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We present the first exploratory lattice QCD calculation of the pion valence quark distribution extracted
from spatially separated current-current correlations in coordinate space. We show that an antisymmetric
combination of vector and axial-vector currents provides direct information on the pion valence quark
distribution. Using the collinear factorization approach, we calculate the perturbative tree-level kernel for
this current combination and extract the pion valence distribution. The main goal of this article is to
demonstrate the efficacy of this general lattice QCD approach in the reliable extraction of parton
distributions. With controllable power corrections and a good understanding of the lattice systematics, this
method has the potential to serve as a complementary to the many efforts to extract parton distributions in
global analyses from experimentally measured cross sections. We perform our calculation on an ensemble
of 2þ 1 flavor QCD using the isotropic-clover fermion action, with lattice dimensions 323 × 96 at a lattice
spacing a ¼ 0.127 fm and the quark mass equivalent to a pion mass mπ ≃ 416 MeV.
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I. INTRODUCTION

In the hard scattering processes involving hadrons, such
as in the deep inelastic scattering (DIS) of leptons on
hadrons, the experimentally measured cross sections are a
combination of short- and long-distance physics. The
inclusive DIS cross section can be factorized into a
short-distance partonic hard part which is calculable order
by order in perturbation theory and a long-distance had-
ronic part which can be represented by universal and
nonperturbative distribution functions, called the parton
distribution functions (PDFs), plus corrections suppressed
by inverse power of large momentum transfer of the
scattering. It is the QCD factorization theorem [1] which
enables us to connect the dynamics of quarks and gluons to
the physically measured hard scattering cross sections of
identified hadrons. The collinear (CO) divergences of the
partonic scattering are absorbed into the nonperturbative
PDFs, leaving an infrared-safe and perturbatively comput-
able hard contribution. According to Feynman’s parton
model [2], the unpolarized PDFs give the probability to find
partons [i.e., quark (q), antiquark (q̄), gluon (g)] in a hadron
as a function of the fraction x of the hadron’s longitudinal
momentum carried by the parton, probed at a factorization

scale μ. For example, if a parton of type i carries a fraction x
of hadron’s momentum, then the probability to find the
parton is given by fiðx; μ2Þdx. An accurate and precise
knowledge of parton distribution functions is required for
the cross section predictions of both Standard Model and
beyond Standard Model processes at existing and future
particle colliders, such as the LHC and Electron-Ion
Collider (EIC). The precision of numerous experimentally
measured observables, such as the W-boson mass, weak-
mixing angle and Higgs cross section, is driven by a
detailed knowledge and precision of PDFs.
Since a precise knowledge of PDFs is required for the

analysis and interpretation of scattering experiments, as
discussed above, considerable effort has been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [3], CT [4], NNPDF [5],
HERAPDF [6], and JAM [7]. PDFs, the catalyst of many
observables in hadronic scattering, are becoming better
determined as experimental data sets increase and the
global analysis community implements more sophisticated
schemes to quantify systematic uncertainties.
The valence quark distribution of the pion is of particular

theoretical interest, as the pion is the lightest QCD bound
state and the Goldstone mode associated with dynamical
chiral symmetry breaking. The pion PDF has beenmeasured
through pionic Drell-Yan experiments at CERN [8,9] and
Fermilab [10]. Several analyses in Refs. [11–17] of these
experimental data have been performed to determine the
pion valence distribution. Among these analyses, it has been
emphasized inRef. [16] that the next-to-leading-logarithmic
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threshold resummation effects in the calculation of the
Drell-Yan cross section are important and give a softer
valence distribution which falls of as ð1 − xÞ2 near x → 1,
consistent with the prediction based on the framework of
perturbative QCD in Refs. [18–20]. There are also different
model predictions for the large-x behavior of the pion
valence distribution, some of which predict a harder fall-off
as (1 − x) [21–24] or ð1 − xÞ2, such as in Dyson-Schwinger
type models [25,26]. Therefore, an ab initio knowledge of
the correct large-x behavior of the pion valence PDF can
serve as a discriminator of different model calculations.
In this paper, we will present a calculation of the pion
valence PDF using “lattice cross sections” proposed in
Refs. [27,28]. In this approach, one factorizes a hadronic
matrix element, such as a two current correlator, into the
PDFs and short-distance matching coefficients, from which
PDFs could be extracted from lattice calculated hadronic
matrix element with the perturbatively calculated matching
coefficients.
Lattice QCD is a Monte Carlo method for numerically

evaluating QCD in a finite, discretized Euclidean space-
time. To date, Lattice QCD has emerged as the most
rigorous and systematic tool for studying QCD nonpertur-
batively. As introduced by Feynman [29], PDFs are defined
through light cone matrix elements of certain bilocal
operators. These light cone matrix elements cannot be
directly calculated on the Euclidean lattice because the light
cone collapses to a point in Euclidean spacetime. Recently
several methods have been introduced to go beyond the
calculations of the first few moments of PDFs on the lattice,
such as the path-integral formulation of the deep-inelastic
scattering hadronic tensor [30,31], the inversion method
[32], quasi-PDFs [33], and pseudo-PDFs [34] to obtain the
x-dependent hadron structure functions. A coordinate-
space method for the calculation of light-cone distribution
amplitudes has also been employed [35]. Significant
achievements in the lattice QCD implementations of these
approaches have been made in recent years [36–40].
References to many other lattice QCD calculations, the
current status and challenges for a meaningful comparison
of these lattice calculations with the global fits of PDFs can
be found in Refs. [41–43]. The readers are also referred to
several lattice QCD calculations of lower moments of pion
PDF in Refs. [44–50]. Recently, the relation of moments of
Ioffe time parton distribution functions to matrix elements
of nonlocal operators computed in lattice QCD has been
studied in [51].
The remainder of this article is organized as follows. In

Secs. II and III we discuss what are the good lattice cross
sections, and the essence of calculation of these lattice cross
sections in coordinate space. In Sec. IV, we present the
derivation of the tree-level perturbative kernel for an
antisymmetric vector and axial-vector current combination,
and show how one can factorize the associated hadronic
matrix element to extract pion valence distribution in a

lattice QCD calculation. We present the numerical methods
and results in Secs. Vand VI. We compare the pion valence
distribution extracted in this calculation with other calcu-
lations and different fits of the experimental data. Finally,
we summarize our results and outline the future directions
of this method to obtain pion valence quark distribution
with controlled systematics.

II. “GOOD” LATTICE CROSS SECTIONS

In similarity with the extraction of PDFs in a global fit
through the factorization of different experimental cross
sections, a method was proposed [27] to extract PDFs from
lattice QCD calculations of hadronic matrix elements,
called lattice cross sections (LCSs), which in the frame-
work of QCD can be factorized into a perturbatively
calculable hard part and the nonperturbative PDFs with
a small and controllable power correction. Analogous to the
cross sections measured in an experiment, these hadronic
matrix elements computed on the lattice are constructed to
be time independent, defined by equal-time operators and
have a well-defined continuum limit; hence the name lattice
“cross sections.” It has been shown in Ref. [52] that as long
as such operators have no temporal extent, a matrix element
calculated in Euclidean space will equal its counterpart in
Minkowski space.
To be more specific, such hadronic matrix elements are

good lattice cross sections if they have the following
properties:

(i) are a Lorentz covariant single-hadron matrix element
computable on a Euclidean lattice,

(ii) have a well-defined continuum limit when the lattice
spacing a → 0,

(iii) are factorizable to PDFs convoluted with infrared
(IR)-safe hard coefficients, plus a small and con-
trollable power correction.

The single-hadron matrix elements of renormalized
nonlocal operators OnðξÞ can be written as, suppressing
renormalization scale dependence,

σnðξ; pÞ ¼ hpjTfOnðξÞgjpi; ð1Þ

where the subscript n is a label for different operators, T
stands for time-ordering, p the hadron momentum, and ξ
(ξ2 ≠ 0) is the largest separation of all fields in the operator
On. One choice which allows for factorization is a pair of
parton field operators linked by a Wilson line operator and
has been used for the calculation of pseudo-PDFs [34]
and quasi-PDFs [33]. A broader class of operators with
factorizable matrix elements is pairs of spacelike separated
currents.
The operator can be chosen to be a Lorentz scalar,

such as

Oj1j2ðξÞ≡ ξdj1þdj2−2Zj1Zj2j1ðξ=2Þj2ð−ξ=2Þ; ð2Þ
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where j1 and j2 are currents with no Lorentz indices such as
ψ̄ψ or ψ̄=ξψ, dj and Zj are the dimension and renormaliza-
tion constant of the current j, respectively, and the overall
dimensional factor is introduced so that the matrix elements
in Eq. (1) are dimensionless with our normalization,
hpjp0i ¼ ð2EpÞð2πÞ3δ3ðp − p0Þ. In this case the LCS
can be written in terms of only Lorentz invariants

σj1j2ðω; ξ2Þ ¼ hpjTfOj1j2ðξÞgjpi; ð3Þ

where the Lorentz scalar ω≡ p · ξ is the Ioffe time [53],
and p2 dependence is suppressed. This type of LCS can be
directly factorized into the PDF when the separation jξj is
small [27].
Other choices of operators can have a more complicated

Lorentz structure, such as the vector-vector matrix element
of the operator

Oμν
VVðξÞ≡ ξ4jμVðξ=2ÞjνVð−ξ=2Þ; ð4Þ

where jμV is the vector current which requires no renorm-
alization constants. This type of LCS will need to be
decomposed into the Lorentz structures allowed by sym-
metry. The functions of Lorentz invariants which accom-
pany these Lorentz structures are the objects which will be
factorized into PDFs. For the case of the operator Oμν

VV, its
matrix element of an unpolarized hadron state is symmetric
in fμ; νg and can be decomposed as,

σμνVVðξ; pÞ ¼ pμpνT1ðω; ξ2Þ þ
1

2
ðpμξν þ ξμpνÞT2ðω; ξ2Þ

þ gμνT3ðω; ξ2Þ þ ξμξνT4ðω; ξ2Þ

where Ti are Lorentz invariant functions. In the following
section, we discuss the vector and axial-vector current
combination which will be used to extract the pion valence
quark distribution.
It is worth noting that the LCSs have the following

analogs to hard scattering experiments:
(i) the label “n” in Eq. (1) is related to the dynamical

features of LCSs and mimics different processes in
experiments.

(ii) p and ξ are analogous to observed scales defining
the collision kinematics; p relating to the collision
energy

ffiffiffi
S

p
and ξ2 relating to the hard probe 1

Q2.

III. THE ESSENCE OF CALCULATION
IN COORDINATE SPACE

It is crucial to mention that a large p alone does not
guarantee the applicability of the operator product expan-
sion of the matrix element and contributions from large ξ
can invalidate the perturbative factorization, whether for the
case of quark-antiquark fields linked by a Wilson line, or
for the case of spatially-separated currents. The validity of

perturbative factorization requires that the separation’s
scale, ξ2, be much smaller than the inverse square of
typical hadronic scale, ΛQCD, namely ξ2Λ2

QCD ≪ 1.
We now show why the coordinate space approach

provides distinct theoretical advantages. One can write
the Fourier transform of σnðω; ξ2Þ:

σ̃nðω̃; q2Þ≡
Z

d4ξ
ξ4

eiq·ξσnðω; ξ2Þ; ð5Þ

where corresponding On can be any operator defined in
Eq. (1), and ω̃≡ 2p·q

−q2 ¼ 1
xB
with xB the Bjorken variable for

the lepton-hadron DIS. However, though q is related to ξ
through the Fourier transform above, it is not a one-to-one
relation. σ̃ with small or large values of q will receive
contribution from σ with all values of ξ, small and large. In
particular, it can involve contributions from values of
ξ ≫ 1

ΛQCD
, thereby violating factorization. This is why, in

the LCSs approach, ξ is a very well-defined quantity,
analogous to a hard probe of hadron structure in a DIS
experiment. It has also been demonstrated in Ref. [28] that,
the non-analytic cut of σ̃n comes from the integration
region of large ξ. That is, even if we demand jq2j ≫ Λ2

QCD,
σ̃n in momentum space can always receive contribution
from large ξ region so long as ω̃2 > 1. On the other hand, in
coordinate space, if we fix ξ to be short-distance, we do not
have contribution from the large ξ region and thus σn has a
good analytic behavior.

IV. FACTORIZATION

The lattice calculable hadronic matrix elements of
Eq. (1) are shown in Ref. [28] to be factorizable into
PDFs with perturbatively calculable coefficients by apply-
ing the operator product expansion (OPE) to the nonlocal
operator OnðξÞ, with small but nonvanishing ξ2

σhnðω; ξ2; p2Þ ¼
X
a

Z
1

−1

dx
x
fhaðx; μ2ÞKa

nðxω; ξ2; x2p2; μ2Þ

þOðξ2Λ2
QCDÞ; ð6Þ

where σhn is OnðξÞ measured in a hadron h, Ka
n are the

parton flavor a ∈ fq; q̄; gg contributions to the perturbative
hard coefficients with corresponding PDF fha, and factori-
zation scale μ2. The short-distance coefficient functions
Ka

nðω; ξ2;p2; μ2Þ are determined by applying the factorized
formula in Eq. (6) to an asymptotic parton of momentum p
with p2 ¼ 0 and flavor a ¼ q; q̄, or g, and expanding each
side as a power series in the strong coupling constant αs.
Although the perturbative coefficient functions are process-
dependent, they apply equally to different external hadron
states. At leading-order OðαsÞ, the matching coefficient
only receives quark contributions and the factorized rela-
tion in Eq. (6) becomes
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σqð0Þn ðω; ξ2Þ ¼
X

a¼q;q̄;g

Z
1

0

dx
x
fqð0Þa ðx; μ2ÞKað0Þ

n ðxω; ξ2; μ2Þ

þOðξ2Λ2
QCDÞ; ð7Þ

where p2 ¼ 0 is suppressed and fqð0Þa ðx; μ2Þ ¼ δð1 − xÞδqa
is the quark distribution of an asymptotic quark at zeroth
order in αs and does not have the factorization scale

μ2-dependence. Upon substitution of fqð0Þa into Eq. (7), it
can be shown

σqð0Þn ðω; ξ2Þ ¼ Kqð0Þ
n ðω; ξ2Þ: ð8Þ

where the active quark momentum p2 ¼ 0 is suppressed.
Thus determination of the leading-order coefficient func-

tions Kqð0Þ
n follows directly from the expression of the

matrix elements σqð0Þn ðω; ξ2Þ in the coordinate space.
Specializing to the case of the pion, consider a generic

tensor operator

Oμν
ij ðξÞ ¼ ξ4J μ

i ðξ=2ÞJ ν
jð−ξ=2Þ; ð9Þ

and have it evaluated in the pion state jπðpÞi, where J k is a
local quark bilinear and ξ4 is included to maintain an
overall dimensionless matrix element. By examining the
path-integral definition of an arbitrary operator defined at a
single Euclidean time removes complications in analyti-
cally continuing our results back to Minkowski space. In
this case, the general time-ordering of Oμν

ij ðξÞ is instead
expressed as a sum of diagrams with momenta flowing in/
out of the fixed current locations. We define the matrix
element of Oμν

ij ðξÞ in the pion as

σμνij ðξ; pÞ ¼ hπðpÞjOμν
ij ðξÞjπðpÞi

¼ ξ4hπðpÞjJ μ
i ðξ=2ÞJ ν

jð−ξ=2ÞjπðpÞi: ð10Þ

Projecting onto an asymptotic quark state, we are left with
two distinct diagrams at leading order (LO):
Depending on the current-current combinations consid-

ered, the resulting Lorentz decomposition of σμνij ðξ; pÞ will
introduce numerous scalar form factors consistent with
parity and time-reversal invariance. It is these form factors
that will provide information on a wide array of distribution
functions, when factorized according to Eq. (6). A general
expression from which the LO perturbative kernels can be
obtained follows from application of perturbative formulae
to the diagrams above. Averaging over quark spin, the
ordering depicted in Fig. 1(a) yields

MðaÞ
ij ¼ ξ4

2

X
s

h0jūsðkÞeik·ξ=2Γμ
i ψðξ=2Þ

× ψ̄ð−ξ=2ÞΓν
je

ik·ξ=2usðkÞj0i

¼ ξ4

2

X
s

eik·ξūsðkÞΓμ
i h0jψðξ=2Þψ̄ð−ξ=2Þj0iΓν

ju
sðkÞ

¼ ξ4

2
eik·ξTr

�
ðγ ·kÞΓμ

i

Z
d4l
ð2πÞ4

iγ · l
l2þ iϵ

e−il·ξΓν
j

�
ð11Þ

where an inverse Fourier transform has been used to
express the quark propagator from −ξ=2 → ξ=2 in coor-
dinate space. The second ordering, shown in Fig. 1(b),
similarly yields

MðbÞ
ji ¼ ξ4

2
e−ik·ξTr

�
ðγ ·kÞΓν

j

Z
d4l
ð2πÞ4

−iγ · l
l2þ iϵ

e−il·ξΓμ
i

�
ð12Þ

Combining Eqs. (11) and (12) and writing the quark
momentum as kμ ¼ xpμ, we obtain a general relation in the
LO denoted by the superscript (0) as

σμνð0Þij ðp · ξ; p; x; ξÞ ¼ i
4π2

xpαξβfeixp·ξTr½γαΓμ
i γ

βΓν
j �

−e−ixp·ξTr½γαΓν
jγ

βΓμ
i �g ð13Þ

from which the kernels Kqð0Þ
n ðω; ξ2; xÞ with ω ¼ p · ξ can

be isolated for currents fi; jg.
Given invariance of the strong interaction under parity

(P) and time-reversal (T ) transformations, the pion matrix
element σμνij ðξ; pÞ has the following property,

σμνij ðξ; pÞ ¼ hπðpÞjðPT ÞðOμν
ij ðξÞÞ†ðPT Þ−1jπðpÞi: ð14Þ

In this work, we consider the case of a vector J μ
V ¼

ψ̄γμψ and axial-vector J ν
A ¼ ψ̄γνγ5ψ current combination,

whose transformation properties are

ðPT ÞJ μ
AðξÞðPT Þ−1 ¼ −J μ

Að−ξÞ;
ðPT ÞJ μ

VðξÞðPT Þ−1 ¼ J μ
Vð−ξÞ:

(a) (b)

FIG. 1. The lowest order Feynman diagrams contributing to the
σμνij in Eq. (10) on an asymptotic on-shell quark state of
momentum k.
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With these transformation properties, we find that
the following combination of these two currents,
σμνVAðξ; pÞ þ σμνAVðξ; pÞ≡ hπðpÞj½Oμν

VAðξÞ þOμν
AVðξÞ�jπðpÞi,

is antisymmetric in Lorentz indices, fμ; νg, and can be
expressed in terms of two dimensionless scalar form
factors as

1

2
½σμνVAðξ;pÞþσμνAVðξ;pÞ�
≡ϵμναβξαpβT1ðω;ξ2Þþðpμξν−ξμpνÞT2ðω;ξ2Þ ð15Þ

where Tiðω; ξ2Þ are the dimensionless functions of the
Lorentz invariants fω; ξ2g.
The dimensionless functions are isolated by taking

appropriate tensor contractions of the antisymmetric matrix
element in Eq. (15),

T1ðω; ξ2Þ ¼
1

2ðω2 − p2ξ2Þ ðϵμναβξ
αpβÞ

×
1

2
½σμνVAðξ; pÞ þ σμνAVðξ; pÞ�; ð16Þ

T2ðω; ξ2Þ ¼
1

2ðω2 − p2ξ2Þ ðξμpν − pμξνÞ

×
1

2
½σμνVAðξ; pÞ þ σμνAVðξ; pÞ�: ð17Þ

A judicious choice of ξ, p, and Lorentz indices fμ; νg,
exposes the structure functions T1ðω; ξ2Þ and T2ðω; ξ2Þ
without recourse to a full tensor contraction as in Eqs. (16)
and (17). To isolate the structure functions we stipulate
p ¼ ðp0; 0; 0; p3Þ and ξ ¼ ð0; 0; 0; ξ3Þ. T1 is then isolated
by choosing μ ¼ 1 and ν ¼ 2:

T1ðω; ξ2Þ ¼
1

p0ξ3
1

2
½σ12VAðξ; pÞ þ σ12AVðξ; pÞ�: ð18Þ

While T2 is isolated by choosing μ ¼ 0 and ν ¼ 3:

T2ðω; ξ2Þ ¼
1

p0ξ3
1

2
½σ03VAðξ; pÞ þ σ03AVðξ; pÞ�: ð19Þ

From Eq. (6), the Tiðω; ξ2Þ can be thus factorized as

Tiðω; ξ2Þ ¼
X

a¼q;q̄;g

Z
1

0

dx
x
faðx; μ2ÞCa

i ðxω; ξ2; μ2Þ

þOðξ2Λ2
QCDÞ; ð20Þ

with the perturbatively calculable matching coefficients
Ca
i ðxω; ξ2; μ2Þ for parton flavor a.
Similar to the derivation of Eq. (13), the LO contribution

to the antisymmetric pion matrix element in Eq. (15) is
given by

σμνð0ÞVA ðp · ξ; p; x; ξÞ ¼ i
4π2

xpαξβ½Trðγαγμγβγνγ5Þeixp·ξ

− Trðγαγνγ5γβγμÞe−ixp·ξ�

¼ −
i
π2

xpαξβðiϵαμβνeixω − iϵανβμe−ixωÞ

¼ 1

π2
xϵμναβξαpβðeixω þ e−ixωÞ ð21Þ

with Trðγμγνγργσγ5Þ ¼ −4iϵμνρσ dictated by the convention
ϵ0123 ¼ 1. Substituting Eq. (21) into Eqs. (16) and (17), we
obtain the two scalar form factors of a quark state of
momentum k ¼ xp at the LO, respectively,

Tqð0Þ
1 ðxω; ξ2Þ ¼ x

π2
ðeixω þ e−ixωÞ; ð22Þ

Tqð0Þ
2 ðxω; ξ2Þ ¼ 0: ð23Þ

With fqð0Þa ðx; μ2Þ ¼ δð1 − xÞδqa, we obtain the lowest order
perturbative coefficients in Eq. (20) as,

Cqð0Þ
1 ðxω; ξ2Þ ¼ Tqð0Þ

1 ðxω; ξ2Þ ¼ 2x
π2

cosðxωÞ ð24Þ

Cqð0Þ
2 ðxω; ξ2Þ ¼ 0; ð25Þ

respectively.
We have the LO momentum-space scalar form factors by

performing a Fourier transformation in ω,

T̃1ðx̃; ξ2Þ≡
Z

dω
2π

e−ix̃ωT1ðω; ξ2Þ

≈
Z

dω
2π

e−ix̃ω
Z

1

0

dx
x
qðxÞCqð0Þ

1 ðxω; ξ2; μ2Þ

≈
Z

dω
2π

e−ix̃ω
Z

1

0

dx
x
qðxÞ x

π2
ðeixω þ e−ixωÞ

≈
1

π2
fqðx̃Þ þ qð−x̃Þg

≈
1

π2
fqðx̃Þ − q̄ðx̃Þg ¼ 1

π2
qvðx̃Þ; ð26Þ

where qð−x̃Þ ¼ −q̄ðx̃Þ is used, qvðx̃Þ≡ ½qðx̃Þ − q̄ðx̃Þ� is the
valence quark distribution, and the ξ2 or the factorization
scale dependence is suppressed since we are working at the
LO approximation. Equation (26) implies that T̃1ðx̃; ξ2Þ is
proportional to the valence quark PDF with momentum
fraction x̃, which is actually true to all orders due to the
symmetry of the coefficient function Cq

1ðxω; ξ2; μ2Þ ¼
−Cq

1ð−xω; ξ2; μ2Þ.
Therefore direct information on the pion’s valence quark

distribution qvðx̃; μ2Þ is accessible by evaluating the anti-
symmetric combination of vector and axial-vector (V-A)

PION VALENCE QUARK DISTRIBUTION FROM MATRIX … PHYS. REV. D 99, 074507 (2019)

074507-5



current-current correlators, up to an overall factor of 1=π2

and corrections in powers of αs and/or ξ2Λ2
QCD.

It has been shown in Ref. [28] that the validity of
operator product expansion (OPE) guarantees that T1 is an
analytic function of ω, as is its Taylor series around ω ¼ 0.
By keeping ξ to be short distance and increasing ω by
increasing p, there exists no way for new divergences to
appear in T1. Therefore, T1 remains an analytic function
of ω unless ω ¼ ∞ and the factorization holds for any
values of ω and ξ2 as long as ξ is short distance, similar to
the scenario of the factorization of experimental cross
sections.

V. NUMERICAL METHODS

This calculation is performed on a lattice gauge ensem-
ble of 490 configurations generated by the JLab/W&M
Collaboration [54]. This ensemble employs 2þ 1 flavors of
clover Wilson fermions and a tree-level tadpole improved
Symanzik gauge action. The strange quark mass was
set by requiring the ratio ð2M2

Kþ −M2
πþÞ=MΩ− to assume

its physical value. The configurations were generated using
a rational Hybrid Monte Carlo update algorithm [55]. The
fermion action includes a single iteration of stout smearing
with weight ρ ¼ 0.125. This smearing makes the employed
tadpole corrected tree-level clover coefficient, csw, very
close to the nonperturbative value determined, a posteriori,
by the Schrödinger functional method.
The extraction of hadron-to-hadron matrix elements in

lattice QCD requires the calculation of correlation func-
tions. The 2-point function is a vacuum expectation value of
two interpolating fields separated in Euclidean time T:

C2ptðp; TÞ ¼ hΠpðTÞΠ̄pð0Þi; ð27Þ

where the interpolating field Πp is an operator with
quantum numbers of a pion with momentum p. A spectral
decomposition of the 2-point function is given by the
following tower of exponentials

C2ptðp; TÞ ¼
X
n

jZnj2
2EnðpÞ

e−EnðpÞT; ð28Þ

where the sum is over all energy eigenstates n with
quantum numbers of the pion, Zn ¼ h0jΠpjni is the overlap
factor between the operator and the nth excited state and
EnðpÞ is the energy of that state with momentum p. In the
large Euclidean time limit, this correlation function will be
dominated by the ground state.
A good choice of interpolating field will have a large

overlap factor with the ground state while simultaneously
having poor overlap with excited states. For low-momenta
or states at rest, spatial smearing is a well-established
method to reduce the overlap of pointlike interpolators onto
high energy eigenstates. We employ in this work the

Jacobi-smearing procedure [56], in which pointlike quark
fields are smeared according to

q̂ðx⃗; tÞ ¼
�
1þ σ∇2

nσ

�
nσ
qðx⃗; tÞ ð29Þ

where ∇2 is the three dimensional gauge-covariant
discretization of the Laplacian, σ the smearing “width”
and nσ the number of applications of the smearing kernel
onto the pointlike quark fields. For highly-boosted states,
however, the overlap of even spatially-smeared interpola-
tors can become suboptimal. To ameliorate the effects of
excited-states and improve the overlap of our interpolators
onto boosted pions, we implement a combination of the
Jacobi and momentum-smearing [57] techniques. In prac-
tice we apply appropriately constructed phases to
the underlying gauge fields prior to source creation
according to

Ũμ½x� ¼ ei
2π
L ζdμUμ½x� ð30Þ

where d⃗ is the direction in which phases are applied, with
magnitude ζ tuned for each desired momenta. The final
interpolating fields are given by

Πp⃗ðtÞ ¼
X
x⃗

eip⃗·x⃗ ¯̃qðx⃗; tÞγ5q̃ðx⃗; tÞ ð31Þ

where q̃ is a light quark field constructed with the
combined application of momentum smearing and Jacobi
smearing. The smearing parameters used were varied for
each momentum and are shown in Table I. Due to the
decreasing signal to noise ratio, the higher momentum
states required more source points and shorter time sepa-
ration between the pion operators. These values are also
shown in Table I.
For the calculation of any good LCS, the composite

operators used have finite spatial extent ξ. Introduction of a

TABLE I. The lattice momenta p⃗ ¼ ½0; 0; pz� of our interpolat-
ing operators and the momentum-smearing phases ζ applied for
each lattice momenta in the direction d⃗ ¼ ½0; 0; 1�, as well as
number of pion source points and source-sink separations. Quark
sources comprising our interpolators were subsequently spatially
smeared according to the Jacobi-smearing procedure with smear-
ing parameters σ ¼ 4.0 and nσ ¼ 50.

p⃗ ¼ ½0; 0; pz� ζ
No. of source
points ðx0; tÞ

No. of source-sink
separations

p ¼ 0.610 GeV 1.75 2 9
p ¼ 0.915 GeV 2.50 5 9
p ¼ 1.220 GeV 3.75 6 9
p ¼ 1.525 GeV 4.50 7 7
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heavy auxiliary quark field Q (mQ > ml), such that our
operators are of the form OðtÞ ¼ J †

Γðξ; tÞJ Γ0 ð0; tÞ with
J Γ ¼ q̄ΓQ, limits the available phase space between the
two currents thereby reducing the statistical noise. An
auxiliary heavy quark has also been used in Ref. [58] to
remove higher twist contamination in the calculation of
moments of the PDF and the distribution amplitude (DA).
For our calculation of the pion valence distribution,
multiple auxiliary quark masses between the light and
strange quark mass were tested. A slight improvement in
the signal-to-noise ratio from the heavier masses was
observed for the larger momenta. We set the auxiliary
quark propagator to the strange quark mass for the
remainder of this calculation. In addition, to minimize
excited state contamination, the operator insertion time (t)
will be fixed to be midway between the source and sink
interpolators (i.e., t ¼ T

2
).

The 4-point correlation function is constructed using a
modified sequential source technique. Because we are not
performing a time slice momentum projection at the
operator, the standard sequential source method using
the operator as sequential source does not work here.
However, for the case of meson there is a straightforward
implementation where momentum projections are per-
formed at source and sink meson operators and the
corresponding correlation functions are computed as chain
of sequential sources as described below. The correlation
function is expressed as follows

C4ptðξ;p;T;tÞ
¼hΠpðz⃗;TÞJ †

Γðx0þξ;tÞJ Γ0 ðx0;tÞΠ̄pðy⃗;0Þi
¼
X
z⃗;y⃗

e−iðz⃗−y⃗Þ·p⃗h ¯̃dγ5ũðz⃗;TÞQ̄Γuðx0þξ;tÞ

× ūΓ0Qðx0;tÞ ¯̃uγ5d̃ðy⃗;0Þi
¼Tr½Ipqðx0þξ;t;x0;tÞΓγ5GQðx0þξ;t;x0;tÞ†γ5Γ0�; ð32Þ

where ðx0; tÞ is a randomly determined source point,
GQðy0; x0Þ is the flavor Q auxiliary quark propagator from
x0 to y0, and Ipqðy0; x0Þ is the modified sequential source with
flavor q-quarks and pions at momentum p. The modified
sequential source is constructed through sequential inver-
sions of the light quark Dirac operator, reusing already
calculated propagators. Heuristically, the modified sequen-
tial source is constructed by calculating the light quark
propagator from a point-source located at one of the
currents to the source interpolator, using this object as a
source for a subsequent propagator to the sink interpolator,
and lastly using this larger object as a source for propa-
gation from the sink to the second current. This construc-
tion is done by solving the following sequence of systems
of equations for Gq, H

p
q , and Ipq .

①
X
x0;s0

Dqðx; s; x0; s0ÞGqðx0; s0; x0; tÞ ¼ δðx − x0Þδðs − tÞ

②
X
x0;s0

Dqðx; s; x0; s0ÞHp
qðx0; s0; x0; tÞ ¼ e−ix·p

×
X
x0;x00

Sðx; x0Þγ5Sðx0; x00ÞGqðx00; s; x0; tÞδðsÞ

③
X
x0;s0

Dqðx; s; x0; s0ÞIpqðx0; s0; x0; tÞ ¼ eix·p

×
X
x0;x00

Sðx; x0Þγ5Sðx0; x00ÞHp
qðx00; s; x0; tÞδðs − TÞ; ð33Þ

where Dq is the Dirac matrix for the light quarks and
Sðx; x0Þ represents the smearing procedure. The phase
projects the interpolating fields onto definite momentum,
while the signs of the momentum-smearing phases applied
to the quark fields must be treated carefully to ensureΠ and
Π̄ correctly project onto states with a given momentum.
Note that the smearing procedures are applied once for each
of the quark fields in the interpolating fields, and no
smearing is applied at the current insertions. This procedure
is shown diagrammatically in Fig. 2. An advantage of this
procedure is that the correlation function for any current
pair with any separation can be calculated without addi-
tional Dirac matrix inversions. On the other hand, for each
choice of momentum and source-sink separations, two
additional light quark Dirac matrix inversions are required
per gauge configuration, denoted by ① and ② in Eq. (33).

VI. NUMERICAL RESULTS AND EXTRACTION
OF PION VALENCE DISTRIBUTION

Reliable extraction of hadronic matrix elements, in part,
hinges on how well a lattice calculation can systematically
quantify and reduce excited-state contamination. In this
section, we present the numerical results of our calculation

FIG. 2. The 4pt-function is constructed by combining a heavy
quark propagator, represented by the green line, and a modified
sequential source, represented by the black lines. The sequential
sources are made by determining randomly chosen sample points
ðx0; tÞ, inverting off each of these source points to the pion
sources, and then using these objects for further inversions to the
sinks and later to the second current locations. An advantage of
this setup is that any pair of currents, J Γ and J 0

Γ, with any
separation ξ, may be constructed without additional costly
propagator inversions.
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of matrix elements of spatially-separated antisymmetric
V-A currents. As discussed in Sec. V, the pion source-sink
separation T is systematically increased, while holding
the time t ¼ T

2
fixed at which the currents are inserted.

Figure 3 shows the calculation of the operator
hπðpÞjJ iðx0 þ ξÞJ jðx0ÞjπðpÞi, where J i and J j are the
antisymmetric V-A currents discussed in Sec. IV.
We perform a correlated fit to the jackknife ensemble

ratios of 4pt to 2pt functions for a given momentum p and
spatial separation ξ between the currents. In order to extract
the desired matrix element from fits to our data, we assume
the following single exponential form for the ratios of 4pt to
2pt functions:

RðTÞ ¼ C4ptðTÞ
C2ptðTÞ

¼ Aþ Be−ΔeffT ð34Þ

where Δeff is the effective energy gap between the ground-

state and the excited states. Therefore the ratio C4ptðTÞ
C2ptðTÞwill give

the desired matrix element hπðpÞjJ iðx0 þ ξÞJ jðx0ÞjπðpÞi,
up to an additional amplitude obtained from the fit to the 2pt
function in the asymptotic limit of large T. Given the
symmetries engineered into our calculation, namely the
current always being inserted at t ¼ T

2
and the source/sink

interpolators being created in an identical manner, one can

(a)

(b)

FIG. 3. Jackknife ensemble ratio data of the 4pt to 2pt
correlation functions used in the extraction of antisymmetric
V-A current matrix elements. Figures 3(a) and 3(b) show fits to
the matrix elements for p ¼ 0.610 GeV with spatial separation
between the currents ξ ¼ 1a and ξ ¼ 4a, respectively. The blue
data points are obtained from the lattice QCD calculation, the
green band shows the two-state fit to the data, and the red band
shows the extracted value of the matrix element in the asymp-
totically large source-sink separation limit.

(a)

(b)

FIG. 4. Jackknife ensemble ratio data of the 4pt to 2pt
correlation functions used in the extraction of antisymmetric
V-A current matrix elements. Figures 4(a) and 4(b) show fits to
the matrix elements for p ¼ 1.525 GeV with spatial separation
between the currents ξ ¼ 1a and ξ ¼ 4a, respectively. The green
data points are obtained from the lattice QCD calculation, the
gray band shows the two-state fit to the data, and the red band
shows the extracted value of the matrix element in the asymp-
totically large source-sink separation limit.
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further assume that the excited state contamination is equal
on the source and sink sides of the current.
In Figs. 3(a) and 3(b) we present representative fits

according to Eq. (34) applied to the jackknife ensemble
ratio of 4pt (C4pt) to 2pt (C2pt) correlation functions as a
function of source-sink separation T, for ξ⃗ ¼ ½0; 0; a� and
momenta along the z-direction p ¼ 0.610 GeV and
p ¼ 1.525 GeV, respectively. For p ¼ 0.610 GeV, the
largest source-sink separation we use is T ¼ 22a. As the
signal-to-noise ratio is significantly reduced for states with
large momentum, we attempt to limit additional noise in
our extracted matrix elements by considering smaller
separations between the currents for states with large
momenta. For instance, we limit the largest source-sink
separation to be T ¼ 16a for p ¼ 1.525 GeV. As seen
from Fig. 3(a), the ratio of the correlation function for
p ¼ 0.610 GeV has reasonable signal for almost all the
source-sink separations. However, as expected for
p ¼ 1.525 GeV, after T ¼ 12a, the lattice matrix elements
become very noisy and have no effect on the fit. Reasonable
statistical signal in such a relatively small window of
source-sink separations, compared to lower momenta
data, might be a cause for concern. However it is worth
remembering that with such a coarse lattice spacing
(a¼0.127 fm), T ¼ 12a is sufficiently large (∼1.525 fm)
to minimize any excited-state contamination. We present
values of the fit parameters in Table II.
With the fit to the data for momenta along the z-direction

in the range p ∈ f0.610–1.525g GeV and current separa-
tions jξj ≤ 4a in the z-direction, we obtain the matrix
elements shown in Fig. 5. As discussed in Sec. IV, we only
include jξj ≤ 4a in our analysis so that ξ is sufficiently
smaller than 1

ΛQCD
and thereby ensuring the factorization

of Eq. (6).
For the lowest-order kernel, we use the following simple

relation derived in Sec. IV

T1ðω; ξ2Þ≡ σðp · ξ; ξ2Þ ¼
Z

1

0

dx
1

π2
cosðxωÞqπvðxÞ ð35Þ

to extract pion valence distribution qπvðxÞ, by fitting the
antisymmetric V-A current matrix elements σðp · ξ; ξ2Þ.

For a proper extraction of the PDF and comparison to
global fit results, one would need to extend the LO
matching formula in Eq. (35) to include a higher order
matching kernel between LCSs and PDFs. A next-to-
leading-order (NLO) matching kernel would include
OðαsÞ logarithmic ξ2 and constant corrections. The loga-
rithmic terms contain the scale dependent Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution. The constant
terms contain the information on renormalization of the
lattice QCD matrix element and the partonic PDFs which
leads to the scheme dependence. There also can exist higher
twist effects which contaminate the results without suffi-
ciently small ξ2. Finally there exist potential discretization
errors from the small separation size, as well as rotational
symmetry breaking effects as observed in [36].
The extraction of the PDF using Eq. (35) from lattice

calculated data constitutes an ill-posed inverse problem.
Lattice data will always be discretized and in a limited
range of ω. As demonstrated in [59], a naïve discretized
inverse cosine transform would introduce numerical arti-
facts into the PDF. Solutions to this inverse problem require
additional information or constraints. In the global fitting
community, additional information is given in the form of
smooth physically motivated functional forms as described
below. PDFs extracted using this technique have been
successfully shown to describe different physical proc-
esses, thereby assuring the universality of the nonpertur-
bative PDFs. Of importance, it is known that the valence
distributions of nucleon and pion are smooth functions of x
in the region 0 < x < 1. In the spirit of the functional forms
used in global fits of PDFs, we insert

qπvðxÞ ¼ Nxαð1 − xÞβð1þ ρ
ffiffiffi
x

p þ γxÞ ð36Þ

into Eq. (35) and numerically perform the integration,
where N is the normalization such that

FIG. 5. Fit to the antisymmetric V-A currents matrix element
with leading order (LO) perturbative kernel in Eq. (35) and
functional form of pion valence distribution in Eq. (38).

TABLE II. The fit parameters of the V-A matrix elements with
ξ⃗ ¼ ½0; 0; a� for momenta along the z-direction p ¼ 0.610 GeV
and p ¼ 1.525 GeV, respectively.

p [GeV] ξ A B Δeff χ2=d:o:f:

0.610 GeV 1a 0.102(5) −0.028ð11Þ 0.054(20) 1.21
0.610 GeV 4a 0.083(4) −0.026ð13Þ 0.062(42) 0.89
1.525 GeV 1a 0.097(8) −0.267ð513Þ 0.809(503) 0.15
1.525 GeV 4a 0.049(9) −0.107ð148Þ 0.450(420) 0.19
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Z
1

0

dxqπvðxÞ ¼ 1: ð37Þ

With the limitations related to ξ2 corrections in mind, in
this preliminary calculation, we use the numerical fitting
program ROOT [60] to fit bootstrap samples of the V-A
matrix elements and obtain a LO qπvðxÞ-distribution.
The uncertainty band in the fit has been obtained from
the fit results of the bootstrap samples. With the various
sources of ξ2 corrections not taken into account, we did not
expect the matrix elements as a function of Ioffe time to fall
upon a single curve—consequently the χ2=d:o:f. was close
to 2.2.
We find that the term ρ

ffiffiffi
x

p
in Eq. (36) has no effect in the

fit, as ρ ≃ 0. A similar zero-value for ρ was also found in
Ref. [26] and other global fits to experimental data. We
therefore adopt a simpler functional form for the PDF in our
calculation

qπvðxÞ ¼
xαð1 − xÞβð1þ γxÞ

Bðαþ 1; β þ 1Þ þ γBðαþ 1þ 1; β þ 1Þ ; ð38Þ

where the beta functions in the denominator ensure the
normalization condition in Eq. (37) is met. In Eq. (38), the
ð1 − xÞβ allows a smooth interpolation to zero as x → 1 and
is inspired by the counting rule of perturbative QCD.
The xα term is motivated by the behavior predicted by
Regge theory at small x. One could interpolate these two
limits using a polynomial of x. However, due to present
statistics and small range of ξ, we cannot quantitatively
distinguish between different choices of polynomials.
Therefore, we use the widely adopted phenomenologically
motivated functional form of pion valence PDF in Eq. (36).
We set the following physically motivated and relaxed
constraints

α < 0; 0 < β < 4: ð39Þ

The fit to the lattice QCD data using the LO kernel in
Eq. (35) and the functional form of PDF in Eq. (38) is
shown in Fig. 5 with the fit parameters,

α ¼ −0.34ð31Þ; β ¼ 1.93ð68Þ; γ ¼ 3.05ð2.50Þ: ð40Þ

The extracted PDF from this fit is shown in Fig. 6(a) where
the values of the fit parameters are indicated. We also
show the xqπvðxÞ-distribution in Fig. 6(b). The perturbative
kernel fixes the value of the integral in Eq. (35) to be 1

π2
at

ω ¼ 0 for any value of x, therefore the fitted value of
T1ðω; ξ2Þ has zero uncertainty at this point.

VII. COMPARISON WITH OTHER
DETERMINATIONS

This first exploratory lattice QCD calculation of the pion
PDF using spatially-separated current-current correlation
function is performed at a relatively heavy pion mass
(mπ ≃ 416 MeV). This calculation must be repeated on
several other lattice ensembles to determine the pion mass
dependence, quantify lattice artifacts such as finite lattice
spacing and finite volume [61] corrections and obtain the
PDF in the continuum limit. As mentioned earlier, extend-
ing the perturbative calculation beyond LO will not only
lead to a more reliable extraction of the PDF, but also an
understanding of power corrections and higher twist
effects. A NLO matching kernel will give control over
the corrections in ξ, both from Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi and higher twist effects. This calculation

(a)

(b)

FIG. 6. The pion valence distribution obtained from the fit in
Eq. (35) using the LO perturbative kernel in Eq. (24) derived in
Sec. IVand the functional form of the PDF in Eq. (38). Figure 6(a)
shows the pion valence distribution qπvðxÞ and Fig. 6(b) shows the
xqπvðxÞ-distribution. The uncertainty band is obtained from the fits
to the Jackknife samples of the data.
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was performed on a fairly coarse lattice with a large
minimum ξ, and in the future these corrections will need
to be taken into account. While such calculations are
underway and will be presented in a future work, the
limitations in our current extraction of the pion valence
PDF do not preclude comparison with global fits, two
different model calculations and recent lattice calculations
of pion valence quasi-distribution.
For a comparison with the LO extraction of qπvðxÞ from

Drell-Yan experimental data in Ref. [10], we evolve our
lattice QCD determination of the PDF in LO to an evolution
scale of μ2 ¼ 27 GeV2 starting from initial scale of
μ20 ¼ 1 GeV2. With only a LO matching kernel, the initial
scale μ0 is chosen to be comparable to the 1

ξ’s used in this
calculation, but not low enough for perturbation theory to
be doubted. With a NLO matching kernel, there will exist
an explicit relationship between the scales ξ and μ0 from the
logarithmic terms. After the evolution, a shift in the peak of
the xqπvðxÞ-distribution toward smaller values of x and a
more convex-up behavior of the distribution near x ¼ 1 is
seen as expected in our calculation. From the fit parameters
in Eq. (38) (α ¼ −0.34ð31Þ, β ¼ 1.93ð68Þ, and γ ¼
3.05ð2.50Þ at the initial scale), it is seen that this lattice
QCD calculation of qπvðxÞ is in agreement within uncer-
tainty with the analysis in Ref. [16], where the authors
included next-to-leading-logarithmic threshold soft-gluon
resummation effects in the calculation of the Drell-Yan
cross section. The large-x behavior is statistically consistent
with the expectation based on perturbative QCD [18–20]
but of course with large uncertainty. In contrast, the large-x
behavior of this calculation has about ∼1σ difference from
the two other NLO fits [15,17] which obtained a harder
(1 − x) fall-off of the pion valence distribution.
It is seen in Fig. 7 that the large-x behavior of this

calculation is statistically consistent with the Dyson-
Schwinger model prediction [26] labeled as “DSE” in
the momentum fraction region x > 0.7. On the other hand,
this lattice QCD calculation of qπvðxÞ is in statistical
agreement with the light-front holographic QCD model
calculation labeled as “LFHQCD” in the region x < 0.5,
but shows a slightly softer fall-off at large-x in its central
value. As mentioned earlier, in a future calculation, when
all the systematics of this lattice QCD calculation are to be
well understood and controlled in a proper way, the first-
principles determination of large-x behavior of pion PDF
such as this one can shed light for understanding different
approximations used in an array of model calculations.
Even with the limitations mentioned above, this first

exploratory lattice QCD determination of qπvðxÞ using LCSs
provides encouraging results and shows that this method
has the potential to capture the essential dynamics dictating
the behavior of hadron PDFs. Of notable interest, our
calculation of xqπvðxÞ, shown in Figs. 6 and 7, illustrates a
peak of the distribution in a region x < 0.50 at any scale μ2.
This is consistent with all the global analyses of the pion
valence distribution, wherein xqπvðxÞ is peaked below

x ¼ 0.50. The readers are referred to [62] and [63] for
recent other lattice calculations of the pion valence quasi-
distribution.

VIII. SUMMARY AND OUTLOOK

We have presented the first lattice QCD calculation of
the pion valence distribution using a spatially-separated
vector and axial-vector current combination. We have
emphasized that the spatial separation ξ between the
currents is a well-defined quantity in the good lattice cross
sections method and plays a role analogous to capturing the
correct collision dynamics in a hard scattering process and
ensures the validity of factorization to obtain parton
distribution functions. In this exploratory calculation, we
have considered a leading-order perturbative kernel to
obtain the nonperturbative valence PDF of the pion though
factorization of the good lattice cross section of this vector
and axial-vector matrix element. A similar calculation on
other lattice ensembles is in progress to determine the pion
mass dependence, quantify lattice artifacts and obtain the
PDF in the continuum limit. Such a calculation of the lattice
QCD matrix elements in the continuum limit, and therefore
a more reliable extraction of PDF will be presented in
future work with the next-to-leading-order perturbative
matching kernel incorporated to understand the corrections
in ξ and higher twist effects. Moreover, using this most
general approach, other good lattice cross sections with
different current combinations will give information on
different types of PDFs. Within the limitations of the
present calculation, however, we would like to emphasize
that the good statistical agreement between the PDF

FIG. 7. Comparison of pion xqπvðxÞ-distribution with the
leading-order (LO) extraction from Drell-Yan data [10] (gray
data points with uncertainties), next-to-leading order (NLO) fits
[15–17] (orange band, magenta curve, and red band), and model
calculations [24,26] (black and blue lines). This lattice QCD
calculation of qπvðxÞ is evolved from an initial scale μ20 ¼ 1 GeV2

at LO. All the results are at evolved to an evolution scale of
μ2 ¼ 27 GeV2.
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extracted here, through only leading-order factorization and
the fits to the experimental data, is very encouraging and
shows that this method has the potential to complement the
well-established and modern state-of-art global fits of
PDFs. Upon further investigation and refinement of our
methodology, our lattice QCD results can be a subset of
those used in future global analyses.
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