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The COMPASS collaboration published precise data on production cross section of charged hadrons
in lepton-hadron semi-inclusive deep inelastic scattering, showing almost an order of magnitude larger
than next-to-leading order QCD calculations when PhT and zh are sufficiently large. We explore the role of
power corrections to the theoretical calculations, and quantitatively demonstrate that the power corrections
are extremely important for these data when the final-state multiplicity is low and the production kinematics
is near the edge of phase space. Our finding motivates more detailed studies on power corrections for
upcoming experiments at Jefferson Lab, as well as the future Electron-Ion Collider.
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I. INTRODUCTION

Unveiling the structure of nucleons (or hadrons, in
general) in terms of quarks and gluons of quantum
chromodynamics (QCD) is one of the central goals that
has been actively pursued by the science community since
the first lepton-proton deep inelastic scattering (DIS)
experiment took place at SLAC about 50 years ago [1].
However, owing to the fact that no isolated quarks and
gluons have ever been seen in a modern detector, nearly all
analyses of high energy scattering events with identified
hadron(s) rely on the QCD factorization theorem [2] that
provides the link between the observed hadrons and the
quarks and gluons, or collectively, partons, that participated
in hard scatterings. The inclusive lepton-proton DIS at a
large momentum transfer, Q ≫ ΛQCD ∼ 1=fm, is domi-
nated by the scattering of the lepton off one active quark/
parton inside the colliding proton [3]. With one hard
momentum scale Q, the inclusive DIS cross section is
not very sensitive to the dynamics at a typical hadronic
scale ∼1=fm ≪ Q, and can be factorized into the lepton-
quark scattering at a short-distance (∼1=Q) multiplied by
corresponding quark parton distribution functions (PDFs),
ϕi=Pðx; μ2Þ, interpreted as the probability distribution to
find this active quark of flavor i inside the colliding proton
at the factorization or probing scale μ ∼Q, carrying the
proton’s momentum fraction x. This factorization is known

as the QCD collinear factorization, with active quark’s
transverse momentum kT integrated into the PDFs and
overall corrections suppressed by inverse powers of Q.
The measurement of the inclusive DIS cross section has
provided good information on the proton’s partonic struc-
ture, encoded in these factorized PDFs.
It is the QCD factorization that provides the “probe”—

the short-distance partonic scattering to enable us to “see”
quark, gluon and their dynamics indirectly. The predictive
power of such factorization approach relies on both the
precision of the probe, which we could achieve and
improve by calculating the partonic interactions at the
scaleQ order-by-order in QCD perturbation theory, and the
universality of these PDFs, so that we are able to extract
them from data of some experiments and use them to
predict and to be tested in other measurements. In terms
of this factorization formalism, QCD has been extremely
successful in interpreting almost all available data from
high energy scatterings with probing distance less than
0.1 fm (or equivalently, with the momentum transfer greater
than 2 GeV) [4,5]. It is this success that has provided us the
confidence and the tools to discover the Higgs particle and
to explore new physics beyond the Standard Model of
particle physics in high energy hadronic collisions [6–8].
Instead of summing over all hadronic final states, the

semi-inclusive DIS (SIDIS) identifies one final-state hadron
of momentum Ph, as illustrated in Fig. 1, and covers a part of
the inclusive lepton-hadron DIS cross section. By detecting
one hadron in the final-state, SIDIS enables us to explore
the emergence of color neutral hadrons from colored quarks
and gluons, in addition to the information on finding a
quark or gluon inside the colliding hadron. By selecting
different type of observed hadrons (pion, kaon,...), SIDIS
provides opportunities to study the flavor dependence of
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QCD dynamics. With a large momentum transfer carried by
the virtual gauge boson of momentum q (Q2 ≡ −q2 ≫
1=fm2), as shown in Fig. 1, SIDIS could provide a short-
distance probe with an additional and adjustable momentum
scale by measuring the hadron at different momentum Ph.
In the frame where the exchange virtual gauge boson of
momentum q and the colliding hadron of momentum P are
headed on, the leading contribution to the SIDIS is naturally
from the region where the transverse momentum of the
observed hadron, PhT ≪ Q, and the scattering provides a
short-distance probe with two very different momentum
scales, from which the harder scale Q localizes the hard
collision to “see” the particle nature of quarks and gluons,
while the soft scale PhT is sensitive to the confined motion of
quarks and gluons in the direction perpendicular to the
direction of the colliding proton. In this kinematic regime
where Q2 ≫ P2

hT
≳ 1=fm2, similar to the inclusive DIS,

SIDIS cross section can be factorized into a product of
perturbatively calculable lepton-parton scattering at the
hard scale Q, corresponding transverse momentum depen-
dent (TMD) parton distribution functions (or simply,
TMDs), ϕi=Pðx; kT; μ2Þ with kT being the active parton’s
transverse momentum perpendicular to the direction of the
colliding hadron of momentum P, and TMD fragmentation
functions (FFs), Dj→hðz; pT; μ2Þ with the emergent hadron-
type h carrying momentum fraction between z and zþ dz of
the fragmenting parton of momentum p and pT being the
parton’s transverse momentum off the direction of the
observed final-state hadron of momentum Ph, where i; j ¼
fq; q̄; gg represent the active parton flavors [9,10]. In terms
of this TMD factorization formalism, with the corrections of
OðPhT=QÞ, lepton-hadron SIDIS is an excellent process to
probe three-dimensional (3D) confined motion of quarks and
gluons inside a bound proton, and has been actively pursued
by experimental programs at all lepton-hadron scattering
facilities, such as COMPASS at CERN [11] and various
experiments at Jefferson Lab [12], as well as the future
Electron-Ion Collider (EIC) [13].
On the other hand, when PhT ∼Q ≫ ΛQCD, the SIDIS is

dominated by a single hard scale, no longer sensitive to the
dynamics at the scale of active parton’s transverse momen-
tum kT (or pT), which is typically much less than Q, and
the cross section should be better described by the QCD
collinear factorization approach. At the leading power (LP)
of momentum transfer, the collinearly factorized SIDIS
cross section is given by

dσlþP→l0þPhþX

d3l0=ð2E0Þd3Ph=ð2EhÞ
≈
X
i;j

Z
1

xB

dx
x

Z
1

zh

dz
z2

ϕi=PðxÞDj→hðzÞ

×
dσ̂lþi→l0þjþX

d3l0=ð2E0Þd3p=ð2EpÞ
; ð1Þ

where Bjorken variables are

xB ¼ Q2

2P · q
; zh ¼

P · Ph

P · q
; ð2Þ

and dσ̂lþi→l0þjþX is the perturbatively calculable partonic
hard part for the lepton to scatter off a collinear on-shell
parton of momentum xP and flavor i to produce an active
parton of momentum p ¼ Ph=z and flavor j, which frag-
ments into the observed hadron of momentum Ph. The
ϕi=PðxÞ andDj→hðzÞ in Eq. (1) are collinear PDFs and FFs,
respectively, and their factorization scale dependence is
suppressed. The corrections to Eq. (1) are suppressed
by 1=P2

hT
(or 1=Q2) for spin-averaged cross sections.

A smooth transition and matching between the TMD
and collinear factorization approaches has been developed
and tested for various two-scale observables, e.g., heavy
gauge boson W=Z production in hadron-hadron collisions
[14–16]. However, the precise SIDIS data, recently pub-
lished by COMPASS Collaboration [11], show almost one
order of magnitude discrepancy between the data and the
leading order (LO) theoretical prediction for the region
where PhT ∼Q and zh are large [17], and the next-to-
leading order (NLO) corrections provide very little help to
reduce this discrepancy [17,18]. Soft gluon resummation
does help enhance the prediction of theoretical calculations
for the high PhT region, but, not enough to make up the
order of magnitude difference [19,20]. Although the PhT -
integrated cross section, which is dominated by the small-
PhT regime, has been well described within the collinear
factorization, a successful description of the full PhT -
distribution is critically important for understanding
QCD dynamics and extracting the multidimensional par-
tonic structure of the nucleon.
The QCD factorization for high energy scattering cross

sections with identified hadron(s), both TMD and collinear,
is an approximation that neglects corrections suppressed
by powers of the large momentum transfer of the hard
collisions. When zh → 1 in SIDIS, as shown in Eq. (1), the
phase space for the fragmenting parton to shower (to radiate
softer partons) is vanishing. Consequently, the fragmenta-
tion function, Dj→hðzÞ∝ ð1−zÞn→0 at large z with n ≥ 1

for meson production (or a larger power for baryon
production), strongly suppresses the probability for the
produced active parton to become the observed hadron, and
gives a powerlike suppression to the LP contribution to the
SIDIS cross section in Eq. (1). If next-to-leading power
(NLP) contributions to the cross sections are factorizable,

hP

P X

l

q
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FIG. 1. Sketch for lepton-hadron semi-inclusive DIS.
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corresponding perturbatively calculable hard parts will be
suppressed by inverse powers of the large momentum
transfer, such as 1=Qα or 1=Pα

hT
with α positive, in

comparison with the hard parts of LP contributions.
However, the overall factorizable power suppressed con-
tributions to the measured cross section could be sizable or
even more important if the active partonic states, produced
through the power suppressed short-distance partonic
subprocesses, are much more likely to become the observed
hadrons than the partonic states produced at the LP.
One example is the heavy quarkonium production at large
transverse momentum at collider energies [21–23], where
producing a heavy quark pair at large PhT is power
suppressed comparing to the production of a single gluon
at the same PhT , but, the probability for the produced heavy
quark pair to become a bound quarkonium could be much
greater than the probability for the produced gluon to
become a heavy quarkonium in some kinematic regions.
For the production of a positively charged hadron in

SIDIS, such as πþ, producing a quark-antiquark pair at high
PhT , as sketched in Fig. 2 (right), is certainly suppressed
in comparison with the production of a single quark or
antiquark at the same PhT , as shown in Fig. 2 (left).
However, a quark-antiquark pair with the right quantum
number, e.g., ud̄ for πþ, could be much more likely to
become the measured meson than a single quark or
antiquark through the fragmentation process when the
phase space for the radiation is vanishing and the multi-
plicity for the events is low. For example, when zh → 1, the
factorized LP contribution to πþ production in Eq. (1) is
suppressed by powers of (1 − z) from the FFs with z ∼ zh,
and the factorizable NLP contribution, as we show in this
paper, could have the leading transition from ud̄ to πþ to be
proportional to δð1 − zÞ without the power suppression in
(1 − z). While the production of the ud̄ pair is suppressed
by inverse powers of PhT , as we will demonstrate below, the
trade off between the 1=P2

hT
suppressed hard parts at the

NLP and the power suppressed FFs at the LP could make
the formally power suppressed contributions to the SIDIS
cross section very important for low multiplicity events.
The importance of the power corrections to high energy

pion production in SIDIS, as well as in eþe− and hadron-
hadron collisions, was recognized about 30 years ago in a

series of publications by E. Berger et al. [24–26]. In this
paper, we investigate the NLP corrections to SIDIS
production of charged mesons near the threshold, where
PhT ∼Q and zh → 1, in terms of QCD collinear factori-
zation approach. Instead of calculating all possible correc-
tions at the NLP, we focus on the partonic subprocesses that
could have the best chance to compete with the better
studied LP contribution, and more specifically, we calculate
the LO perturbative contribution in αs to the production of a
quark-antiquark pair that have the right flavor combination
of the observed mesons. In order to demonstrate the impact
of the power corrections, quantitatively, we estimate the
leading quark-antiquark pair FFs to a charged meson,
which is proportional to δð1 − zÞ, in terms of the better-
known light-cone meson distribution amplitude square, by
neglecting contributions suppressed by powers of (1 − z).
We find that the NLP corrections to SIDIS are extremely
important for the production of charged mesons when the
final-state multiplicity is low and the production kinematics
is near the edge of phase space. Our finding warrants a
much more detailed study of power corrections to the
SIDIS cross section near the edge of phase space where the
hadron multiplicity is very low, which provides a unique
opportunity to explore the mechanism of hadronization and
color neutralization in QCD—the emergence of hadrons
from produced quarks and gluons in high energy collisions.
The rest of this paper is organized as follows. In Sec. II,

we introduce the factorization formalism for SIDIS to the
accuracy of NLP, provide a leading order calculation of the
short-distance hard parts at the NLP from the channels in
which a quark-antiquark pair is produced with the same
flavor combination of the valence content of the observed
meson, and derive an approximate relation between the
quark-antiquark FFs to a meson and the square of distri-
bution amplitudes of the same meson. In Sec. III, we show
our numerical estimation of the size of the power correc-
tions in comparison to the size of the LP contribution,
quantitatively. Contributions from channels other than the
direct production one are discussed in Sec. IV. Finally,
conclusions and outlooks are given in Sec. V.

II. NEXT-TO-LEADING POWER
CONTRIBUTION TO SIDIS

With effectively one large momentum scale, PhT ∼Q ≫
ΛQCD observed, SIDIS cross section with a large PhT
hadron could be factorized in terms of the QCD collinear
factorization approach. With two identified hadrons, the
initial-state hadron and the observed final-state hadron,
only the leading and the first subleading power contribu-
tions to the SIDIS cross sections, in terms of the inverse
power expansion of the observed large momentum transfer,
are perturbatively factorizable, similar to the collinear
factorization for inclusive Drell-Yan cross sections [27].
In general, the subleading power contributions are much
smaller comparing to the LP contributions because of the
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FIG. 2. Sample partonic channels for leading power (left) and
next-to-leading power (right) contributions to lepton-hadron
semi-inclusive DIS.

POWER CORRECTIONS IN SEMI-INCLUSIVE DEEP … PHYS. REV. D 101, 014008 (2020)

014008-3



power suppression of the observed large momentum
scale for the short-distance hard part, unless they can get
enhancement from the hadronization [21–23], sufficient
corrections to a steeply falling spectrum near the edge of
available phase space [28,29], or the multiple scattering in a
large size and/or dense medium [30–32]. Here, we consider
possible enhancements from both the hadronization and the
steep falling spectrum near the edge of phase space.

A. The factorization formalism

With the approximation of one-photon exchange, as
shown in Fig. 1, the leptonic contributions to the SIDIS
cross section is well understood and well defined. In the
rest of this paper, we present our calculations in terms of
scattering of a virtual photon γ� of momentum q withQ2 ¼
−q2 > 0 on a hadron A of momentum P to produce a
charged hadron h of momentum Ph: γ�ðqÞ þ AðPÞ →
hðPhÞ þ X. The corresponding formalisms can also
cover the situation of photoproduction with a real photon
Q2 ¼ 0. When the photon is either deep virtual with Q2 ¼
−q2 ∼ P2

hT
or real with Q2 ¼ 0, the scattering cross section

can be expressed in terms of a collinearly factorized
formalism [22,27],

dσγ�þA→hþX

d3Ph=ð2EhÞ
≈
X
a;f

Z
1

xB

dx
x

Z
1

zh

dz
z2

ϕa=PðxÞDf→hðzÞ

×
dσ̂γ�þaðlÞ→fðpÞþX

d3p=ð2EpÞ

þ
X

a;½ff0ðκÞ�

Z
1

xB

dx
x

Z
1

zh

dz
z2

Z
1

0

dξdζϕa=PðxÞ

×D½ff0ðκÞ�→hðz;ξ;ζÞ
dσ̂γ�þaðlÞ→½ff0ðκÞ�ðp;ξ;ζÞþX

d3p=ð2EpÞ
;

ð3Þ

where a, f (and f0) run over all parton flavors: q, q̄, and g, κ
runs over all spin and color states of ½ff0�, ϕa=PðxÞ and
Df→hðzÞ are defined above as PDFs and FFs, respectively,
with l ¼ xP and Ph ¼ zp, and D½ff0ðκÞ�→hðz; ξ; ζÞ are
double-parton FFs, as sketched in Fig. 3, with the momen-
tum fraction of the pair carried by the observed

hadron, z ¼ Ph=p, and ξ and ζ being relative momentum
fractions of the two partons in the amplitude and its
complex conjugate, respectively [21–23]. The factorization
scale μ in Eq. (3) is suppressed. The σ̂γ�þaðlÞ→fðpÞþX and
σ̂γ�þaðlÞ→½ff0ðκÞ�ðp;ξ;ζÞþX in Eq. (3), respectively, are pertur-
batively calculable short-distance hard parts for producing
a single parton of flavor f and a pair of partons of flavor
combination ½ff0�, while the hard part for producing a pair
partons is suppressed by 1=P2

hT
in comparison with the hard

part for producing a single parton at the same momentum
p. In Eq. (3), we neglected other NLP terms proportional to
twist-4 parton distributions and the same single parton FFs,

ϕð4Þ
½ab�=Pðx; x0; x00Þ ⊗ Df→hðzÞ, since corresponding partonic

hard part is powerly suppressed comparing the LP hard
part, while no potential enhancement from the hadroniza-
tion since the same FFs are used. There could be additional
contributions to the factorized formalism in Eq. (3), and
they are typically suppressed by even higher power in
1=P2

hT
and/or 1=Q2. These contributions are not expected to

be factorizable. The partonic short-distance hard parts in
Eq. (3) at the leading order in power of strong coupling
constant αs are given by

Epdσ̂γ�þaðlÞ→fðpÞþX

d3p
¼ jM̄γ�þaðlÞ→fðpÞþXj2

2ðŝþQ2Þ
×

1

2ð2πÞ2 δðŝþ t̂þ ûþQ2Þ; ð4Þ

Epdσ̂γ�þaðlÞ→½ff0�ðpÞþX

d3p
¼ jM̄γ�þaðlÞ→½ff0ðκÞ�ðpÞþXj2

2ðŝþQ2Þ
×

1

2ð2πÞ2 δðŝþ t̂þ ûþQ2Þ;

ð5Þ

where parton level Mandelstam variables are defined as

ŝ ¼ ðqþ lÞ2; t̂ ¼ ðq − pÞ2; û ¼ ðl − pÞ2; ð6Þ

with the constraint

ŝþ t̂þ û ¼ q2 ¼ −Q2 ð7Þ

imposed by the phase space δ-function of the massless
two-particle final-state and the momentum conservation
of the 2 → 2 partonic subprocess. In Eqs. (4) and (5),
the denominator 2ðŝþQ2Þ ¼ 2Eγ�2Eajvγ� − vaj is the
flux factor of the partonic scattering process, and
jM̄γ�þaðlÞ→fðpÞþXj2 and jM̄γ�þaðlÞ→½ff0ðκÞ�ðpÞþXj2, respec-
tively, are squared LP and NLP partonic scattering
amplitudes with initial-state spin and color averaged and
final-state spin and color summed.

P hPh

FIG. 3. Sketch of the fragmentation function for a quark-
antiquark pair of momentum p to fragment to a hadron of
momentum Ph.
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With one large momentum transfer, Q2 or P2
hT
, in the

scattering involving two identified hadrons, the collinear
factorization of the leading power term and the first
subleading power term, which correspond to the first
and second terms on the right-hand side of Eq. (3),
respectively, is valid to the same level of arguments (or
proof) in QCD perturbation theory [22,27]. However, our
knowledge of the second term in Eq. (3), or power
corrections in general, is much less than the first term,
while the second term could help reveal additional and
richer QCD dynamics, such as color entanglement and
parton-parton correlations. The new and precise data from
COMPASS and future experiments at Jefferson Lab, and
the apparent discrepancy from the LP predictions could
provide new opportunities to study and explore the rich
QCD dynamics at the NLP, while its exploratory study was
initiated over 30 years ago.

B. Power suppressed partonic hard parts

The theoretical prediction (or an estimation) for the size
of power corrections in Eq. (3) relies on our ability to
calculate the short-distance hard parts to produce a pair of
partons and our knowledge of the nonperturbative double-
parton FFs. For getting the most enhancement from the
pair’s hadronization to compensate the power suppression
of the partonic hard parts to produce the pair at NLP, we
calculate the partonic hard parts from subprocesses that can
produce a quark-antiquark pair with the same valence quark
flavor combination as the produced charged meson.
At the lowest order in power of αs, we need to consider

the subprocess: γ� þ q → ½qq̄0ðκÞ� þ q0, with correspond-
ing Feynman diagrams given in Fig. 4 where the quark
and antiquark flavors q and q̄0 should match the valence
flavors of the measured meson. The color state of the
produced quark-antiquark pair can be either a singlet “½1�”
or an octet “½8�” state, and corresponding color projection
operators are respectively proportional to δab and tAab,
where a; b ¼ 1; 2;…; Nc are color indices for the quark

and the antiquark, and tAab is the generator of the SUðNcÞ
color group in the fundamental representation with A ¼
1; 2;…; N2

c − 1 and Nc ¼ 3 in QCD. In this paper, we use
the same color projection operators for the hard part as done
in Refs. [22,23],

C̃½1�ba;dc ¼ δbaδdc; ð8Þ

C̃½8�ba;dc ¼
X
A

ffiffiffi
2

p
tAba

ffiffiffi
2

p
tAdc; ð9Þ

where d, c are color indices for the quark-antiquark pair in
the complex-conjugate of the scattering amplitudes. The
corresponding color projection operators for the quark-
antiquark FFs in Fig. 3 are [22,23]

C½1�ab;cd ¼
1

N2
c
δabδcd; ð10Þ

C½8�ab;cd ¼
1

N2
c − 1

X
A

ffiffiffi
2

p
tAab

ffiffiffi
2

p
tAcd: ð11Þ

They satisfy the normalization condition,

X
abcd

C̃Iba;dcC
J
ab;cd ¼ δIJ; ð12Þ

where I; J ¼ ½1�; ½8�.
The spin projection operators for the four spin states

of the quark-antiquark pair can be given by ðγ · pÞij,
ðγ · pγ5Þij, and ðγ · pγα⊥Þij with α ¼ 1, 2, or their linear
combinations. They could be referred to as the vector (v),
axial-vector (a), and tensor (t) projections. Following
Refs. [22,23], we choose the spin projection operators
for the hard part as

P̃ðvÞðpÞji;lk ¼ ðγ · pÞjiðγ · pÞlk; ð13Þ

P̃ðaÞðpÞji;lk ¼ ðγ · pγ5Þjiðγ · pγ5Þlk; ð14Þ

P̃ðtÞðpÞji;lk ¼
X
α¼1;2

ðγ · pγα⊥Þjiðγ · pγα⊥Þlk; ð15Þ

and corresponding spin projection operators for the quark-
antiquark FFs to be

PðvÞðpÞij;kl ¼
1

4p · n
ðγ · nÞij

1

4p · n
ðγ · nÞkl; ð16Þ

PðaÞðpÞij;kl ¼
1

4p · n
ðγ · nγ5Þij

1

4p · n
ðγ · nγ5Þkl; ð17Þ

PðtÞðpÞij;kl ¼
1

2

X
α¼1;2

1

4p · n
ðγ · nγα⊥Þij

1

4p · n
ðγ · nγα⊥Þkl;

ð18Þ

(a)

q

l

l+q  p

-(1- )p

k

(b)

q

l

 p

-(1- )p

k

 p-q

(c)

q

l

k

 p

-(1- )p

l-p

(d)

q

l

k

 p

-(1- )p
q-(1- )p

FIG. 4. Leading order Feynman diagrams for the scattering
amplitude of partonic subprocess: γ� þ q → ½qq̄0ðκÞ� þ q0.
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where n is a null vector with n2 ¼ 0, defined to be
conjugated to the momentum of the quark-antiquark pair
p, such that p · n is the only nonvanishing component of pμ

if p2 ¼ 0. As required, the spin projection operators satisfy
the normalization condition,

X
ijkl

P̃ðsÞ
ji;lkP

ðs0Þ
ij;kl ¼ δss

0
; ð19Þ

where s; s0 ¼ v, a, t.
The spin state of a virtual photon of momentum q can be

either transversely polarized with the polarization vectors
ϵμ� or longitudinally polarized with the polarization vector
ϵμL. The transverse spin polarization tensor is defined as

dμνðqÞ ¼
X
λ¼�

ϵ�μλ ϵνλ ¼ −gμν þ vμv̄ν þ v̄μvν; ð20Þ

and the longitudinal spin polarization tensor is given by

KμνðqÞ ¼ ϵ�μL ϵνL ¼ 1

−q2
½ðq · v̄Þ2vμvν þ ðq · vÞ2v̄μv̄ν�

þ 1

2
ðvμv̄ν þ v̄μvνÞ; ð21Þ

where v and v̄ are two null vectors introduced to pick
the “þ” and “−” light-cone components of the photon
momentum q with v2 ¼ v̄2 ¼ 0, v · v̄ ¼ 1, and qμ ¼
ðq · vÞv̄μ þ ðq · v̄Þvμ.
The color factors for all the squares of diagrams in Fig. 4

are the same for each color projection:

C½1� ¼ 1

Nc

X
AB

Tr½tAtAtBtB� ¼ ðN2
c − 1Þ2
4N2

c
; ð22Þ

C½8� ¼ 1

Nc

X
ABC

2Tr½tAtCtAtBtCtB� ¼ N2
c − 1

4N3
c

; ð23Þ

where the factor 1=Nc is from the average of initial state
quark colors. Thus we can factor it out from amplitude
squares of the diagrams in Fig. 4.
Now, we calculate the invariant scattering amplitude

squares from the diagrams in Fig. 4 for the production of a
quark-antiquark pair in the axial-vector spin state. For
example, the invariant amplitude square of the diagram
(a) in Fig. 4 with transversely polarized photon is given by

jM̄a†a
T j2 ¼ 1

2
Ce2e2qg4sTr½=lγμð=lþ =qÞγα=pγ5γβð=lþ =q − =pÞγσ=pγ5γρð=lþ =qÞγν�

×
1

ðlþ qÞ2
1

ðlþ qÞ2
−gαβ

ðlþ q − ζpÞ2
−gρσ

ðlþ q − ξpÞ2
dμνðqÞ

2
; ð24Þ

where the factor 1=2 is from the spin average of the initial state quark, C ¼ C½1� (or C½8�) is the color factor, dμνðqÞ=2
projects out one transversely polarized state of the colliding photon of momentum q, and Feynman gauge was used for the
gluon propagators. For calculating contributions from the scattering of a longitudinally polarized virtual photon, one only
needs to replace dμνðqÞ=2 above by KμνðqÞ defined in Eq. (21). We obtain the invariant amplitude squares of all diagrams in
Fig. 4 with a transversely polarized photon and the produced quark-antiquark pair in an axial-vector spin state,

jM̄a†aþa†bþb†aþb†b
T j2 ¼ 4CKe2q

�
−
ðt̂þ 2ûÞAξ̄Aζ̄ þ û2ðt̂ − ξ̄Aζ̄ − ζ̄Aξ̄Þ

ξ̄ ζ̄ ŝ2Aξ̄Aζ̄

þ 2û3ðŝþ t̂þ ûÞ
ŝðt̂þ ûÞ2Aξ̄Aζ̄

�
; ð25Þ

jM̄a†cþa†dþb†cþb†d
T j2 ¼ 4CKeqeq0

�ðt̂þ 2ûÞAξAζ̄ þ BξAζ̄ − ζ̄û2Aξ

ξζ̄ ŝ û AξAζ̄

−
2ûðŝþ t̂þ ûÞðt̂þ ξûÞ

ξðt̂þ ûÞ2AξAζ̄

�
; ð26Þ

jM̄c†aþc†bþd†aþd†b
T j2 ¼ 4CKeqeq0

�ðt̂þ 2ûÞAξ̄Aζ þ BζAξ̄ − ξ̄û2Aζ

ξ̄ζŝ û Aξ̄Aζ
−
2ûðŝþ t̂þ ûÞðt̂þ ζûÞ

ζðt̂þ ûÞ2Aξ̄Aζ

�
; ð27Þ

jM̄c†cþc†dþd†cþd†d
T j2 ¼ 4CKe2q0

�
−
ðt̂þ 2ûÞAξAζ þ BξAζ þ BζAξ þ ŝ2t̂

ξζû2AξAζ
þ 2ŝðŝþ t̂þ ûÞðt̂þ ξûÞðt̂þ ζûÞ

ξζûðt̂þ ûÞ2AξAζ

�
; ð28Þ

where the parameters are defined as

K ¼ e2g4s ¼ ð4πÞ3αemα2s ; ð29Þ
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Aη ¼ t̂þ ηðŝþ ûÞ; ð30Þ

Bη ¼ ŝ t̂−ûðt̂þ ηûÞ; ð31Þ

with η ¼ ξ; ζ; ξ̄; ζ̄ and ξ̄ ¼ 1 − ξ, ζ̄ ¼ 1 − ζ, respectively.
Similarly, for a longitudinally polarized photon, we have

jM̄a†aþa†bþb†aþb†b
L j2 ¼ 16CKe2qû3ðŝþ t̂þ ûÞ

ŝðt̂þ ûÞ2Aξ̄Aζ̄

; ð32Þ

jM̄a†cþa†dþb†cþb†d
L j2 ¼ −16CKeqeq0 ûðt̂þ ξûÞðŝþ t̂þ ûÞ

ξðt̂þ ûÞ2AξAζ̄

;

ð33Þ

jM̄c†aþc†bþd†aþd†b
L j2 ¼ −16CKeqeq0 ûðt̂þ ζûÞðŝþ t̂þ ûÞ

ζðt̂þ ûÞ2Aξ̄Aζ
;

ð34Þ

jM̄c†cþc†dþd†cþd†d
L j2

¼
16CKe2q0 ŝðt̂þ ξûÞðt̂þ ζûÞðŝþ t̂þ ûÞ

ξζûðt̂þ ûÞ2AξAζ
; ð35Þ

where all parameters are the same as those defined in
Eqs. (29)–(31).
By replacing the axial-vector spin projection for the

produced quark-antiquark pair by a vector spin projection,
we find that the invariant amplitude squares of all diagrams
in Fig. 4 have the same results as those from Eqs. (25) to
(35). This is easy to understand at this order of calculation
since we neglect the quark mass and the two γ5 in the spin
trace, as those in Eq. (25), can be combined into γ25 ¼ 1.

C. The quark-antiquark fragmentation function

In order to quantitatively estimate the size of the power
corrections to the semi-inclusive production of large PhT
hadrons, in terms of the factorization approach in Eq. (3),
we need the knowledge of quark-antiquark FFs in addition
to the calculation of perturbative partonic hard parts. For
getting the most enhancement from the fragmentation of
the quark-antiquark pair, we focus on the production
channels in which the flavor of the produced quark-
antiquark pair ½ff0� matches the flavor combination of
the valence components, ½qq̄0�, of the produced meson h.
As introduced in Ref. [22], the quark-antiquark FFs
D½qq̄0ðκÞ�→hðz; ξ; ζÞ are defined as

D½qq̄0ðκÞ�→hðz; ξ; ζÞ ¼
X
X

Z
Pþ
h dy

−

2π

Z
Pþ
h dy

−
1

2π

Z
Pþ
h dy

−
2

2π
× eið1−ζÞ

Pþ
h
z y

−
1 e−i

Pþ
h
z y

−
e−ið1−ξÞ

Pþ
h
z y

−
2

× CPh0jq̄0ðy−1 Þ½Φnðy−1 Þ�†½Φnð0Þ�qð0ÞjhðPhÞXi
× hhðPhÞXjq̄ðy−Þ½Φnðy−Þ�†½Φnðy− þ y−2 Þ�q0ðy− þ y−2 Þj0i; ð36Þ

where C and P are respectively the color and spin
projection operators defined in Sec. II B with color and
spin indices suppressed. The Φnðy−Þ in Eq. (36) is the
gauge link in the fundamental representation of QCD color
group, given by

Φnðy−Þ ¼ P exp

�
−igs

Z
∞

y−
dλn ·GAðλnÞtA

�
; ð37Þ

where P and GA represent the path ordering and the gluon
field, respectively, and tA is the generator of SU(3) color
with color index A, as introduced in Sec. II B.
Like the single-parton FFs, the quark-antiquark FFs are

nonperturbative and cannot be calculated within the QCD
perturbation theory, while their factorization scale depend-
ence could be calculated if the variation is within the
perturbative regime [22]. In order to estimate the size of the
power corrections, quantitatively, we make the following
approximation. We assume that at an input scale μ0, the
quark-antiquark pair FFs are dominated by the final-state
in which there is no additional hadron produced other than

the observed meson, which mimics the physical condition
when the observed meson is produced near the edge of
phase space with very low multiplicity. That is, the
hadronic final-state in Eq. (36) is approximated as
jhðPhÞXi ≈ jhðPhÞi. Under this approximation, as shown
below, we can relate the quark-antiquark FFs to the square
of meson distribution amplitude, to help us to estimate the
size (possibly a lower limit) of the power corrections
quantitatively by using the better known knowledge on
the meson distribution amplitudes.
For pseudoscalar mesons, e.g., pions and kaons, the

distribution amplitude ϕhðx; μÞ has the following matrix
element definition,

h0jq̄a;iðy− þ y−1 Þðγ · nγ5ÞijUabðy− þ y−1 ; y
−Þqb;jðy−ÞjhðPhÞi

¼ iPþ
h fh

Z
1

0

dxe−ixP
þ
h y

−−ið1−xÞPþ
h ðy−þy−

1
Þϕhðx; μÞ

¼ iPþ
h fhe

−iPþ
h y

−
Z

1

0

dxe−ið1−xÞP
þ
h y

−
1ϕhðx; μÞ; ð38Þ
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where the contraction of color and spin indices are explicitly shown, Uabðy−2 ; y−1 Þ ¼ ½Φnðy−2 Þ�†ac½Φnðy−1 Þ�cb, fh is the decay
constant of the meson h, and ϕhðx; μÞ is the meson’s distribution amplitude.
From the definition in Eq. (36), we can rewrite the double-parton FFs of a quark-antiquark pair with color singlet and

axial-vector projections at the input scale μ0 as follows,

D½qq̄0ð1aÞ�ðz; ξ; ζ; μ0Þ ≈
Z

Pþ
h dy

−

2π

Z
Pþ
h dy

−
1

2π

Z
Pþ
h dy

−
2

2π
eið1−ζÞ

Pþ
h
z y

−
1 e−i

Pþ
h
z y

−
e−ið1−ξÞ

Pþ
h
z y

−
2

×
1

4NcP
þ
h
h0jq̄0c0;kðy−1 Þðγ · nγ5ÞklUc0d0 ðy−1 ; 0Þqd0;lð0ÞjhðPhÞi

×
1

4NcP
þ
h
hhðPhÞjq̄a0;iðy−Þðγ · nγ5ÞijUa0b0 ðy−; y− þ y−2 Þq0b0;jðy− þ y−2 Þj0i ð39Þ

¼ 1

16N2
c

Z
Pþ
h dy

−

2π

Z
Pþ
h dy

−
1

2π

Z
Pþ
h dy

−
2

2π
eið1−ζÞ

Pþ
h
z y

−
1 e−i

Pþ
h
z y

−
e−ið1−ξÞ

Pþ
h
z y

−
2

× f2he
iPþ

h y
−
Z

1

0

dζ0e−ið1−ζ
0ÞPþ

h y
−
1ϕhðζ0; μ0Þ

Z
1

0

dξ0eið1−ξ
0ÞPþ

h y
−
2ϕhðξ0; μ0Þ

¼ f2h
16N2

c
zδð1 − zÞϕhðζ; μ0Þϕhðξ; μ0Þ: ð40Þ

In deriving the above result, the relation in Eq. (38)
was used. Under this extreme approximation, jhðPhÞXi≈
jhðPhÞi, the nonperturbative quark-antiquark pair FFs can
be expressed in terms of a product of two nonperturbative
meson distribution amplitudes ϕhðζ; μ0Þ and ϕhðξ; μ0Þ,
which have been better studied than the quark-antiquark
pair FFs. We will come back to discuss the corrections to
our extreme approximation in Sec. IV.

III. COMPARISON BETWEEN LP AND
NLP CONTRIBUTIONS

In order to understand the relevance and potential impact
of the NLP corrections, we evaluate and compare the size of
the LP and NLP contributions to the SIDIS production of a
charged meson at large transverse momentum, numerically,
in this section.
The differential multiplicities for charged hadrons in

lepton DIS off a deuteron target were recently measured by
the COMPASS Collaboration [11]. The differential multi-
plicity is defined as the ratio between the SIDIS and the
inclusive DIS differential cross sections:

d2Mh

dzhdP2
hT

¼
�

d4σSIDISh

dxBdQ2dzhdP2
hT

���
d2σDIS

dxBdQ2

�
; ð41Þ

where xB and zh are defined in Eq. (2), and PhT is defined in
the photon-target frame. Since the produced hadrons are
dominated by pions, we only calculate SIDIS cross sections
for charged pions, π� in this section, instead of the sum
of all long-lived charged hadrons, h�, as included in the
COMPASS data.

Since the purpose of this paper is to show the relevance
and potential impact of NLP contributions to warrant a
urgent and more detailed study of the NLP power correc-
tions to the low multiplicity observables in SIDIS, instead
of a precise fitting to the data, we perform straightforward
leading order calculations in power of αs for both LP
and NLP contributions to the differential multiplicity
defined in Eq. (41). Since the inclusive DIS cross section
in the denominator is dominated by the low PhT region and
consistent with the LP contribution alone, we include both
LP and NLP contributions to the SIDIS cross section in the
numerator while having the LP contribution to the inclusive
DIS cross section in the denominator in our numerical
evaluation of the differential multiplicity below. For PDFs,
we use CT14 PDF set in our numerical evaluation [33].
For single-parton FFs in the LP contribution, we use the
NNFF1.0 FF sets [34]. For the NLP contribution, we only
consider the channels with produced quark-antiquark pair
matching the valence flavors in the color singlet and
axial-vector spin projection. In addition, we approximate,
jhðPhÞXi ≈ jhðPhÞi, in the definition of quark-antiquark
FFs, as discussed in Sec. II C, and express the quark-
antiquark FFs in terms of two distribution amplitudes, as in
Eq. (40). For the distribution amplitude, we adopt those
from Ref. [35]. Our numerical results are shown in Fig. 5
along with COMPASS data [11]. Consistent with what was
found in Refs. [17,18], the LP contribution alone (the
dotted curves) is about one order of magnitude smaller than
the data. While adding next-to-leading order corrections to
the LP contribution does not help much [18], it is clear from
Fig. 5 that the NLP contribution (the difference between the
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solid and dotted curves) is large, and could be as large as a
factor of five of the LP contribution when zh and PhT
are large, near the edge of phase space. Therefore, in this
regime where the multiplicity is low and there is not much
phase space for radiation (into light hadrons), it is very
important to include the NLP corrections in the QCD global
fitting for extracting PDFs and FFs. It is also an opportunity
for studying QCD power corrections and the formation or
emergence of hadrons from perturbatively produced quarks
and gluons.

IV. DISCUSSIONS AND FUTURE
OPPORTUNITIES

As emphasized earlier, it is not our goal of this paper to
fit the COMPASS data to extract the NLP contributions,
since the precise LP and NLP contributions to one physical
observable, or more precisely, to the differential multiplic-
ity in Eq. (41), depend on more than one unknown,
nonperturbative function. In principle, we need theoretical
calculations for more physical observables, which are also
sensitive to the same quark-antiquark FFs, and correspond-
ing data to perform QCD global analyses to extract
both PDFs and FFs, as well as these new quark-antiquark
FFs, which could provide much more insights to the color
neutralization and formation of light hadrons, complimen-
tary to what we have learned from the LP single-parton
FFs. The predictive power of this QCD factorization
approach beyond the LP is our ability to calculate the
short-distance hard parts and the universality of these new
multiparton FFs.

In this section, we will discuss the source of possible
contributions to these new quark-antiquark FFs to gain
some insights into their potential structure and functional
forms, and to identify new physical observables that could
also be sensitive to the same quark-antiquark FFs, so that
we could test the universality of these new multiparton FFs
and QCD dynamics beyond the LP contributions in the
future work.
The quark-antiquark FFs are nonperturbative functions

and cannot be calculated within QCD perturbation theory.
However, like PDFs and FFs, we might be able to gain
some insights into these nonperturbative functions’ asymp-
totic behavior as the variables of these functions approach
to an extreme limit, such as z → 1 (or x → 1 or 0 in the
case of PDFs). With the operator definition in Eq. (36), in
principle, we could represent these quark-antiquark FFs in
terms of Feynman diagrams—a Feynman diagram repre-
sentation. For example, the FFs for a ud̄ pair to fragment
into a πþ could be represented by an infinite number
of Feynman diagrams, as shown in Fig. 6. The first
diagram on the right of the “≈” sign is effectively the
lowest order diagram in power of αs in the approximation,
jhðPhÞXi ≈ jhðPhÞi, which led to the approximated expres-
sion of D½qq̄0ð1aÞ�ðz; ξ; ζ; μ0Þ in Eq. (40). With additional
radiation of gluons, other diagrams in Fig. 6 could also
contribute to D½qq̄0ð1aÞ�ðz; ξ; ζ; μ0Þ, but, cannot be propor-
tional to δð1 − zÞ, instead, proportional to ð1 − zÞn as
z → 1. Although the power of n is a nonperturbative
number and depends on the scale at which the FFs are
measured, the power n should be positive that leads to a
powerlike suppression to the NLP contribution from these
diagrams, similar to the suppression from LP single parton
FFs when z → 1 as discussed earlier in this paper. In
addition, a quark-gluon pair could also fragment into a
meson as illustrated by Feynman diagrams in Fig. 7, which
is suppressed by the power of 1 − z as z → 1. In general, in
a confining theory, like QCD, the neutralization of color of

u u

+ +

d d u u

+ +

d d

u u

+ +

d d u u

+ +

d
d

FIG. 6. Feynman diagram representation of the FFs for a pair
of ud̄ to fragment into a πþ meson.

FIG. 5. Comparison of COMPASS data [11] on the differential
multiplicity with LO contribution from both LP and NLP
contributions.
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these radiated gluons (and/or quarks) requires them to turn
into physical hadrons in the final-state, such as the pions
with the lightest mass, which strongly suppresses their
contributions to the physical cross sections near the edge of
phase space (or those with a very small multiplicity).
Although the factorized NLP contribution to the SIDIS

cross sections in Eq. (3) is formally suppressed by the
hard scale PhT , the impact of the NLP contribution to the
physical cross sections does not vanish as the power of
1=PhT [22,36,37]. With the factorization formula in Eq. (3),
which is a factorization of perturbative collinear singular-
ities of partonic scattering, we must modify the DGLAP
evolution of LP single-parton FFs to be consistent to the
collinear factorization accuracy at the NLP. Following the
discussion in Ref. [22], we can derive the evolution
equations for both the single-parton and double-parton
FFs from the factorization formalism in Eq. (3). Since a
physical observable should be independent of the choice of
the factorization scale, we have

d
d ln μ2

ðDf→h ⊗ dσ̂γð�ÞþA→fþX

þD½ff0ðκÞ�→h ⊗ dσ̂γð�ÞþA→½ff0ðκÞ�þXÞ ¼ 0; ð42Þ

where⊗ represents the convolution of momentum fractions
as defined in Eq. (3). From Eq. (42), we obtain a closed set
of evolution equations for the FFs [22]

∂
∂ ln μ2D½ff0ðκÞ�→h ¼

X
½ff0ðκ0Þ�

D½ff0ðκ0Þ�→h ⊗ Γ½ff0ðκ0Þ�→½ff0ðκ0Þ�;

ð43Þ

and

∂
∂ ln μ2Df→h ¼

X
f0

Df→h ⊗ γf→f0

þ 1

μ2
X

½ff0ðκ0Þ�
D½ff0ðκ0Þ�→h ⊗ γ̃f→½ff0ðκ0Þ�; ð44Þ

where Γ½ffðκ0Þ�→½ff0ðκ0Þ� is the evolution kernel for resumming
logarithmic collinear contribution to the double-parton FFs,

γf→f0 is the normal LP DGLAP-type evolution kernel for
resumming logarithmic collinear contribution to the one-
parton FFs, and γ̃f→½ff0ðκ0Þ� is a new-type of evolution kernel
for resumming the collinear contributions from the dia-
grams such as those in Fig. 8 to the one-parton FFs.
Although the second terms on the right-hand side of
Eq. (44) is power suppressed by 1=μ2, its contribution to
the physical observables, such as the SIDIS cross section in
Eq. (3), does not vanish as 1=PhT since it contributes to the
slope of Df→h, not the Df→h itself [22,36,37]. That is, in
order to understand the true impact of the NLP contribution
to the SIDIS, we need to do a simultaneous QCD global
fitting of PDFs and FFs [38], together with double-parton
FFs if one wants to include the COMPASS data or other
data near the edge of phase space.
To avoid the difficulty of having too many double-parton

FFs, as the leading approximation, it might be practical for
now to make the “valence quark” approximation to keep the
quark-antiquark flavors—½ff0ðκÞ� in both the cross section
calculations and evolution equations to be the same as the
valence quark flavors of the observed meson. That is, for the
double-parton fragmentation functions, we ignore the con-
tributions from the double-parton FFs in Fig. 7, while
keeping the contributions from the diagrams in Fig. 6.
To close this section, we estimate the NLP contribution to

charged pion and kaon productions in upcoming SIDIS
experiments at Jefferson Lab (JLab), which have much lower
collision energies thanwhat COMPASS had, and thus, should
havemuch less highmultiplicity events. Therefore, the impact
of the NLP contribution at JLab kinematics could be more
significant than that at COMPASS kinematics. In Fig. 9, we
present our calculated differential multiplicities, defined in
Eq. (41), for both pion and kaon production in SIDIS
experiments with a typical kinematics at JLab. For the kaon
distribution amplitude, we adopt those from Ref. [39]. We
show the LP (dashed), NLP (dot-dashed) and LPþ NLP
(solid) contributions, respectively. As expected, the NLP term
dominates large-PhT region, due to the strong (1 − z)-power
suppression from the single-parton FFs to the LP contribution,
even though the NLP contribution is formally suppressed by
extra power of 1=PhT . To make this point even more
quantitative and transparent, we plot the fractional contribu-
tion to the differential multiplicity from the LP (dashed) and
NLP (dot-dashed) in the lower panels, respectively.

u u

+ +

u ud

+ +

FIG. 8. Feynman diagram representation of the single-parton
FFs to a πþ meson via an intermediate ud̄ pair.

u u

+ +

u ud

+ +

FIG. 7. Feynman diagram representation of the FFs for a ug
pair to fragment into a πþ meson.
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In addition to the PhT dependence, the NLP contribution
has different rapidity distributions from that of the LP
contribution. In Fig. 10, we show the LP, NLP and
LPþ NLP contributions separately as a function of the
rapidity yh of the measured charged meson. The rapidity
yh is defined in the photon-target collinear frame with
virtual photon momentum q ¼ ð−Q=

ffiffiffi
2

p
; Q=

ffiffiffi
2

p
; 0⊥Þ. As

expected, the NLP contribution favors more negative
rapidity, which corresponds to larger zh regime where
the LP contribution is suppressed by powers of (1 − z)
from its single-parton FFs. Because the phase space for the
produced partons to radiate to light hadrons is smaller at
JLab energies, the NLP contribution is sizable, about 20%,
even in the midrapidity region comparing with the LP
contribution. Therefore, more detailed studies of the NLP
corrections are urgent for upcoming SIDIS experiments
at JLab.

V. SUMMARY AND CONCLUSIONS

We have presented the first calculations of power
corrections to charged meson productions in SIDIS at
large transverse momentum, PhT ∼Q ≫ ΛQCD, in terms
of the QCD collinear factorization formalism. We found
that the power corrections are very important for the events
near the edge of phase space where the hadron multiplicity
is low, and zh → 1 and PhT is large.

By expanding the SIDIS cross section in terms of the
inverse power of the observed large momentum scale, 1=PhT
or 1=Q, we perturbatively factorized the leading and the first
subleading power contributions into short-distance hard parts
and corresponding nonperturbative PDFs and FFs. The first
subleading power (or the NLP) contributions are formally
suppressed by powers of the large momentum scale in the
hard part comparing to the LP contributions, but, as we have
shown in this paper, the net size of its contribution to the cross
section is not necessarily smaller than the formal LP con-
tribution, since the hadronization for the produced quark-
antiquark pair might be more effective when the pair has the
right quantum number to match to the measured meson. We
demonstrated that contributions from such more direct
production channels are very important for cross sections
near the edge of phase spacewhere events are typically with a
low multiplicity. When the phase space for parton shower is
closing out at the edge of the kinematic limit, it makes much
harder for the fragmenting quark of the LP contribution to
neutralize its color, which is consistent with the (1 − z)-type
power suppression from the single-parton FFs when z → 1.
On the other hand, for the NLP contribution, the leading
transition for theproduced quark-antiquark pair to ameasured
meson could be proportional to δð1 − zÞ without the phase
space suppression, which could helpmake up the 1=PhT -type
suppression to produce the quark-antiquark pair at the NLP
instead of a single fragmenting parton at the LP.
To quantitatively estimate the size of the NLP contribu-

tions, possibly its lower limit, we performed a calculation
considering only the partonic subprocesses that produce a
quark-antiquark pair with the same flavor combination of
the valence constituents of the detected meson, because
these subprocesses could have the best chance to compete
with LP channels. From the operator definition of the quark-
antiquark FFs, and an approximation for the hadronic final-
state of the FFs, jhðPhÞXi ≈ jhðPhÞi, we were able to
express the unknown quark-antiquark FFs to a charged
meson in terms of this meson’s distribution amplitudes,
which are better studied. With the perturbatively calculated
LO hard parts and the approximated quark-antiquark FFs,
we were able to present numerically the approximate size of
the NLP contributions, and in particular, to demonstrate
quantitatively how important the NLP contributions are in
comparison with the LP contributions for the COMPASS
kinematics, as well as the energy regime at JLab. At large zh
and PhT , we found that the NLP contribution could be as
large as five times of the LP contribution. Although the
purpose of this paper is not to fit COMPASS data, our
finding ensures the importance to take into account NLP
corrections in the QCD global analysis if the COMPASS
data or other data near the edge of phase space are going to
be included in the analyses. Therefore, it is urgent to have
more detailed studies on the NLP corrections.
The new double-parton FFs could provide more insights

to the color neutralization and the formation of light

FIG. 10. Rapidity distributions of LP and NLP contributions
at JLab kinematics: Ebeam ¼ 11 GeV, Q2 ¼ 3 GeV2, xB ¼ 0.2,
and PhT ¼ 1.0 GeV.

FIG. 9. Differential multiplicities at JLab kinematics: Ebeam¼
11 GeV, Q2 ¼ 3 GeV2, xB ¼ 0.2, and zh ¼ 0.7.
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hadrons in complimentary to the knowledge we have
learned from the single-parton FFs. As nonperturbative
functions, they cannot be calculated within the QCD
perturbation theory, and a simultaneous QCD global fitting
of PDFs, single-parton FFs, and double-parton FFs,
together with more physical observables that are sensitive
to double-parton FFs is needed. The Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equation of the
single-parton FFs should also be modified consistently to
the accuracy at the NLP. Though the correction term from
the NLP is suppressed by 1=μ2 in the evolution equation, its
effect on physical observables does not vanish even at high
scales, because it contributes to the slope of FFs [22,36,37].
The predictive power of such factorization approach is the
universality of the new FFs, together with our ability to

calculate the short-distance hard parts. Upcoming experi-
ments at JLab, as well as those at the future EIC, will
provide ample opportunities to study the multiparton FFs to
investigate a new domain of QCD dynamics sensitive to
multiparton correlations.
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