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We present our results on the electromagnetic form factor of pion over a wide range of Q2 using lattice
QCD simulations with Wilson-clover valence quarks and highly improved staggered quark sea quarks. We
study the form factor at the physical point with a lattice spacing a ¼ 0.076 fm. To study the lattice spacing
and quark mass effects, we also present results for 300 MeV pion at two different lattice spacings a ¼ 0.04
and 0.06 fm. The lattice calculations at the physical quark mass appear to agree with the experimental
results. Through fits to the form factor, we estimate the charge radius of pion for physical pion mass to be
hr2πi ¼ 0.42ð2Þ fm2.
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I. INTRODUCTION

Pion is one of the most prominent strongly interacting
particles next to the nucleon since it is a Goldstone boson
of QCD. For this reason, it is important to study the pion
internal structure and find out if there is a connection
between its internal structure and its Goldstone boson
nature. This issue is particularly relevant for understanding
the origin of mass generation in QCD, see, e.g., discussions
in Refs. [1,2].
Knowledge of internal structure of the pion is much more

limited than that of the nucleon. On the partonic level, the
parton distribution function (PDF) of the pion has been
studied through the global analysis of the Drell-Yan
production in pion-nucleon collisions and in tagged deep
inelastic scattering, for recent analyses see Refs. [3,4].
Recently, there have been many efforts in lattice QCD to
study the pion PDF [5–10], which have used the quasi-PDF
in large momentum effective theory [11,12], the pseudo-
PDF [13,14] and current-current correlator [15–17] (also
referred to as a “good lattice cross section”) approaches,
see Refs. [18–21] for recent reviews. Lattice calculations
of the lowest moments of pion PDFs [22–27] are also

available and can be used as additional constraints in the
global analysis.
Form factors, defined as

hP1jJμjP2i ¼ ðP1 þ P2ÞμFπðQ2Þ; ð1Þ

with Jμ being the electromagnetic current and Q2 ¼
−ðP2 − P1Þ2, provide a different insight into pion structure,
namely the charge distribution. It can be, in principle,
measured in electron-pion scattering. Generalized parton
distribution (GPD) combines the information contained in
PDFs and form factors and provides a three-dimensional
image of a hadron. In the case of the nucleon, the study of
the GPDs is the subject of large experimental and theory
efforts (see, e.g., Ref. [28] for a recent review).
Experimental study of the pion GPD is far more challeng-
ing and will be only possible at the Electron-Ion Collider
(EIC), if at all. Fortunately, GPDs can be studied on the
lattice using LaMET, including pion GPDs [29–32].
Experimentally, the pion form factor was measured by

scattering of pions off atomic electrons in Fermilab [33,34]
and CERN [35,36]. This allowed determination of the pion
form factor for momentum transfer Q2 up to 0.253 GeV2

[33–36]. For larger Q2, one has to determine the pion form
factor from the electroproduction of charged pions off
nucleons. The corresponding experiments have been
performed in Cornell [37–39], DESY [40,41], and Jlab
[42–46]. These determinations, however, were model
dependent. The recent determination of the pion form
factor up to Q2 of 2.45 GeV2 is carried out by the Fπ
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collaboration using data both from DESY and JLab [46].
Experiments at the future EIC facility will allow us to probe
even higherQ2 up to 30 GeV2 and possibly see the partonic
structure in an exclusive elastic process and make contact
with asymptotic large-Q2 perturbative behavior [47]. In the
timelike region, the pion form factor can be determined by
analyzing eþe− → πþπ− process [48] (see also references
therein). This analysis also constrains the form factor in the
spacelike region.
Lattice QCD calculations allow one to obtain the pion

form factor from first principles, i.e., without any model
dependence, up to relatively large Q2. Therefore, they will
provide an important cross-check for the experimental
determinations. The first lattice calculations of the pion
form factor date back to late 1980s and were performed in
the quenched approximation [49,50]. More recently, lattice
calculations of the pion form factor have been performed
with two flavors (Nf ¼ 2) of dynamical quarks [51–55],
with physical-mass strange- and two light-quark flavors
(Nf ¼ 2þ 1) [56–62], as well as with a dynamical charm
quark, a strange quark and two flavors of the light quarks
with nearly physical masses (Nf ¼ 2þ 1þ 1) [63]. Most
of the lattice studies focused on the small Q2 behavior of
the pion form factor and the extraction of the pion charge
radius. The pion charge radius is very sensitive to the quark
mass. Chiral perturbation theory predicts a logarithmic
divergence of the pion charge radius when the quark mass
goes to zero [64]. Therefore, one has to work at the physical
quark mass or have calculations performed in an appro-
priate range of quark masses to perform chiral extrapola-
tions. Furthermore, studies have been performed for lattice
spacing a > 0.09 fm. Constrained by the analyticity and
unitarity, the charge radius is correlated with the phase of
form factors in the timelike region. It is proposed in
Ref. [65] that high-precision determinations of the pion
form factor and the charge radius have potential to shed

light on the discrepancy of hadronic vacuum polarization
derived from eþ þ e− → hadron cross sections and lattice
calculations [66].
The aim of this paper is to study the pion form factor in a

wide range of Q2. Therefore, we perform calculations for
small lattice spacings, namely a ¼ 0.04 and 0.06 fm, with a
valence pion mass of about 300MeV. Furthermore, to study
quark-mass effect, we also perform calculations at the
physical pion mass, though at somewhat larger lattice
spacing, a ¼ 0.076 fm. Unlike previous studies, we also
perform calculations for highly boosted pion in order to
extend them in the future to the pion GPD.

II. LATTICE SETUP

In this study, we use Wilson-Clover action with a
hypercubic [67] link smearing on (2þ 1)-flavor Lt × L3

s
lattice ensembles generated by the HotQCD collaboration
[68,69] with highly improved staggered quark (HISQ) sea
action. For the clover coefficient we use the tree-level
tadpole improved value csw ¼ u−3=40 , with u0 being the
hypercubic-smeared plaquette expectation value. This
setup is the same as the one used by us to study the
valence parton distribution of the pion [9,10]. As in
Refs. [9,10], we use two lattice spacings a ¼ 0.04 fm
and a ¼ 0.06 fm and the valence pion mass of 300 MeV.
The lightest pion mass for these gauge configurations is
msea

π ¼ 160 MeV and the lattice spacings were fixed with
the r1 scale [68] using the value r1 ¼ 0.3106ð18Þ fm [70].
In addition, we performed calculations at a lattices spacings
of 0.076 fm and valence pion mass of 140MeVusing gauge
configurations that correspond to the lightest pion mass of
msea

π ¼ 140 MeV [69]. The lattice spacing was set by the
kaon decay constant, fK [69]. The lattice ensembles used in
this study and the corresponding parameters are summa-
rized in Table I. Due to the HISQ action, the taste splitting

TABLE I. The lattice parameters used in our calculations. Shown are the gauge ensembles used in our study, the valence pion mass, the
coefficient of the clover term, the size of the smeared Gaussian sources, the source-sink separations used in the analysis of the three-
point functions, and the value of the momenta with the corresponding boost parameters (see the main text). The last two columns show
the number of gauge configurations and the number of sources in AMA (see the main text).

Ensemble: mval
π (GeV) csw rG fm ts=a nz ni (i ¼ x; y) jz #cfgs (#ex,#sl)

a ¼ 0.076 fm, msea
π ¼ 0.14 GeV, 0.14 1.0372 0.59 6, 8, 10 [0,3] �1, �2 2 350 (5,100)

64 × 643 [4,7] �1, �2 5 350 (5,100)

20 1 �1, �2 2 350 (5,100)

a ¼ 0.06 fm, msea
π ¼ 0.16 GeV, 0.3 1.0336 0.54 8, 10, 12 [0,1] �1, �2 0 100 (1,32)

64 × 483 [2,3] �1, �2 2 525 (1,32)
[4,5] �1, �2 3 525 (1,32)
[0,1] �1 0 314 (3,96)

a ¼ 0.04 fm, msea
π ¼ 0.16 GeV 0.3 1.02868 0.36 9,12, [0,1] �2 0 314 (2,64)

64 × 643 15,18 [2,3] �1 2 564 (4,128)
[2,3] �2 2 564 (3,96)

XIANG GAO et al. PHYS. REV. D 104, 114515 (2021)

114515-2



in the pion sector is small for lattice spacings a ≤ 0.076 fm.
For a ¼ 0.076 the root mean square pion mass is only 15%
higher than the lightest pion mass, while the heaviest pion
mass is only 25% above the lightest pion mass [69]. In what
follows for the a ¼ 0.076 fm ensemble, it will not make a
difference between the sea and the valence pion mass, and
we refer to this ensemble as the mπ ¼ 140 MeV ensemble
or the ensemble with physical pion mass. The effects of
partial quenching will persist at finite lattice spacings but
will go away in the continuum limit.
To obtain the form factor we calculate the pion two-point

and three-point functions. We consider two-point functions
defined as

Css0
2 ptðt;PzÞ ¼ hπsðP; tÞπ†s0 ðP; 0Þi; ð2Þ

where πsðP; tÞ are either smeared or point sources,
s ¼ S, P, with spatial momentum

P ¼ 2π

aLs
· ðnx; ny; nzÞ:

As in the previous studies [9,10], we used boosted
Gaussian sources in Coulomb gauge with boost along
the z direction kz ¼ 2π=ðaLsÞ · ð0; 0; jzÞ. The radius of the
Gaussian sources rG is also given in Table I. The three-
point function is defined as

C3 ptðPf;Pi; τ; tsÞ ¼ hπSðPf; tsÞOγtðτÞπ†SðPi; 0Þi; ð3Þ
with

OγtðτÞ ¼
X
x

e−iðPf−PiÞx½ūðxÞγtuðxÞ − d̄ðxÞγtdðxÞ�;

x ¼ ðx; τÞ ð4Þ
being the isovector component of the electric charge
operator. Note that the isosinglet component of the electric
charge vanishes between the pion states. The initial
momentum in the above expression is Pi ¼ 2π=ðaLsÞ ·
ð0; 0; nzÞ, while the final momentum is Pf ¼ P ¼ Pi þ q.
The values of the momenta used in this study as well as
the corresponding boost parameter jz are summarized in
Table I. We calculated the three-point functions for three
values of the source-sink separations, ts for the two coarser
lattices. For the finest lattice we used four source-sink

separations. The source-sink separations used in our study
are also listed in Table I.
The calculations of the two- and three-point functions

were performed on graphics processing units with the
QUDA multigrid algorithm [71] used for the Wilson-
Dirac operator inversions to get the quark propagators.
We used multiple sources per configuration together with
the all mode averaging (AMA) technique [72] to increase
the statistics. The stopping criterion for AMA was set to
be 10−10 and 10−4 for the exact and sloppy inversions,
respectively. Since the signal is deteriorating with increasing
momenta, we use different number of sources and number of
gauge configurations for different momenta. The number of
gauge configurations and number of sources used in the
analysis are given in the last two columns of Table I for each
value of the momenta.
For the study of the form factor, it is convenient to use

the Breit frame, where jPij ¼ jPfj. Using the Breit frame is
essential when studying the GPD within LaMET [29–32],
therefore we also calculated the pion form factor using the
Breit frame. The parameters of this setup are summarized
in Table II.

III. TWO-POINT FUNCTION ANALYSIS

Since the source-sink separation values used in this study
are not very large, it is important to quantify the contri-
butions of the excited states when extracting pion matrix
elements. This in turn requires a detailed study of the pion
two-point functions. For a ¼ 0.04 and 0.06 fm lattices and
mval

π ¼ 300 MeV, the pion two-point functions have been
studied for different momenta along the z direction in
Refs. [9,10]. Furthermore, this analysis was very recently
extended to include momenta also along the x and y
directions for a ¼ 0.04 fm [73]. We have extended this
analysis to a ¼ 0.076 fm and the physical pion mass.
The pion two-point function in Eq. (2) has the following

spectral decomposition:

Css0
2 ptðtÞ ¼

XNstate−1

n¼0

As
nAs0�

n ðe−Ent þ e−EnðaLt−tÞÞ; ð5Þ

where Enþ1 > En, with E0 being the energy of the pion
ground state. An is the overlap factor hΩjπsjni of the state n

TABLE II. Two sets of measurements in the Breit frame on the two heavy-pion ensembles are shown. Using the
notation similar to Table I, the initial pion state with transverse momentum Pi⊥ ¼ 2πnpi =ðLsaÞ has the same energy
as the final state with momentum Pf ¼ Pi þ q.

Ensemble a; Lt × L3
s mval

π (GeV) ts=a npz npi i ¼ x, y nqi i ¼ x, y #cfgs (#ex,#sl)

a ¼ 0.06 fm, msea
π ¼ 0.16, 0.3 8,10 2 �1 ∓ 2 120 (1,32)

64 × 483

a ¼ 0.04 fm, msea
π ¼ 0.16, 0.3 9,12,15,18 2 �1 ∓ 2 120 (1,32)

64 × 643
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and the state created by operator πs from the vacuum
state jΩi. Thanks to the Gaussian smearing, the excited-
state contribution is suppressed. So we truncate the Eq. (5)
up to Nstate ¼ 3 and then fit the data in a range of t ∈
½tmin; aLt=2�. In the left panels of Fig. 1, we show the
extracted E0 for three different momenta. As one can see,
the ground-state energies, E0 reach a plateau when
tmin ≳ 10a, 5a, and 2a for one-state, two-state, and
three-state fits, respectively. The horizontal lines in the
plots are computed from the dispersion relation

E0ðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

π

p
. Here the value of mπ was obtained

by considering the pion masses from the fits with
tmin ∈ ½10a; 20a�, and then fitting these results to a con-
stant. The fit to a constant has χ2d:o:f: ¼ 0.2; i.e., there is no
statistically significant tmin dependence of the pion mass.
The ground-state energies for different momenta agree with
the horizontal lines for sufficiently large tmin, i.e., follow the
dispersion relation. Thus for the determination of the next

energy level, we can fix the ground-state energy E0 to be
from the dispersion relation, and perform a three-state fit.
Interestingly, as shown in right panels of Fig. 1, we can
also observe plateaus for E1 when tmin > 5a. The energy of
the first excited state also follows the dispersion relation

E1ðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þm2

π0

q
with mπ0 ¼ 1.3 GeV. This could

imply that the first excited state is single particle state,
namely the first radial excitation of the pion πð1300Þ [73].
We cannot rule out, however, the possibility that it is a
multipion states within the large errors. Since the first
excited-state energy, E1 does not reach a plateau for
tmin < 5a, we conclude that for t=a < 5 the contribution
of higher excited states in the two-point function is
significant. Therefore, we need to consider three-state fits
for these t values. To perform a three-state fit, we fix E0 to
the dispersion relation and put a prior to E1 using the best
estimates from smeared-smeared and smeared-point corre-
lators [10] together with the errors from the two-state fit.

FIG. 1. E0 from N-state fits (left) and E1, E2 from constrained two-state and three-state fits (right) for three different momenta are
shown as functions of tmin. The lines are computed from the dispersion relation EðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ EðP ¼ 0Þ2

p
, with EðP ¼ 0Þ to be

0.14 GeV for E0 and 1.3 GeV for E1. As can be observed, the E0 and E1 reach a plateau for large enough tmin.
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This way we get the third excited-state energy, E2, which
does not depend on tmin within the statistical errors.
However, the value of E2 is very large, about 3 GeV.
This implies that E2 does not actually refer to a single state
but rather to a tower of many higher excited states. The
situation is similar for other two 300 MeV ensembles [10].
Now we understand that a two-state spectral model can

describe our two-point functions well when tmin ≳ 5a,
while three-state can describe tmin ≳ 2a. This will be
important to keep in mind when analyzing the three-point
function and pion matrix elements in the next section. To
summarize this section, in Fig. 2 we show the dispersion
relation obtained from the above analysis. We also
extended the analysis for a ¼ 0.06 fm [10] by including
additional momenta with nonzero components along the
x and y directions. The corresponding results are also
shown in Fig. 2. We clearly see the effect of the quark
masses. For the larger quark mass (a ¼ 0.06 fm) the
excited state is about 200 MeV higher than the physical
point (a ¼ 0.076 fm). This fact again suggests that the
first excited state is the radial excitation of the pion.
One of the reason we do not have multipion states
entering the two-point correlation function is the use
of Gaussian sources. These sources have poor overlap
with the scattering states.

IV. EXTRACTION OF BARE MATRIX ELEMENTS
OF PION GROUND STATE

To obtain the bare pion form factor we consider the
following standard ratio of the three-point and two-point
pion correlation functions [74,75]

Rfiðτ;tsÞ≡
2

ffiffiffiffiffiffiffiffiffiffiffi
Pf
0P

i
0

q
Pf
0þPi

0

C3 ptðPf;Pi;τ;tsÞ
C2 ptðts;PiÞ

×

�
C2 ptðts−τ;PfÞC2 ptðτ;PiÞC2 ptðts;PiÞ
C2 ptðts−τ;PiÞC2 ptðτ;PfÞC2 ptðts;PfÞ

�
1=2

:

ð6Þ

This ratio gives the bare pion form factor in the limit
fτ; ðts − τÞg → ∞: hBðPf; PiÞ ¼ limfτ;ðts−τÞg→∞Rfiðτ; tsÞ.
As explained in Sec. II, we calculated the three-point

functions with Pi along the ẑ direction, and multiple values
of momentum transfer q ¼ Pf − Pi for each Pi. Thus there
is no difference for qwith same magnitude of the transverse
momentum transfer. In other words, there should be
transverse symmetry for the three-point function data.
We find that indeed our numerical results for Rfiðτ; tsÞ
with same jnqx j and jnqy j are consistent within the error.
Therefore, we average the three-point functions data with
same magnitude of the transverse momentum transfer in the
following analysis.
Since the temporal extent of our lattices is not large, it is

important to consider thermal state contaminations, also
called wrap-around effects caused by the periodic boundary
condition in time [10]. To remove the wrap-around effects
in the two-point function we replaced C2 ptðtÞ by C2 ptðtÞ −
A0e−E0ðaLt−tÞ using the best estimate of A0 and E0 from the
two-point function analysis. To understand wrap-around
effects in the three-point function we consider the spectral
decomposition of C3 pt in Eq. (6)

FIG. 2. Dispersion relation determined by the plateau of Fig. 1 for the physical pion mass ensemble (left) and a ¼ 0.06 fm ensemble
(right). The lines are dispersion relation calculated by EðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ EðP ¼ 0Þ2

p
.
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hπSðPf; tsÞOγtðτÞπ†SðPi; 0Þi
¼

X
m;n;k

hmjπSjnihnjOγt jkihkjπ†Sjmi

× e−τEke−ðts−τÞEne−ðaLt−tsÞEm; ð7Þ

where m; n; k ¼ Ω; 0; 1;…, with 0 being the pion ground
state. In general, terms with nonzero Em will be highly
suppressed by e−ðaLt−tsÞEm (we assume EΩ ¼ 0). Therefore,
in most studies such terms are neglected. However for the
P ¼ 0 case e−ðaLt−tsÞEmðP¼0Þ ¼ e−aLtmπ is not very small.
We have e−aLtmπ ∼ 0.03, 0.003, 0.02 for a ¼ 0.076, 0.06,
and 0.04 fm lattices, respectively. On the other hand, for
nonzero momenta the terms proportional to e−ðaLt−tsÞEm are
smaller than 0.003 and can be neglected. Therefore,
for a ¼ 0.04 and 0.076 fm calculations we only consider
nonzero momenta and limit the sum over indexm in Eq. (7)
to include only the vacuum state in what follows. We need,
however, to consider the wrap-around effects when dealing
with the renormalization, as discussed in the next section.
In this work, we use multistate fit to extract the

bare matrix elements of the ground state hPfjOγt jPii≡
h0PfjOγt jPi0i by inserting the spectral decomposition of
the two-point function in Eq. (5) and the three-point
function in Eq. (7) with m ¼ Ω, and the sum over n
truncated to Nstate terms. Furthermore, we take the best
estimate of An and En from the two-point function analysis
and put them into Eq. (6). In the following, we will refer to
this method as FitðNstate; nskÞ, in which Nstate is the number
of states in the corresponding two-point function analysis
and nsk labels how many τ points are skipped on the two
sides of ts. We consider Nstate ¼ 2 and Nstate ¼ 3 that have
four and nine fit parameters, respectively.
We perform multistate fit using bootstrap method with

time separations ts ¼ 6a; 8a; 10a. The data with ts ¼ 20a
and np

i ¼ ð0; 0; 1Þ are used only to cross-check our
analysis. Since the ratio defined in Eq. (6) is a derived
quantity not defined on a single gauge configuration we
used uncorrelated fits. The statistical correlation between
the different data points is taken into account through the
bootstrap procedure. In Fig. 3, we show the examples of
ratio Rfiðτ; tsÞ as well as the two-state and three-state fit
results. As one can see, for large momentum with large
statistical errors, the reconstructed curves go through the
data points well, and the two-state and three-state fit results
are consistent with each other. However, this is not the case
for smaller momentum, where the data are more precise.
The three-state fit is required to describe the ratio data
with χ2=d:o:f: < 1, while the two-state fit result in
χ2=d:o:f: ≫ 1. Thus for the following analysis, we will
take the three-state fit results as the central value and use the
corresponding statistical errors. However, even when using
the three-state fit there is no guarantee that we are free
from excited-state contamination. Therefore, we take the

difference between the two-state fit and the three-state fit
results as the systematic errors in the following analysis. It
can be also observed that the data points of ts ¼ 20a show a
plateau around ts=2 within the errors, which is also
consistent with the three-state fit results and which support
our estimate of bare matrix elements. In Appendix B, we
discuss the plateau fit results using ts ¼ 20a data.

V. THE PION FORM FACTORS

To obtain the form factor from the bare form factor
determined in the previous section it needs to be multiplied
by the vector current renormalization factor, ZV . The
simplest way to obtain this is to calculate the forward
matrix element hBðPi;PiÞ¼h0PijOjPi0i¼Z−1

V . However,
one needs to keep in mind the wrap-around effect discussed
in the previous section. The other issue is cutoff depend-
ence of hBðPi; PiÞ at large values of Pi. In Fig. 4, we show
hBðPi; PiÞ for a ¼ 0.076 fm as a function of Pi. In absence
of discretization effects, hBðPi; PiÞ should be independent
of Pi since after renormalization it gives the charge of
the pion. In other words, ZV should not depend on the
momentum of the external state. Following Ref. [10],
we model the discretization effects using the form
hBðPi; PiÞ ¼ hBðPi ¼ 0; Pi ¼ 0Þ þ rðaPi

zÞ2. As one can
see from Fig. 4 this form describes the data quite well,
except for Pi ¼ 0. The anomalously large value of
hBðPi; PiÞ at Pi ¼ 0 is due to the wrap-around effects as
discussed in the previous section. This means that
hBðPi; PiÞ is contaminated by a small contribution propor-
tional to e−aLtmπ mentioned in the previous section. This
contribution is also proportional to matrix elements con-
taining two or more pion states with the appropriate
quantum numbers. Constraining such matrix elements is
difficult in practice. However, under some physically
well-motivated assumptions it is possible to estimate
the corresponding contributions and remove them from
hBðPi; PiÞ [10]. Therefore, we follow the procedure
explained in Appendix A of Ref. [10] to remove this
contribution from the matrix element. The corrected result
for hBðPi ¼ 0; Pi ¼ 0Þ is shown as the blue point in Fig. 4
and is not very different from the result obtained by the
fit. Thus we understand the discretization effects in the
forward matrix element hBðPi; PiÞ. We also calculated ZV
for a ¼ 0.076 fm using RI-MOM scheme and obtained
ZV ¼ 0.946ð12Þ which agrees with the results on
hBðPi ¼ 0; Pi ¼ 0Þ shown in Fig. 4 within errors.
From Fig. 4 we also see that the discretization errors are

smaller than 1% for Pi
z < 1 GeV, and are less than 2% for

Pi
z < 1.6 GeV. Since the discretization effects as functions

of Pi
z will be similar for off-forward matrix element it is

convenient to obtain the renormalized pion form factor by
simply dividing hBðPf; PiÞ by hBðPi; PiÞ. Then we have
FπðQ2 ¼ 0Þ ¼ 1 by construction and the discretization
errors for large Pi

z are removed. We still may have
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discretization errors proportional to ðaQÞ2. Assuming that
these discretization errors are similar to the ðaPi

zÞ2 dis-
cretization errors we can neglect them. This is because
other sources of errors for the form factors are significantly
larger for the consideredQ2 range as we will see below. We
comment further on the cutoff dependence in the form
factor in Appendix A.
In Fig. 5, we show the renormalized pion form factors

obtained for the mπ ¼ 140 MeV ensemble and compared
to the experimental data from CERN [36], as well as the
results from Fπ collaboration [46]. The purple bands are the
dispersive analysis results of experimental data from
Ref. [48], which also included form factors in timelike
region. We see good agreement between the lattice results
and the experimental data within the estimated error bars at
low Q2. It is expected that at low Q2, the pion form factors

FIG. 4. The forward matrix elements hBðPi; PiÞ. The Pi
z

dependence can be described by hBðPi; PiÞ ¼ hiiBðPi ¼ 0; Pi ¼
0Þ þ rðaPi

zÞ2 shown as the line.

FIG. 3. Rfiðτ; tsÞ for np
i ¼ ð0; 0; 1Þ (left) and (0,0,3) (right) for nq ¼ ð0; 0; 0Þ; ð2; 0; 0Þ; ð2; 2; 0Þ of physical ensemble are shown. The

curves are reconstructed from the central value of multistate fit Fit(2,3) (dashed) and Fit(3,2) (solid), and the bands are the estimated bare
matrix elements from bootstrap method.
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can be described well by a simple monopole ansatz
motivated by the vector meson dominance model [76]

FπðQ2Þ ¼ 1

1þQ2=M2
: ð8Þ

The monopole mass M should be close to the ρ meson
mass. Therefore, in Fig. 5 we show the inverse of the pion
from factor, 1=FπðQ2Þ, as a function of Q2. We see that in
the studied range of Q2 the inverse form factor can be
roughly described by a linear function up toQ2 ¼ 0.4 GeV
within the errors, as expected from monople form. The
monopole fit of the lattice data (dashed band in Fig. 5)
extended to higherQ2 also agrees with the pion form factor
obtained by Fπ collaboration [46], possibly indicating that
the monopole form may work in an extended range of Q2

within the current precision.
At very lowQ2, the pion form factor can be characterized

in terms of the pion charge radius

r2π ¼ −6
dFπðQ2Þ
dQ2

����
Q2¼0

: ð9Þ

As mentioned in the introduction, the pion charge radius is
very sensitive to the quark mass, and it is clearly seen in the
lattice calculations. In fact, it appears to be challenging
to obtain the correct pion charge radius from the lattice
results [51–63]. The lattice calculations at the unphysical
quark masses lead to smaller pion charge radius than the
experimental results. If the monopole form (8) could
describe the pion form factor for all Q2, then the pion
charge radius would be related to the monopole mass as

rπ ¼
ffiffiffi
6

p

M
: ð10Þ

It is convenient to represent the form factors in terms of
the effective charge radius defined as [51]

r2effðQ2Þ ¼ 6ð1=FπðQ2Þ − 1Þ
Q2

: ð11Þ

In Fig. 6 we show the effective radius for a ¼ 0.076 fm
ensemble as well as for the two finer ensembles with
mval

π ¼ 300 MeV. We see from the figure that r2eff is
roughly constant as a function of Q2 for all three lattice
spacings. For the smallest lattice spacing, a ¼ 0.04 fm,
the results on the effective radius are Q2 independent
for Q2 as high as 1.4 GeV2. This is consistent with earlier
findings [51]. We also clearly see the quark mass depend-
ence of r2eff . The effective radius is smaller for the heavier
pion mass as expected. Comparing the results at a ¼
0.06 fm and a ¼ 0.04 fm we see no clear lattice spacing
dependence of r2eff . Therefore, we conclude that for a ¼
0.06 fm the discretization errors for the pion form factor are
smaller than the estimated lattice errors in the range of Q2

studied by us. Finally, for the two finer lattices we also
show the results from the calculations using Breit frame,
which agree with the non-Breit frame results.
While the monopole ansatz seems to describe the pion

form factor well and was used to obtain the pion charge
radius in the past (see, e.g., Ref. [51]) there is no strong
theoretical reason why it should describe the pion form
factor. Therefore, one has to consider an alternative and
more flexible parametrization of the pion form factor. An
alternative way to fit the form factors is the model
independent method called the z expansion [77]. Here
the form factor is written as

FπðQ2Þ ¼
Xkmax

k¼0

akzk;

zðt; tcut; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p ; ð12Þ

FIG. 5. Pion form factors (upper panel) and the inverse
form factors (lower panel) derived from the a ¼ 0.076 fm
(mπ ¼ 140 MeV) ensemble (blue points), compared with the
experiment data from CERN (red points) [36] and Fπ collabo-
ration (green points) [46]. The purple bands are the dispersive
analysis results of experimental data from Ref. [48], which also
included form factors in timelike region. Our fit results of
a ¼ 0.076 fm data are shown as the blue bands, in which the
filled band is from the z-expansion fit and the dashed band is
from monopole fit. The errors in this plot have included the
systematic errors.
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where t ¼ −Q2, ak are the fit parameters with a con-
straining condition FπðQ2 ¼ 0Þ ¼ 1, and tcut ¼ 4m2

π is the
two-pion production threshold. Furthermore, t0 is chosen to
be the optimal value topt0 ðQ2

maxÞ¼ tcutð1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

max=tcut
p

Þ
to minimize the maximum value of jzj, with Q2

max the
maximumQ2 used for the fit. In the timelike region near the
two pion threshold, the leading singularity of form factor
should be proportional to ð4m2

π − tÞ3=2 due to the P-wave
nature of the π − π scattering [48,78,79], which leads to the
additional constraint

Pkmax
k¼1ð−1Þkkak ¼ 0. We use the

Akaike information criterion model selection rules to
determine kmax, which are 2 for a ¼ 0.06 fm, and 3 for
a ¼ 0.04, 0.076 fm data and for the Q2 under consider-
ation. The z expansion results are also shown in Fig. 5 and
appear to overlap with the monopole fit, but for larger Q2 it
has larger errors. We also show the fits with the z expansion
in Fig. 6. From this figure we see that this fit works well
also for the valence pion mass of 300 MeV and naturally
reproduces little Q2 dependence of the effective radii. To
better understand the quark mass dependence of the pion
form factor as well to facilitate the comparison with the
experimental results, in Fig. 7 we show all the results for the
pion form factor in terms of the effective radius reffðQ2Þ.
We see that the effective radius obtained for the physical
pion mass is clearly larger than the one obtained for mval

π ¼
300 MeV and is much closer to the CERN data.
Furthermore, the fits of reff for mval

π ¼ 300 MeV for the
two lattice spacings agree within errors. While the indi-
vidual lattice data and the CERN data appear to agree
within errors we also see from the figure that there is a
tendency for the CERN data to lie higher than the lattice
data. This leads to a slight difference in the pion charge
radius as discussed below.
The pion charge radius can be derived from z-expansion

fit results using Eq. (9), which are summarized in Table III
for the three lattice spacings used in this work. We also
discuss the radius obtained from the monopole fit for
comparison in Appendix C. As expected the calculations
for the heavier quark mass give smaller pion charge radius.

FIG. 6. The effective radius as a function of Q2. The smaller
error bars are the statistical errors, while the larger error bars also
include the systematic errors. We show results for a ¼ 0.076 fm
(top panel), a ¼ 0.06 fm (middle panel), and a ¼ 0.04 fm
(bottom panel). The blue band is constructed by solving
Eq. (9) using z-expansion fit results as a function of Q2.

FIG. 7. The comparison of effective radius between CERN and
our lattice data as a function of Q2=m2

π . The bands are the z
expansion fit results of lattice data (blue, green, and orange).

TABLE III. The charge radius computed from z-expansion fit.
The first error is statistical, while the second error is systematic.

Data nz hr2πi [fm2]

a ¼ 0.076 fm [1,3] 0.421(9)(20)
a ¼ 0.06 fm [0,3] 0.311(3)(13)
a ¼ 0.04 fm [1,3] 0.311(8)(11)
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Since the z expansion provides a model independent way to
obtain the pion charge radius, for our final estimate of the
pion charge radius at the physical point we take the result
from the z-expansion fit:

hr2πi ¼ 0.42ð2Þ fm2; ð13Þ

where we added the statistical and systematic errors
(defined by the difference between the results from the
two-state and three-state fit of matrix elements) in quad-
rature. This result is consistent the pion charge radius
quoted by Particle Data Group (PDG), hr2πiPDG ¼
0.434ð5Þ fm2 [80], which is averaged from determination
from t-channel πe → πe scattering data [34,36,81] and s-
channel eþe− → πþπ− datasets [48,82]. The HPQCD
determination that uses HISQ action both in the sea and
the valence sectors of ð2þ 1þ 1Þ-flavor QCD is hr2πi ¼
0.403ð18Þð6Þ fm2 [63]. The most precise lattice determi-
nation of the pion charge radius in 2þ 1 flavor QCD using
overlap action in the valence sector and domain wall action
in the sea sector has hr2πi ¼ 0.436ð5Þð12Þ fm2 [62]. The
2þ 1 flavor domain wall calculation gives hr2πi ¼
0.434ð20Þð13Þ fm2 [61]. Finally, the other 2þ 1 flavor
lattice determinations of the pion charge radius have
significantly larger errors [59,60]. We summarize the
comparison in Fig. 8.

VI. CONCLUSIONS

In this paper we studied the pion form factor in 2þ 1
flavor lattice QCD using three lattices spacings a ¼ 0.076,
a ¼ 0.06 and a ¼ 0.04 fm. The calculations on the coars-
est lattice have been performed with the physical value of
the quark masses, while for the finer two lattices the valence
pion mass was 300 MeV. We have found that the pion form
factor is very sensitive to the quark mass, as expected. We
showed that lattice discretization effects are quite small for

lattice spacings smaller than 0.06 fm. For the physical
quark masses our lattice results on the pion form factor
appear to agree with the experimental determinations.
Unlike other lattice studies we also considered highly
boosted pions in the initial state using momentum boosted
Gaussian sources. In addition we performed calculations
also in the Breit frame. We demonstrated that the calcu-
lations of the pion form factor performed at different
momenta of the pion as well as in the Breit frame give
consistent results. This is very important for extending the
calculations to pion GPDs.
An important outcome of our analysis is that the

monopole ansatz can describe the pion form factor in large
range of Q2, up to Q2 ¼ 1.4 GeV2. In the future it will be
important to extend the calculations to even higher momen-
tum transfer given the experimental efforts in Jlab and EIC.
To do this we should use boosted sources that also depend
on the value of Q2. At present the momentum boost was
optimized only according to the pion momentum in the
initial state.
From the low Q2 dependence of the pion form factor we

determined the pion charge radius, which is one sigma
lower that the experimental result. We speculated whether
this is due to the effect of partial quenching. To fully resolve
this issue calculations at smaller lattice spacing with the
physical value of the pion masses are needed.
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APPENDIX A: DISCRETIZATION ERRORS

As is shown in Fig. 4, there are ≲2% discretization
effects of Z−1

V ðPiÞ ¼ hBðPi; PiÞ. We chose to divide
hBðPf; PiÞ by hBðPi; PiÞ so that the renormalized pion
form factors could reduce such effects. To estimate the
impact of the discretization errors to the form factors as
well as pion charge radius, instead we can renormalize
the bare form factors hBðPf; PiÞ by a constant Z−1

V
such as Z−1

V ð0.25 GeVÞ of a ¼ 0.076 fm ensemble. The
effective radius for a ¼ 0.076 fm ensemble is shown in
Fig. 9, and in this case we estimate the charge radius from
monopole fit and z-expansion fit as 0.406(6)(25) and

0.427ð10Þð22Þ fm2, which shift ≲2% but are consistent
with the estimates in Table III.

APPENDIX B: FORM FACTORS FROM
PLATEAU FIT

It has been observed in Sec. IV that the ratio Rfiðτ; tsÞ of
ts ¼ 20a shows plateau around ts=2, which is also con-
sistent with the results from the Fit(3,2) method, implying
the smallness of excited-state contribution in this region.
Therefore it is reasonable to perform a one-state fit,
namely plateau fit, to extract the bare matrix elements.
We denote this method by Plateau(τmin, τmax), which fit
Rfiðτ; ts ¼ 20aÞ of τ ∈ ½τmin; τmax� to a constant.
The fit results from Plateau(τmin, τmax) are shown in

Fig. 10 as the blue bands where the multistate fit results are
also shown for comparison. Clearly, the plateau fit shows
good agreement with three-state fit results. In Fig. 11, we
show the distribution of difference between plateau fit and
multistate fit using bootstrap samples. In the main text, we
have taken the difference between two-state and three-state
fit as the systematic errors of excited-state contamination.
It can be seen that such an estimate is larger than the
difference between plateau fit and three-state fit, which
should give a sufficiently conservative total error.
We also determined the pion form factor from the plateau

fits for ts ¼ 20 The corresponding results in terms of the
effective radius are shown in Fig. 12. Once again, con-
sistent results between Plateauðτmin; τmaxÞ and Fit(3,2) can
be observed.

FIG. 9. Similar plot as Fig. 6 for a ¼ 0.076 fm ensemble but
using constant Z−1

V for renormalization is shown.

FIG. 10. Rfiðτ; tsÞ for np
i ¼ ð0; 0; 1Þ with nq ¼ ð0; 0; 0Þ; ð1; 0; 0Þ; ð1; 1; 0Þ; ð2; 0; 0Þ; ð2; 1; 0Þ; ð2; 2; 0Þ of physical ensemble are

shown. The bands are the estimated bare matrix elements from FitðNstate; nskÞ using ts ¼ 6a; 8a; 10a and Plateau(τmin, τmax) using
ts ¼ 20a. The errors are estimated using bootstrap method.
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APPENDIX C: MODEL DEPENDENCE OF
RADIUS EXTRACTION

In this work, we used z-expansion ansatz to obtain the
charge radius from the pion form factors shown in Table III.
For comparison, in Table IV we also show the radius
obtained from monopole fit whose statistical errors are

FIG. 11. The distributions of the bootstrap samples of ΔhB between plateau fit and multistate fit are shown for
nq ¼ ð0; 0; 0Þ; ð1; 0; 0Þ; ð1; 1; 0Þ; ð2; 0; 0Þ; ð2; 1; 0Þ; ð2; 2; 0Þ, where the vertical lines are the median values.

FIG. 12. Similar plot to Fig. 6 for a ¼ 0.076 fm ensemble
including the results from plateau fit of nz ¼ 1.

TABLE IV. The charge radius computed from monopole fit
(hr2Mi). The first error is statistical, while the second error is
systematic.

Data nz hr2Mi [fm2]

a ¼ 0.076 fm [1,3] 0.402(6)(23)
a ¼ 0.06 fm [0,3] 0.339(4)(18)
a ¼ 0.04 fm [1,3] 0.313(5)(27)

FIG. 13. The blue band is constructed by solving Eq. (9) using
z-expansion fit results as a function of Q2, while the red band is a
constant from monopole fit. The darker bands are the statistic
errors from three-state fit, while the lighter bands also include the
systematic errors from the difference between the two-state and
three-state fit.

FIG. 14. Distribution of systematic errors hr2Minst3 − hr2Zinst3
from bootstrap samples, where the N-state fit is denoted by nst.
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often smaller, but this fit has larger systematic errors
compared to the z expansion. Both fits produce good
χ2=df. For the a ¼ 0.076 fm ensemble, for example, we
get χ2=df ¼ 0.56 for monopole fit, and χ2=df ¼ 0.51 for
z-expansion fit. Within the estimated errors the two fit
forms give consistent results but only marginal. In Fig. 13,
we show the effective radius [cf. Eq. (11)] calculated from
the z-expansion fit (blue band) as well as the monopole fit

(red band). Clearly the z-expansion fit is more flexible so
that the effective radius is a function of Q2 rather than a
constant. At Q2 ¼ 0 where the charge radius is defined,
the result from z-expansion fit (hr2Zi) is higher than
the monopole fit (hr2Mi). We show the distribution of
hr2Minst3 − hr2Zinst3 from bootstrap samples in Fig. 14.
The central value of this distribution is 0.02 fm2.
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