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Extracting parton distribution functions (PDFs) from lattice QCD calculation of quasi-PDFs has been
actively pursued in recent years. We extend our proof of the multiplicative renormalizability of the
quasiquark operators of Ishikawa et al. [Phys Rev. D 96, 094019 (2017)] to quasigluon operators, and
demonstrated that quasigluon operators could be multiplicatively renormalized to all orders in perturbation
theory, without mixing with other operators. We find that using a gauge-invariant UV regulator is essential
for achieving this proof. With the multiplicative renormalizability of both quasiquark and quasigluon
operators, and QCD collinear factorization of hadronic matrix elements of there operators into PDFs,
extracting PDFs from lattice QCD calculated hadronic matrix elements of quasiparton operators could have
a solid theoretical foundation.
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Introduction.—The parton distribution functions (PDFs)
encode important nonperturbative information of strong
interactions. Based on QCD factorization [1], PDFs have
been successfully extracted from high-energy scattering data
with a good precision [2]. However, from both theoretical
and practical points of view, extracting PDFs from first-
principles lattice QCD (LQCD) calculations must be done
for testing the nonperturbative sector of QCD, as well as
being needed for studying partonic structure of hadrons that
could be difficult to do scattering experiments with.
Calculating PDFs in Euclidean-space LQCD directly,

if not impossible, is difficult due to the time dependence
of the operators defining PDFs [2]. A novel approach was
suggested by Ji [3], who introduced a set of LQCD-
calculable quasi-PDFs and argued that the quasi-PDFs of
hadron momentum Pz become corresponding PDFs when
Pz is boosted to infinity. A number of other approaches to
extract PDFs from LQCD calculations were also proposed
[4–8]. In Refs. [9,10], two of us proposed a QCD
factorization based general approach to calculate PDFs
in LQCD indirectly. Similar to the extraction of PDFs from
experimental data of factorizable and measurable hadronic
cross sections, we proposed to extract PDFs by the global
analysis of data generated by LQCD calculations of good
“lattice cross sections” (LCSs), which are defined as
hadronic matrix elements that satisfy (1) being calculable

in Euclidean-space LQCD, (2) being renormalizable for
ultraviolet (UV) divergences to ensure a reliable continue
limit, and (3) being factorizable to PDFs with infrared-safe
matching coefficients. It is the (3) factorization that relates
the desired PDFs to the LQCD calculable LCSs.
To extract the rich, precise, and flavor separated infor-

mation on PDFs, it is necessary to find as many good LCSs
as possible, since different flavor PDFs are likely to
contribute to the same LQCD calculated LCSs. For con-
structing good LCSs, we studied two types of operators in
terms of (1) the correlation of two gauge-dependent field
operators with proper gauge links, which we call quasi-
parton operators since they cover all operators defining
quasi-PDFs and more, and (2) the correlation of two gauge-
invariant currents. In our approach, the LQCD calculation
of each of these good LCSs in coordinate space provides
the needed information to constrain the PDFs, similar to
the role of measuring various experimental cross sections to
constrain the PDFs. For a comparison, in Ji’s proposal [3],
one focuses on reproducing PDFs by corresponding quasi-
PDFs calculated in LQCD at a large enough Pz.
For LQCD calculations, it is relatively less expensive

to calculate the type (1) operators comparing with type
(2) operators, while the renormalization of the type (2) ope-
rators is much more simpler than that of the type (1) oper-
ators. Renormalization of the type (2) operators is almost
trivial, for which one only needs to renormalize the gauge-
invariant local currents, which is well known. On the other
hand, the renormalization of the type (1) operators is
nontrivial due to the nonlocality of corresponding operators
and potential power divergences. QCD factorization of
both types of operators have been studied in Ref. [10], in
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which we found that multiplicative renormalizability of
these operators is a necessary condition for the collinear
factorization to be valid.
A lot of effort has been devoted to explore the UV

structure of the type (1) quasiquark operators [11–18].
All-order multiplicative renormalizability of quasiquark
operators has been proven using two different methods:
one relies on the auxiliary field technique [19,20], and the
other is based on diagrammatic expansion [21]. These
proofs provided a firm theoretical basis for extracting the
combination of quark distributions, such as uðxÞ − dðxÞ,
that are not sensitive to gluons from LQCD calculated
hadronic matrix elements of quasiquark operators [22–38].
The UV structure of quasigluon operators could be much

more complicated, as we will explain. We define general
bare quasigluon operators as

Oμνρσ
bg ðξÞ ¼ FμνðξÞΦðaÞðfξ; 0gÞFρσð0Þ; ð1Þ

where ΦðaÞðξ; 0Þ ¼ Pe−igs
R

1

0
ξ·AðaÞðrξÞdr is a path ordered

gauge link in adjoint representation. To be definite, we
assume ξμ along the z direction and introduce a unit vector
nμ ¼ ð0; 0; 0; 1Þ, defining v · n≡ vz for any vector vμ. Due
to the dimensional derivative operator in Fμν, superficial
power counting tells us that the vertex between gluon field
strength and gauge link could be linearly UV divergent.
By using a cutoff regularization, one-loop calculation in
Refs. [39,40] indeed shows uncanceled linear divergences
for this vertex, which would make the multiplicative
renormalization of quasigluon operators almost impossible.
Another complication comes from operator mixing via

UV renormalization. In principle, the general quasigluon
operator in Eq. (1) could have 36 independent operators
after taking into account the antisymmetry of gluon field
strength, and all of them could be mixed under renorm-
alization. In literature, quasigluon PDFs are constructed
from linear combinations of Oμνρσ

bg [3,40,41], whose
renormalization is nontrivial due to the mixing of these
operators.
In this Letter, we first perform an explicit one-loop

calculation of quasigluon operators of an asymptotic gluon
of momentum p, defined as hgðpÞjOμνρσ

bg ðξÞjgðpÞi. We use
dimensional regularization (DR) to regularize both loga-
rithmic and linear UV divergences, which respectively
appear as poles around d ¼ 4 and d ¼ 4 − 1=n at n-loop
order. We find that linear UV divergences of one-loop
correction to the gluon-gauge-link vertex are canceled
under DR, which makes the multiplicative renormalizabil-
ity of quasigluon operators a possibility. We then explore
all possible UV divergent topologies of higher order
diagrams. Using gauge invariance, we find that all linear
UV divergences from the gluon-gauge-link vertex are
canceled to all orders in perturbation theory. Then, we
find that all of the 36 independent quasigluon operators can

be multipliticatively renormalized without mixing with
any other operators. Combining with our proof for quasi-
quark operators in Ref. [21], our Letter completes the
proof of multipliticative renormalization of the quasiparton
operators.
UV divergences at one loop.—We present the relevant

one-loop Feynman diagrams for quasigluon operators of
an asymptotic gluon of momentum p in Fig. 1, where the
bubble in the diagram of Fig. 1(e) includes all one-loop
self-energy diagrams of the active gluon. For the complete
one-loop contribution, additional Feynman diagrams
are needed. Some of them are mirror diagrams of
Figs. 1(b)–1(e) and 1(g), while the rest can be obtained
by replacing external momentum p to −p in all these
Feynman amplitudes. For the following one-loop calcu-
lation, we take the linearly combined quasigluon operator
in Ref. [3] as an example, but our conclusion is true for any
of the 36 independent operators.
We choose Feynman gauge, and assume ξz to be positive

for definiteness. Figure 1(a) gives

M1a ¼
g2sμ4−dr CA

i
e−ipzξz

Z
ξz

0

dr1

Z
ξz

r1

dr2
ddl
ð2πÞd

eilzðr2−r1Þ

l2

¼UV αsCA

π
e−ipzξz

�

−
πμrξz
3 − d

þ 1

4 − d

�

; ð2Þ

where μr is a renormalization scale to compensate the mass
dimension in DR.
To understand where in this one-loop phase space the

UV divergences in Eq. (2) come from, it is instructive to
distinguish lz—the z component of the loop momentum l
from l̄μ—the other components of l, as lμ ¼ l̄μ − lznμ with
l2 ¼ l̄2 − l2z [21]. If l̄2 is constrained in a finite region in
Eq. (2), integrating lz, r1 and r2 cannot generate any UV
divergence. Furthermore, there is no UV divergence if we
do not include the region where jr2 − r1j is very small,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Some typical Feynman diagrams for quasigluon PDFs
of an asymptotic gluon of momentum p at one-loop order.
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which can be demonstrated by introducing the following
decomposition,

1

l2
¼ 1

l̄2
þ l2z
l2l̄2

; ð3Þ

where the first term is free of lz, and thus the integration
of lz gives δðr2 − r1Þ, while the second term is UV finite
under the integration of l̄. That is, the UV divergence in
Eq. (2) can only come from the region of phase space where
l̄ are in UV region while jr2 − r1j is very small. Therefore,
we conclude that, with DR, all UV divergences of Fig. 1(a)
come from a region localized in spacetime.
By decomposing both 1=l2 and ½1=ðp − lÞ2� using

Eq. (3), we obtain many terms for Figs. 1(b) and 1(c)
and found that these terms are either free of lz in
denominator, which result in δðrÞ or its derivatives, or
UV finite under the integration of l̄. Thus the UV
divergences of these two diagrams are also localized in
spacetime,

M1b¼UV
αsCA

π
e−ipzξz

�
−i
pzξz

πμrξz
3 − d

�

; ð4Þ

M1c¼UV
αsCA

π
e−ipzξz

�
i

pzξz

πμrξz
3 − d

þ 3

4

1

4 − d

�

; ð5Þ

where Fig. 1(b) has only linear UV divergence, while 1(c)
has both linear and logarithmic UV divergence.
Figures 1(d) and 1(e) have only logarithmic UV diver-

gences, which come from the region where all components
of lμ go to infinity, and, thus, is localized in spacetime. All
other diagrams in Fig. 1 are free of UV divergence, simply
because the loop cannot be localized in spacetime due to
finite ξz, same as the argument for quasiquark operators
[21]. In summary, we conclude that the UV divergences of
quasigluon operators at one loop can only be emerged
from a region localized in coordinate spacetime. For a
comparison, UV divergences of operators defining PDFs
come from a region nonlocal along the “−” light-cone
direction [21].
The linear UV divergence in Eq. (2) from Fig. 1(a) is

harmless [21,42,43]. However, the presence of linear UV
divergence in Eqs. (4) and (5) from Figs. 1(b) and 1(c),
respectively, could challenge the multiplicative renormaliz-
ability. Fortunately, we find that with DR, the linear UV
divergences from these two diagrams are canceled. On the
contrary, the linear divergences from Figs. 1(b) and 1(c) do
not cancel if one uses a cutoff regularization that breaks the
gauge symmetry [39,40]. This implies that gauge invari-
ance plays an important role to remove the linear UV
divergences that may challenge the multiplicative renor-
malizability. In the following, we will use gauge invariance
to show that all linear divergences, except that from the
self-energy of gauge links, are canceled by summing over

all contributions, and quasigluon operators could be multi-
plicatively renormalized.
UV divergences at high orders.—From the one-loop

diagrams in Fig. 1, we can generate all high order loop
diagrams by adding gluons, quark-antiquark pairs, or
ghost-antighost pairs to them. Because of the isolation
of the z component in the definition of quasiparton
operators, both three-dimensional (3D) and 4D integration
of loop momentum l̄ and l could lead to UV divergence. In
Ref. [21], we introduced the change of divergence index
Δω3 and Δω4 for the 3D and 4D integration of loop
momenta of higher order diagrams, respectively, and
showed that it is sufficient, although it is not necessary,
that quasiparton operators are renormalizable if Δω3 ≤ 0
and Δω4 ≤ 0 are satisfied for all corresponding higher
order diagrams. Based on the power counting rules derived
in Ref. [21], we find that the only case that may increase
superficial UV divergence of quasigluon operators at high
orders is when we add a gluon with both ends of it attached
to the gauge link, where the 3D integration gets Δω3 ¼ 1.
By applying the decomposition in Eq. (3) to the added
gluon’s momentum, it is straightforward to show that
dimensional regularized UV divergences at any loop level
are localized in spacetime, in the same way as the
quasiquark operators shown in Ref. [21]. As a result, we
find that Δω3 is effectively irrelevant for studying UV
divergences. Because Δω4 ≤ 0 for all cases, there are only
finite topologies of high order diagrams in Fig. 2 that have
UV divergences.
The blobs with topologies in Figs. 2(a) and 2(c) denote

one-particle-irreducible diagrams, and they both have linear
superficial UV divergences. Because of the potential linear
UV divergences, diagrams with one more gluon attached
to the blobs can generate logarithmic UV divergences.
Another possibility to produce logarithmic divergences is
when a gluon is attached to the gauge link outside of, but
very close to, the blobs, as shown in Figs. 2(b) and 2(d),
with the attachment denoted by a triangle. The blobs of

(a)

(b)

(c)

(d)

FIG. 2. Four topologies of diagrams that could give UV
divergences to the quasigluon operators.
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topologies in Figs. 2(b) and 2(d) include both kinds of
logarithmic divergent diagrams mentioned here.
The topologies in Figs. 2(a) and 2(b) are the same as

that for quasiquark operators, and their divergences can be
renormalized similarly. Linear divergences from the
diagrams of the topology in Fig. 2(a) can be removed
by an overall factor as the mass renormalization of a test
particle moving along the gauge link [42], and its loga-
rithmic divergences caused by end points of the gauge
link can be removed by multiplying Z−1=2

wg —the “wave
function” renormalization of the test particle [43]. The
diagrams of the topology in Fig. 2(b) has only logarithmic
UV divergence, which can be taken care of by QCD
renormalization [43].
The UV divergences from diagrams of topologies in

Figs. 2(c) and 2(d) are different from that of quasiquark
operators, and are studied in next two sections, respectively.
Renormalization of gluon-gauge-link vertex.—For the

definiteness of the following discussion, we assume that the
gauge link in diagrams of the topology of Fig. 2(c) starts at
an arbitrary coordinate ξ1z with the operator Fμνðξ1zÞ, and
ends at another arbitrary coordinate ξ2z with no additional
operators. With the “bare” coupling constant gs, and “bare”
field operators for the gluons, the Faddeev-Popov ghost and
the antighost given by the symbols A, c, and c̄, respectively,
a generalized Ward identity of the non-Abelian field
relevant to this topology can be derived [44],

h−i∂y
λA

λ
dðyÞ½Φðfξ2z; ξ1zgÞ�abFμν

b ðξ1zÞi
¼ hgsc̄dðyÞceðξ2zÞ½teΦðfξ2z; ξ1zgÞ�abFμν

b ðξ1zÞi; ð6Þ

where the t represents SU(3) generators of the adjoint
representation. A pictorial representation of Eq. (6) is given
in Fig. 3, where “1PR” denotes one-particle-reducible
diagrams. The topology of the left-hand side of Fig. 3 is
the same as that of Fig. 2(c), but is contracted with external
gluon momentum and expressed in coordinate space. The
topology of the first term on the right-hand side of Fig. 3
is nonlocal in spacetime, and thus has no UV divergence.
Furthermore, after the renormalization of QCD Lagrangian
and gauge-link-related topologies of Figs. 2(a) and 2(b),
UV divergences of 1PR diagrams will be canceled. That is,
the generalized Ward identity in Eq. (6) ensures that the
topology of Fig. 2(c) is free of UV divergence if it is
contracted by external gluon momentum.

We represent the gluon-gauge-link vertex of topology in
Fig. 2(c) as Γλμνðp; nÞ, where p and λ are the momentum
and Lorentz index of the external gluon, respectively.
Lorentz symmetry combined with antisymmetry between
μ and ν enable us to do the general decomposition
Γλμνðp; nÞ ¼ P

4
i¼1 ciΠ

λμν
i with

Πλμν
1 ¼gμλpν−gνλpμ; Πλμν

2 ¼ðpμnν−pνnμÞnλ;
Πλμν

3 ¼ðpμnν−pνnμÞpλ; Πλμν
4 ¼ gμλnν−gνλnμ: ð7Þ

Since pλΓλμν ¼ 0 for the UV divergent terms as discussed
above, we obtain c2p · nþ c3p2 þ c4 ¼ 0, and conse-
quently,

Γλμνðp; nÞ ¼ c1Π
λμν
1 þ c2ðΠλμν

2 − p · nΠλμν
4 Þ

þ c3ðΠλμν
3 − p2Πλμν

4 Þ: ð8Þ

Since c1 and c2 have mass dimension 0, locality of UV
divergences ensures that they can be at most logarithmic
divergent, while c3 is UV finite due to its mass dimension
at −1. The only potential linearly UV divergent coefficient
c4 is removed by gauge invariance. We have therefore
demonstrated that the cancellation of linear UV divergences
of Figs. 1(b) and 1(c) at one-loop order can be generalized
to all orders, which makes the multiplicative renormaliz-
ability of quasigluon operators a possibility.
At the lowest order in αs, we have Γλμνðp; nÞ ∝ Πλμν

1 . If
we want Γλμνðp; nÞ not to mix with other operators under
renormalization, we need its UV divergence to be propor-
tional toΠλμν

1 to all orders. Fortunately, it is always true. For
the case with μ (or ν) along the z direction or the case with
both μ and ν not along the z direction, the coefficients of c2
are proportional to Πλμν

1 or equal to zero, respectively.
Therefore, the components of Γλμνðp; nÞ do not mix with
each other at all, although two different renormalization
constants are needed for the two different choices.
In summary, if we choose either Fzν̄ or Fμ̄ ν̄ for a gluon-

gauge-link vertex, Γλμν, we can remove the UV divergences
of the vertex by multiplying a corresponding renormaliza-
tion factor Z−1=2

vg1 or Z−1=2
vg2 , respectively.

Renormalization of gluon-gluon-gauge-link vertex.—
Finally, we examine the renormalization of the gluon-
gluon-gauge-link vertex of topology in Fig. 2(d). Similar to
Eq. (6), we construct the following Ward identity for the
“bare” fields and operators,

h∂x
λA

λ
dðxÞ∂y

ρA
ρ
eðyÞ½Φðfξ2z;ξ1zgÞ�abFμν

b ðξ1zÞi
þ iδðdÞðx− yÞδdeh½Φðfξ2z;ξ1zgÞ�abFμν

b ðξ1zÞi
¼ gshfafgc̄eðyÞcfðξ2zÞ∂x

λA
λ
dðxÞ½Φðfξ2z;ξ1zgÞ�gbFμν

b ðξ1zÞi:
ð9ÞFIG. 3. Pictorial representation of the generalized Ward identity

in Eq. (6). The dashed line represents the ghost field.
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A pictorial interpretation of Eq. (9) is given in Fig. 4.
Similar to Fig. 3, the topology of the left-hand side of Fig. 4
is the same as that of the diagram in Fig. 2(d), except the
external gluons of the diagrams are contracted with their
respective momenta and expressed in coordinate space. The
right-hand side of the equation in Fig. 4 is UV finite after all
previously discussed renormalizations performed, includ-
ing QCD Lagrangian, gauge links, and gluon-gauge-link
vertex. That is, we find that the topology in Fig. 2(d) is free
of UV divergence if both external gluons are contracted by
their respective momenta.
Similar to the discussion of the gluon-gauge-link vertex,

the Ward identity helps reduce the superficial UV diver-
gence of the topology in Fig. 2(d). Since the diagrams of
the topology in Fig. 2(d) have only superficial logarithmic
divergence, the additional reduction of the superficial UV
divergence from the Ward identity makes the topology in
Fig. 2(d) UV finite. Therefore, after the renormalization of
topology in Fig. 2(c), the topology in Fig. 2(d) requires no
additional renormalization. This is similar to the case of
renormalizing gluon vertexes of QCD Lagrangian, where
gauge invariance guarantees that the four-gluon vertex will
be free of UV divergence once the three-gluon vertex is
renormalized.
Summary.—We proved that UV divergences of all 36

pure quasigluon operators are localized in spacetime, and
could be multiplicatively renormalized without mixing with
either each other, or with quasiquark operators,

Oμνρσ
g ðξÞ ¼ e−CgjξzjZ−1

wgZ
−s=2
vg1 Z−ð2−sÞ=2

vg2 Oμνρσ
bg ðξÞ; ð10Þ

where s is the number of z components chosen for Lorentz
indices fμ; ν; ρ; σg, and Cg, Zwg, Zvg1, and Zvg2 are
renormalization constants. To achieve this result, it is
crucial for the UV regulator to maintain gauge invariance.
Our proof is obtained explicitly in continuum field theory
using dimensional regularization.
In the case of lattice regularization, Lorentz symmetry

is broken to the hypercubic symmetry while the gauge
invariance is preserved. The gauge invariance and the
reduced hypercubic symmetry should be sufficient for
carrying through all arguments for the renormalization,
and our final conclusion should not be changed.
Therefore, hadronic matrix elements of all operators

defining quasiparton distributions could be examples of
good “lattice cross sections,” as defined in Refs. [9,10],
which could be calculated in LQCD and factorized into
normal PDFs, from which PDFs could be extracted by QCD

global analysis of the data of these good “lattice cross
sections” generated by the first principle LQCDcalculations.
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Note added.—While our Letter is being finalized, a preprint
by Zhang et al. [45] appeared, in which these authors
reached the similar conclusion, although the approach is
very different.
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