PHYSICAL REVIEW D 102, 014003 (2020)

Exclusive tensor meson photoproduction
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We study tensor meson photoproduction outside of the resonance region, at beam energies of a few GeVs.
We build a model based on Regge theory that includes the leading vector and axial exchanges. We consider
two determinations of the unknown helicity couplings and fit to the recent a, photoproduction data from
CLAS. Both choices give a similar description of the a, cross section but result in different predictions for the
parity asymmetries and the f, photoproduction cross section. We conclude that new measurements of f,
photoproduction in the forward region are needed to pin down the correct production mechanism. We also
extend our predictions to the 8.5 GeV beam energy, where current experiments are running.
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I. INTRODUCTION

The lightest tensor meson multiplet is well established
experimentally and theoretically [1-3] and fits well into the
quark model. Given their relatively narrow width, light
tensors can be used as a benchmark when searching for
states which are less prominent in data, for example the
JP€ = 1=+ exotic hybrid candidate [4,5].

A comprehensive understanding of tensor meson pro-
duction dynamics is thus needed to pin down the properties
of hybrid mesons.

In particular, in photoproduction both hybrids and tensors
can be produced through vector and axial exchanges. The
a,(1320)° photoproduction cross section has been recently
measured by the CLAS experiment in the 4-5 GeV beam
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energy range [6]. The f,(1270) cross section has not been
extracted explicitly, but it can be inferred from the partial
wave analysis of yp — z7z~p [7]. A pattern seems to
emerge from various photoproduction reactions: when
isovector mesons like the z° or @) are produced, the
differential cross section exhibits a dip at # ~ —0.5 GeV?,
which does not appear in photoproduction of isoscalars, like
the 7 or f5.

In this paper, we describe tensor meson photoproduction
in the 3—-10 GeV beam energy range with a model based on
Regge pole exchanges. The model is compared to CLAS
data in Sec. II. In its simplest version, the amplitude
includes the leading vector exchanges only and leads to
an exact zero at the so-called wrong-signature point. The
overall normalization is constrained from known tensor
meson decay widths. In Sec. III, we introduce axial
exchanges as a possible mechanism to fill in the zero.
The strength of vector and axial exchanges is refitted to the
CLAS a, data. We then compare the predictions of the
model with the f, cross section data. Our predictions
are extended to a higher beam energy of E, = 8.5 GeV,
where GlueX and CLAS12 are currently operating [8,9].
Polarization observables sensitive to the naturality of the
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exchanges are predicted in Sec. IV. Summary and con-
clusions are presented in Sec. V, while several technical
details are left to the Appendixes.

II. VECTOR EXCHANGES

We consider the process yp — T p, where T =a,(1320)°,
f»(1270). We do not consider charge exchange
processes, as yp — a(1320)*n or yp — K5(1430)"A
or —K3(1430)*9£%*, which are driven by pion or kaon
exchange, respectively, and exhibit a different phenome-
nology (for example, the former has been studied in [10]).
At high energies, the amplitude in the forward direction is
dominated by the leading Regge exchanges. As represented
in Fig. 1, Regge pole amplitudes factorize into a product of
an upper and a lower vertex [11,12] that describe the beam
and target interactions, respectively. The amplitude can be
written

M a2 ()RE (s, I>Bf x, (1), (1)

=T (0

where 4; is the center-of-mass helicity of particle i and s
and ¢ the Mandelstam variables describing the total energy
squared and the momentum transferred squared between
the initial and final nucleon, respectively. The sum runs
over the Regge poles that contribute to tensor production.
As customary, Reggeons are labeled by the lightest meson
lying on the trajectory and classified by this meson’s
quantum numbers, in particular parity P, signature
7 = (—)’, and naturality = P(—)’. The dominant natural
exchanges are the vector p and @, while the unnatural ones
are the axial b, and 4,. The beam asymmetry in z° and 5
photoproduction by GlueX [13] suggest that natural
exchanges dominate over unnatural ones as long as pion
exchange is forbidden [14-16]. For this reason, we now
focus on the leading vector exchanges only, V = p, @
The Regge propagator is given by [17]

T4 e—iﬂa(t)
2

R(s, 1) = (=)T[Z = a(n)](a's)"D. (2)

T \p

D, >\p p; )‘;

FIG. 1. Factorization of the tensor meson 7' photoproduction
amplitude via the Regge exchange E =V, A.

The factor I'[¢ — a(z)] has poles for integers a(r) = J > 7,
representing the exchange of a particle of spin J in the
t channel. The signature factor 7 + ¢~ cancels the
wrong-signature poles at J > ¢ and provides additional
wrong-signature zeros for J < 7.

Duality arguments based on the nonexistence of flavor-
exotic resonances, at least in the light sector, require the
parameters in the propagator to be equal for vectors and
tensors [exchange degeneracy (EXD)]. For the trajectories
it holds since a( )=1+d(t—m})~2+d(t—m}) =
a't + 0.5 with o = 0.9 GeV~2. The value of # is the spin
of the lightest state that appears on all the degenerate
trajectories. Since there is no scalar meson on the leading
trajectories, £ = 1. For vector exchanges, 7 = —1 and the
amplitude vanishes at J =0, which corresponds to
t = —0.55 GeV?2. The propagator is normalized such that,
at the vector pole,

o's s
R(s,t 2 = )
(5,8~ my) = l—a(t) m}—t 3)

The bottom vertex depends on two helicity couplings:

, 1/2) (4,
B ’ =
0= (o)

x [GY&, 1, +22,GY8; _z]. 4)

The half-angle factor (—¢')(1/2li=%l arises from conserva-
tion of angular momentum in the forward direction, with #
defined as

, , .29 m;‘" N2
! =t—ty, = —4qq sin EZI_E+(q_q)’ (5a)

with ¢ and ¢’ the incoming and outgoing 3-momentum,
respectively, g=(s—m?)/2\/s and ¢'=2"*(s,m?3.m})/
2y/s, with A(a, b, ¢) = a* + b*> + ¢* = 2(ab + bc + ca).

Similarly, in the top vertex, we factorize the half-angle
factor and an overall normalization:

0= (5 T)“”” T (©

Parity conservation implies
By (1) = (=) 1By 4, (1) (7)

The five independent helicity structures /3, , (¢) could, in
principle, be extracted from the angular correlations of the
decay T'— Vy. Unfortunately, these decay modes have not
been measured yet. We thus must introduce a hypothesis to
fix the relative size of the various structures and fit
the overall coupling to data. We consider two models, a
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TABLE L. Helicity structures 3, ;, (¢) of the top vertex for the
interaction models considered. The other structures can be
obtained via the parity transformation in Egs. (7) and (15).

[}1‘2 ﬁl‘l ﬁl‘() ﬂl,—l ﬂl,—Z
Minimal 0 12 —1/v6 0 0
T™MD  —1/2  —12mk  1)2/om} 0 0
M1 0 /4 —1/V6 1/4 0

“minimal” one (see e.g. [18]), and a second one that we
refer to as tensor meson dominance (TMD) [19]. The
helicity couplings f Az of the two models are summarized

in Table I, and the derivation is described in Appendix A.

The overall normalization ﬂ{,T could be extracted from
the branching ratio of the radiative transitions between
tensors and vectors. In the absence of this, we resort to
vector meson dominance (VMD); i.e. we assume that the
photon mixes with vector mesons through:

‘CVMD =V 4”aA”<mpfpp/4 + mwfa)wﬂ)’ (8)

where f, ,, are the meson decay constants and are related to
the leptonic width T'(V — e*e™) = dna’f3/3my,.

Since the systematic uncertainties related to the model
are much larger than the uncertainties of the parameters the
model depends upon, we do not perform the usual error
propagation and just consider the qualitative behavior and
the order of magnitude of these first estimates.

In the following, we extract the couplings for the a, and
leave the determination of the f, ones to Appendix D. We can
use VMD to relate the radiative transition 7 — Vy to either
the divector decay T — V'V or the two-photon annihilation
T — yy. In the first method, we determine the 5}, coupling
from  T(a, » wp) ~T(a, » wrar) = 11.1 £ 3.4 MeV,
assuming that the p saturates the zz pair [1]. The matrix
element ) |M|? is given in Egs. (A6a) and (A7a) and
must be averaged over the p line shape:

27/7 2 (ma _mw>2 /
r(az_,wp):M/ 2 ds'

40mmg, Jam?

A2 (m3, mg,. s')

X TZ|M|2BP(S/)’ ©)

pol
with

m,I,(s")
B 1 — PP , 10
o(5') (m2 —s")? + moI2(s") (102)

m, (s —4m2\3/2

r()=r,—2(—=%L . 10b
o)

Finally, VMD leads to

gz = \aza LV g (11)
my
Using the second method, we consider I'(a, — yy) =
1.00 £ 0.06 keV [1] and use Egs. (A6b) and (A7b) to
extract the two-photon couplings fZ,. With VMD, we
obtain

ﬂgjaz _ Zl}; <f(u +l&>_1 yas :l Z)az (12)
Vara \m, 3m,) ' ’ 370

using the isospin relations derived in Appendix B. The
numerical values of the overall normalization obtained with
these two methods for the two models studied are sum-
marized in Table II.

The differential cross section obtained using the divector
decay width is compared to the CLAS data [6] in Fig. 2.
The model describes the dip in the — € [0.4,0.6] GeV? bin
with an exact wrong-signature zero at t = —0.55 GeV?. To
improve the agreement with data, we need to invoke a
mechanism that partially fills in the zero.

There is phenomenological evidence that the p nucleon
helicity-flip amplitude does not have the wrong-signature
zero [21,22]. For example in # photoproduction, which is
dominated by p exchange, the cross section does not dip
[15]. Accordingly, we will modify the helicity-flip bottom
coupling G — % G5 to remove the wrong-signature zero.

The predicted curves are shown in the right panels of Fig. 2.

Both models, in particular the minimal one, have roughly
the right order of magnitude. However, they fail at giving a
good descr7i_ption of data. Moreover, from Table II we notice
that the f, obtained using VMD from different reactions
are substantially different. In the next section we will refit
the overall normalization to data.

III. UNNATURAL EXCHANGES AND
COMPARISON WITH f,(1270) DATA

One can wonder whether other exchanges contribute to
filling in the zero. If the strength of the dip is due to the
nonflip p exchange only, the isospin relations (given in

TABLEII. Parameters extracted from known decay widths. The
bottom vertex couplings are taken from [20].

/};az /}Z)ﬂz /};’)fz ﬂ;/vfz
Tyy Minimal 0.235 0.791 0.700 0.233
T™MD 1.143 3.8373 3.31822 1.10607
FYY Minimal 0.110 0.331 0.316 0.105
TMD 0.238 0.715 0.684 0.228
G G, GY Gy
Bottom vertex 1.63 13.01 8.13 1.8600
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FIG. 2. Predictions for a,(1320) photoproduction differential cross section at E, = 4 (blue lines) and 5 GeV (red lines). In the top
panels we show the results for the minimal model, in the bottom ones the tensor meson dominance. The left plots feature the wrong-

1

signature zero at t = —0.55 GeV?. In the right plots, we modify the p helicity-flip bottom coupling G5 — WGQ to fill in the zero, as

explained in the text. The overall coupling is determined from the wzz width. Data points from CLAS [6].

Appendix B) predict that the f, cross section is 9 times
larger than the a, one at the wrong-signature point. On the
contrary, they are comparable, as one can see from Fig. 4.
This suggests the existence of other isoscalar exchanges
that contribute to filling in the zero. Isoscalar axial
exchanges play a significant role in z° and # photo-
production [15,22]. We investigate here how much they
are relevant in tensor photoproduction.

The Regge propagator for axials is given by Eq. (2) with
¢ =0, since the lowest spin on the EXD trajectory is the
pion. The unnatural Regge trajectory is a(t) = o (t — m2),
with o = 0.7 GeV~2. Charge conjugation invariance
restricts the bottom vertex to the helicity-flip component
only,

—t

B, (1) GA< )(1/2)|/1p—/1’p5 (13)
() = 21 7 7 jp,—i’pv
i o

with the coupling obtained from Ref. [17], G5 = 25.24,
taking into account the normalization properly. The top
vertex reads

=\ /Dl
T3, (1) = By (—2> Biyir

my

(14)

with parity conservation implying
(15)

In the absence of information on the angular distributions
of the 7 — Ay decay, we restrict ourselves to the M1

Boiyay === Bo

transition that dominates in the nonrelativistic quark model.
This fixes the relative size of the various helicity structures
(see details in Appendix A), reported in Table 1.
Transitions of tensors to axials have not been observed,
so we cannot proceed in the same way as we did for the
natural case to predict the couplings. Moreover, from
Table II we notice that the ﬂ{/T obtained using VMD from
different reactions are substantially different. Therefore, we
now refit both vector and axial couplings to the a, data. We
notice that the amplitude of /&; and b; are identical; thus,
the fit is sensitive to the sum of couplings £"* + £}, only.

We know that i; and b, contribute equally to n photo-
production and that the former is 9 times larger than the
latter in z° photoproduction [15,22]. This agrees with the
expectation from the isospin relations discussed in
Appendix B. We thus set

ﬂV — Z}az — 3ﬂ%ﬂ2’ ﬁA __ praz

=g A =0, (16)

We fit these two overall normalizations to data, using
the sets of helicity structures given in Table I. The
systematic uncertainties from [6] are not considered in
the fit. The results are shown in Fig. 3 and the fit parameters
are summarized in Table IIIl. We quote the statistical
uncertainty on the fit parameters which propagates
from the statistical uncertainties of the data points. No
significant difference between the two models appears for
—t2 0.6 GeV2. In the forward region, the TMD model
vanishes quickly due to the presence of higher derivatives,
which turns into an additional factor of ¢ in the nonflip f ;

helicity coupling. It is also worth noting that, away from the
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FIG. 3.  Fit to a, photoproduction at £, = 4 and 5 GeV. The minimal model (left panel) and TMD model (right panel) are fitted to the

CLAS data [6]. The solid lines show the full models, which includes both vector and axial exchanges. The strengths of vectors and axials
is fitted to data. The contribution of axials is shown separately with dashed lines. The systematic uncertainties of [6] are reported in the

bands on top and have not been considered in the fit.

very forward region, the cross section is dominated by
unnatural exchanges. This is not the case for the TMD
model, which captures the wrong-signature dip at ¢ =
—0.55 GeV? much better. More data at —¢ < 0.6 GeV?
will help in discriminating between the two models.

We discuss now f, photoproduction. Using the isospin
relations of Appendix B, we can predict the behavior of the
differential cross section. If we include the /&; exchange

only, the ratio of the couplings is /3 / /)’Z{ 2 = 3. If instead
we set ﬂ’g 2= ﬁ;’: 2 as suggested by 7 photoproduction [15],
the ratio of the contribution from axials to a, and to f,
amplitudes By + 5/ (ﬁi{ 24 ,BZ{ ) =5.
Since we are fitting the a, data only, this choice affects

the predictions of the f,. Moreover, since the f, cross
section is dominated by p exchange, choosing either value

would be

of ﬂ’l’f: * makes little difference. In the following, we show
the results for g = ﬂ,};{ 2 =0.

Information about the f, may be extracted from the
CLAS partial wave analysis of z*z~ photoproduction [7].
Since data are available in bins of ¢ and beam energy, we get
the f, from the zzD wave with a simple fit as described in
Appendix C. A new analysis by CLAS, dedicated to the f,
cross section extracted from 7°z° photoproduction, is
currently ongoing and will be published soon [23]. We
notice two main features: data look much flatter in ¢, and
there is no evidence of the wrong-signature dip. As seen in

TABLE III. Fitted couplings defined in Eq. (16). The error
quoted is statistical and results from the fit.

B p
Minimal 0.251 £0.053 0.821 +£0.023
TMD 1.060 £ 0.073 0.581 £ 0.053

Fig. 4, the minimal and TMD models differ significantly.
We already noticed that the TMD vanishes in the forward
direction, in opposition to the minimal one. Moreover, the
former peaks at t=~—0.6 GeV?, while the latter at
t~—0.2 GeV?. These differences persist at higher beam
energies. The minimal model fits well the f, data, while the
TMD overshoots the data by a factor of 4. In Fig. 4 we also
show the predictions for cross sections and parity asym-
metries at the beam energy E, = 8.5 GeV, which will be
measured soon by GlueX and CLASI12.

Finally, we would like to comment about f%(1525)
production, which could be extracted from a yp —
KK~ p partial wave analysis. In the ideal mixing scenario,
the leading exchanges are ¢ and £/ (1415). The formalism
is identical to the one discussed above. Since the couplings
are independent from the a, and f, ones, and there are no
data to fit, we cannot provide reliable predictions.

IV. POLARIZATION OBSERVABLES

The GlueX experiment operates with a linearly polarized
beam at peaking energy E, = 8.5 GeV. The photon polari-
zation can also be extracted at the CLAS12 experiment, by
measuring the angular distribution of the impinging elec-
tron. This information, correlated with the angular distri-
bution of the tensor meson decay products, allows one to
extract the spin density matrix elements (SDMEs). From
the latter, we construct the parity asymmetry P,, which
measures the relative strength of vector and axial
exchanges: the asymmetry is close to 1 when the natural
exchanges dominate and to —1 when the unnatural
exchanges dominate. The definitions of SDME and P,
are given in Appendix E. We present in Fig. 5 the predicted
behavior of P, for a, and f, photoproduction.

The predictions of a, parity asymmetry in the minimal
and TMD models differ substantially. The dominance of
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FIG. 4. Differential cross sections of a, (top) and f, (bottom), for different beam energies. The minimal model is shown in the left
panel, the TMD in the right ones. The strengths of vectors and axials are fitted to the a, data only. The results are shown in Table III. The
error bands show the 16 confidence interval which results from the statistical uncertainty of the fit. The a, data are taken from CLAS [6],
and the extraction of the f, data from the partial wave analysis of z*z~ by CLAS [7] is described in Appendix C.
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FIG.5. Parity asymmetry P, in a, and f, photoproduction, for different beam energies. The minimal model is shown in the left panel,
the TMD in the right ones. The strengths of vectors and axials are fitted to the a, differential cross section data only. The results are
shown in Table III. The error bands show the 1o confidence interval which results from the statistical uncertainty of the fit.

axial exchanges for —¢ > 0.4 GeV? drives P, toward —1 V. CONCLUSIONS

in the minimal model, while in the TMD model the parity In this paper we studied tensor meson photoproduction
asymmetry stays positive. For the f5, the importance of iy the 3-10 GeV beam energy range, based on a Regge
axial exchanges grows as —f increases in the minimal model, with vector and axial exchanges. We considered two
model, while the dominance of p exchange in the TMD  different schemes for the vector helicity couplings. We first
model for the f, leads to a parity asymmetry close to 1. give an order-of-magnitude estimate of the couplings in
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both models. We then fit the a, data recently published by
CLAS [6]. We predicted the f, cross section and compared
to f, data extracted from a partial wave analysis of zt 7~
photoproduction, also by CLAS [7]. While the two models
give similar descriptions of the a, cross section, they differ
in predicting the parity asymmetries and the f, cross
section. The so-called minimal model provides better
overall agreement with both a, and f, data, but at the
price of missing the dip in a,. Moreover, it predicts that the
a, cross section is dominated by unnatural exchanges,
which is at odds with the phenomenology of single meson
photoproduction. On the other hand, the TMD model
appears better grounded phenomenologically, but it over-
estimates the f, data. New data on both a, and f,
photoproduction cross sections and beam asymmetries,
in particular in the —¢ < 0.6 GeV? region, will allow us
to pin down the exact strength of vector and axial con-
tributions and lead to a better understanding of the tensor
meson production mechanisms. The code to reproduce
these results can be accessed at the Joint Physics Analysis
Center Web site [24].

ACKNOWLEDGMENTS

We thank Ken Hicks for useful discussions. This work was
supported by the U.S. Department of Energy under Award
No. DE-AC05-060R23177 and No. DE-FG02-87ER40365,
by Programa de Apoyo a Proyectos de Investigacion e
Innovacién Tecnoldgica - Direccién General de Asuntos
del Personal Académico (PAPIIT-DGAPA) of the
Universidad Nacional Auténoma de México (UNAM,
Mexico) under Grant No. IA101819, and by Consejo
Nacional de Ciencia y Tecnologia (CONACYT, Mexico)
under Grant No. A1-S-21389, by Polish Science Center
(NCN) Grant No. 2018/29/B/ST2/02576, and by the Istituto
Nazionale di Fisica Nucleare (Italy). V. M. acknowledges
support from the Community of Madrid through the
Programa de Atraccién de Talento Investigador 2018T1/
TIC10313 and from the Spanish National Grant
No. PID2019-106080GB-C21.

APPENDIX A: TOP VERTEX MODELS

1. Photon-tensor-vector interaction

The parity-conserving interaction between a tensor
and two vectors involves five independent Lorentz
structures. In the decay kinematics T(#**, p, + p,) —
Vi€, py) + V,(e®, p,), the most generic covariant
amplitude takes the form [25]

v] v,
M ="L—[ae, Ve’ + (D - py)en? py,
mry
+ﬂ2(€*<2) : P1)€;<1)qu + 7(6*(1) ) €*(2>)P1ﬂpzy

+5<€*(1) . p2>(€*(2) . p1>p1”p21/], (Al)

which leads to the decay width

B ( Vy V') p
F(T d V1V2) == 407 m—é.;: M,{ /12 . A2)
with p = 2V2(m%, m?, m3)/2my, E; = \/p? + m?, and
a—2p%y
My =—F—, A3a
11 \/6 ( )
p mrf + Era
M , A3b
10 mz\/z ( )
P ‘mpfy + Ea
M , (A3c)
01 — ml\/‘
V2/3
Moy = == E\Eya + p*my(Eapy + E i)
nymy
+ p*(ELEy + p*)y + p*m78], (A3d)
M| =a, (A3e)
M—M—iz - Mﬁlﬂz' (A3f)

In order to extract the Regge couplings from Eq. (Al),
we write the amplitude of the process y(4,)r(4,) —
T(A7)T(47) with vector exchange in the ¢ channel, at
leading order in s. By matching to the expected form
[Eq. (O]

o (1/2)/2,~21]
Ay, = By )? ﬁa Ar

Ky —_ 1/2)‘/1;_’1/7‘ %
— | — C s A4
x my, —t <m:‘}> Py (A4)
we obtain the structures for the Regge couplings:
Pia = (2B, —15)/4, (A5a)
1
Pra = oy (2 + m7) B, — 1h (ASb)
T
—1(t +m%)s + 2a], (A5c)
-1
=———[da—2(m% + 1)p; + 2(t + 2m}
Pro = 3 g 140 = 20 081201+ 200
— (2 + 4tm3 4+ m3)d), (A5d)
Pr—1 = [P = P1 = (1 -+ m7)5]/4, (ASe)
P12 = m75/4, (ASf)
Py, = (—)I_A"ﬂl,—xr- (Asg)
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So far, the equations are completely generic, since no
assumption has been made on the (a,f,$,,y,8) scalar
functions. We also remark that the amplitude in Eq. (A1) is
not automatically gauge invariant when V; is massless. In
the absence of information about the multipoles of 7 — Vy,
we consider two possible models, described below.

2. The minimal model

The “minimal” model is inspired by effective field
theories (EFTs) and prescribes to neglect all the terms
with particle momenta, which correspond to higher deriva-
tive interactions in the EFT Lagrangian [18]. We thus set
a=m2 and 8, = B, =y = & = 0. The resulting covariant
amplitude is not explicitly gauge invariant, so one needs to
restrict manually the sum in Eq. (A2) to the transverse
photon polarizations. The widths read

P oViVaN2 1 2 1 1
(T ViV, =— V2 o+ = I T
(T - VV,) 87r( ) { +3P (m%+m%
2 p*
— A6
15m§mg] (A6a)
Tm Y7 \2
LT - yy) = 4Ts(o;)’ (A6D)

while the Regge structures are reported in Table L.

3. Tensor meson dominance

TMD [19] assumes that a tensor meson couples to a
vector field with the stress-energy tensor, £ = T*F,,F7.
The coupling to two distinct vectors is easily achieved by
considering two distinct curvature tensors. The Lagrangian
is manifestly gauge invariant. This model corresponds to
setting a =p;-ps, y=—P1=—pPo=1, and 6=0 in
Eq. (Al). The widths read

p
DT = ViVa) = ooy B> {"ﬁm%
T
p? 4
R R T N
L(T = yy) = o (B2, (A7b)

320

while the Regge structures are reported in Table L.

4. Photon-tensor-axial interaction

The parity-conserving interaction between a tensor, an axial
and a vector involves four independent Lorentz structures:

VT
FA
M= o e 12 (py + pa)glai€r’ €' py,

*A *V *A xV
+ﬂ1pVa€y Pvp€ " Pa + a2€a €, DPvp

+ ﬂZpVae;ijV/)e*A ' pV] . (Ag)

However, since in the nonrelativistic quark model the tran-
sition T(#**, p,+pa)—7(€”,p,)+A(e*,p4) is dominated by
the M1 multipole, we restrict ourselves to the single amplitude
with oy =1, a, = = f = 0. The helicity amplitudes
M L in the tensor rest frame are

(A9a)

Moy, =My, (A9D)

times the overall coupling ﬂf{. We write the amplitude of the
process y(4,)y(4,) = T(A7)T(47) with axial exchange in the
t channel at leading order in s. By matching to the expected

form [Eq. (6)]:
A/2)14 =4 g
Ay =~ )p AT< )

2
m3 —t
—1\ (1/2)14,=2;] ﬁA
x| — ,
m% Ay

we get the structures in Table 1.

(A10)

APPENDIX B: ISOSPIN RELATIONS

The transition of tensor to axial mesons is dominated by
the M1 multipole. In the quark model, this requires a spin
flip from S = 1 to S = 0 to conserve charge conjugation. In
the tensor rest frame, the matrix elements read [26,27]

- 7
Z <A7/1A|ﬂi0i € (’1}/)|T’ /1T>’

i=12

M(T - yA) x (B1)

where the sum runs over the two quarks, y; is the quark
magnetic moment, o; the spin operator, and e the emitted
photon polarization.

The transition of tensor to vector meson is instead
dominated by the E1 multipole and does not involve the
quark spin:

M(T - yV) « / ép>13 éf)é (27)35°

ZVﬁv|€€ y) " Di

(P1 + P2)

) (B2)

where p is the 3-momentum of the quark in the center-of-
mass frame.

We align the spin quantization axis along the direction of
the emitted photon. We consider a right-handed photon and
the tensor helicity +2. The wave functions are
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with I= [r2drR, o(r)(=id,)R, 1 (r). Since e, — e, =/4na,

T) = —(IW) F [dd)) 1R (1) Y((6. ), (B3a)
V2 : and e, + e; = Vara/3, we get
1 ;
[4) =5 ([uit) F |dd)) (111) =L ))R1.1 ()Y 1(0.¢), (B3b) B = gy =35 = 3", (B5a)
1. _
V) =51 F 1) (111 + | LL)R: o1 Y00, (B3c) B = g = 3 = 3, (BSb)
where Y”(6,¢) are the usual spherical harmonics and The two-photon couplings become
R, ,(r) the (unspecified) radial functions. The upper
(lower) sign is for isovector (isoscalar) mesons. We are
implicitly assuming that the orbital wave function of ﬂ?y = Vara (ﬁ;fé Jo + B fﬂ’)
tensors and axials is the same. So are the isovector and o my w
isoscalar wave functions. We are also assuming ideal f 1f
=4 f L. @
mixing for the mesons, namely that no strange component oy < Im ) (B6a)
is included in the wave functions.
The magnetic moment is proportional to the electric
fr?:sfe u; = e;/2m, where m is the constituent light quark - _ Vira ( var Jo , gren & )
: m, m,
_ \/— v as 1 f/) f(l) B6b
M(fz2 = b)) = M(ay = yhi) o (e, —eq) 5 - (B4a) P \3m, " om, (BEb)
M(fs = yhy) = M(ay - yby) « (e, + ¢y) i (B4b)  thatare used in Egs. (12) and (D4). For the decay constants,
2m following the arguments above one gets f, = 3f,. This
relation is broken at the 10% level, suggesting some
M(f2 = vp) = M(ay = yw) « (e, — eq)l. (B4c)  contributions from annihilation diagrams neglected here.
If we apply this relation and set m,=m,,, we get %ﬂyz,
M(f2 = yw) = M(ay = yp) (e, + eq)l, (B4d) i, agreement with the experimental values.
2.0 2.0 2.0
[ t=-045Gev? [ t=-055Gev? [ t=-065Gev?
T 15F s z Z 15
% [ — Combined it % % r
\15 1of 3 3 10F
5 I 5 5 I
g 05 3 B osf

[vpovrmp

0.0 bt

0.0 L1 I I I S I Lot I I I I I I I I I il I I
06 07 08 09 1 11 12 13 14 06 07 08 09 1 11 12 13 14 06 07 08 09 1 11 12 13 14
ey (GEV) Mes (GeV) Mer (GeV)
20 20 20
[ t=-075GeV? [ t=-0.85GeV* [ t=-0.95GeV
151 15F 151
10f

do/dtdm,, (ub/GeV®)
do/dtdm,, (ub/GeV®)

do/dtdm,, (ub/GeV®)

05}

N

| |
11 12 13 14

ok
0.6 07 08 09 1
My (GeV)

ok
06 07 08 09 1
My (GeV)

I I ol I I I I
11 12 13 14 06 0.7 08 11 12 13 14

09 1
My (GeV)

FIG. 6. Fitto the CLAS D-wave data on 7z 7~ photoproduction, as discussed in the text. Data are averaged over the four beam energy
bins, E, = 3.0-3.8 GeV. Mass and width of f, are fitted independently in each ¢ bin (red curve) or constrained to be the same (green
curve). In dashed lines we show the separate contributions of f, and of the linear background. The strength of the f, looks constant in ¢,

while the strength and shape of background change dramatically.
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APPENDIX C: EXTRACTION
OF f,(1270) CROSS SECTION

As we mentioned, CLAS published the partial wave
analysis of z"z~ photoproduction for 3.0-3.8 GeV beam
energy range [7]. The ¢ dependence of the f, was not
directly extracted. The plot in Fig. 24 of [7] indeed reports
the differential cross section integrating the zz invariant
mass over the f, peak region, m,, € [1090, 1400] MeV.
This would be a good estimate for the f, differential cross
section if the background underneath the peak were
negligible. One can appreciate from Fig. 14 of [7] that
this is not the case. The published version of the paper does
not report the zz invariant mass in bins of 7. However, the
D-wave dataset can be downloaded from the HEPDATA
repository, in bins of # and beam energy [28]. We see that
the amount of background is even larger at small values of
t. We extract the f, cross section by fitting the D-wave data
in the f, region with a simple constant width Breit-Wigner
on top of a incoherent linear background:

dO’(]/p - (”+ﬂ_)D—Wavep)

dtdm,,
+ p—
o [dﬁ(n) = fap) 1 mp Ty B(fy > nfn”)
- y.7/4 2 2
dr w(my —mg,)* +mi T7
+cm,2m+d], (C1)
0.8 [
= Yp-fp
0.7 = —o— CLAS D-wave
c —o— Independent fit
0.6 —o— Combined fit
Ly -
< 05F
9} c
S o4
2 03fF
© o
02 % % % %
0.1
o I B R B B B
0.0 0.4 0.5 0.6 0.7 0.8 0.9 1

-t (GeV?)

FIG. 7. Differential cross section of f,. A 40% systematic error
is shown. We compare with the CLAS data points from Fig. 24 of
[7] (blue lines). We remind that CLAS points were obtained by
integrating the m,, bins in the [1090, 1400] MeV range, that
roughly corresponds to [m, — Ty, mp, + %Ffz}. Some f, signal
is lost, and a substantial background is included. Moreover, the
branching ratio B(f, — zz) is not included. The red and green
points correspond to the different extractions, namely if the f,
mass and width are fitted independently or not in the different ¢
bins. These two results are consistent within error. Red and green
points are slightly shifted horizontally to ease the reading.

where B(f, = ntn~) = 56.21¢% [1]. We fit to the 1.09—
1.4 m,, range only, in order to have an easier description of
the background. Since the errors quoted in HEPDATA are
systematic only, we ignore them in the fit, assuming equal
weights for each bin, and assign a 40% error to our final
results, consistently with what is done in [7]. Data are
available for also bins of beam energy, from 3.0 to 3.8 GeV,
but the energy dependence of data is mild. Therefore, we
average data over the four bins and quote the results at
the mean energy E, = 3.4 GeV. The fit is shown in Fig. 6.
The f, mass and width is fitted independently in the six ¢
bins, obtaining results consistent with each other and with
the PDG value. Alternatively, we impose mass and width to
be the same in all ¢ bins. The final result is the same within
errors, as seen in Fig. 7. We notice that the background
depends on ¢t much more than the f,.

APPENDIX D: f,(1270) COUPLINGS
We determine the ﬂ(‘,f * couplings from the decay width:
+pTp7)=T(f, = 22127~ + nt 7 22")
=19.6732 MeV, (D1)

L(fy = p°p°

assuming that the pion system is saturated by p mesons.
The matrix element ), | M|* given by Egs. (A6a) and
(A7a) must be averaged over the two p line shapes:

L(f2 = p%° +ptp7)
0P\ 2 1/2
ds’ ds” A m s s
3 (B) / s'ds Z|M|2 fz ")

2 407rm
pol

X B,(s")B,(s" )H(A(mfz,s ,s"), (D2)

where B,,(s) is given in Eq. (10) and the factor of 3/2 takes
into account the sum over isospin and the identical particle
phase space. VMD allows us to get

ﬁ]’fz \/— f/) ﬂ/’/’ (D3)

Alternatively, the ﬁly,f > can be extracted from the
two-photon width, I'(f, — yy) = 2.6 £0.5 keV [1] and
Egs. (A6b) and (A7b), to extract the two-photon couplings

Py, for the two models. We then obtain the B/ couplings
from

vf2 ﬁ}’}; <&+lfw>_l
? V dra m/) 3 mg, '
derived in Appendix B within the quark model. The

coupling to w can be obtained from either determination,
using

(D4)
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R
P =3 b (D5)
The numerical values under the different assumptions are
summarized in Table II.

APPENDIX E: SPIN AND
POLARIZATION OBSERVABLES

Experimentally, observables related to tensor meson
photoproduction are extracted from their decay products.
The simplest final state to detect is two pseudoscalars,
i.e. nz for a, and nx for f,. The general case of two-
pseudoscalar photoproduction with a linearly polarized
beam has been treated in detail in [29]. We summarize
here the relevant formulae when the tensor meson is so
narrow that the existence of other partial waves can be
neglected.

For a linearly polarized photon, the differential cross
section is

do(yp —» T(— PP')p)
1(Q, D) =
(@ ) drdQd®

= KZAA iy /1’

ik,
/
i,

,0/1 /1/( )Aj;;gp,vp (@), (E1)

where @ is the azimuthal angle between the polarization
plane (which contains the photon polarization and
momentum) and the production plane (which contains
the photon, tensor and recoiling proton momenta), while
Q = (0, ¢) are the decay angles of the pseudoscalar P in
the helicity frame. The photon SDMEs are pﬁi (@) =

11 =P,(c" cos2® + ¢?sin2®)], ,, with P, the beam
el d

polarization and ¢'? the Pauli matrices. In the narrow

width approximation, A, ; i Ay, »* « 8(m3, —m?),

and the dependence of A on s, ¢ is understood. We include
all numerical factors in

(O T | L 0z,
rtrror {2 or f5 —> biagia (B2)
~216n2r (2m ,E, ) 1 otherwise.
The amplitude is saturated by the D wave:
Ag i, = ZMz ma 2, Y5 (€2). (E3)

With a linearly polarized beam, only two observables are
accessible when the decay angles are integrated over, the
differential cross section do/dr and the integrated beam
asymmetry 2,:

do 1 do

1+ P %, cos 20
440 ~ 27 dr (Lt PrEascos20),

(E4)

where

do
d_ = ﬂK;V\/U ml, i’ | = 27TKN

APA/

gy = = ZM—AWMA

Aym
APA

(E5a)

1 A2y (ESb)

The component proportional to sin 2@ vanishes indeed
upon integration over Q because of parity conservation.
The angular dependence allows one to extract the SDME,
defined as

P?nmr 2NZM4mA/1M/1m“/v (E6a)
Ay /1

Pom ZM—}L m;d, A M/l m'A, A (E6b)
4,4

Piam! = Zﬂ' M—/l mid, A, MA m' A, <E6C)

They satisfy [p® ]* = p%, . Parity conservation implies

Pt = (S0 (E7a)

P = (1"l (ETb)

Py = =12 (E7c)
The SDMESs are normalized such that

Poo + 2001 + 205 = 1. (E8a)

Poo +2p11 20 = —Zus. (E8b)

We use the reflectivity basis [29]. The SDMEs can be
split into reflectivity components using
4 1 /
oot =5 (P F D" 0}) (E9)
The convention is such that the natural (unnatural)
exchanges contribute only to pfnnz (p,(nm) at the leading
order in the energy squared [29].
We decompose the intensity (E1) as

5 1do
0 1
= 1nom dr (WP(Q) — WH(Q)P, cos

- W(Q)P, sin®@].

1(Q, @)
(E10)

The SDME can be extracted from the angular dependence
of the intensities:
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1 3 3
W (Q) = 1—6/)80(1 + 3 co0s20)* — Zp‘{_l sin” 26 cos 2¢ — \/%Repﬁ’o sin 20(1 4 3 cos 20) cos ¢

3 3
+2A0 sin? 20 + 3Rep3_, cos @ sin’ @ cos 3¢p + 175 sin* @ cos 4¢p

3 3
+ \/%Repgo(l + 3 cos 20) sin” @ cos 2¢p — 3Rep$, cos @ sin’ @ cos ¢ + 17 sin 6,

valid for @ = 0, 1. The intensity W? decomposes into

3 3
W(Q) = \/:Imp%o sin 20(1 + 3 cos 20) sin ¢ + 4—ip%_l sin?20 sin 2¢b

8

8

3
- Ip%_zsin“a sin 4.
i

We remind the reader that pm . is purely real, p2,_,, purely imaginary, and pg
With a linearly polarized beam, the accessible reﬂectwlty components are pm m

(+)/dt + de™) /dt, with do* /dthﬂKN(péﬁ)+2pgjf)+2p§j2t)).

Opposite reflectivities do not interfere, do/dr =
The parity asymmetry

do(H) do™)

dr dr

P, =55 =2pi_1 = 2p3 5 — Piy

o)
t + dr

3
- \/:Impgosinzé’(l + 3 c0s 20) sin 2¢) + 3 cos Osin®O[Imp3, sin p — Imp3_, sin 3¢]

(E11)

2, =0.

(E12)

measures the relative importance of the two reflectivity components. When the two pseudoscalar mesons only couple in a
D-wave, P, corresponds to the beam asymmetry along the y axis, X, as defined in Ref. [29].
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