices appearing in those diagrams are
displayed in Appendix D, Fig. 2. The explicit results are

VμaðA1Þ ¼ i

�
g
∘
A

Fπ

�2X
n1;n2

GibPn2Γ
μaPn1G

jb 1

q0 − δmn2 þ δmn1

ðHijðp0 − δmn1 ;MbÞ −Hijðp0 þ q0 − δmn2 ;MbÞÞ

VμaðA2Þ ¼
1

2
fΓμa; δẐ1−loopg

VμaðA3Þ ¼
�
g
∘
A

Fπ

�2

fabc
X
n

GibPnGjcHijμðp0 − δmn; q;Mb;McÞ

VμaðB1Þ ¼ −
i

2F2
π
fabcfbcdΓμdIð0; 1;M2

bÞ

VμaðB2Þ ¼ gμ0
i

4F2
π
fabcfbcdTdðq02Kðq;Mb;McÞ þ 4q0K0ðq;Mb;McÞ þ 4K00ðq;Mb;McÞÞ; ð6Þ

where Pn are projectors onto the corresponding baryon in
the loop, p0 is the residual energy of the initial baryon, q0 is
the incoming energy in the current, and Γμa ¼ gμ0Ta þ
i κ
Λ ϵ

0 μijfabcfcbdqiGjd contains both the electric charge and
magnetic moment components. The one-loop wave func-
tion renormalization factor δẐ1−loop can be found in
Ref. [24], and the loop integrals I, K, Kμ, Kμν, Hij, and
Hijμ are given in Appendix C. Since the temporal compo-
nent of the current can only connect baryons with the same
spin, q0 is equal to the SUð3Þ breaking mass difference
between them plus the kinetic energy transferred by the
current, which are all Oðξ2Þ or higher and must therefore
be neglected in this calculation. In the evaluations, one
sets p0 → δmin and p0 þ q0 → δmout. In particular, for

diagram A1, if it requires evaluation at q0 ¼ 0, such a limit
must be taken in the end of the evaluation. The Uð1Þ
baryon number current can be used to check the calcu-
lation; only diagrams A1þ2 contribute, and as required,
they cancel each other.
For a generic current vertex Γ, the combined UV

divergent and polynomial piece of diagrams A1þ2 can be
written as

ΓðA1þ2Þpoly ¼
1

ð4πÞ2
�
g
∘
A

Fπ

�2�
1

2
ðλϵ þ 1ÞM2

ab½Gia; ½Gib;Γ��

þ 1

3
ðλϵ þ 2Þð2½½Gia;Γ�; ½δm̂; ½δm̂; Gia���

þ ½½Γ; ½δm̂; Gia��; ½δm̂; Gia��Þ
�
; ð7Þ

where λϵ ¼ 1
ϵ − γ þ log 4π. The first term is proportional

to quark masses through the GB mass-square matrix
M2

ab ¼ m0δab þ 1
2
dabcmc, and the second involves the

baryon hyperfine mass splittings δm̂ which are Oð1=NcÞ,
and following the strict ξ power counting, the Oðp2Þ terms
due to SUð3Þ breaking in δm̂ are disregarded. The con-
sistency with the 1=Nc power counting can be readily
checked. Diagrams A3 and B1;2 are separately consistent
with the 1=Nc power counting. Their polynomial contri-
butions are the following:

FIG. 1. Diagrams contributing to the one-loop corrections to the
vector currents.
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VμaðA3ÞPoly ¼ −
1

ð4πÞ2
�
g
∘
A

Fπ

�2
1

6
ifabc

×

�
gμ0
��

λϵqiqj þ
1

2
ðλϵ þ 1Þq2gij

�
δbd − 3gijðλϵ þ 1ÞM2

bd

�
½Gid; Gjc�

− gμ0ðλϵ þ 2Þ
�
1

2
½Gib; ½½Gic; δm̂�; δm̂�� − ½½Gib; δm̂�; ½Gic; δm̂��

�
þ gμi ðλϵ þ 2Þ

�
1

2
gjkqi½½Gkb; Gjc�; δm̂� þ 2gijqkð3½Gkb; ½Gjc; δm̂�� þ ½½Gjc; Gkb�; δm̂�

���
VμaðB1ÞPoly ¼

1

ð4πÞ2 ðλϵ þ 1Þ 1

2F2
π
fabdfcdeΓμeM2

bc

¼ −
1

ð4πÞ2
3

F2
π
ðλϵ þ 1Þgμ0B0

�
m0Γμa þ 1

4
dabcmbΓμc

�
VμaðB2ÞPoly ¼ −

1

ð4πÞ2 λϵ
1

4F2
π
ðgμ0q⃗2 þ gμi q

iq0ÞTa − gμ0V0aðB1ÞPoly: ð8Þ

Re duction formulas that can be found in Ref. [25] are used
to express the above in a base of irreducible operators,
Eqs. (9) and (12) below.

IV. VECTOR CHARGES

In this section, the SUð3Þ vector current charges and
corresponding radii are analyzed. The SUð3Þ breaking cor-
rections to the charges already presented in Refs. [20,24]
are discussed for completeness. At lowest order, the
charges are represented by the flavor generators Ta. The
one-loop corrections are UV finite at Q2 ≡ −q2 ¼ 0, and
since up toOðξ3Þ the AGT is satisfied, the corrections to the
charges are unambiguously given by UV finite one-loop
contributions. Note that the AGT applies to the whole
baryon spin-flavor multiplet. On the other hand, at finite
Q2, the one-loop correction has a UV divergent piece,
which is independent of quark masses and is renormalized
via the terms g1 and g2 in LB; one of them removes the UV
divergence (g1), and the other one is a finite counter-
term (g2).
Combining the polynomial pieces in Eqs. (7) and (8) and

using that ½δm̂; Ta� ¼ ½δm̂; Ĝ2� ¼ ½δm̂; GibTaGib� ¼ 0, one
obtains the polynomial loop contributions to vector
charges, which are proportional to Q2 ¼ q⃗2,

fa1ðA1þ2þ3Þpoly ¼
λϵ − 3

ð4πÞ2
�

g
∘
A

4Fπ

�2

Q2Ta

fa1ðB1þ2Þpoly ¼ −
λϵ þ 1

ð4πÞ2
Q2

4F2
π
Ta; ð9Þ

where fa1 ≡ V0a.
The corrections to the jΔSj ¼ 1 charges, already dis-

cussed in Ref. [20], are evaluated using the physical values

g
∘
A ¼ 6

5
× 1.27 and Fπ ¼ 92 MeV; however, one needs to

be aware that their values are effected by the NLO cor-
rections, leading to a theoretical uncertainty. With the usual
notation for those charges [20], evaluating the ratios δf1=f1
in the large Nc limit, one finds that δf1=f1 ¼ Oð1=NcÞ.
Since the corrections are entirely given by nonanalytic
terms in ξ, the naive 1=Nc scaling sets in rather slowly at
Nc ∼ 20, emphasizing that the noncommutativity of the
low-energy and 1=Nc expansions is very important at
the physical Nc ¼ 3. The results are shown in Table I,
in which the errors are estimated from the above-mentioned
theoretical uncertainty. The agreement with recent Lattice
QCD (LQCD) calculations [4] is encouraging, and further
improvement in the precision of those calculations would
be very useful.
For the charge radii, the loop contributions are from

diagrams A3 and B2, and the renormalization is provided by

the LECs g1 and g2 in Lð3Þ
B and Lð4Þ

B , respectively, of which
only g1 is required for canceling the loop UV divergence
according to Eq. (9).2 As is the case with form factors in
ChPT, the charge radii depend logarithmically in the GB
masses. They can be determined by fitting to the known
electric charge radii of proton, neutron, and Σ−, or simply
fixed using the first two. If one wishes to study also the

TABLE I. SU(3) breaking corrections to the ΔS ¼ 1 vector
charges. The LQCD results are from Ref. [4].

δf1
f1

One-loop LQCD

Λp −0.067ð15Þ −0.05ð2Þ
Σ−n −0.025ð10Þ −0.02ð3Þ
Ξ−Λ −0.053ð10Þ −0.06ð4Þ
Ξ−Σ0 −0.068ð17Þ −0.05ð2Þ

2In Ref. [24], the finite term proportional to g2 was overlooked.
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large Nc limit, an assignment at generic Nc of the quark
electric charges has to be done. One such an assignment
that respects all gauge and gauge-gravitational anomaly
cancellations in the Standard Model is given by [39]
Q̂ ¼ T3 þ 1ffiffi

3
p T8 þ 3−Nc

6Nc
B. The last term comes from the

baryon number charge B and can be implemented by
simply adding to the Lagrangians the corresponding terms
with an SUð3Þ singlet vector source field. This charge
operator gives for the states identified with the physical
octet and decuplet the same electric charges as the physical
ones for any Nc. The analysis of the charge radii in the
present framework is revealing: in the strict large Nc limit,
one finds that the nonanalytic loop contributions to the T3

charge radius of nucleons by diagram A3 is OðN0
cÞ, where

the contribution is driven by the hyperfine mass splitting
term, i.e, for CHF → 0, the contribution becomesOð1=NcÞ,
and diagram B2 gives only contributions Oð1=NcÞ. For the
charge T8, the loop contributions areOðN0

cÞ. One, however,
notes that for the physical π and K meson masses the
nonanalytic terms join the large Nc scaling at rather large
Nc. The charge radii of the neutral baryons receive only UV
finite loop contributions and are renormalized only by the
finite g2 term.
Using the three known charge radii, g1;2 are determined

modulo the main uncertainty stemming from the value used

for g
∘
A. At the renormalization scale μ ¼ mρ, using the value

of g
∘
A ∼ 1 obtained by the analysis of the axial couplings

[24], CHF ∼ 200 MeV, and with Λ ¼ mρ, one finds g1 ≃
1.33 and g2 ≃ 0.74. g2 is sensitive to CHF, which can be
understood as a result that the nonanalytic contributions to
the neutron radius are very important, and thus sensitive
to that parameter, while g1 is not. One also observes that
both LECs are crucial for obtaining a good description of
the radii. For the used value of μ, the fraction of the loop
contribution to the proton’s hr2i is 15%, and 60% for the
neutron’s one. The short distance contributions are thus
very important in both cases. The dominant nonanalytic
contributions to the radii are proportional to logmq, with
other nonanalytic terms involving the LEC CHF giving
almost negligible contributions, making the results insen-
sitive to it. Table II shows the results for the charge radii
of the baryon octet along with the contributions by the
Counter Terms (CT). The latter contributions to hr2i satisfy
the exact linear relation, in obvious notation,
aΛþ pþ Σþ þ 1

3
ða − 4Þðnþ Σ0 þ Ξ0Þ þ Σ− þ Ξ− ¼ 0,

valid for any a and resulting from the electric charge being
a U-spin singlet; it is violated only by finite SUð3Þ breaking
loop contributions. The isotriplet nucleon charge radius is
OðN0

cÞ, while the isosinglet one receives loop and g2
contributions OðN0

cÞ and a g1 contribution OðNcÞ, where
the OðNcÞ term contribution to the EM charge radius must
be canceled by adding to the Lagrangian a finite charge-
radius CT proportional to baryon number and weighted

according to the electric charge assignment at arbitrary Nc
mentioned above.
At the present order in the ξ expansion, the curvature of

the form factors, proportional to hr4i ¼ 60 d2f1
dðQ2Þ2, is given

by the one-loop nonanalytic terms with contributions that
are inversely proportional to quark masses. The curvature
is nominally an effect Oðξ4Þ in the form factor, which
therefore receives contributions from terms Oðξ6Þ in the
Lagrangian, and only in the limit of sufficiently small quark
masses will the nonanalytic contributions obtained here
be dominant. In the recent work of Ref. [38], the electric
charge higher moments have been studied, where t-channel
elastic unitarity has been implemented in the EFT along
with the constraints of the 1=Nc expansion [34–38]. In par-
ticular, for the curvature, they find hr4ip ¼ 0.735ð35Þ fm4

and hr4in ¼ −0.540ð35Þ fm4, to be compared with the one-
loop contributions found here, 0.032 and −0.021 fm4,
respectively, roughly a factor 25 smaller in magnitude in
each case. Clearly, the description of the curvature must be
primarily given by higher-order contact terms, and to the
order of the expansion followed here, the failure to account
for the curvature limits the present description of charge
form factors to the expected range given by the radii,
Q2 ≲ 0.05 GeV2.

V. MAGNETIC MOMENTS

As mentioned earlier, at lowest order, the magnetic
moments of all vector currents are given in terms of the
single LEC κ. In particular, using the EM current, the LO
value of κ

Λ can be fixed from the proton’s magnetic moment
μp in units of the nuclear magneton μN , namely,
e κ
2Λ ¼ μp ¼ 2.7928 μN . Also, theM1 radiative decay width

of the Δ at LO is given by

ΓΔ→Nγ ¼
e2

9π

�
κ

Λ

�
2mN

mΔ
ω3; ð10Þ

TABLE II. Electric charge radii of octet baryons. The proton
and neutron radii are inputs. The proton radius used is the one
resulting from the muonic hydrogen Lamb shift [40]. The second
column shows the contribution by contact terms g1;2 for μ ¼ mρ.

hr2iðfm2Þ
Full CT Exp

p 0.707 0.596 0.7071(7)
n −0.116 −0.049 −0.116ð2Þ
Λ −0.029 −0.024 � � �
Σþ 0.742 0.596 � � �
Σ0 0.029 0.024 � � �
Σ− 0.683 0.548 0.608(156)
Ξ0 −0.016 −0.049 � � �
Ξ− 0.633 0.548 � � �
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where ω is the photon energy. Using the above result for κ
Λ

gives ΓLO
Δ→Nγ ¼ 0.38 MeV, to be compared with the exper-

imental value 0.70� 0.06 MeV. In terms of the transition

magnetic moment, the LO result is μΔþp ¼ 2
ffiffi
2

p
3
μp, while

the experimental one from Eq. (10) and from the helicity
N − Δ photocouplings [41] are 3.58ð10ÞμN and 3.46ð3ÞμN ,
respectively. This shows the need for a significant spin-
symmetry breaking effect of 30% to be accounted for by the
higher-order corrections.
The LO magnetic moment operator Gia is proportional

to the LO axial currents, and the next-to-leading-order
(NLO) effects stem from quark masses and spin-symmetry
breaking. In the strict large Nc limit, those corrections scale
as follows: SUð3Þ breaking corrections Oððms − m̂ÞNcÞ,
i.e., the same scaling in Nc as the LO term, and spin-
symmetry breaking corrections Oð1=NcÞ, i.e., Oð1=N2

cÞ
with respect to the LO term, well known from tree-level
analyses in Refs. [42,43].
The experimentally available magnetic moment ratios

and the corresponding LO results are represented in
Table III. It is evident that there are significant SUð3Þ
breaking effects, which together with the important spin-
symmetry breaking observed, in particular in the ΔN M1

amplitude, indicate the relevance of the next-to-NLO
(NNLO) calculation. Note that all weak magnetic moments,
i.e., magnetic moments associated with the ΔS ¼ 1 cur-
rents, are also fixed at LO, as they are empirically
unknown. In the case of the neutron β decay, the weak
magnetic term is obtained from the isovector part of the EM
magnetic moments of the proton and neutron, which in this
case, due to isospin symmetry, is quite accurate. On the
other hand, in hyperon beta decay, the effect of weak

magnetism is too small to be at present experimentally
accessible. Fortunately, the advent of LQCD calculations of
magnetic moments with increasing accuracy will allow the
study of weak magnetism.
The one-loop corrections to the magnetic moments are

obtained from the spatial components of the vector currents
depicted in Fig. 1, in which the contributions stem from
diagrams A and B1. Diagrams A1;2 involve Γ ∝ Gia, which
is similar to the axial currents already analyzed in Ref. [24].
The loop contributions to the Q2 dependence of the
magnetic form factors stem from diagram A3.
The UV divergencies of the one-loop diagrams contrib-

uting to the magnetic moments after the reduction of the
corresponding expressions (7) and (8) using a basis of spin-
flavor operators read as

Vμa
MagðA1þ2ÞUV ¼ i

λϵ
ð4πÞ2

κ

2Λ

�
g
∘
A

Fπ

�2

ϵijkqj
�
−B0

�
23

6
m0Gka þ 11

24
dabcmbGkc þ 5

18
maSk

�
þ 2

3

�
CHF

Nc

�
2
�
ðNcðNc þ 6Þ − 3ÞGka þ 8fŜ2; Gkag þ 8SkSmGma −

11

2
ðNc þ 3ÞSkTa

��
Vμa
MagðA3ÞUV ¼ i

λϵ
ð4πÞ2

�
g
∘
A

Fπ

�2 CHF

Nc
ϵijkqj

�
Nc þ 3

2
Gka − 2SkTa

�
Vμa
MagðB1ÞUV ¼ −i

λϵ
ð4πÞ2

κ

2Λ
1

F2
π
ϵijkqjB0

�
6m0Gka þ 3

2
dabcmbGkc

�
; ð11Þ

adding up to

VUVμa

Mag ¼ iλϵqjϵijk

16π2Fπ
2Λ

�
−

1

12
κB0

��
11

4
g
∘
A
2 þ 9

�
mbGkcdabc þ ð23g∘A2 þ 36Þm0Gka þ 5

3
g
∘
A
2maSk

�
þ CHFg

∘2
A

6Nc
2
ð2κCHFððNcðNc þ 6Þ − 3ÞGka þ 8fŜ2; GkagÞ þ 3ΛNcðNc þ 3ÞGka

þ 16κSmGmaSk − SkTað11κCHFðNc þ 3Þ þ 12ΛNcÞ
��

: ð12Þ

TABLE III. LO ratios of magnetic moments.

Exp LO

p=n −1.46 −1.5
Σþ=Σ− −2.12 −3
Λ=Σþ −0.25 − 1

3

p=Σþ 1.14 1
Ξ0=Ξ− 1.92 2
p=Ξ0 −2.23 −1.5
Δþþ=Δþ 1.4(2.8) 2
Ω−=Δþ −0.75 −1
p=Δþ 1.03 1
p=ðΔþpÞ 0.78 3

2
ffiffi
2

p

p=ðΣ�0ΛÞ 1.02
ffiffi
3
2

q
p=ðΣ�þΣþÞ −0.88 − 3

2
ffiffi
2

p
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The renormalization of the magnetic moments is pro-
vided by the Lagrangians with the LECs κD;F;1;…;5, and the
magnetic radii receive only finite one-loop contributions
and a finite renormalization by the term κr. The β functions
of the magnetic LECs resulting from Eq. (12) are shown in
Table IV.
For Nc ¼ 3, the set of local terms that contribute to the

magnetic moments remains linearly independent. If one
only considers the EM current, the term proportional to κF
does not contribute, and for the known magnetic moments
together with the information on theM1 transitionΔ → Nγ,
one can fit the rest of the LECs. Note that in the absence of
information on the SUð3Þ singlet quark mass m0 depend-
ence the LEC κ2 is subsumed into κ, and the lack of
knowledge on the ΔS ¼ 1 weak magnetic moments pre-
vents at present a determination of κF.
The results of the fits are shown in Table V. The input

magnetic moments have errors (much) smaller than the
theoretical error of the present calculation, estimated to be
given by the magnitude of next-to-NNLO (NNNLO)
corrections, about 5% to 10%. Here, the proton and neutron
magnetic moments are used as exact inputs giving the
following relations between the parameters:

κ1 ¼ −19.662þ 6.926 κ − 0.833

�
κ4 þ

κ5
2

�
þ 2.550 κD

κ3 ¼ −5.136þ 1.648 κ − 0.218

�
κ4 þ

κ5
2

�
þ κD: ð13Þ

The χ2 is then given by fitting to the rest of the magnetic
moments, where still the errors of the inputs are smaller
than the theoretical error. Errors can be assigned to the
fitted LECs by defining them in terms of the expected
magnitude of the NNNLO corrections. For such an esti-
mation of the parameters’ errors, the minimum obtained for
the χ2 per degree of freedom is normalized to unity, or
alternatively the experimental inputs are assigned larger

errors compatible with the mentioned magnitude of
NNNLO corrections, which leads to a similar result.
Here, the first procedure is followed. Important correlation
is found within the following pairs of LECs: κ − κD, and
κ4 − κ5. The eigenvectors of the correlation matrix of the
first pair are ð0.8 κ þ 0.6 κDÞ and ð0.6 κ − 0.8 κDÞ, with
respective errors �0.004 and �0.04, and of the second pair
are ð0.9 κ4 þ

ffiffiffiffiffiffiffiffiffi
0.19

p
κ5Þ and ð ffiffiffiffiffiffiffiffiffi

0.19
p

κ4 − 0.9 κ5Þ with
respective errors �0.3 and �2.1. This provides the neces-
sary information for the LEC’s error analysis.
As mentioned earlier, the ΔNγ amplitude at LO is too

small by roughly 30%, a manifestation of an important
spin-symmetry breaking effect. The effect receives a small

TABLE IV. β functions of LECs associated with magnetic
moments and radii. The renormalized LECs are defined accord-
ing to X ¼ XðμÞ þ βX

ð4πÞ2 λϵ.

LEC β × F2
π

κ Λg∘2A CHF
Nc

ð1
2
ðNc þ 3Þ þ 1

3
ðNcðNc þ 6Þ − 3Þ κ

Λ
CHF
Nc

Þ
κ1 −Λg∘2ACHFð2þ 11

6
ðNc þ 3Þ κ

Λ
CHF
Nc

Þ
κ2 −Λ2κð3þ 23

12
g
∘2
AÞ

κD −Λ2κð3
4
þ 11

48
g
∘2
AÞ

κF 0
κ3 −Λ2κ 5

36
g
∘2
A

κ4 8
3
g
∘2
AκC2

HF

κ5 8
3
g
∘2
AκC2

HF

κr 0

TABLE V. Results from fits to the electric current magnetic
moments, in units of the nuclear magneton μN . The renormaliza-
tion scale was set to μ ¼ Λ ¼ mρ. κF requires ΔS ¼ 1 weak
magnetic moments to be determined.

LEC × mN
Λ LO NNLO

κ 2.80 2.887
κ1 0 3.29
κ2 0 0.00
κD 0 0.397
κF 0 � � �
κ3 0 0.53
κ4 0 −2.85
κ5 0 1.05

μLO μNNLO μExp

p 2.691 Input 2.792847356(23)
n −1.794 Input −1.9130427ð5Þ
Σþ 2.691 2.367 2.458(10)
Σ0 0.897 0.869 � � �
Σ− −0.897 −0.629 −1.160ð25Þ
Λ −0.897 −0.611 −0.613ð4Þ
Ξ0 −1.794 −1.275 −1.250ð14Þ
Ξ− −0.897 −0.652 −0.6507ð25Þ
Δþp 2.537 3.65 3.58(10)
Σ0Λ 1.553 1.57 1.61(8)
Σ�0Λ 2.197 2.68 2.73(25)a

Σ�þΣþ −2.537 −2.35 −3.17ð36Þb

μLO μNNLO μExp

Δþþ 5.381 5.962 3.7–7.5
Δþ 2.691 3.049 2.7(3.6)
Δ0 0 0.136 � � �
Δ− −2.691 −2.777 � � �
Σ�þ 2.691 3.151 � � �
Σ�0 0 0.343 � � �
Σ�− −2.691 −2.465 � � �
Ξ�0 0 0.490 � � �
Ξ�− −2.691 −2.208 � � �
Ω −2.691 −2.005 −2.02ð5Þ

aEmpirical results are from PDG and Ref. [44].
bEmpirical results are from PDG and Ref. [45].
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nonanalytic contribution (at μ ¼ mρ), and the contributions
from the contact terms are as follows: κD∶Oððms−m̂ÞNcÞ,
and κ4∶ Oð1=NcÞ. From the fit, one finds a modest
contribution from κD and a dominant contribution from
κ4. Since the latter is a 1=N2

c correction with respect to the
LO magnetic moment, it seems to be unnaturally large.
This is a bit surprising as a similar kind of effect in the ΔN
axial vector coupling is actually unnaturally small. This
contrast remains to be understood. Finally, a fit where the
ΔN transition is not an input shows an enhancement but
only by about half of what is needed.
An interesting case is the magnetic moment of Σ�0: all

LO and NLO tree-level and quark mass independent
contributions vanish, receiving only NNLO tree and loop
contributions, which vanish in the SUð3Þ symmetry limit.
On the other hand, the experimental value of the magnetic
moment of Σ− quoted as average by the PDG [40] cannot
be described; U-spin symmetry implies that it must be
equal to the magnetic moment of the Ξ− up to NNLO
SUð3Þ breaking by quark masses. The experimental results
imply a very large effect which is very difficult to reconcile
with the other U-spin multiplets, where the effect is
between 12% and 25% per unit of strangeness, while for
the pair Σ− Ξ− case, it is 44%. The present analysis shows
that μΣ− is an outlier.
One of the early tests of the magnetic moments in SUð3Þ

was provided by the Coleman-Glashow (CG) relation,
namely, μp − μn − μΣþ þ μΣ− þ μΞ0 − μΞ− ¼ 0. This rela-
tion remains valid at tree-level NNLO and receives only a
finite correction from the one-loop contributions. Explicit
calculation gives the deviation with estimated theoretical
error ΔCG ¼ 1.09� 0.25 μN to be compared with the
experimental deviation 0.49� 0.03 μN , affected, however,
by the Σ− issue.
Finally, the weak interaction magnetic moments for

hyperon decays turn out to depend on the LEC κF, which
does not appear in the EM case. The result for the LECs
from the EM case gives the predictions μΣ−n ¼ ð0.516 −
0.180 κFÞ g

2mN
and μΛp ¼ ð−1.41þ 0.66 κFÞ g

2mN
, where

g ¼ e= sin θW . At LO, one has the large hierarchy
μΛp=μΣ−n ¼ −

ffiffiffiffiffiffiffiffiffiffi
27=2

p
. A determination of κF will require

a LQCD calculation.

A. Magnetic radii

The magnetic radii are theoretically very constrained at
the order of the present calculation. For all the vector
currents and baryons, they are determined only by UV
finite loop contributions and the single available finite
counterterm fixed by the LEC κr. Since only the magnetic
radii of the proton and neutron are experimentally known,
one can use these to fit that LEC, leading to the results shown
in Table VI. The rest of the radii are then predictions which
can hopefully be tested in the future with LQCD calcu-
lations. Note that the lion’s share of the magnetic radii is

from the short distance terms proportional to κrwith the loop
contribution from diagram A3 in Fig. 1 giving up to 20% for
the proton, neutron, and Σ− and less than 10% for the rest.
Finally, a calculation of the curvature of the EM

magnetic moments yields hr4ip ¼ 0.38 fm4 and hr4in ¼
0.54 fm4 to be compared with those obtained in Ref. [38],
which are, respectively, 1.72(6) and 2.04ð1Þ fm4, leading to
a similar assessment as in the case of the electric charge
already discussed, although less dramatic.

VI. SUMMARY

This work presented the study of the SUð3Þ vector
currents in baryons based on the combined chiral and 1=Nc
expansion. It was carried out in the context of the ξ power
counting to one loop. This corresponds to a calculation of
the charges, magnetic moments, and their radii for both
octet and decuplet baryons. The calculations have been
provided for generic Nc, which permits an exploration of
the behavior of those observables with respect to the
number of colors. Only two LECs are needed to determine
all SUð3Þ charge radii, while the magnetic moments need to
be renormalized involving eight LECs, of which all but two
can be fixed solely in terms of the known EM magnetic
moments. Of the two remaining LECs, one needs infor-
mation about ΔS ¼ 1 weak magnetic moments, and the
second requires knowledge of magnetic moments at differ-
ent values of quark masses, which can be obtained from
LQCD calculations. The fits to the magnetic moments
indicate that the values of the LECs are within the range of
natural magnitude, although there is a puzzling issue,
namely, the unnaturally large spin-symmetry breaking
required for the description of the ΔN transition magnetic
moment. On the other hand, the magnetic radii involve only
one LEC, which according to the its determination from the
proton and neutron magnetic radii, gives the dominant
contribution to all magnetic radii. Finally, the curvature of
form factors are given at the order of the calculation by
nonanalytic terms in mq, which turn out to be very small,
and therefore require for their description an extension of
the present work to higher order.

TABLE VI. Magnetic radii from a fit to nucleons.

hr2iðfm2Þ
κr ¼ −2.63 Exp Th Loop

p 0.724 0.718 0.134
n 0.746 0.747 0.179
Σþ � � � 0.766 0.100
Σ0 � � � 0.698 0.061
Σ− � � � 0.922 0.189
Λ � � � 0.895 0.079
Ξ0 � � � 0.872 0.081
Ξ− � � � 0.796 0.035
Δþp � � � 0.875 0.226

I. P. FERNANDO and J. L. GOITY PHYS. REV. D 101, 054026 (2020)

054026-8



ACKNOWLEDGMENTS

The authors thank Rubén Flores Mendieta and Christian
Weiss for very useful discussions. This work was supported
by DOE Contract No. DE-AC05-06OR23177, under which
JSA operates the Thomas Jefferson National Accelerator
Facility, and by the National Science Foundation through
Grants No. PHY-1307413, No. PHY-1613951 and
No. PHY-1913562.

APPENDIX A: SPIN-FLAVOR ALGEBRA

The4N2
f − 1generators of the spin-flavorgroupSUð2NfÞ

consist of the three spin generators Si, the N2
f − 1 flavor

SUðNfÞ generators Ta, and the remaining 3ðN2
f − 1Þ spin-

flavor generators Gia. The commutation relations are

½Si; Sj� ¼ iϵijkSk; ½Ta; Tb� ¼ ifabcTc; ½Ta; Si� ¼ 0;

½Si; Gja� ¼ iϵijkGka; ½Ta; Gib� ¼ ifabcGic;

½Gia; Gjb� ¼ i
4
δijfabcTc þ i

2Nf
δabϵijkSk þ i

2
ϵijkdabcGkc:

ðA1Þ

In spin-flavor representations with Nc indices corre-
sponding to baryons, the generators Gia have matrix

elements OðNcÞ on states with S ¼ OðN0
cÞ. The ground

state baryons furnish the totally symmetric irreducible
representation of SUð6Þ with Nc Young boxes, which
decomposes into the following SUð2Þspin × SUð3Þ irreduc-
ible representations: ½S; ðp; qÞ� ¼ ½S; ð2S; 1

2
ðNc − 2SÞÞ�,

S ¼ 1=2;…; Nc=2 (assumed Nc is odd). The baryon states
can then be denoted by jSS3; YII3i, where the spin S of the
baryon determines its SUð3Þ multiplet.
The matrix elements of a SUð2Þspin × SUð3Þ ⊂ SUð6Þ

tensor operator between ground state baryons are given by
the Wigner-Eckart theorem, with obvious notation,

hS0S03; R0Y 0I0I03jOll3
R̃ Ỹ Ĩ Ĩ3

jSS3; RYII3i

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S0 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
dimR0p hSS3;ll3jS0S03i

×
X
γ

hS0; R0jjOl
R̃
jjS; Riγ

�
R R̃

YII3 Ỹ Ĩ Ĩ3

���� R0

Y 0I0I03

�
γ

;

ðA2Þ

where R represents the SUð3Þmultiplet of the baryon and γ
indicates the possible recouplings in SUð3Þ. Applying this
to the matrix elements of the generators of SUð6Þ one
obtains:

hS0S03; Y 0I0I03jSmjSS3; YII3i ¼ δSS0δYY 0δII0δI3I03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ

p
hSS3; 1mjS0S03i

hS0S03; Y 0I0I03jTyii3 jSS3; YII3i ¼ δSS0δS3S03
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð2S; 1
2
ðNc − 2SÞÞ

q hSjjTjjSi

×

� ð2S; 1
2
ðNc − 2SÞÞ ð1; 1Þ
YII3 yii3

���� ð2S; 12 ðNc − 2SÞÞ
Y 0I0I03

�
γ¼1

hS0S03; Y 0I0I03jGm;yii3 jSS3; YII3i ¼
hSS3; 1mjS0S03iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2S0 þ 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimð2S; 1
2
ðNc − 2SÞÞ

q
×
X
γ¼1;2

hS0jjGjjSiγ
� ð2S; 1

2
ðNc − 2SÞÞ ð1; 1Þ
YII3 yii3

���� ð2S; 12 ðNc − 2SÞÞ
Y 0I0I03

�
γ

; ðA3Þ
where the reduced matrix elements are [here, p ¼ 2S, q ¼ 1

2
ðNc − 2SÞ]

hSjjTjjSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðp; qÞC2ðp; qÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Sþ 1ÞðNc − 2Sþ 2ÞðNc þ 2Sþ 4ÞðNcðNc þ 6Þ þ 12SðSþ 1ÞÞp
4
ffiffiffi
6

p

hS0jjGjjSiγ¼1 ¼

8>>>>><>>>>>:
if S ¼ S0 þ 1∶ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4S2−1ÞððNcþ2Þ2−4S2ÞððNcþ4Þ2−4S2Þ

p
8
ffiffi
2

p

if S ¼ S0 − 1∶ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4SðSþ2Þþ3ÞðNc−2SÞðNc−2Sþ2ÞðNcþ2Sþ4ÞðNcþ2Sþ6Þ

p
8
ffiffi
2

p

if S ¼ S0∶ signðNc − 2S − 0þÞ ðNcþ3Þð2Sþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ1ÞðNc−2Sþ2ÞðNcþ2Sþ4Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6NcðNcþ6Þþ12SðSþ1Þ

p

hS0jjGjjSiγ¼2 ¼ −δSS0
ð2Sþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc − 2SÞðNc þ 2Sþ 6ÞððNc þ 2Þ2 − 4S2ÞððNc þ 4Þ2 − 4S2Þ

p
8
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNc þ 6Þ þ 12SðSþ 1Þp : ðA4Þ
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APPENDIX B: BUILDING BLOCKS

The fundamental building blocks of the effective theory
are the generators of SUð6Þ detailed in Appendix A and
tensor products thereof and the baryon and Goldstone
boson fields and sources associated with the different
current densities. The GB fields are parametrized as the
coordinates of the coset SULð3Þ × SURð3Þ=SUð3Þ where
here one uses the exponential parametrization

uðxÞ ¼ ei
πaTa
Fπ ; ðB1Þ

where πa are the octet of GBs, Ta are the generators of
flavor SUð3Þ, and Fπ is the pion decay constant. The
baryon fields denoted by B belong into a multiplet of
SUð6Þ, which transforms as the totally symmetric

irreducible representation withNc indices, which organized
in multiplets of spin-flavor SUð2Þ × SUð3Þ contain the
multiplets ½S; ðp ¼ 2S; q ¼ 1

2
ðNc − 2SÞÞ� as mentioned in

Appendix A. The effective baryon Lagrangian can be
expressed in the usual way as a series of terms which
are SULð3Þ × SURð3Þ invariant (upon introduction of
appropriate sources; see, for instance, Ref. [46] for details).
The fields in the effective Lagrangian are the Goldstone

bosons parametrized by the unitary SUð3Þ matrix field u
and the baryons given by the symmetric SUð6ÞmultipletB.
The building blocks for the effective theory consist of low-
energy operators composed in terms of the GB fields,
derivatives and sources (chiral tensors), and spin-flavor
composite operators (spin-flavor tensors).
The low-energy operators are the usual ones, namely,

Dμ ¼ ∂μ − iΓμ; Γμ ¼ Γ†
μ ¼ 1

2
ðu†ði∂μ þ rμÞuþ uði∂μ þ lμÞu†Þ;

uμ ¼ u†μ ¼ u†ði∂μ þ rμÞu − uði∂μ þ lμÞu†;
χ ¼ 2B0ðsþ ipÞ; χ� ≡ u†χu† � uχ†u;

Fμν
L ¼ ∂μlν − ∂νlμ − i½lμ;lν�; Fμν

R ¼ ∂μrν − ∂νrμ − i½rμ; rν�
Fμν
� ≡ uFμν

L u† � u†Fμν
R u; ðB2Þ

where Dμ is the chiral covariant derivative, s and p are
scalar and pseudoscalar sources, and lμ and rμ are gauge
sources. It is convenient to define the SUð3Þ singlet and
octet components of χ� using the fundamental SUð3Þ
irreducible representation, namely,

χ0� ¼ 1

3
hχ�i

χ̃� ¼ χ� − χ0� ¼ χ̃a�
λa

2
: ðB3Þ

Displaying explicitly the quark masses,

χþ ¼ 4B0Mq þ � � � ; ðB4Þ

where the quark mass matrix Mq is given in terms of the
three quark mass combinations, namely SUð3Þ singlet,
isosinglet, and isotriplet, respectively defined by

m0 ¼ 1

3
ðmu þmd þmsÞ; m8 ¼ 1ffiffiffi

3
p ðmu þmd − 2msÞ;

m3 ≡ ðmu −mdÞ: ðB5Þ

Under SULð3Þ × SURð3Þ chiral transformations, Dμ, uμ,
χ�, and Fμν

� transform as X → hðu; L; RÞXh†ðu; L; RÞ,
where h is the nonlinear realization of the corresponding
transformation. Note that all the chiral building blocks
when acting on a particular baryon need to be written in
terms of the SUð3Þ generators in the representation of that
baryon. In particular, the building blocks discussed here
will be written as [neglecting any SUð3Þ singlet compo-
nent] XaTa, where one obtains Xa ¼ 1

2
TrðλaXÞ, where X

is given in the fundamental representation and λa is a
Gell-Mann matrix.
The leading-order equations of motion are used in the

construction of the higher-order terms in the Lagrangian,
namely, iD0B ¼ ðCHF

Nc
Ŝ2 þ c1

2Λ χ̂þÞB, and ∇μuμ ¼ i
2
χ−.

APPENDIX C: LOOP INTEGRALS

The one-loop integrals needed in this work are provided

here. The definition ˜ddk≡ ddk=ð2πÞd is used.
The scalar and tensor one-loop integrals are
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Iðn; α;ΛÞ≡
Z gddk k2n

ðk2 − Λ2Þα ¼ ið−1Þn−α 1

ð4πÞd2
Γðnþ d

2
ÞΓðα − n − d

2
Þ

Γðd
2
ÞΓðαÞ ðΛ2Þn−αþd

2

Iμ1;…;μ2nðα;ΛÞ≡
Z gddk kμ1…kμ2n

ðk2 − Λ2Þα ¼ ið−1Þn−α 1

ð4πÞd2
1

4nn!

Γðα − n − d
2
Þ

ΓðαÞ ðΛ2Þn−αþd
2

X
σ

gμσ1μσ2…gμσ2n−1μσ2n

¼ 1

4nn!

Γðd
2
Þ

Γðnþ d
2
Þ Iðn; α;ΛÞ

X
σ

gμσ1μσ2…gμσ2n−1μσ2n ; ðC1Þ

where σ are the permutations of f1;…; 2ng.
The Feynman parametrizations needed when heavy propagators are in the loop are

1

A1 � � �AmB1 � � �Bn
¼ 2mΓðmþ nÞ

Z
∞

0

dλ1 � � � dλm
Z

1

0

dα1 � � � dαnδð1 − α1 − � � � − αnÞ

×
1

ð2λ1A1 þ � � � þ 2λmAm þ α1B1 þ � � � þ αnBnÞmþn ; ðC2Þ

where the Ai are heavy particle static propagators denominators and the Bi are relativistic ones.
The integration over a Feynman parameter λ is of the general form

JðC0; C1; λ0; d; νÞ≡
Z

∞

0

ðC0 þ C1ðλ − λ0Þ2Þ−νþd
2dλ; ðC3Þ

which satisfies the recurrence relation:

JðC0; C1; λ0; d; νÞ ¼
−λ0ðC0 þ C1λ

2
0Þ1−νþ

d
2 þ ð3þ d − 2νÞJðC0; C1; λ0; d; ν − 1Þ
ðd − 2νþ 2ÞC0

JðC0; C1; λ0; d; νÞ ¼ C0

d − ν

d − 2νþ 1
JðC0; C1; λ0; d; νþ 1Þ þ λ0

d − 2νþ 1
ðC0 þ C1λ

2
0Þ

d
2
−ν: ðC4Þ

Integrals with factors of λ in the numerator are obtained by using

JðC0; C1; λ0; d; ν; n ¼ 1Þ≡
Z

∞

0

ðλ − λ0Þn¼1ðC0 þ C1ðλ − λ0Þ2Þ−νþd
2dλ

¼ −
1

2C1ðd2 þ 1 − νÞ ðC0 þ C1λ
2
0Þ

d
2
þ1−ν ðC5Þ

and the recurrence relations

JðC0; C1; λ0; d; ν; nÞ ¼
1

C1

ðJðC0; C1; λ0; d; ν − 1; n − 1Þ − C0JðC0; C1; λ0; d; ν; n − 2ÞÞ: ðC6Þ

For convenience in some of the calculations for the currents, the following integral is defined:

J̃ðC0; C1; λ0; d; ν; 1Þ≡ JðC0; C1; λ0; d; ν; 1Þ þ λ0JðC0; C1; λ0; d; νÞ: ðC7Þ

For the calculations in this work, the following integrals are needed at d ¼ 4 − 2ϵ:

JðC0; C1; λ0; d; 3Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
C0C1

p
 
π

2
þ arctan

 
λ0

ffiffiffiffiffiffi
C1

C0

s !!

JðC0; C1; λ0; d; 2Þ ¼
1

d − 3
ðλ0ðC0 þ C1λ

2
0Þ

d
2
−2 þ ðd − 4ÞC0JðC0; C1; λ0; d; 3ÞÞ

JðC0; C1; λ0; d; 1Þ ¼
1

d − 1
ðλ0ðC0 þ C1λ

2
0Þ

d
2
−1 þ ðd − 2ÞJðC0; C1; λ0; d; 2ÞÞ: ðC8Þ
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1. Specific integrals

Here, a summary of relevant one-loop integrals for the calculations in this work is provided for the convenience of the
reader.
1) Loop integrals involving only relativistic propagators are

Ið0; 1;MÞ ¼ −
i

ð4πÞd2 Γ
�
1 −

d
2

�
Md−2

Ið0; 2;MÞ ¼ i

ð4πÞd2 Γ
�
2 −

d
2

�
Md−4

Kðq;Ma;MbÞ≡
Z gddk 1

ðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ ¼
Z

1

0

dαIð0; 2;ΛðαÞÞ

Kμðq;Ma;MbÞ≡
Z gddk kμ

ðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ ¼
Z

1

0

dαðα − 1ÞqμIð0; 2;ΛðαÞÞ

Kμνðq;Ma;MbÞ≡
Z gddk kμkν

ðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ

¼
Z

1

0

dα

�
ð1 − αÞ2qμqνIð0; 2;ΛðαÞÞ þ gμν

d
Ið1; 2;ΛðαÞÞ

�
; ðC9Þ

where

ΛðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αM2

a þ ð1 − αÞM2
b − αð1 − αÞq2

q
:

2) Loop integrals involving one heavy propagator are

Hðp0;MÞ≡
Z gddk 1

ðp0 − k0 þ iϵÞðk2 −M2 þ iϵÞ

¼ 2i

ð4πÞd2 Γ
�
2 −

d
2

�
J

�
M2 − p2

0; 1; p0; d; 2Þ

Hijðp0;MÞ≡
Z gddk kikj

ðp0 − k0 þ iϵÞðk2 −M2 þ iϵÞ

¼ −
i

ð4πÞd2 g
ijΓ
�
1 −

d
2

�
J

�
M2 − p2

0; 1; p0; d; 1Þ

Hijμðp0; q;Ma;MbÞ≡
Z gddk kiðkþ qÞjð2kþ qÞμ

ðp0 − k0 þ iϵÞðk2 −M2
a þ iϵÞððkþ qÞ2 −M2

b þ iϵÞ

¼ i
4

ð4πÞd2
Z

1

0

dα

�
−
1

2
Γ
�
3 −

d
2

�
qiqjαð1 − αÞ

× ðð1 − 2αÞqμJðC0; C1; λ0; d; 3Þ − 2gμ0J̃ðC0; C1; λ0; d; 3; 1ÞÞ

þ Γ
�
2 −

d
2

�
ðð−ð1 − 2αÞgijqμ þ 2ðαgμiqj − ð1 − αÞgμjqiÞÞJðC0; C1; λ0; d; 2Þ

þ 2gijgμ0J̃ðC0; C1; λ0; d; 2; 1Þ
�	

; ðC10Þ

where
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C0 ¼ αM2
a þ ð1 − αÞM2

b − p2
0 − 2ð1 − αÞp0q0 − ð1 − αÞðαq2 þ ð1 − αÞq20Þ

C1 ¼ 1

λ0 ¼ p0 þ ð1 − αÞq0: ðC11Þ

The polynomial pieces of the integrals are

Hðp0;MÞpoly ¼ i
ð4πÞ2 2p0ðλϵ þ 2Þ

Hijðp0;MÞpoly ¼ i
ð4πÞ2

p0

3

�
ð3M2 − 2p2

0Þλϵ þ 7M2 −
16

3
p2
0

�
Hijμðp0; q;Ma;MbÞpoly ¼

i
96π2

ðλϵðgijðgμ0ð−3ðM2
a þM2

bÞ þ 12p0ðp0 þ q0Þ þ q2 þ 4q20Þ − q0qμÞ
− 2qið3p0 þ 2q0Þgμj þ 2qjðð3p0 þ q0Þgμi þ qigμ0ÞÞ
þ gijðgμ0ð−3ðM2

a þM2
bÞ þ 24p0ðp0 þ q0Þ þ q2 þ 8q20Þ − 2q0qμÞ

− 4qið3p0 þ 2q0Þgμj þ 4qjð3p0 þ q0ÞgμiÞ; ðC12Þ

where the UV divergence is given by the terms proportional to λϵ ≡ 1=ϵ − γ þ log 4π, where d ¼ 4 − 2ϵ.

APPENDIX D: INTERACTION AND VECTOR CURRENT VERTICES
NEEDED IN LOOP CALCULATIONS

The interaction and currents vertices needed in the one-loop calculations are given for completeness.

FIG. 2. The vector current vertices indicated with a square are the magnetic ones. The momentum q is incoming, and Γμa ¼
gμ0Ta þ i κ

Λ ϵ
0 μijfabcfcbdqiGjd.
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