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Abstract

The J/ψ-p scattering length, αJ/ψp, can be extracted from the J/ψ photoproduction cross section

near threshold using the Vector Meson Dominance (VMD) model to relate the reaction γp→ J/ψp

to J/ψp→ J/ψp. Such estimates based on experimental data result in values for |αJ/ψp|, which are

much lower than most of the theoretical predictions. In this work, we study the relations between

the different results, depending on the use of the total or the differential cross sections, and the

method of extrapolating the data to threshold in the case of a low-statistics data sample, such

as the near threshold J/ψ photoproduction dataset. We estimate a range for |αJ/ψp| of 0.003 to

0.025 fm as extracted from experimental data within the VMD model and discuss possible reasons

for such lower values compared to the theoretical results.
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I. INTRODUCTION

There is a special interest to study the J/ψ - nucleon interaction because of the small size of

charmonium that can be used to probe the internal structure of the nucleon. Experimentally,

the charmonium-nucleon interaction can be investigated using J/ψ photoproduction within

the Vector Meson Dominance (VMD) model. The near threshold exclusive reaction, γp →

J/ψp, can be used to extract the J/ψ-p scattering length as the final state particles are

produced with a small momentum in the center-of-mass (CM) frame. The applicability of

the VMD model in this case requires special attention. Actually, near threshold, we are not

dealing with a J/ψ in equilibrium, but rather with a “young” cc̄ system [1]. In such an

interaction, more time is needed for the slow heavy quarks to reach equilibrium, i.e., to form

the final on-mass-shell vector meson.

In Ref. [2], the J/ψ-p scattering length is estimated using the recent measurement of the total

J/ψ photoproduction cross section near threshold from the GlueX Collaboration [3]. Within

the VMD model, the total γp → J/ψp cross section is related to the total J/ψp → J/ψp

cross section and, at threshold, to the scattering length αJ/ψp by [4]:

σγp(sthr) =
απ

γ2ψ

qψp
kγp
· σψp(sthr) =

απ

γ2ψ

qψp
kγp
· 4πα2

J/ψp . (1)

Here kγp and qψp are the momenta in the CM of the initial and final state particles, respec-

tively, and γψ is the photon - J/ψ coupling constant obtained from the J/ψ → e+e− decay

width. The above equation is taken at the threshold energy, where s = sthr = (M + m)2

with M and m being the masses of the J/ψ and proton, respectively. When approach-

ing threshold, qψp approaches 0. Therefore, with this method, the derivative of the cross

section as a function of qψp, for qψp → 0, is estimated from the data and then related

to the scattering length by Eq. (1). In Ref. [2], this is done by fitting the data with an

odd-power polynomial function. The result for the absolute value of the scattering length

is |αJ/ψp| = (0.00308 ± 0.00055 (stat.) ± 0.00045 (syst.)) fm. This value is much smaller
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than the values obtained from the processing of experimental data by other methods and

theoretical estimates (see References in [2]).

II. SCATTERING LENGTH FROM DIFFERENTIAL CROSS SECTIONS

In order to use measurements of the differential photoproduction cross section, dσγp/dt, to

estimate the scattering length, first, we will establish the relation between the total and

differential cross sections at threshold. The total cross section is determined as an integral

over t in the interval tmin(s) ≥ t ≥ tmax(s):

σγp(s) =

∫ tmax(s)

tmin(s)

dσγp

dt
(s, t)dt , (2)

with tmin,max(s) = M2−2kγp(Eψ±qψp), where E2
ψ = q2ψp+M2. When approaching threshold

tmin → tmax, and we have for the above integral:

σγp(sthr) = ∆t
dσγp

dt
(sthr, tthr) = 4qψpkγp

dσγp

dt
(sthr, tthr) , (3)

where ∆t = |tmax − tmin| = 4qψpkγp and tthr = tmin(sthr) = tmax(sthr) = −M2m/(M + m).

The above equation relates the total and differential cross sections at threshold. Combining

Eq. (3) and Eq. (1), we obtain:

dσγp

dt
(sthr, tthr) =

απ

γ2ψ

π

k2γp
· α2

J/ψp . (4)

The extrapolation of the cross sections to the point of t → tthr or s → sthr (qψ → 0) is

a key problem in determination of the scattering length. From an experimental point of

view, the total cross section is more suitable for extrapolation to the threshold than the

differential cross section, since the latter case needs higher statistics. Thus, the GlueX

Collaboration reported the differential cross section, dσγp/dt, as function of t in an energy

range of 10 − 11.8 GeV with an average energy of 10.7 GeV [3], which corresponds to

qψp = 0.95 GeV/c, while the lowest-energy data point for the total cross section is at a

four-times smaller qψp of 0.23 GeV/c, i.e., much closer to the threshold. Therefore, to utilize
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the differential cross section data, one needs to know the energy dependence of dσγp/dt(s)

in order to extrapolate it reliably to threshold.

In Ref. [5], the asymptotic behavior of J/ψ photoproduction near threshold is studied using

dimensional scaling. Due to the OZI rule, the J/ψ−p interaction is mediated predominantly

by gluons. In this approach, the differential cross section of J/ψ photoproduction is analyzed

in the framework of a two-component model with 2- and 3-gluon exchange. Each component

describes the contribution to the differential cross section in terms of the quark-gluon parton

model:
dσγpi
dt

= Ni (1− x)2ns · F 2
i (t) , (5)

where ns is the number of spectators in the proton target not participating in the process;

ns = 1 and 0 for the two- and three-gluon exchange channels (i = 2, 3), respectively. Fi(t)

is a proton form factor that takes into account the fact that the outgoing quarks recombine

into the final proton after the gluon emission, for which we use the dipole form: Fi(t) =

(1 − t/1.3 (GeV2))−2 [3]. The scale variable x near threshold is chosen as x = (2mM +

M2)/(s − m2). The total cross section is determined as an integral over t in the interval

tmin(s) ≥ t ≥ tmax(s). We find the normalization constants Ni from a fit of the GlueX [3]

and SLAC [6] total cross-section data.

The fit results are shown in Fig. 1 with the separate contributions from the two- and three-

gluon exchange as a function of the CM momentum in the final state as the dotted and

long-dashed curves, respectively. Their incoherent sum is depicted by the solid curve. For

completeness, the fitting by an odd-power polynomial [2] is shown by the short-dashed curve.

Similarly to Ref. [3], we find that the three-gluon exchange dominates in the GlueX energy

region. Therefore, within this model, the differential cross section near threshold does not

depend on the energy as follows from Eq. (5) for ns = 0, but only on t. Besides other

important consequences, this means that we can use measurements of the t-dependence at

energies away from threshold to predict the cross section near threshold.

Fitting the GlueX differential cross section data [3] with an exponential function,

dσγp

dt
(t) = A · eb(t−tmin) , (6)
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FIG. 1: The exclusive J/ψ photoproduction cross sections from

GlueX [3] and SLAC [6] fitted with an incoherent sum of two- and

three-gluon exchange contributions of Eq. (5) and an odd-power

polynomial as in Ref. [2], as a function of the momentum of the

outgoing J/ψ in the CM. The SLAC total cross sections are obtained

from the differential cross sections using the procedure in Ref. [3].

results in a slope of b = (1.67 ± 0.35) GeV−2 and A = (1.83 ± 0.32) nb/GeV2. Using

tmin = −0.44 GeV2 for the energy of 10.7 GeV and tthr = −2.23 GeV2, we estimate for the

right-hand side of Eq. (3) a q-slope of

4qψpkγp
dσγp

dt
(t = tthr) = qψp · (0.71± 0.35) nb/GeV . (7)

For the left-hand side of Eq. (3), it is found in Ref. [2] using an odd-power polynomial fit to

the GlueX total cross section, a slope of (0.46± 0.16) nb/GeV. If we calculate the derivative

at qψp = 0 of the three-gluon exchange function that was used to fit the total cross section

data (see Fig. 2), we get a value of (0.64± 0.09) nb/GeV. Both values are in agreement with

Eq. (7). Thus we have verified based on Eq. (3) and assuming energy independence of the

differential cross section that when using the total or the differential cross sections from the

GlueX measurements, the results for the scattering length are consistent.

In Ref. [7], a method to extract the real and imaginary parts of the J/ψ-p forward amplitude
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FIG. 2: Fig. 1 zoomed near threshold. The three-gluon exchange

curve (long dash) coincides with the total (solid) Brodsky et al.

fit [5].

Tψp(t = 0) is presented. It is based on fits of the “elastic” γp → J/ψp and inelastic

γp→ cc̄X total cross sections and the forward differential cross section dσγp/dt(t = 0). The

imaginary part is extracted using the optical theorem and parameterizations of the total cross

sections. Then the real part is obtained using dispersion relations with one subtraction. The

subtraction constant is defined by the real part of the amplitude at threshold. Using VMD,

the latter is constrained by the forward differential cross section at threshold:

dσγp

dt
(sthr, t = 0) =

απ

γ2ψ

q2ψp
k2γp
· dσ

ψp

dt
(sthr, t = 0) =

απ

γ2ψ

1

64πsthrk2γp
· |Tψp(sthr, t = 0)|2 , (8)

as the imaginary part vanishes there. On the other hand, the forward angle scattering

amplitude at threshold is related to the J/ψ-p scattering length, αJ/ψp, as:

Tψp(sthr, t = 0) = 8π
√
sthr · αJ/ψp . (9)

Therefore, the scattering length is obtained practically from:

dσγp

dt
(sthr, t = 0) =

απ

γ2ψ

π

k2γp
· α2

J/ψp . (10)

For the purpose of our studies, we will associate Eq. (10) with the results in Ref. [7], despite
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the more complicated fitting procedure described above. The left-hand side is not a quantity

that can be measured directly, as it requires both extrapolation in energy to threshold and

extrapolation in t from the physical region (tmin, tmax) to the nonphysical point t = 0. The

differential cross section data closest to threshold that is used in Ref. [7] is from the SLAC [6]

measurements above 13 GeV, which corresponds to qψp > 1.35 GeV/c, which is far away

from the energy threshold of qψp = 0. The best fit results in a value for the scattering length

of |αJ/ψp| = (0.046± 0.005) fm [7].

We notice the difference between Eq. (10) related to Ref. [7], and Eq. (4) that stems from

the method of using the total cross section [2]. In the former case, the differential cross

section dσγp/dt is taken at t = 0, while in the latter case it is at t = tthr = −2.23 GeV2.

This is a result of the fact that when the total cross section approaches the threshold energy

(qψp = 0), t approaches tthr. On the other hand, when using the differential cross section,

we can extrapolate not only to the energy at threshold, but also in t to t = 0.

Extrapolated data (method) |αJ/ψp| 10−3 fm Reference
σγp(sthr), GlueX [3] (odd-polynomial fit) 3.08± 0.55 [2]
σγp(sthr), GlueX [3] (3g-exchange model) 3.64± 0.26 this work
dσγp/dt(sthr, tthr), GlueX [3] 10.7 GeV (energy independence) 3.83± 0.98 this work
dσγp/dt(sthr, 0), SLAC [6] > 13 GeV (global fit) 46± 5 [7]
dσγp/dt(sthr, 0), GlueX [3] 10.7 GeV (energy independence) 24.5± 3.9 this work
Theoretical models (year)
Photoproduction via open-charm channel (2020) 0.2− 3 [8]
QCD multipole expansion (2020) 200− 2000 [9]
Lattice QCD (2019) 200− 700 [10]
Lattice QCD (2019) small [11]
Lattice QCD (2006) 710± 480 [12]
Multipole expansion, LE QCD theorem (2005) 370 [13]
QCD sum rules (1999) 100 [14]
Gluonic van der Waals interaction (1997) 250 [15]
qq̄ Green’s function, non-relativistic gluonic interaction (1997) 12 [16]
Heavy-quarkonia gluonic interaction, LE QCD theorem (1992) 50 [17]

TABLE I: Results for the absolute value of the J/ψ-p scattering length obtained from J/ψ
photoproduction using different datasets and extrapolating methods as described in the
text (only statistical uncertainties are shown) - top. These results are compared to the
theoretical calculations [8–17] - bottom. The lattice results of Ref.[11] “are roughly in

agreement with the predictions for almost noninteracting nucleon and J/ψ”.

We can study quantitatively the difference between the two results using the fit (Eq. (6))
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of the GlueX differential cross section assuming energy independence near threshold, this

time for t → 0, as well. We have dσγp/dt(t = tthr) = (0.093 ± 0.045) nb/GeV2, while

dσγp/dt(t = 0) = (3.8 ± 1.2) nb/GeV2. In addition, the SLAC cross section measurements

used in Ref. [7] are done away from threshold (qψp > 1.35 GeV/c) and the best fit extrapolates

them to dσγp/dt(t = 0) ≈ 10 nb/GeV2 at threshold (see Fig. 3 in Ref. [7]). Thus, the

differential cross section method of Ref. [7] effectively uses a value for dσγp/dt that is two

orders of magnitude bigger than the value that corresponds (from Eq. (3)) to the total cross

section method used in Ref. [2]. This explains the order of magnitude difference between the

two results for the scattering length that enters quadratically.

In Table I (top), we summarize the results for the J/ψ-p scattering length obtained from data

as discussed in this work. The top three lines represent the method of using the total cross

section for two fitting functions and also utilizing the differential cross section at t = tthr. The

next two lines represent the use of the differential cross section extrapolated to t = 0 from the

original work [7] and also from the recent GlueX data assuming energy independence near

threshold. For comparison, in Table I (bottom), we give results of the theoretical calculations

as they were cited in Ref. [2] including also some recent works. Generally, the scattering

length extracted from data is much lower than most of the theoretical predictions.

III. DISCUSSIONS AND OUTLOOK

The GlueX Collaboration has recently studied J/ψ photoproduction off the proton near

threshold [3]. The proximity of the total cross section data to threshold allowed for an

estimate the absolute value of the J/ψ-p scattering length within the VMD model [2]. This

result agrees well with our determination of the scattering length using the GlueX differ-

ential cross section data away from the threshold and assuming its energy independence:

dσ/dt(tthr, s) = dσ/dt(tthr, sthr). Using the same assumption but for t = 0, we have ex-

plained the difference between the results of Refs. [2] and [7]. Such energy independence

near threshold has important implications in extrapolating the measured cross sections to

threshold and requires further experimental studies. In this work, we relied on the model

of Ref. [5] for which in the case of three-gluon exchange, the differential cross section dσ/dt
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depends only on t and not on s. Despite such a model assumption, generally, we expect the

dependence of dσ/dt on energy to be much weaker than on t, which makes the presented

extrapolation method more reliable when working with low statistics.

We found that within the VMD model, when using the GlueX photoproduction data, the

J/ψ-p scattering length is estimated to be in the range of (3 − 25) × 10−3 fm. One of the

interpretations of such small values compared to most of the theoretical predictions (see

Table I) came from Feinberg’s consideration back in the 1970s [1]. The measured scattering

length is very small because of the small size of the “young” J/ψ. As we deal with the

J/ψ created by the photon near threshold, it is not formed completely. The transverse c-c̄

separation of the “young” J/ψ estimated to be rJ/ψ ≈ 1/mc = 0.13 fm (see Fig.1 in [5], mc

is the charm quark mass), is smaller than that for the “old” on-shell J/ψ, RJ/ψ ≈ 0.3 fm.

Consequently, the J/ψ-nucleon interaction is suppressed by a factor ∼ r2J/ψ/R
2
J/ψ, compared

to the VMD prediction. In other words, the J/ψ has not had sufficient time to be formed

completely and we observe a weaker interaction in the near-threshold photoproduction.

The “young” J/ψ corresponds to the off-shell one, respectively the ratio RJ/ψ/rJ/ψ reflects

its virtuality. Thus, the J/ψ off-shellness between the γ → J/ψ vertex and the J/ψp

scattering has a significant impact and may affect both the γ → J/ψ coupling and the

J/ψp scattering amplitude. For more quantitative estimations of the effect of the VMD

assumption, as discussed in Ref. [2], we refer to the evaluation of the cross section of the

J/ψ photoproduction in the peripheral model [18]. There, a strong energy dependence of the

suppression factor close to threshold was observed, reaching a value of about 5 at threshold.

In another approach, it is argued in Ref. [19] that, as the color factor for the charmonium

is 1/9 compared to 8/9 for the open charm production, fluctuations of the photon into open

charm are preferable than into a J/ψ. In Ref. [8] the open-charm channel ΛcD̄
(∗) is used

to calculate the near-threshold cross section of the J/ψ photoproduction, free of the VMD

assumption. Their result for the J/ψ-p scattering length of 0.2 − 3 10−3 fm is at the lower

end of the theoretical predictions and close to the results of this work and Ref. [2] when

using the total cross-section data (see Table I).

The difference between Eq. (10) and Eq. (4), discussed above, where the threshold differential

cross-sections are taken at t = tthr or t = 0, originates from the use of the photoproduction
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to extract the J/ψ-p scattering length and thus, such uncertainty is also related to the

applicability of the VMD model. Indeed, for the J/ψp elastic scattering the two equations

are equivalent as tthr = 0. There is a significant additional uncertainty when extrapolating

the differential cross-section data to the non-physical point at t = 0. Therefore, in an attempt

to take into account such uncertainties, the result of this work should be considered as an

estimate of the range of values for the scattering length as extracted from the experimental

data within the VMD model.
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