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We extend the improved Collins–Soper–Sterman (iCSS) W + Y construction recently presented in [1] to 
the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive 
deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 
result from a (weighted) qT -integral of the differential cross section. We are also able to demonstrate the 
validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu–
Sterman function within the iCSS framework. This relation allows for their interpretation as functions 
yielding the average transverse momentum of unpolarized quarks in a transversely polarized spin- 1

2
target. We further outline how this study can be generalized to other polarized quantities.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the primary goals of transverse-momentum-dependent (TMD) factorization theorems [2–10], which rely largely on the work of 
Collins, Soper, and Sterman (CSS) [2–4], is to describe the cross section as a function of the transverse momentum qT = |qT| point-by-point, 
from small qT ∼ m (where m is a typical hadronic mass scale), to large qT ∼ Q (where Q is a large momentum or mass in the reaction 
and sets the hard scale). In order to achieve this, CSS organized the cross section in an additive form, W + Y . The W -term is valid for 
qT � Q and involves TMD parton distribution functions (PDFs) and fragmentation functions (FFs). The Y -term, which involves collinear 
PDFs and FFs, serves as a correction for larger qT values and is the difference between the collinear calculation for qT ∼ Q beginning at a 
fixed order in the strong coupling and its small transverse momentum asymptotic limit for m � qT � Q [4,11,12].

In recent years, much theoretical and phenomenological attention has been devoted to the evolution of the W -term expressed through 
TMD PDFs and/or FFs. However, current studies [1,13–16] indicate that a satisfactory treatment of non-zero qT/Q corrections and matching 
to the fixed-order (qT ∼ Q ) term is central to obtaining a leading-power approximation to the cross section over the whole range of qT. 
In addition, since collinear factorization is valid not only for large qT, but also for the qT-integrated cross section, one expects to recover 
the collinear factorized result after integrating the TMD factorized differential cross section over qT. The original CSS formulation did not 
address whether this connection is satisfied [1]. While the matching of powers of qT/Q in the intermediate qT -region has been studied for 
semi-inclusive deep inelastic scattering (SIDIS) for various polarizations [17,18], in Refs. [1,14,19] it was found that the original CSS W + Y
construction has difficulties to match the large- and small-qT regions for phenomenological studies at low Q . In addition, in Ref. [1] it was 
also demonstrated that the original W + Y construction does not properly match collinear factorization for the cross section integrated 
over qT.

These issues led the authors of Ref. [1] to develop an improved version of the original CSS W + Y construction (which we subsequently 
refer to as iCSS). The main focus of that work was for the case of the unpolarized SIDIS cross section, and it was demonstrated that for 
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the iCSS construction the integral of W + Y over qT reproduces the collinear result at leading order. We also mention that the relation 
between resummed and collinear unpolarized results was discussed in Ref. [20] in the framework of joint resummation [21].

With the intense focus on the 3D structure of hadrons through spin-dependent observables, it is also important to extend the iCSS 
formalism to the polarized case, especially transverse single-spin asymmetries (TSSAs) like the Sivers [22,23] and Collins [24] effects. The 
purpose of this work is to achieve this goal.

We organize the Letter as follows: In Sec. 2 we review TMD evolution as it relates to the original CSS W + Y construction along with 
issues that arise in both qT-matching in the intermediate region and matching the qT -integrated cross section to collinear factorization. 
Next, in Sec. 3 we discuss the iCSS W + Y method developed in Ref. [1] and show how one can extend it to polarized observables, 
where in particular we focus on the Sivers effect in SIDIS. Much data exists for this observable (see for instance Refs. [25–28]), including 
a recent measurement of the weighted asymmetry [29]. We also revisit the well-known relation between the (TMD) Sivers function and a 
(collinear) 3-parton correlator, the so-called Qiu–Sterman function [30–33], in the context of the iCSS formalism. In Sec. 4 we discuss the 
importance of these results with regard to the interpretation of TMDs. Finally, in Sec. 5 we summarize our work.

2. Review of the original CSS formalism

We begin with a synopsis of the W + Y construction of the SIDIS qT -differential cross section, which is given by

�(qT, Q , S) ≡ dσ

dxdydφsdzdφh(z2dq2
T )

= W (qT, Q , S) + Y (qT, Q , S) + O ((m/Q )c) , (1)

where qT and −Q2 are the transverse momentum and virtuality, respectively, of the virtual photon, S is a 4-vector for the spin of the 
target and φS the azimuthal angle of its transverse component, φh is the azimuthal angle of the produced hadron, and x, y, z are the 
other standard SIDIS kinematic variables (see Ref. [34] for more details). Note that in the arguments of �, W , and Y we have suppressed 
the x and z dependence for brevity. Also, we mention that the cross section oftentimes is written differential in the hadron transverse 
momentum P h⊥ = −zqT. In Eq. (1), the W -term factorizes into TMD PDFs and FFs and is valid for qT � Q , while the Y -term serves as a 
correction for larger qT values and uses collinear PDFs and FFs. There is also a hard factor included in both terms.

The construction of the cross section in Eq. (1) as the sum of W (qT, Q , S) and Y (qT, Q , S) results from applying so-called “approx-
imators” to �(qT, Q , S) [1,8] that are designed to be valid for a certain region of qT . The resulting cross section is accurate up to an 
error that is of order (m/Q )c , where c is a positive power, and m is a typical hadronic mass scale. The TMD approximator TTMD is valid 
for qT � Q , while the collinear approximator Tcoll is valid for qT ∼ Q . Then one has W (qT, Q , S) ≡ TTMD�(qT, Q , S) and Y (qT, Q , S) ≡
FO(qT, Q , S) − AY(qT, Q , S), where FO(qT, Q , S) ≡ Tcoll�(qT, Q , S) is the fixed-order term and AY(qT, Q , S) ≡ TcollTTMD�(qT, Q , S) is the 
asymptotic term. We note that the actual value for c in the error term O ((m/Q )c) depends on which structure function we look at in 
�(qT, Q , S).

2.1. TMD evolution in coordinate space

In the CSS factorization formalism, the TMD evolution of the W -term in (1) is carried out in b-space.1 Thus, we focus on W̃ (bT, Q , S)

and write W (qT, Q , S) as its Fourier transform,

W (qT, Q , S) =
∫

d2bT

(2π)2
eiqT·bT W̃ (bT, Q , S) , (2)

where W̃ (bT, Q , S) can be expanded in the following structures [36,37],

W̃ (bT, Q , S) = W̃UU(bT , Q ) − iM P ε i jbi
T S j

T W̃ siv
UT (bT , Q ) + . . . , (3)

with M P the mass of the target and the epsilon tensor defined with ε12 = 1. For our purposes, in W̃ (bT, Q , S) we will focus only on the 
unpolarized and Sivers contributions, whereas the ellipsis indicate other azimuthal modulations that we will not address here. Note that 
because of the bi

T factor in the second term, W̃ siv
UT (bT , Q ) does not have a kinematic zero at bT = 0. From (3) it immediately follows that

W (qT, Q , S) = WUU(qT , Q ) + |ST| sin(φh − φS) W siv
UT (qT , Q ) + . . . , (4)

where the Fourier transforms take the form

WUU(qT , Q ) ≡
∫

d2bT

(2π)2
eiqT·bT W̃UU(bT , Q ) =

∞∫
0

dbT

2π
bT J0(qT bT )W̃UU(bT , Q ) , (5)

W siv
UT (qT , Q ) ≡ −iM P

∫
d2bT

(2π)2
eiqT·bT (ĥ · bT) W̃ siv

UT (bT , Q ) = −Mp

∞∫
0

dbT

2π
b2

T J1(qT bT )W̃ siv
UT (bT , Q ) , (6)

where ĥ = Ph⊥/Ph⊥ = −qT/qT . Note that W siv
UT (qT , Q ) has a kinematic zero at qT = 0.

1 A recent work performing the evolution in momentum space can be found in Ref. [35].
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The scalar functions in (3) can be expressed in terms of Fourier transformed TMDs (FT-TMDs) [2–4,8,36–38]. The unpolarized scalar 
function is

W̃UU(bT , Q ) =
∑

j

H j(μ, Q ) f̃ j
1 (x,bT ; ζA,μ) D̃h/ j

1 (z,bT ; ζB ,μ) , (7)

where f̃ j
1

(
x, bT ; ζA, μ

)
and D̃h/ j

1

(
z, bT ; ζB , μ

)
are, respectively, the unpolarized FT-TMD PDF and FF. The FT-TMDs have two scale argu-

ments: μ, which is the renormalization scale, and ζ , which parameterizes how the effects of soft-gluon radiation are partitioned between 
the FT-TMDs, where ζAζB = Q4. We use the freedom from the renormalization group to set ζA = ζB = Q2 and μ = C2 Q ≡ μQ . The con-
stant C2 is chosen to optimize the accuracy of the perturbation theory for the lepton-quark hard scattering coefficient H j(μ, Q ), which at 
LO is HLO

j (μQ , Q ) = α2
em e2

j (1 − y + y2/2)/(y Q2). With these choices, the unpolarized scalar function now reads

W̃UU(bT , Q ) =
∑

j

H j(μQ , Q ) f̃ j
1 (x,bT ; Q2,μQ ) D̃h/ j

1 (z,bT ; Q2,μQ ) . (8)

Similarly, the Sivers scalar function reads

W̃ siv
UT (bT , Q ) =

∑
j

H j(μQ , Q ) f̃ ⊥(1) j
1T (x,bT ; Q2,μQ ) D̃h/ j

1 (z,bT ; Q2,μQ ) , (9)

where [36,37]

f̃ ⊥(1) j
1T (x,bT ; Q2,μQ ) ≡ − 1

M2
P bT

∂ f̃ ⊥ j
1T (x,bT ; Q2,μQ )

∂bT
, (10)

and f̃ ⊥ j
1T (x, bT ; Q2, μQ ) is the FT-TMD Sivers function.2 The expressions in Eqs. (8), (9) lead to (after using (5), (6)) the well-known results 

in momentum-space for WUU(qT , Q ) and W siv
UT (qT , Q ) in Eq. (4) [8,38],

WUU(qT , Q ) =
∑

j

H j(μQ , Q )

∫
d2kT d2 pT δ(2)(kT − pT + qT) f j

1 (x,kT ; Q2,μQ ) Dh/ j
1 (z, zpT ; Q2,μQ ) , (11)

W siv
UT (qT , Q ) =

∑
j

H j(μQ , Q )

∫
d2kT d2 pT δ(2)(kT − pT + qT)

(
− ĥ · kT

M P

)
f ⊥ j
1T (x,kT ; Q2,μQ ) Dh/ j

1 (z, zpT ; Q2,μQ ) , (12)

which in their structure agree with the parton model calculations [34,39,40]. The variable kT is the transverse momentum of the struck 
quark w.r.t. the incoming proton, and pT is transverse momentum of the fragmenting quark w.r.t. the produced hadron (with kT = |kT|, 
pT = |pT|).

We mention that the FT-TMDs or “b-space functions” on the r.h.s. of (8), (9) can be understood simply as functions arising from 
the factorization of W̃UU(bT , Q ) and W̃ siv

UT (bT , Q ) from which we can define the momentum-space functions through inverse Fourier 
transforms. Likewise, W (qT, Q , S) can be defined from W̃ (bT, Q , S) via the inverse Fourier transform (2). We will adopt this viewpoint, 
rather than the usual approach of calculating b-space functions from the Fourier transform of the momentum-space correlator (see, e.g., 
Ref. [36] for details), since TMD evolution and certain modifications in the iCSS formalism are performed directly in b-space [1,8] (see 
Sec. 3).

We next follow the CSS procedure [8,41] to write Eqs. (8) and (9), respectively, as

W̃UU(bT , Q ) = W̃ OPE
UU (b∗(bT ), Q )W̃ NP

UU(bT , Q ) (13a)

=
∑

j

H j(μQ , Q ) f̃ j
1 (x,b∗(bT );μ2

b∗ ,μb∗) D̃h/ j
1 (z,b∗(bT );μ2

b∗ ,μb∗)

× exp

{
K̃ (b∗(bT );μb∗) ln

(
Q2

μ2
b∗

)
+

μQ∫
μb∗

dμ′

μ′

[
2γ (αs(μ

′);1) − ln

(
Q2

μ′2

)
γK (αs(μ

′))
]}

× exp

{
−gpdf(x,bT ; Q 0,bmax) − gff(z,bT ; Q 0,bmax) − gK (bT ;bmax) ln

(
Q2

Q 2
0

)}
, (13b)

2 In the limit bT → 0, one finds f̃ ⊥(1)
1T (x, bT → 0) = ∫

d2kT
k2

T
2 f ⊥

1T (x, kT ) ≡ f ⊥(1)
1T (x) (where kT = |kT|) [36].
2M P
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W̃ siv
UT (bT , Q ) = W̃ siv,OPE

UT (b∗(bT ), Q )W̃ siv,NP
UT (bT , Q ) (14a)

=
∑

j

H j(μQ , Q ) f̃ ⊥(1) j
1T (x,b∗(bT );μ2

b∗ ,μb∗) D̃h/ j
1 (z,b∗(bT );μ2

b∗ ,μb∗)

× exp

{
K̃ (b∗(bT ); μ̄) ln

(
Q2

μ2
b∗

)
+

μQ∫
μb∗

dμ′

μ′

[
2γ (αs(μ

′);1) − ln

(
Q2

μ′2

)
γK (αs(μ

′))
]}

× exp

{
−gsiv(x,bT ; Q 0,bmax) − gff(z,bT ; Q 0,bmax) − gK (bT ;bmax) ln

(
Q2

Q2
0

)}
, (14b)

with

b∗(bT ) ≡
√

b2
T

1 + b2
T /b2

max
, μb∗ ≡ C1

b∗(bT )
, (15)

where bmax separates small and large bT , and C1 is a constant chosen to allow for perturbative calculations of b∗(bT )-dependent quantities 
without large logarithms [41]. Note that b∗(bT ) freezes at bmax when bT is large so that b∗(bT ) is always small (i.e., in the perturbative 
region). The first two lines in (13b), (14b) are the operator product expansion (OPE) pieces, W̃ OPE(b∗(bT ), Q ), whereas the last line is 
the non-perturbative part, W̃ NP(bT , Q ). The functions gpdf and gff are the non-perturbative factors for f̃1 and D̃1, respectively, while gsiv

is the non-perturbative factor for f̃ ⊥(1)
1T . The factor gK is the non-perturbative part of the Collins–Soper (CS) evolution kernel K̃ (bT ; μ)

(see [41, Eqs. (6), (11), (25)]). Note that W̃ NP → 1 as bT → 0 [8,41]. The terms γK (αs(μ)) and γ (αs(μ); 1) are the anomalous dimensions 
for the CS kernel and b-space functions, respectively (see [41, Eqs. (7)–(10), (12)]).3

We mention that there are some alternatives in the literature to the b∗-prescription. In Refs. [44,45] the authors separate the per-
turbative and non-perturbative contribution through the parameter bmax such that W̃ (bT , Q ) = W̃ (bT , Q ) for bT ≤ bmax and W̃ (bT , Q ) =
W̃ (bmax, Q ) W̃ NP

Q Z (bT , Q ; bmax) for bT > bmax , where W̃ NP
Q Z (bT , Q ; bmax) includes power corrections to improve the matching between the 

perturbative and non-perturbative regions of W̃ (bT , Q ). Their approach attempts to minimize the influence of the non-perturbative piece 
of W̃ (bT , Q ), which contains several parameters and does not have a fixed functional form, at small bT where one should be driven 
by perturbatively calculable effects. In the context of the “resummation approach” [46,47], one avoids the Landau pole encountered in 
performing Fourier transforms (b-space integrations) by extending bT to the complex plane and exploiting the analytic structure of the 
running coupling. Phenomenological parameters then appear only as non-perturbative power corrections. In this work we continue to use 
the CSS b∗-prescription.

Since the unpolarized b-space functions in the first line of Eq. (13b) are restricted to small bT , we can expand them in an OPE in terms 
of twist-2 collinear functions [8,38,41],

f̃ j
1 (x,b∗(bT );μ2

b∗ ,μb∗) =
∑

j′

1∫
x

dx̂

x̂
C̃pdf

j/ j′(x/x̂,b∗(bT );μ2
b∗ ,μb∗ ,αs(μb∗)) f j′

1 (x̂;μb∗) + O ((m b∗(bT ))p) , (16)

D̃h/ j
1 (z,b∗(bT );μ2

b∗ ,μb∗) =
∑

i′

1∫
z

dẑ

ẑ3
C̃ ff

i′/ j(z/ẑ,b∗(bT );μ2
b∗ ,μb∗ ,αs(μb∗)) Dh/i′

1 (ẑ;μb∗) + O ((m b∗(bT ))p) , (17)

where f j′
1 (x̂; μb∗ ), Dh/i′

1 (ẑ; μb∗) showing up on the r.h.s. of Eqs. (16), (17), respectively, are understood to be renormalized at the scale μb∗ .
Similarly, the b-space function in Eq. (9) that gives rise to the Sivers effect can be written at small bT in terms of a twist-3 quark-

gluon-quark correlation function [17,37,48,49],

f̃ ⊥(1) j
1T (x,b∗(bT );μ2

b∗ ,μb∗) = − 1

2M P

∑
j′

1∫
x

dx̂1

x̂1

dx̂2

x̂2
C̃ siv

j/ j′(x̂1, x̂2,b∗(bT );μ2
b∗ ,μb∗ ,αs(μb∗))T j′

F (x̂1, x̂2;μb∗) + O ((m b∗(bT ))p′
) ,

(18)

where T j′
F (x̂1, ̂x2; μb∗)

4 likewise is also understood to be renormalized at the scale μb∗ . The function T F (x1, x2) in (18) has the following 
operator definition:

T F (x1, x2) =
∫

db−dy−

4π
eix1 P+b−

ei(x2−x1)P+ y−
ε i j S j

T 〈P , S|ψ̄(0)γ +W(0; y−)g F +i(y−)W(y−;b−)ψ(b−)|P , S〉 , (19)

where W(a−; b−) is a straight-line gauge link connecting (0+, a−, 0T) to (0+, b−, 0T). When x1 = x2 ≡ x, T F (x, x) is known as the Qiu–
Sterman function [30–33]. Note that the gauge link for f̃ ⊥(1) j

1T (x, bT ) is understood to be for SIDIS. If instead one used a gauge link 

3 See also [42,43] and references therein for detailed discussions of the evolution equations and their origins.
4 Terms in Eq. (18) proportional to the derivative of T F (x1, x2) can be transformed into non-derivative pieces through an integration by parts, leading to a generalized 

coefficient function in (18) (see, e.g., Ref. [50]).
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consistent with the Drell–Yan process, the sign on the r.h.s. of (18) would change [51]. The errors in (16)–(18) are suppressed by positive 
powers p, p′ , and represent higher twist terms.

Note that the unpolarized b-space functions in (16), (17) are written at small bT (or large kT in momentum space) in terms of twist-2 
functions while the b-space function in (18) associated with the Sivers effect is written in terms of a twist-3 function. The reason is due 
to their different power-law behaviors at large-kT : the former goes as 1/k2

T while the latter is suppressed by a power of kT and goes as 
1/k3

T [17,18,37,48,49].
Using Eqs. (16)–(18) in (13b), (14b) and comparing the results to Eqs. (8), (9) allows us to establish the following equalities:

f̃ j
1 (x,bT ; Q2,μQ ) =

∑
j′

1∫
x

dx̂

x̂
C̃pdf

j/ j′(x/x̂,b∗(bT );μ2
b∗ ,μb∗ ,αs(μb∗)) f j′

1 (x̂;μb∗)

× exp

{
K̃ (b∗(bT );μb∗) ln

(
Q

μb∗

)
+

μQ∫
μb∗

dμ′

μ′

[
γ (αs(μ

′);1) − ln

(
Q

μ′

)
γK (αs(μ

′))
]}

× exp

{
−gpdf(x,bT ; Q 0,bmax) − gK (bT ;bmax) ln

(
Q

Q 0

)}
, (20)

D̃h/ j
1 (z,bT ; Q2,μQ ) =

∑
i′

1∫
z

dẑ

ẑ3
C̃ ff

i′/ j(z/ẑ,b∗(bT );μ2
b∗ ,μb∗ ,αs(μb∗)) Dh/i′

1 (ẑ;μb∗)

× exp

{
K̃ (b∗(bT );μb∗) ln

(
Q

μb∗

)
+

μQ∫
μb∗

dμ′

μ′

[
γ (αs(μ

′);1) − ln

(
Q

μ′

)
γK (αs(μ

′))
]}

× exp

{
−gff(z,bT ; Q 0,bmax) − gK (bT ;bmax) ln

(
Q

Q 0

)}
, (21)

f̃ ⊥(1) j
1T (x,bT ; Q2,μQ ) = − 1

2M P

∑
j′

1∫
x

dx̂1

x̂1

dx̂2

x̂2
C̃ siv

j/ j′(x̂1, x̂2,b∗(bT );μ2
b∗ ,μb∗ ,αs(μb∗)) T j′

F (x̂1, x̂2;μb∗)

× exp

{
K̃ (b∗(bT );μb∗) ln

(
Q

μb∗

)
+

μQ∫
μb∗

dμ′

μ′

[
γ (αs(μ

′);1) − ln

(
Q

μ′

)
γK (αs(μ

′))
]}

× exp

{
−gsiv(x,bT ; Q 0,bmax) − gK (bT ;bmax) ln

(
Q

Q 0

)}
, (22)

where implicitly there are again errors in (20)–(22) due to the truncation of the OPE in (16)–(18). From these b-space expressions, we 
define the following functions in momentum space as

f j
1 (x,kT ; Q2,μQ ) ≡

∞∫
0

dbT

2π
bT J0(kT bT ) f̃ j

1 (x,bT ; Q2,μQ ) , (23)

Dh/ j
1 (z, zpT ; Q2,μQ ) ≡

∞∫
0

dbT

2π
bT J0(pT bT ) D̃h/ j

1 (z,bT ; Q2,μQ ) , (24)

k2
T

2M2
P

f ⊥ j
1T (x,kT ; Q2,μQ ) ≡ kT

∞∫
0

dbT

4π
b2

T J1(kT bT ) f̃ ⊥(1) j
1T (x,bT ; Q2,μQ ) , (25)

where kT = |kT|, pT = |pT|. The definitions in Eqs. (23)–(25) are consistent with the standard parameterization of the momentum-space 
(distribution and fragmentation) correlators [39,52,53] in terms of (among others) the unpolarized TMDs f1(x, kT ), D1(z, zpT ) and the 
Sivers TMD f ⊥

1T (x, kT ). In particular, the result in (25) can be obtained from Eq. (10) along with the explicit expression for the Fourier 
transform of the Sivers function. The inverse Fourier transforms read

f̃ j
1 (x,bT ; Q2,μQ ) = 2π

∞∫
0

dkT kT J0(kT bT ) f j
1 (x,kT ; Q2,μQ ) , (26)

D̃h/ j
1 (z,bT ; Q2,μQ ) = 2π

∞∫
dpT pT J0(pT bT ) Dh/ j

1 (z, zpT ; Q 2,μQ ) , (27)
0
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f̃ ⊥(1) j
1T (x,bT ; Q2,μQ ) = 2π

M2
P

∞∫
0

dkT
k2

T

bT
J1(kT bT ) f ⊥ j

1T (x,kT ; Q2,μQ ) . (28)

We are now in a position to address some issues with the original CSS formalism presented above.

2.2. Issues with the original W + Y construction

We will highlight two main issues with the original CSS W + Y construction that are also detailed in Ref. [1], and serve as motivation 
for the modifications we will discuss in Sec. 3. The first is that the CSS framework is most useful when Q is large enough that there is 
a broad intermediate range of transverse momentum characterized by m � qT � Q . That is, one needs to have a window in qT where 
qT/Q is small enough that factorization using TMD PDFs and FFs is valid to sufficient accuracy [1,8] while m/qT is also small enough that 
factorization using collinear PDFs and FFs is simultaneously valid. However, at the values of Q that are of phenomenological interest, for 
example, in measurements devoted to studying 3D hadronic structure through the intrinsic transverse motion of partons, neither qT/Q
nor m/qT is necessarily small. Given these conditions, it becomes a challenge to smoothly and consistently match the differential cross 
section over the available range of qT [14,19].

The second issue is the problem of matching the TMD factorized cross section integrated over qT to the collinear factorization formal-
ism. As the authors of Ref. [1, Appendix A] showed, the integral of �(qT, Q , S) over all qT in Eq. (1) results in a mismatch of orders in 
αS (Q ) of the leading contributions on the l.h.s. and r.h.s. of the equation. This is evident from the fact that integrating W (qT, Q , S) over 
all qT gives zero instead of the expected collinear result. To be more specific, integrating Eq. (4) over qT and using Eq. (5) yields [1]

∫
d2qT W (qT, Q , S) = W̃UU(bT → 0, Q )

∼ ba
T × (log corrections) = 0 , (29)

where a = 8C F /β0 with β0 = 11 − 2n f /3. (Note that the integration over qT eliminates all other terms in W (qT, Q , S) except for 
WUU(qT , Q ).) The source of this behavior is that b∗(bT → 0) = 0 so that μb∗ → ∞ in this limit. This leads to a large logarithm in the 
second term of the perturbative (OPE) exponential (second line of (13b)) involving γK (αs(μb∗ )) ln(Q2/μb∗) [1]. Similarly, for the Sivers 
contribution to W (qT, Q , S) we find, using Eqs. (4) and (6),

∫
d2qT qT sin(φh − φS) W (qT, Q , S) = π

∫
dqT q2

T W Siv
UT (qT , Q )

= −M P lim
b′

T →0

1

b′
T

[ ∞∫
0

dbT bT

∞∫
0

dqT qT bT J1(qT b′
T ) J1(qT bT ) W̃ siv

UT (bT , Q )

]

= −M P W̃ siv
UT (bT → 0, Q )

∼ ba
T × (log corrections) = 0 , (30)

with a as above. The last line holds because the perturbative (OPE) part of the Sudakov exponential is independent of spin (cf. Eqs. (13b)
and (14b)), so W̃ siv

UT (bT , Q ) retains the same behavior when bT → 0 as W̃UU(bT , Q ). In going from the second to the third line in Eq. (30)
we exploited the well-known relation used in Bessel weighting [36], 

∫ ∞
0 dqT qT Jn(qT b′

T ) Jm(qT bT ) = δnm δ(bT − b′
T )/bT . Therefore, from 

(30) we see the weighted Sivers effect also vanishes instead of giving the expected collinear twist-3 expression.
From the above results, one can readily conclude that the integrals over kT (or pT) of the unpolarized functions (23), (24) vanish upon 

integration over transverse momentum,∫
d2kT f j

1 (x,kT ; Q2,μQ ) = f̃ j
1 (x,bT → 0; Q2,μQ ) = 0 , (31)

z2
∫

d2 pT D j
1(z, zpT ; Q2,μQ ) = z2 D̃h/ j

1 (z,bT → 0; Q2,μQ ) = 0 , (32)

and likewise the first moment of the Sivers function vanishes,

∫
d2kT

k2
T

2M2
P

f ⊥ j
1T (x,kT ; Q2,μQ ) ≡ f ⊥(1) j

1T (x; Q2,μQ ) = f̃ ⊥(1) j
1T (x,bT → 0; Q2,μQ ) = 0 . (33)

Note that a dramatic consequence of (31)–(33) is that the physical interpretation of integrated TMDs is lost. For example, the far l.h.s. of 
Eq. (33) is supposed to determine the average transverse momentum of unpolarized quarks in a transversely polarized spin- 1

2 target 
[40,54–57]. Clearly, such a statement is not true in the original CSS framework. In Ref. [1] this formalism is amended in order to address 
these issues for the unpolarized case. In the next section we review these improvements and explain how they are implemented for 
the polarized case. More importantly, we demonstrate in Sec. 4 how one can restore the standard physical interpretation of (31)–(33) at 
leading order (LO).
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3. The improved CSS formalism

3.1. Modifications to the original CSS framework

In order to deal with some of the problems of the original CSS W + Y construction discussed in the previous section, the authors of 
Ref. [1] incorporated improvements to the formalism. We briefly summarize their prescriptions below (see Ref. [1] for more details), which 
originally were for the unpolarized SIDIS cross section, and extend their implementation to the case of the Sivers effect. We will briefly 
outline at the end of this section how to generalize the iCSS procedure for any polarized observable.

In what follows, we discuss four steps from the iCSS formulation. Step (I) addresses the vanishing of W̃ U U (bT , Q ) and W̃ siv
U T (bT , Q ) at 

bT = 0, so that one can have a factorized collinear expansion in terms of PDFs and FFs in this limit. Steps (II) and (III) help improve the 
matching between the W -term and Y -term in the intermediate-qT regime by restricting them to their respective region of applicability 
(see also Ref. [58]). Step (IV) collects these modifications to form the qT -differential cross section �(qT, Q , S).

(I) Replace bT with bc(bT ) in order to deal with the large logarithms that arise as bT → 0 (see also [59,60]), where

bc(bT ) =
√

b2
T +

(
b0

C5 Q

)2

=
√

b2
T + b′2

min , (34)

with b0 ≡ 2 exp(−γE ), C5 a constant chosen to fix the exact proportionality between bc(0) and 1/Q , and b′
min ≡ b0/(C5 Q ), which 

cuts bT off at O (1/Q ). In terms of W̃ (bT, Q , S) this modification is to be understood as

W̃ (bT, Q , S) → W̃ (bT,bc(bT ), Q , S) ≡ W̃UU(bc(bT ), Q ) − iM P ε i jbi
T S j

T W̃ siv
UT (bc(bT ), Q ) + . . . , (35)

where

W̃UU(bc(bT ), Q ) =
∑

j

H j(μQ , Q ) f̃ j
1 (x,bc(bT ); Q2,μQ ) D̃h/ j

1 (z,bc(bT ); Q2,μQ ) , (36)

W̃ siv
UT (bc(bT ), Q ) =

∑
j

H j(μQ , Q ) f̃ ⊥(1) j
1T (x,bc(bT ); Q2,μQ ) D̃h/ j

1 (z,bc(bT ); Q2,μQ ) . (37)

Note that we have written (35) in such a way that no kinematic bT dependence shows up in the scalar functions W̃UU(bc(bT ), Q ) and 
W̃ siv

UT (bc(bT ), Q ). That is, the modification bT → bc(bT ) only applies to the parts of W̃ (bT, bc(bT ), Q , S) that undergo CSS evolution 
and not to any kinematic/tensorial bT prefactors. The b-space functions in Eqs. (36), (37) are suitably modified to be

f̃ j
1 (x,bc(bT ); Q2,μQ ) =

∑
j′

1∫
x

dx̂

x̂
C̃pdf

j/ j′(x/x̂,b∗(bc(bT )); μ̄2, μ̄,αs(μ̄)) f j′
1 (x̂; μ̄)

× exp

{
K̃ (b∗(bc(bT )); μ̄) ln

(
Q

μ̄

)
+

μQ∫
μ̄

dμ′

μ′

[
γ (αs(μ

′);1) − ln

(
Q

μ′

)
γK (αs(μ

′))
]}

× exp

{
−gpdf(x,bc(bT ); Q 0,bmax) − gK (bc(bT );bmax) ln

(
Q

Q 0

)}
, (38)

D̃h/ j
1 (z, (bc(bT ); Q2,μQ ) =

∑
i′

1∫
z

dẑ

ẑ3
C̃ ff

i′/ j(z/ẑ,b∗(bc(bT )); μ̄2, μ̄,αs(μ̄)) Dh/i′
1 (ẑ; μ̄)

× exp

{
K̃ (b∗(bc(bT )); μ̄) ln

(
Q

μ̄

)
+

μQ∫
μ̄

dμ′

μ′

[
γ (αs(μ

′);1) − ln

(
Q

μ′

)
γK (αs(μ

′))
]}

× exp

{
−gff(z,bc(bT ); Q 0,bmax) − gK (bc(bT );bmax) × ln

(
Q

Q 0

)}
, (39)

f̃ ⊥(1) j
1T (x,bc(bT ); Q2,μQ ) = − 1

2M P

∑
j′

1∫
x

dx̂1

x̂1

dx̂2

x̂2
C̃ siv

j/ j′(x̂1, x̂2,b∗(bc(bT )); μ̄2, μ̄,αs(μ̄)) T j′
F (x̂1, x̂2; μ̄)

× exp

{
K̃ (b∗(bc(bT )); μ̄) ln

(
Q

μ̄

)
+

μQ∫
μ̄

dμ′

μ′

[
γ (αs(μ

′);1) − ln

(
Q

μ′

)
γK (αs(μ

′))
]}

× exp

{
−gsiv(x,bc(bT ); Q 0,bmax) − gK (bc(bT );bmax) ln

(
Q

Q 0

)}
, (40)
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where

b∗(bc(bT )) =
√

b2
T + b′2

min

1 + b2
T /b2

max + b′2
min/b2

max
, μ̄ ≡ C1

b∗(bc(bT ))
, (41)

with b′
min defined after (34).

(II) Define a new W -term,

W (qT, Q , S; C5) ≡ �(qT /Q )

∫
d2bT

(2π)2
eiqT·bT W̃ (bT,bc(bT ), Q , S)

= �(qT /Q )
[
WUU(qT , Q ; C5) + |ST| sin(φh − φS) W siv

UT (qT , Q ; C5) + . . .
]
, (42)

where

WUU(qT , Q ; C5) ≡
∫

d2bT

(2π)2
eiqT·bT W̃UU(bc(bT ), Q ) =

∞∫
0

dbT

2π
J0(qT bT )W̃UU(bc(bT ), Q ) , (43)

W siv
UT (qT , Q ; C5) ≡ −iM P

∫
d2bT

(2π)2
eiqT·bT (ĥ · bT) W̃ siv

UT (bc(bT ), Q ) = −Mp

∞∫
0

dbT

2π
b2

T J1(qT bT )W̃ siv
UT (bc(bT ), Q ) , (44)

with C5 again a constant chosen to optimize the control of large logarithms that arise as bT → 0. The quantity �(qT /Q ) in (42)
is a smooth function chosen so that it is unity at qT = 0 and approaches zero for large qT � Q [1,8]. This factor ensures that 
W (qT, Q , S; C5) is sufficiently suppressed for qT � Q , where its accuracy has significantly degraded. The momentum-space functions 
are likewise defined as

f j
1 (x,kT ; Q2,μQ ; C5) ≡

∞∫
0

dbT

2π
bT J0(kT bT ) f̃ j

1 (x,bc(bT ); Q2,μQ ) , (45)

D j
1(z, zpT ; Q2,μQ ; C5) ≡

∞∫
0

dbT

2π
bT J0(pT bT ) D̃h/ j

1 (z,bc(bT ); Q2,μQ ) , (46)

k2
T

2M2
P

f ⊥ j
1T (x,kT ; Q2,μQ ; C5) ≡ kT

∞∫
0

dbT

4π
b2

T J1(kT bT ) f̃ ⊥(1) j
1T (x,bc(bT ); Q2,μQ ) . (47)

(III) Define a new Y -term,

Y (qT, Q , S; C5) ≡ X(qT /m)
{

FO(qT, Q , S) − AY(qT, Q , S; C5)
}

, (48)

where X(qT /m) is a smooth function that approaches zero for qT � m and unity for qT � m [1,4]. The function X(qT /m) ensures that 
Y (qT, Q , S; C5) is sufficiently suppressed for qT � m, where its accuracy has significantly degraded. The quantity AY(qT, Q , S; C5), 
being the asymptotic expansion of W (qT, Q , S; C5) at large qT , includes the modifications (I), (II). The change (II) to AY(qT, Q , S)

has the additional benefit that the integral of the asymptotic term over all qT is now finite, whereas in the original CSS formalism it 
diverges. We mention that in AY(qT, Q , S; C5) the scale μb∗ is replaced with μQ (see, e.g., Ref. [1, Sec. VIII]). Furthermore, as qT → 0
the singular logarithms cancel between FO(qT, Q , S) and AY(qT, Q , S; C5). Thus, Y (qT, Q , S; C5) is suppressed for qT � Q .

(IV) With these modifications, the qT -differential cross section (1) now reads

�(qT, Q , S) = W (qT, Q , S; C5) + Y (qT, Q , S; C5) + O ((m/Q )c) . (49)

3.2. Agreement between TMD and collinear results

We start with the cross section in Eq. (49), which can be written as

�(qT, Q , S) = �(qT /Q )
[

WUU(qT , Q ; C5) + |ST| sin(φh − φS) W siv
UT (qT , Q ; C5) + . . .

]
+ Y (qT, Q , S; C5) (50a)

=
[

WUU(qT , Q ; C5) + |ST| sin(φh − φS) W siv
UT (qT , Q ; C5) + . . .

]
− (1 − �(qT /Q ))

[
WUU(qT , Q ; C5) + |ST| sin(φh − φS) W siv

UT (qT , Q ; C5) + . . .
]

+Y (qT, Q , S; C5) . (50b)

Note that at small qT � Q , the second and third lines of (50b) are suppressed by qT /Q compared to the first line. Since they only become 
sizable for larger qT , the second and third lines contribute at O (αs(Q )). Therefore, the LO part of any (possibly weighted) qT -integration 
of �(qT, Q , S) will be from the first line of Eq. (50b).
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We now show that the improvements of Sec. 3.1 resolve the problems in the original CSS formalism (see Sec. 2.2) with integrating 
�(qT, Q , S), as well as the TMD functions, over transverse momentum. While �(qT /Q ) and X(qT /m) in (II), (III) are needed to help 
accurately describe the intermediate qT region, as we will see below, it is the bT → bc(bT ) modification of (I) that is crucial to recover 
the expected relations between TMD and collinear quantities. For the unpolarized case we find [1]

dσ

dxdydz
≡ 2

∫
d2 Ph⊥

∫
dφS �(qT, Q , S) = 4π z2 W̃ OPE

UU (b′
min, Q )LO + O (αs(Q )) + O ((m/Q )p)

= 4πα2
em

y Q2
(1 − y + y2/2)

∑
j

e2
j f j

1 (x;μc) Dh/ j
1 (z;μc) + O (αs(Q )) + O ((m/Q )p) , (51)

where μc ≡ limbT →0 μ̄ ≈ C1C5 Q /b0 (with μ̄ given in (41)) so that μc is on the order Q . This agrees with the result in [34]. Note that 
“O (αs(Q ))” includes the next-to-leading order (NLO) corrections to the coefficients C̃ and hard factors H along with the terms in the 
second and third lines of Eq. (50b) (since both are unsuppressed only at large qT ), and the O ((m/Q )p) correction is from replacing 
W̃UU(b′

min, Q ) with W̃ OPE
UU (b′

min, Q ) [1]. This result was first derived for the iCSS formalism in Ref. [1].
We now extend this to the Sivers case and obtain

d〈Ph⊥ �σ(ST )〉
dxdydz

≡ 2
∫

d2 Ph⊥
∫

dφS Ph⊥ sin(φh − φS)�(qT, Q , S)

= −4π z3M P lim
b′

T →0

1

b′
T

[ ∞∫
0

dbT bT

∞∫
0

dqT qT bT J1(qT b′
T ) J1(qT bT ) W̃ siv

UT (bc(bT ), Q )LO

]
+ O (αs(Q ))

= −4π z3M P lim
b′

T →0

1

b′
T

[ ∞∫
0

dbT δ(bT − b′
T )bT W̃ siv

UT (bc(bT ), Q )LO

]
+ O (αs(Q ))

= −4π z3M P W̃ siv,OPE
UT (b′

min, Q )LO + O (αs(Q )) + O ((m/Q )p′
)

= 2π z α2
em

y Q2
(1 − y + y2/2)

∑
j

e2
j T j

F (x, x;μc) Dh/ j
1 (z;μc) + O (αs(Q )) + O ((m/Q )p′

) . (52)

Again we confirm the previous LO calculations in the literature [61]. Note as before that “O (αs(Q ))” includes the NLO corrections to the 
coefficients C̃ and hard factors H along with the terms in the second and third lines of Eq. (50b), and the O ((m/Q )p′

) correction is from 
replacing W̃ siv

UT (b′
min, Q ) with W̃ siv,OPE

UT (b′
min, Q ). Again in going from the second to the third line have used 

∫ ∞
0 dqT qT Jn(qT b′

T ) Jm(qT bT ) =
δnm δ(bT − b′

T )/bT .

We emphasize that it was crucial in (44) that the bT in (ĥ · bT) not get replaced by bc(bT ) in order to achieve the result (52). 
This manifests itself in the second line of (52), where the factor (qT bT ) appears instead of (qT bc(bT )). If, on the other hand, the 
bT → bc(bT ) replacement was made in (ĥ · bT), the third line in (52) would give a divergent result since then one would have a fac-
tor limb′

T →0 bc(b′
T )/b′

T = limb′
T →0 b′

min/b′
T . This example highlights the key observation needed in order to use the iCSS formalism with 

polarized observables. In general it is a statement that the bT → bc(bT ) prescription only applies to the bT dependence that is a part of 
the evolution and not to any external (kinematic) bT prefactors.

In terms of the momentum-space functions (45)–(47), we also find∫
d2kT f j

1 (x,kT ; Q2,μQ ; C5) = f̃ j
1 (x,b′

min; Q2,μQ ) = f j
1 (x;μc) + O (αs(Q )) + O ((m/Q )p) , (53)

z2
∫

d2 pT D j
1(z, zpT ; Q2,μQ ; C5) = z2 D̃h/ j

1 (z,b′
min; Q2,μQ ) = Dh/ j

1 (z;μc) + O (αs(Q )) + O ((m/Q )p) , (54)

∫
d2kT

k2
T

2M2
P

f ⊥ j
1T (x,kT ; Q2,μQ ; C5) ≡ f ⊥(1) j

1T (x; Q2,μQ ; C5)

= f̃ ⊥(1) j
1T (x,b′

min; Q2,μQ ) = − 1

2M P
T j

F (x, x;μc) + O (αs(Q )) + O ((m/Q )p′
) , (55)

where again μc ≡ limbT →0 μ̄ ≈ C1C5 Q /b0 (with μ̄ given in (41)) so that μc is on the order Q .5 Note that, due to the bT → bc(bT )

modification, the above integrals on the l.h.s. are UV finite, yielding at LO and for Q � m the renormalized collinear functions on the far 
r.h.s. To obtain these last equalities we have used the fact that b′

min ∼ O (1/Q ) so that we can replace (38)–(40) with their OPE pieces 
and expand the exponentials in powers of αs(Q ) without large logarithms. The correction terms also include NLO in the coefficients C̃ . 
The results in Eqs. (53)–(55) agree with our expectations from the “naïve” operator definitions of TMDs.6 In particular, Eq. (55) is the 
well-known relation between the first kT -moment of the Sivers function and the Qiu–Sterman function [62] (see also [49,57,63,64]). We 
emphasize that the relations between the integrals of the TMDs on the far l.h.s. of Eqs. (53)–(55) and the functions f̃1(x, b′

min; Q2, μQ ), 

5 Phenomenological fits of TMDs use C1 and bmax to optimize the perturbation theory. The fact that the collinear functions on the r.h.s. of (53)–(55) depend on these 
parameters via μc is a result of the truncation of the perturbative series in αs .

6 We will discuss specifically what we mean by “naïve” operator definition in Sec. 4.
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D̃1(z, b′
min; Q2, μQ ), and f̃ ⊥(1)

1T (x, b′
min; Q2, μQ ), respectively, which can be obtained from Eqs. (38)–(40) by setting bT to zero, hold to all 

orders in the strong coupling.

3.3. Power counting in the region m � qT � Q

A necessary condition for a TMD modulation in W (qT, Q , S; C5) to yield the corresponding LO collinear cross section (upon a suitably 
weighted integration over qT) is that there must be no power-counting mismatch in the intermediate qT region (m � qT � Q ) where 
both factorization in terms of TMD functions and collinear functions are valid.7 For the Sivers effect that we focused on in Sec. 3.2, it was 
shown explicitly in SIDIS [17,65] and Drell–Yan [48] that the results for TMD and collinear twist-3 factorization match in the m � qT � Q
regime. The same was also explicitly proven for the Collins effect in SIDIS [66], for hyperon production in SIDIS involving the Boer–Mulders 
function [67], and for certain modulations in Drell–Yan involving the worm-gear functions [50]. In addition, this problem was discussed 
extensively in Ref. [18], where the authors analyzed if the powers of qT matched in the m � qT � Q region between results at low and 
high transverse momentum for the structure functions that enter the SIDIS cross section. For those structure functions where calculations 
existed in the literature for both regions, there was only a mismatch at intermediate qT for the cos(2φh) and sin(3φh − φS) modulations.

3.4. Other polarized observables

Our extension of the iCSS procedure to the Sivers effect is quite general and can also be used for any polarized observable. Here we 
outline the basic steps. First, one would continue with the expansion in Eq. (35) to include other polarized terms. We generically denote 
these by Cpol(M P , bT, S) W̃ pol(bc(bT ), Q ), where W̃ pol(bc(bT ), Q ) is a scalar function (initially of bT before the bT → bc(bT ) modification), 
and Cpol(M P , bT, S) is the associated tensor structure. The key is that all kinematic bT dependence must be contained in Cpol(M P , bT, S). 
One can receive guidance for the structure of these terms from Eqs. (2.13), (2.14) of Ref. [36], where, exactly like in (38)–(40), the evo-
lution of the b-space functions that enter those formulas does not contain any kinematic bT prefactors. Next, one would continue with 
the modifications (II) and (III), where, in particular, one defines the momentum-space quantities in terms of the modified b-space ones, 
exactly like in Eqs. (42)–(44) and Eqs. (45)–(47). Finally, one puts these pieces together in the qT -differential cross section of (IV). Given 
our discussion in Sec. 3.3, we expect that all TMD functions one obtains from the iCSS procedure will reduce at LO to their collinear coun-
terparts upon integration (like in (53)–(55)) while inconsistencies could arise when integrating certain modulations in W (qT, Q , S; C5), 
specifically cos(2φh) and sin(3φh − φS)) [18], at LO to obtain the corresponding collinear cross sections.

4. Physical interpretation of Eqs. (53)–(55)

An important consequence of Eqs. (53)–(55) is that the “naïve” operator definition interpretation of TMDs is restored at LO. For exam-
ple, one can determine the average transverse momentum of unpolarized quarks in a transversely polarized spin- 1

2 target according to 
[40,54–57]

〈ki
T (x;μ)〉U T = 1

2

∫
d2kT ki

T

∫
db−

2π

∫
d2bT

(2π)2
eixP+b−

e−ikT·bT 〈P , S|ψ̄(0)γ +WDIS(0;b)ψ(b)|P , S〉
∣∣∣∣
b+=0

= 1

2

∫
db−dy−

4π
eixP+b−〈P , S|ψ̄(0)γ +W(0; y−)g F +i(y−)W(y−;b−)ψ(b−)|P , S〉

= 1

2
ε i j S j

T T F (x, x;μ) , (56)

where WDIS(0; b) is a future-pointing staple gauge link connecting (0+, 0−, 0T) to (0+, b−, bT), and we have used (19) in going from the 
second to the last line. (The relation (56) holds for each quark flavor.) For Drell–Yan, where one uses a past-pointing staple gauge link, 
there will be a sign change on the r.h.s. of Eq. (56) [51]. That is, 〈ki

T (x; μ)〉U T is process-dependent. Note that the operator defining the 
TMD f ⊥ j

1T (x, kT ; Q2, μQ ; C5) on the l.h.s. of (55) includes a UV renormalization factor and a soft factor, along with non-light-like Wilson 
lines (see, e.g., Refs. [8,37]). However, this is not the operator that enters the first line of Eq. (56). Rather, the TMD operator that sits in 
(56) is the “naïve” definition, where the UV renormalization and soft factors are kept to LO and the Wilson lines are on the lightcone. On 
the other hand, the collinear operator in the second line of Eq. (56) is the one which underlies the Qiu–Sterman function T F (x, x; μc) on 
the r.h.s. of (55).8 Therefore, it is the Qiu–Sterman function which fundamentally is related to average transverse momentum, and, due to 
Eq. (55), the first kT -moment of the Sivers function (within the iCSS formalism) retains this interpretation at LO. We mention that both 
the l.h.s. and the r.h.s. of Eq. (56), i.e., the operators in the first line and second line, respectively, are implicitly renormalized using the 
same procedure. Thus, both functions are modified in the same way from the strict physical interpretation one obtains from using bare 
operators.

Note that the interpretation of the Qiu–Sterman function given in (56) is compatible with the understanding of the average transverse 
force acting on quarks in a transversely polarized spin- 1

2 target [68]. Moreover, relation (55) made it possible to connect TSSAs in different 
processes (e.g., the Sivers effect in SIDIS and AN in proton-proton collisions) and has been used routinely in phenomenology (see, e.g., 
Refs. [69–73]). The incorporation of evolution in the TMD correlator through the original CSS formalism breaks the “naïve” relations 
between TMDs and collinear functions (see Eqs. (31)–(33)). Nevertheless, as we have shown above, the modifications implemented by the 
iCSS framework allow one to preserve these identities at LO.

7 Most likely this is also a sufficient condition at LO. However, at NLO, a quantitative matching in the intermediate-qT region is probably also required in order for the 
integrated TMD results to match the collinear ones at that order in αs .

8 The scale dependence is from the renormalized correlator one defines since the kT -integration in the first line of (56) is UV divergent.
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5. Summary

In this Letter we have extended the improved CSS formalism of Ref. [1] to the case of polarized observables, which are especially 
important for experiments studying the 3D structure of hadrons. As a result, we are able to recover the well-known relations between 
TMD and collinear quantities one expects from their naïve operator definitions. For example, we have shown at LO that the weighted 
Sivers effect, using the iCSS W + Y construction of TMD factorization, yields the collinear twist-3 result in the literature. We also have 
demonstrated the validity of the relation between the first kT -moment of the Sivers function and the Qiu–Sterman function, which holds at 
LO in iCSS. Since the latter fundamentally defines the average transverse momentum of unpolarized quarks inside a transversely polarized 
spin- 1

2 -target (see Eq. (56)), the former retains this interpretation as well at LO. We have discussed how the iCSS modifications can be 
applied to other polarized observables, where one would also recover the other known identities between TMD and collinear twist-3 
functions. We leave as future work the implementation of the iCSS method into phenomenological analyses.
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