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Measurements of a permanent neutron electric dipole moment (EDM) potentially probe beyond-the-
Standard Model (BSM) sources of CP-violation. At low energy the CP-violating BSM interactions are
parametrized by flavor-conserving CP-violating operators of dimension higher than four. QCD calcu-
lations of the nucleon matrix elements of these operators are required to fully reconstruct the sources and
magnitudes of the different CP-violating contributions to the nucleon EDM. Herein we study the quark-
chromoelectric dipole moment (qCEDM) operator and the three-gluon Weinberg operator. The non-
perturbative determination, using lattice QCD, of the nucleon matrix elements of these CP-violating
operators is hampered by their short-distance behavior. Under renormalization these operators mix with
lower-dimensional operators, which induces power divergences in the lattice spacing, as the continuum
limit is approached. We study the short-distance behavior of the qCEDM and the Weinberg operators using
the gradient flow. We perform a short flow time expansion and determine, in perturbation theory, the
expansion coefficients of the linearly divergent terms stemming from the mixing with the pseudoscalar
density and the topological charge, confirming the expectations of the operator product expansion. We
introduce a new method to perform calculations at nonzero flow-time for arbitrary values of the external
momenta. This method allows us to work in four dimensions for most of the calculations described in this
paper, avoiding the complications associated with defining γ5 in generic d dimensions. We show that
leading contributions in the external momenta can be reproduced by defining γ5 using the t Hooft-Veltman-
Breitenlohner-Maison scheme.
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I. INTRODUCTION

The nucleon electric dipole moment (EDM) is a physical
quantity that, once measured, will provide a unique oppor-
tunity to detect and investigate beyond-the-standard model
(BSM) sources of charge and parity (CP) violation. In
principle, there are multiple sources for a nonvanishing
nucleon EDM, including the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix, the quantum chromodyamics
(QCD) θ term, higher-dimensional CP-violating operators,

or any combination of these. The current experimental limit
for the neutron EDM [1,2], jdnj ≤ 1.8 × 10−26 e cm at
90% confidence level, leaves open the possibility of a
dominant BSM source of CP-violation, which could be
several orders of magnitude larger than Standard Model
sources. (See Refs. [3,4] for recent reviews of EDMs in
single-nucleon and atomic systems.)
In addition to the Standard Model contributions to the

nucleon EDM from the CKM matrix [5] and from the θ
term [6], BSM theories that contain complex CP-violating
couplings can induce a nonvanishing EDM at the one loop
level. At low energies the BSM degrees of freedom are
heavy enough that one can parametrize their effects through
effective, higher-dimension CP-violating operators. In this
paper we consider two such operators, the quark-color
EDM (qCEDM) operator and the CP-violating three-gluon
operator, i.e., the Weinberg operator. To constrain cou-
plings in BSM theories at high energies, one needs to
determine the QCD contribution to the EDM at low energy.

*rizik@nscl.msu.edu
†cjmonahan@wm.edu
‡shindler@frib.msu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 034509 (2020)

2470-0010=2020=102(3)=034509(22) 034509-1 Published by the American Physical Society

https://orcid.org/0000-0002-0475-9968
https://orcid.org/0000-0001-5142-3490
https://orcid.org/0000-0003-3693-8300
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.034509&domain=pdf&date_stamp=2020-08-26
https://doi.org/10.1103/PhysRevD.102.034509
https://doi.org/10.1103/PhysRevD.102.034509
https://doi.org/10.1103/PhysRevD.102.034509
https://doi.org/10.1103/PhysRevD.102.034509
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Broadly speaking, there are three approaches to determin-
ing the relevant matrix elements: QCD sum rules [7,8];
chiral perturbation theory [9,10]; and lattice QCD.
Lattice QCD provides the most systematic method to

calculate individual contributions from different CP-
violating sources to the nucleon EDM in terms of the
QCD fundamental degrees of freedom, quark and gluons.
There is a long history of attempts to determine the nucleon
EDM from lattice QCD [11–19], and several technical
difficulties have been encountered.
The first difficulty arises from the fact that in Euclidean

space the θ term renders the QCD action complex, which
prevents the use of stochastic methods. The current
experimental bound on the neutron EDM implies a very
small value for θ ∼ 10−10, justifying a perturbative expan-
sion in θ. Correlators that include an insertion of the θ term,
once the topological charge has been properly renormal-
ized, are theoretically well defined. Despite the very poor
signal-to-noise ratio it is possible to determine the nucleon
EDM induced by the θ term using signal-to-noise improved
ratios [6,20].
The second difficulty arises from the renormalization of

the relevant composite operators. In Ref. [21] we proposed
using the gradient flow [22–25] to renormalize the θ term
and the BSM CP-violating operators. We are currently
pursuing this program and in Refs. [6,14,20,26] we inves-
tigated and calculated the nucleon EDM from the θ term.
The properties of the gradient flow have led to a wide

variety of applications in lattice gauge theories. These
applications include determining the fundamental parame-
ters of QCD, such as the running coupling constant [27–34]
and the equation of state at finite temperature [35–40],
extracted from a nonperturbative definition of the energy-
momentum tensor at finite lattice spacing [41–44]. The
gradient flow has also provided an important tool for relative
scale-setting in lattice calculations [45,46]. Many of these
techniques have been applied in other theories [47–55].
Renormalization schemes based on the gradient flow

include nonperturbative step-scaling approaches [56,57],
removing power divergences in nonlocal operators relevant
to hadron structure [58,59], and defining regularization-
independent quark-bilinear currents [60,61]. Perturbative
calculations of the gradient flow have been carried out to
three loops for certain quantities using automated pertur-
bation theory routines [44,62,63] and to two loops via
numerical stochastic perturbation theory [64,65].
Analytic loop-order calculations with the gradient flow

often introduce some difficulties related to dimensional
regularization. One method to avoid these complications
employs an expansion in the external momentum p to some
desired order. This can induce extraneous, nonphysical
infrared poles at fairly low orders in the external momen-
tum. (In the calculation of the Wilson coefficient cCP
below, for example, these appear as early as Oðp2Þ.) We
have used a novel combinatorial scheme to track the

external momentum at all orders, which maintains finite-
ness at positive flow time throughout all of the calculations
in this paper with the exception of those related to the
renormalization of the flowed fermion propagator in
Appendix C.
Herein we focus on the renormalization of the higher-

dimensional CP-violating operators using the gradient
flow. First results appeared in [66–68], and presently we
determine the leading contribution to the short flow-time
expansion (SFTE) coefficients of the CP-violating oper-
ators defined using the gradient flow. The renormalization
and mixing, in the MS scheme, have been studied in
Refs. [69–71] up to 2-loops for the qCEDM and up to
3-loops for the Weinberg operators in Refs. [72–75]. After
describing our perturbative strategy for determining these
coefficients, we focus on the leading linearly divergent
expansion coefficients and some logarithmic terms.
The paper is organized as follows. We first introduce the

gradient flow and some technical details relevant for our
perturbative expansion in Sec. II. We calculate the expan-
sion coefficients of the qCEDM, parametrizing the mixing
with the pseudoscalar density and the topological charge
density, in Sec. III, and the corresponding coefficient of the
Weinberg operator, induced by the mixing with the topo-
logical charge density, in Sec. IV. We summarize our results
and our conclusions in Sec. V.
In Appendix A we detail our notations and conventions

including the d-imensional Dirac gamma matrices. In
Appendix B we list Feynman rules for the flowed vertices
and for the relevant operators. In Appendix C we use the
calculation of the quark propagator as an example to
elucidate the computational techniques for finite flow time.

II. THE GRADIENT FLOW

In this section we give a brief introduction to the gradient
flow, emphasizing the technical details needed for our
perturbative expansion. The gradient flow equations define
the evolution of the bulk gauge and fermion fields, Bμðx; tÞ
and χðx; tÞ respectively, as a function of the flow time, t
[23,25]:

∂tBμ ¼ DνGνμ þ α0Dμ∂νBν; ð1Þ

∂tχ ¼ DμDμχ − α0∂νBνχ; ð2Þ

∂tχ̄ ¼ χ̄D⃖μD⃖μ þ α0χ̄∂νBν; ð3Þ

where

Gμν ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν�; ð4Þ

and the covariant derivatives are

DμGνσ ¼ ∂μGνσ þ ½Bμ; Gνσ�; ð5Þ
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Dμχ ¼ ð∂μ þ BμÞχ; χ̄D⃖μ ¼ χ̄ð∂⃖μ − BμÞ: ð6Þ

The bulk fields are related via Dirichlet boundary con-
ditions to the boundary fields, that is, the integration
variables of the functional integral defining the theory,
through

Bμðx; t ¼ 0Þ ¼ AμðxÞ; ð7Þ

χðx; t ¼ 0Þ ¼ ψðxÞ; ð8Þ

χ̄ðx; t ¼ 0Þ ¼ ψ̄ðxÞ: ð9Þ

The generalized gauge-fixing terms proportional to α0
remove some technical complications associated with
perturbation theory [23–25]. The solutions of the flow
equations for α0 > 0 are related to the solutions at α0 ¼ 0
by a flow-time dependent gauge transformation. We work
in Feynman gauge and take α0 ¼ 1 throughout this work.
We solve the flow equations (1) and (2) in d-dimensions

by casting them into the integral forms

Bμðx; tÞ ¼
Z

ddy½Kμνðx − y; tÞAνðyÞ

þ
Z

t

0

dsKμνðx − y; t − sÞRνðy; sÞ�; ð10Þ

χðx; tÞ ¼
Z

ddy½Jðx − y; tÞψðyÞ

þ
Z

t

0

dsJðx − y; t − sÞΔ0χðy; sÞ�; ð11Þ

χ̄ðx; tÞ ¼
Z

ddy½ψ̄ðyÞJ̄ðx − y; tÞ

þ
Z

t

0

dsχ̄ðy; sÞΔ⃖0J̄ðx − y; t − sÞ�: ð12Þ

Here Kμνðx; tÞ and Jðx; tÞ are the heat kernels

Kμνðx; tÞ ¼
Z
p

eipx

p2
fðδμνp2 − pμpνÞe−tp2 þ pμpνe−α0tp

2g;

ð13Þ

Jðx; tÞ ¼ J̄ðx; tÞ ¼
Z
p
eipxe−tp

2

; ð14Þ

ð15Þ

and the interaction terms are

Rμ ¼ 2½Bν; ∂νBμ� − ½Bν; ∂μBν� þ ðα0 − 1Þ½Bμ; ∂νBν�
þ ½Bν; ½Bν; Bμ��; ð16Þ

Δ0 ¼ ð1 − α0Þ∂νBν þ 2Bν∂ν þ BνBν; ð17Þ

Δ⃖0 ¼ −ð1 − α0Þ∂νBν − 2∂⃖νBν þ BνBν: ð18Þ

We can solve the integral form of the flow equations,
Eqs. (10) and (11), by iteration, generating a tree expansion
of the bulk fields in powers of the boundary fields. Bulk
vertices are then connected by “flow lines,” which are flow-
time ordered and governed by the heat kernel. We give
explicit expressions for the relevant Feynman rules in
Appendix B.
In pure Yang-Mills theory, all correlation functions

are finite at finite flow time, provided the boundary
theory is renormalized [24]. Fermions, however, require
an additional wave-function renormalization at finite flow
time, generally denoted by Zχ [25]. The pole contribution
to this additional fermionic wave-function renormaliza-
tion first appeared in [25] and was reproduced in [43],
through a next-to-leading-order perturbative calculation of

hχ̄ðx; tÞγμDμ

⟷
χðx; tÞÞi, and in [59], in the context of nonlocal

Wilson-line operators. In Appendix C we calculate the
finite contributions to this extra wave-function renormal-
ization that, to our knowledge, have not appeared in the
literature. The calculation in Appendix C also serves as a
sample calculation with flowed fermions fields.
Once the fermions have been renormalized, composite

operators composed of fields at finite flow time are there-
fore finite and all scale dependence carried by these
operators can be related to the flow time. In particular,
any potential power divergence in the cutoff of the theory is
removed. At small flow times, a short flow-time expansion
(SFTE) can be used to relate these composite operators to
linear combinations of local renormalized operators at
vanishing flow time. The SFTE is an operator product
expansion in the neighborhood of vanishing flow time, with
coefficients, calculable in perturbation theory, that carry the
flow time dependence [76]. The SFTE provides a pertur-
bative understanding of the way in which power divergen-
ces are removed and the form of the flow-time dependence
for which the power divergences are traded.
On the lattice, correlation functions involving higher-

dimension operators can be plagued by power-divergent
mixings with lower-dimension operators. In large volume
calculations, the only accessible energy scale is the inverse
lattice spacing ∼1=a, so the regularization and renormal-
ization of correlation functions may depend only on the
lattice spacing. Disentangling the dual roles of the lattice
spacing, as cutoff and as energy renormalization scale, can
be arduous, particularly in the presence of power diver-
gences, which must be removed nonperturbatively.
The gradient flow provides a workaround: the flow

renders all operators finite, and, in the continuum limit,
the scale of all flowed correlators is parametrized by the
flow time, μ2 ∝ 1=t. The SFTE then provides a method to
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extract renormalized operators evaluated at t ¼ 0 from
finite operators calculated on the lattice at finite flow time,
t > 0. In other words, we calculate correlation functions of
local operators at nonvanishing flow time and relate them to
physical correlation functions of boundary operators via a
SFTE. The challenge associated with the renormalization
of the correlators at t ¼ 0 is traded for the difficulty of
determining the expansion coefficients in the SFTE. One
advantage of the SFTE, however, is that we can perform the
analysis in the continuum, thus avoiding spurious chiral-
symmetry breaking effects. In addition, the SFTE connects
operators at several values of the flow time in a gauge-
invariant way. This is a significant advantage compared to
standard techniques, based for example on RI-MOM
schemes, where determining the coefficients of the power
divergent terms requires a nonperturbative gauge-fixing
procedure [71,77–80]. An alternative gauge-invariant way
to study power divergences is to use coordinate space
renormalization methods [19,81–83], although this does
not provide a continuous probe of the fields, in practice.
We consider our theory in continuum Euclidean

4-dimensional space-time. For some gauge-invariant and
local operator OiðtÞ in an associative operator algebra with
basis B, defined at flow time t, the SFTE is [76]

ðOiÞRðtÞ ∼t→0
X
Oj∈B

cijðtÞðOjÞRð0Þ; ð19Þ

where the label R denotes a renormalized operator. Here,
the Wilson, or expansion, coefficients cijðtÞ have absorbed
all flow time dependence, and the SFTE connects renor-
malized operators in the bulk and on the physical boundary.
The SFTE is valid only if all fields are renormalized and all
operators appearing in the SFTE are evaluated in correla-
tion functions at nonzero physical distances to avoid
spurious and additional contact terms.
If the renormalized operators at vanishing flow time do

not share the symmetries of the flowed operator, their
expansion coefficients vanish. More specifically, the form
of the SFTE and the operators contributing to the SFTE are
dictated by the symmetries of the regulated theory. Thus, if
our regulator breaks certain symmetries, those symmetries
cannot be used to classify all the operators ðOjÞRð0Þ
contributing to the right-hand side of the SFTE in
Eq. (19). The leading contributions in the SFTE stem from
the lowest dimension operators and the renormalization
group equation satisfied by the expansion coefficients
dictates their asymptotic behavior at short flow time. In
general, OPE’s are linear and gauge-independent, so we are
free to study the expansion in an arbitrary correlation
function. Hence we are able, with the appropriate choice of
external probes, to study the SFTE termwise, order-by-
order. Moreover, the Wilson coefficients of the SFTE are
universal, that is, the coefficients are insensitive to our
choice of external states. This universality ensures that,

once the Wilson coefficients are determined using one
particular choice of external state, the resulting coefficients
can be used with any other choice of external state.

III. QUARK-CHROMOELECTRIC
DIPOLE MOMENT

The effects of BSM physics at high energies can generate
a set of effective, dimension-six, CP-violating operators at
the electroweak scale. The five-dimensional qCEDM oper-
ator, which induces the nEDM at low energies, arises from
the effects of electroweak symmetry breaking on the CP-
violating Gluon-Higgs-Fermion operator [84]. We define
the bare qCEDM to be

OC ¼ kCψ̄ σ̃μνGμνψ ; ð20Þ
where

σ̃μν ¼
1

2
fσμν; γ5g ð21Þ

is a generalization of σμνγ5 that preserves Hermiticity in d
dimensions [71]. All operators in this paper carry an
arbitrary normalization factor, to simplify comparison to
other results; in this case, kC is a complex number
normalizing OC.
The calculation of a renormalized qCEDM matrix

element on the lattice is plagued by the presence of mixing
with the other CP-violating operators [71]. In particular the
mixing with the lower-dimensional pseudoscalar density

P ¼ kPψ̄γ5ψ ; ð22Þ
generates power divergences in the lattice spacing a. A
second lower-dimensional operator that mixes with the
qCEDM is the topological charge density (TCD)

q ¼ kqTr½GμνG̃μν�; G̃μν ¼
1

2
εμναβGαβ: ð23Þ

The chirality of the TCD, opposite to the qCEDM, ensures
the mixing is proportional to the quark mass. Our perturba-
tive results confirm our expectations for the form of the
power divergence and the mass dependence of the pseudo-
scalar density and the TCD, respectively. We remark that, if
the lattice QCD calculation is performed with chiral sym-
metry breaking terms in the lattice action, chirality no longer
protects the mixing of the qCEDM and the TCD and
therefore a linearly divergent term in the inverse lattice
spacing 1=a can arise. Although other operators of the same
dimension mix with the qCEDM, as discussed in [71], here
we focus on the calculation of the SFTE coefficients of the
lower-dimensional pseudoscalar density and TCD opera-
tors. Five- and higher-dimensional operators will mix at
most logarithmically in the flow time, so we neglect these at
the leading order.
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The SFTE for the qCEDM reads

ðOCÞRðtÞ ∼t→0 cCPðtÞPRð0Þ þ cCqðtÞqRð0Þ þ � � � ; ð24Þ

where we have retained only the lowest-dimension oper-
ators in the expansion. For the remainder of this section we
will not include contributions from higher-dimensional
operators, such as the renormalized qCEDM itself. The
study of this logarithmic mixing will be considered in
future work. In perturbation theory it is possible to extract
the lowest-dimensional operator contributions by selecting
appropriate external sources [85]. Working at Oðg2Þ, we
can extract the expansion coefficients of the pseudoscalar
and TCD by selecting two-fermion and two-gluon sources,
respectively. With these choices of external states, and at
Oðg2Þ in perturbation theory, higher-dimensional operators
do not contribute to the expansion coefficients.

A. Mixing with the pseudoscalar density

We start by extracting the coefficient for the pseudo-
scalar density. Choosing a two-fermion external state, we
define, for any operator O, the connected correlation
functions [86]

ΓψOψ̄ðx; y; tÞ ¼ hψðxÞOðtÞψ̄ðyÞi: ð25Þ

We may then distribute over Eq. (24), so that

ΓR
ψOCψ̄

ðx; y; tÞ ¼ cCPðtÞΓR
ψPψ̄ðx; y; 0Þ

þ cCqðtÞΓR
ψqψ̄ðx; y; 0Þ þ � � � ð26Þ

where R once again denotes a renormalized quantity.
Expanding both the correlation functions and the Wilson
coefficients in powers of the renormalized coupling g, we
find

g2Γð1ÞR
ψOCψ̄

ðx;y; tÞ
¼ ½cð0ÞCPðtÞþ g2cð1ÞCPðtÞ�½Γð0ÞR

ψOPψ̄
ðx;y; 0Þþ g2Γð1ÞR

ψOPψ̄
ðx;y; 0Þ�

þ ½cð0ÞCqðtÞþ g2cð1ÞCqðtÞ�½Γð0ÞR
ψOqψ̄

ðx;y; 0Þþ g2Γð1ÞR
ψOqψ̄

ðx;y; 0Þ�
þOðg4Þþ � � � ; ð27Þ

where the first term in the expansion of the left-hand side of
Eq. (26) vanishes because the correlator ΓR

ψOCψ̄
ðx; y; tÞ has

no tree-level contributions, that is, the first term in the
expansion of this correlator is the one-loop contribution
proportional to g2.
Equating terms order-by-order and neglecting higher-

dimensional operators we obtain, up to Oðg4Þ,

0 ¼ cð0ÞCPðtÞΓð0Þ
ψOPψ̄

ðx; y; 0Þ þ cð0ÞCqðtÞΓð0Þ
ψOqψ̄

ðx; y; 0Þ; ð28aÞ

Γð1Þ
ψOCψ̄

ðx;y;tÞ¼cð0ÞCPðtÞΓð1Þ
ψOPψ̄

ðx;y;0Þþcð1ÞCPðtÞΓð0Þ
ψOPψ̄

ðx;y;0Þ
þcð0ÞCqðtÞΓð1Þ

ψOqψ̄
ðx;y;0Þ

þcð1ÞCqðtÞΓð0Þ
ψOqψ̄

ðx;y;0Þ: ð28bÞ

The TCD vanishes at tree-level with two external quarks,

Γð0Þ
ψOqψ̄

ðx; y; 0Þ ¼ 0, and we obtain

cð0ÞCPðtÞΓð0Þ
ψOPψ̄

ðx; y; 0Þ ¼ 0: ð29Þ
The tree-level of the pseudoscalar density with two external

quarks does not vanish Γð0Þ
ψOPψ̄

ðx; y; 0Þ ≠ 0, implying that
the expansion coefficient cCPðtÞ vanishes at leading order,

cð0ÞCPðtÞ ¼ 0. Applying this to Eq. (28b), we have

Γð1Þ
ψOCψ̄

ðx;y;tÞ¼cð1ÞCPðtÞΓð0Þ
ψOPψ̄

ðx;y;0Þþcð0ÞCqðtÞΓð1ÞR
ψOqψ̄

ðx;y;0Þ:
ð30Þ

To extract cCqðtÞ at leading order, we choose an external
state with two gluons and define

ΓAOAðx; y; tÞabαβ ¼ hAa
αðxÞOðtÞAb

βðyÞi; ð31Þ
in analogy to Eq. (25). Applying the methods and results
from above,

0 ¼ cð0ÞCqðtÞΓð0Þ
AOqA

ðx; y; 0Þ; ð32aÞ

Γð1Þ
AOCA

ðx;y;tÞ¼cð0ÞCqðtÞΓð1Þ
AOqA

ðx;y;0Þþcð1ÞCqðtÞΓð0Þ
AOqA

ðx;y;0Þ;
ð32bÞ

because the tree-level of the qCEDM with 2 external

gluons vanishes, Γð0Þ
AOCA

ðx; y; tÞ ¼ 0, and cð0ÞCPðtÞ ¼ 0. The
tree-level contribution to the TCD does not vanish,

Γð0Þ
AOqA

ðx; y; 0Þ ≠ 0, from which we deduce that the

leading order of the expansion coefficient cð0ÞCqðtÞ vanishes,

cð0ÞCqðtÞ ¼ 0.
To summarize, at Oðg2Þ we obtain

Γð1Þ
ψOCψ̄

ðx; y; tÞ ¼ cð1ÞCPðtÞΓð0Þ
ψOPψ̄

ðx; y; 0Þ; ð33aÞ
Γð1Þ
AOCA

ðx; y; tÞ ¼ cð1ÞCqðtÞΓð0Þ
AOqA

ðx; y; 0Þ: ð33bÞ

We are now in a position to extract cð1ÞCPðtÞ. There are
three one-loop graphs that contribute to the left-hand side
of Eq. (33a), which we show in Fig. 1, and the correlator on
the right-hand side is simply the tree-level for the pseu-
doscalar density.
We calculate these graphs to all orders in the external

momenta and flow time. The inclusion of the mass results
in a particularly cumbersome asymptotic analysis that lies
outside the scope of this paper; a nonzero external
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momentum is sufficient to regulate all infrared divergences.
The Feynman rules and mathematical details can be found
in Appendixes A, B, and C. Additional mathematical
details can be found in Ref. [87]. We expand in powers
of the quark mass and flow time to obtain

Γ̃ð1Þa
ψOCψ̄

ðp; p0; tÞ

¼ 3i
kC
kP

C2ðFÞ
ð4πÞ2

�
1

t
þ p2

�
logð2p2tÞ þ γE −

11

4

��

· γ5 þOðm;p2tÞ; ð34aÞ

Γ̃ð1Þb
ψOCψ̄

ðp; p0; tÞ ¼ 0; ð34bÞ

Γ̃ð1Þc
ψOCψ̄

ðp; p0; tÞ ¼ 0: ð34cÞ

There are symmetric counterparts for diagrams (a) and
(b), so the sum of these contributions is

Γð1Þ
ψOCψ̄

ðx; y; tÞ ¼
Z

d4z
Z
p;p0

eipðx−zÞ

i=pþm
½2Γ̃a

ψOCψ̄
ðp; p0; tÞ þ 2Γ̃b

ψOCψ̄
ðp; p0; tÞ þ Γ̃c

ψOCψ̄
ðp; p0; tÞ� e

ip0ðy−zÞ

i=p0 þm

¼ 6i
kC
kP

C2ðFÞ
ð4πÞ2

Z
p;p0

�
1

t
þ p2

�
logð2p2tÞ þ γE −

11

4

��Z
d4z

eipðx−zÞ

i=pþm
γ5

eip
0ðy−zÞ

i=p0 þm

¼ 6i
kC
kP

C2ðFÞ
ð4πÞ2

�
1

t
þ p2

�
logð2p2tÞ þ γE −

11

4

��
Γð0Þ
ψOPψ̄

ðx; y; 0Þ; ð35Þ

where we have omitted higher order corrections in flow time and quark mass. The final expression for the expansion
coefficient reads

cCPðtÞ ¼ 6ig2
kC
kP

C2ðFÞ
ð4πÞ2

�
1

t
þ p2

�
log ð2p2tÞ þ γE −

11

4

��
þOðm;p2t; g4Þ: ð36Þ

We confirm the general expectation, based on symmetry
and dimensional considerations, that the dominant contri-
bution to the SFTE of the qCEDM is the pseudoscalar
density, which has a corresponding expansion coefficient
that diverges linearly in flow time. The additional term
proportional to p2 stems from the mixing of the qCEDM
with the Laplacian of the pseudoscalar density. This
operator is in fact expected to contribute to the evolution
of the qCEDM operator [71].

B. Mixing with the topological charge density

To calculate the expansion coefficient cCqðtÞ, following
Eq. (33b), we need to calculate the one-loop contribution

Γð1Þ
AOCA

ðx; y; tÞ, stemming from the three Feynman diagrams
shown in Fig. 2. The graphs displayed in both 2(b) and 2(c)
vanish under the traces of the fermion loops, so we are
again left to calculate a single Feynman graph. To calculate
the d-dimensional traces over fermion loops one could

(a) (b)

(c)

FIG. 1. Leading order contributions to the mixing of the pseudoscalar density with the qCEDM. In the Feynman diagrams above the
squared vertex with t is the qCEDM operator at flow time t. The Y vertex refers to the first order term in the expansion of the gradient
flow equation for fermions and the double line indicates the presence of a fermionic kernel. Details about the Feynman rules can be
found in Appendix B.
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employ the ’t Hooft-Veltman-Breitenlohner-Maison
(HVBM) scheme [88–90]. Our conventions and details
on the HVBM scheme can be found in Appendix A. This is,
however, only necessary when these calculations are
performed by expanding near p2 ¼ 0. Starting at Oðp2Þ,
this removes an essential IR regulator, the momentum, and
introduces spurious divergences. The correlators listed
below have been calculated by applying a new method
that includes all orders in momenta, so our results are IR
safe. The flow further removes all UV divergences, and the
diagrams are finite in four dimensions.
Following the methods outlined for the pseudoscalar

density, we obtain

Γ̃ð1Þa
AOCA

ðp; p0; tÞ ¼ 2i
kC
kq

m
ð4πÞ2 ½logð2p

2tÞ þ γE − 1�

· ð−2kqÞδabϵαβμνpμp0
ν þOðm0; p2tÞ;

ð37aÞ

Γ̃ð1Þb
AOCA

ðp; p0; tÞ ¼ 0; ð37bÞ

Γ̃ð1Þc
AOCA

ðp; p0; tÞ ¼ 0: ð37cÞ

We therefore find

Γð1Þ
AOCA

ðx; y; tÞ

¼
Z

d4z
Z
p;p0

eipðx−zÞ

p2
½2Γ̃ð1Þa

AOCA
ðp; p0; tÞ� e

ip0ðy−zÞ

p02

¼ 4i
kC
kq

m
ð4πÞ2 ½logð2p

2tÞ þ γE − 1�Γð0ÞR
AOqA

ðx; y; 0Þ

þOðm2; tÞ; ð38Þ

and

cCqðtÞ ¼ 4ig2
kC
kq

m
ð4πÞ2 ½logð2p

2tÞ þ γE − 1� þOðm2; t; g4Þ:

ð39Þ

We again confirm, following general chiral symmetry
considerations, that the expansion coefficient for the
TCD has a logarithmic dependence on the flow time.
Chiral symmetry enforces the presence of a quark mass
factor multiplying the TCD and this factor arises naturally
in our calculation.
Then, at small nonzero mass, the qCEDM behaves, to

leading-order, as

OR
CðtÞ ∼t→0

6ig2
kC
kP

C2ðFÞ
ð4πÞ2

×

�
1

t
þ p2

�
logð2p2tÞ þ γE −

11

4

��
OR

Pð0Þ

þ 4ig2
kC
kq

m
ð4πÞ2 ½logð2p

2tÞ þ γE − 1�OR
q ð0Þ

þ � � � ; ð40Þ

where the ellipsis indicates contributions from renormal-
ized higher-dimensional operators.

IV. WEINBERG OPERATOR

Among the higher-dimensional CP-violating operators
obtained by integrating out heavy quarks and Higgs
bosons, there is a dimension six gluonic operator,
Weinberg’s three-gluon operator [72],

OW ¼ kWTrf½Gμρ; Gνρ�G̃μνg ð41Þ

The Weinberg operator could potentially generate a large
contribution to the nucleon EDM because it is purely
gluonic and therefore not suppressed by any small quark
mass factor or by a small CKM phase.
To determine the SFTE of the Weinberg operator we

need to isolate the lower-dimensional CP-violating oper-
ators with the same symmetry properties. In principle, the
pseudoscalar density, multiplied by a mass factor, could
contribute to the SFTE of the Weinberg, but its leading
contribution is Oðg4Þ, because the first nonvanishing term

(a) (b)

(c)

FIG. 2. Leading order contributions to the mixing of the TCD with the qCEDM.
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of the correlator with the Weinberg operator and 2 external
fermions arises at this order.
As with the qCEDM operator, we do not consider the

contributions of operators with the same dimension as the
Weinberg operator. The operators that could potentially
contribute to the SFTE of the Weinberg operator originate
from terms proportional tomOC and the Weinberg operator
itself. By choosing external states of two quarks or two
gluons, we can ensure that the leading contributions
appear only at higher order in the external scales, such
as momentum and flow-time, or at higher order in the
coupling.
Expanding the Weinberg operator at short flow time, in a

manner similar to the qCEDM, we obtain

OR
WðtÞ ∼t→0 cWqðtÞqRð0Þ þ � � � ; ð42Þ

where we have considered only operators contributing to
the expansion coefficient cWqðtÞ. These considerations
confirm that the expansion coefficient contribution from
the qCEDM to the SFTE of the Weinberg operator starts
at Oðg2Þ.
We choose two gauge bosons as the external state and

expand in powers of the coupling, leading to

g2Γð1ÞR
AOWAðtÞ ¼ ½cð0ÞWqðtÞ þ g2cð1ÞWqðtÞ�½Γð0Þ

AOqA
ðx; y; 0Þ

þ g2Γð1ÞR
AOqA

ðx; y; 0Þ� þOðg4Þ: ð43Þ

Equating order-by-order in the coupling, we obtain

0 ¼ cð0ÞWqðtÞΓð0Þ
AOqA

ðx; y; 0Þ; ð44aÞ

Γð1Þ
AOWAðx; y; tÞ ¼ cð0ÞWqðtÞΓð1Þ

AOqA
ðx; y; 0Þ

þ cð1ÞWqðtÞΓð0Þ
AOqA

ðx; y; 0Þ: ð44bÞ

Thus the leading contribution to the expansion coeffi-

cient cWq vanishes, c
ð0Þ
Wq ¼ 0. The next order in the coupling

expansion reads

Γð1Þ
AOWA

ðx; y; tÞ ¼ cð1ÞWqðtÞΓð0Þ
AOqA

ðx; y; 0Þ; ð45Þ

which allows us to determine cð1ÞWqðtÞ once we have

determined the one-loop contribution Γð1Þ
AOWA

ðx; y; tÞ.
There are, once again, three Feynman graphs that contrib-
ute, which we show in Fig. 3. There are a large number of
equivalent permutations of the fields of the Weinberg
operator, so to simplify our calculations we employ a
relation valid for any alternating 2-tensor

AμτAντAρσϵμνρσ ¼
1

16i
Tr½σαβσγδσϵηγ5�AαβAγδAϵη; ð46Þ

which slightly generalizes the corresponding relation with
Minkowski metric [73,74]. This relation decouples the
indices of A, so that the permutations of any fields that may
be contained in A become well-defined permutations on the
indices within the trace. It should be noted that this formula
is available in d-dimensions, but upon evaluation we
reproduce exactly the four-dimensional trace in the
HVBM scheme, so it may only contract nontrivially with
other four-dimensional structures. This leaves only those
pieces of a dimensionally-regularized integral that take
values in the four-dimensional subalgebra.
In the calculation of the correlators involving the

Weinberg operator, the flow automatically regulates the
UV modes of the bulk gauge field, and the external
momentum controls infrared divergences. Thus all integrals
are finite in four dimensions. Inserting the field tensor G in
place of A, we find a simple expression for the Weinberg
operator conducive to perturbative calculations:

(a) (b)

(c)

FIG. 3. Leading order contributions to the mixing of the TCD with the Weinberg operator. In the Feynman diagrams above the squared
vertex with t is the Weinberg operator at flow time t. The X vertex refers to the first order term in the expansion of the gradient flow
equation for gluons and the double curly line indicates the presence of a gluonic kernel. Details about the Feynman rules can be found in
Appendix B.
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OW ¼ kWTrf½Gμρ; Gνρ�G̃μνg

¼ 1

64
ikWfabcTr½σαβσγδσϵη�Ga

αβG
b
γδG

c
ϵη: ð47Þ

The Feynman rules for this operator are derived in
Appendix B. The calculation of the Feynman diagrams
in Fig. 3 leads to

Γ̃ð1Þa
AOWAðp; p0; tÞ

¼ −
9

4

kW
kq

C2ðAÞ
ð4πÞ2

�
1

t
þ 2

3
p2

�
logð2p2tÞ þ γE −

25

12

��

· ð−2kqÞδabϵαβμνpμp0
ν þOðp2tÞ; ð48aÞ

Γ̃ð1Þb
AOWAðp; p0; tÞ

¼ −
9

16

kW
kq

C2ðAÞ
ð4πÞ2

�
1

t
−

5

18
p2

�

· ð−2kqÞδabϵαβμνpμp0
ν þOðp2tÞ; ð48bÞ

Γ̃ð1Þc
AOWA

ðp; p0; tÞ ¼ 0: ð48cÞ

The second diagram has no logarithmic divergence in the
flow time; a kernel line appears in place of the gauge boson
propagator, which generates two additional powers of the
loop momentum. The third diagram vanishes, because two
of the legs on the Weinberg operator are contracted, and the
Weinberg operator is antisymmetric with respect to its
fields. Summing these contributions and factoring out the
tree-level structure for the TCD, we isolate the Weinberg
operator’s leading-order divergent behavior:

OR
WðtÞ ∼t→0 −

45

8
g2

kW
kq

C2ðAÞ
ð4πÞ2

×

�
1

t
þ 8

15
p2

�
logð2p2tÞ þ γE −

35

16

��
OR

q ð0Þ

þ � � � : ð49Þ

Our calculation again confirms the expectation that the
leading contribution to the SFTE of the Weinberg operator
stems from the lowest-dimensional operator with the same
symmetry properties; the TCD generates the linear diver-
gence of the Weinberg operator at short flow time.
Similarly to the case of the qCEDM, the additional term
proportional to p2OR

q ð0Þ stems from the mixing of the
Weinberg operator with operators involving derivatives of
the topological charge density. These operators are in fact
expected to contribute to the evolution of the Weinberg
operator [80].

V. SUMMARY AND CONCLUSIONS

The nucleon electric dipole moment (EDM) provides a
unique opportunity to probe of sources of charge and parity
(CP) violation in the Standard Model and beyond (BSM).
BSM theories that contain complex CP-violating couplings
can induce a nonvanishing EDM, and at low energies one can
parametrize the effects of theBSMdegreesof freedom through
effective, higher-dimensional CP-violating operators.
We have calculated, at one loop in perturbation theory,

selected Wilson coefficients of the short flow time expan-
sion (SFTE) for two CP-violating operators: the quark
chromoelectric dipole moment (qCEDM) and the Weinberg
operator. We have studied the leading contributions gen-
erated by the pseudoscalar density and the topological
charge density, and confirmed the general expectation that
the lowest-dimensional operators generate the dominant
contributions at short flow time.
For the qCEDM, the Wilson coefficient of the pseudo-

scalar density is proportional to the inverse of the flow time,
1=t, and we have calculated the corresponding coefficient.
In addition, we have calculated the logarithmic contribution
to the qCEDM proportional to the topological charge
density. Our calculation confirms the general expectation
that chiral symmetry forces the contribution of the topo-
logical charge density to be proportional to the quark mass.
For the Weinberg operator, the leading contribution,

which is proportional to the inverse of the flow time, stems
from the topological charge density. We have determined
both the coefficient of this 1=t term and additional
logarithmic terms.
Further, we have introduced a method of evaluation for

flowed loop-integrals, which permits, in many applications,
the calculation of correlation functions in a natural four-
dimensional setting. We fully avoid artificial divergences
related to the zero-momentum or zero-mass calculations,
while latently allowing for the study of these correlation
functions at any or all positive values of momentum or
mass. This also sidesteps the various problems that arise in
continuing the spacetime algebra to any arbitrary dimen-
sion. This is particularly useful for our considerations, since
the source of potential technical difficulties, γ5, is pervasive
in CP-odd calculations yet well defined only in four
dimensions.
Our calculation is intended to provide a new framework

to study the ultraviolet behavior of CP-violating operators
contributing to the electric dipole moment. Ideally, the
Wilson coefficients should be determined nonperturba-
tively and work in this direction is in progress [91].
Alternative strategies to pursue the same goals have been
recently proposed based on coordinate space methods [19]
and the RI-MOM scheme [71,80]. The one-loop calculation
of the linearly divergent coefficients is also of practical
importance for the nonperturbative determination of the
Wilson coefficient, by constraining the perturbative behav-
ior at small values of the gauge coupling.
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We consider this calculation a first step toward the
nonperturbative renormalization of all CP-violating oper-
ators contributing to the EDM. The next steps in our
program are the nonperturbative determination of the linear
divergence in the Wilson coefficients and a perturbative
analysis that includes higher-dimensional operators and
their corresponding Wilson coefficients.
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APPENDIX A: CONVENTIONS

1. SUðNÞ conventions
First, we define the set of generators for the gauge group,

SUðNÞ, to be traceless and skew-Hermitian, so that the
algebra is defined by

½ta; tb� ¼ fabctc; ðA1Þ

for the N2 − 1 generators ta ∈ suðNÞ, and for structure
constants fabc. For any representation ρ∶ SUðNÞ →
GLðCÞ, the trace over any two generators provides a natural
Killing form for suðNÞ, normalized by the Dynkin index,

Tρ¼− dimðρÞ
dimðsuðNÞÞC2ðρÞ, where C2ðρÞ1dimðρÞ ¼ −taρtaρ is the

quadratic Casimir invariant. Thus, we have

Trftaρtbρg ¼ Tρδ
ab: ðA2Þ

We now turn our attention to two particular representa-
tions, the fundamental (F) and the adjoint (A) representa-
tions, which have dimensions N and N2 − 1, respectively.
In these cases, our Casimir elements are C2ðFÞ ¼ ðN2 −
1Þ=ð2NÞ and C2ðAÞ ¼ N, so the Dynkin indices become
TF ¼ −1=2 and TA ¼ −N. Further, we can obtain an
explicit set of generators for the adjoint representation
by defining

ðtaAÞbc ¼ −fabc: ðA3Þ

Clearly this definition is traceless and skew-symmetric, and
it is trivial to prove that fabc must be real. Moreover, the
Jacobi identity for fabc implicitly satisfies (A1), so that the

N2 − 1 matrices defined above indeed generate SUðNÞ.
This allows for quick computations of objects such as

facdfbcd ¼ C2ðAÞδab: ðA4Þ

2. Quantum chromodynamics

Wework in d dimensions with a Euclidean metric, taking
the d → 4 limit at the end. For all momentum integrals, we
adopt the shorthand notation

Z
p
¼ μ4−d

Z
Rd

ddp
ð2πÞd ; ðA5Þ

where μ is the energy scale introduced in dimensional
regularization. We also define Fourier transforms so that the
factor of ð2πÞd appears only in the momentum space
measure:

f̃ðpÞ ¼
Z
Rd

ddxfðxÞe−ipx; fðxÞ ¼
Z
Rd

ddp
ð2πÞd f̃ðpÞe

ipx:

ðA6Þ

All calculations are performed on a QCD background, so
that for any local operator O, correlation functions are
given by

hOi ¼ Z−1
0

Z
D½ψ̄ ;ψ ; A; � � ��Oe−

R
ddxL½ψ̄ ;ψ ;A;����ðxÞ; ðA7Þ

with the gauge-fixed Lagrangian

L ¼ ψ̄ð=DþmÞψ þ 1

4
Ga

μνGa
μν þ

1

2ξ
ð∂μAa

μÞð∂νAa
νÞ

þ ð∂μcaÞðδab∂μ − fabcAc
μÞc̃b: ðA8Þ

The generators of SUðNÞ were chosen to be skew-
Hermitian, so the covariant derivative is simply

Dμ ¼ ∂μ þ Aμ; Aμ ¼ Aa
μta ðA9Þ

when acting on objects in the fundamental representation,
where the coupling has been absorbed in to the fields, Aa

μ.
When acting on objects in the adjoint representation, it
assumes the form

Dμ ¼ ∂μ þ ½Aμ; ·�: ðA10Þ

Then the field strength-tensor is

Gμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�: ðA11Þ
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3. Higher-dimensional gamma matrices

This paper deals primarily with CP-odd operators, so the
parity-violating γ5 is ubiquitous. To maintain algebraic
consistency in generic d dimensions, we follow ’t Hooft,
Veltman, Breitenlohner, and Maison [88–90] and split the
geometric algebra into two disjoint, orthogonal subalge-
bras, one containing the four-dimensional gamma matrices,
γ̃μ, and a second containing their (d − 4)-dimensional
“evanescent” extensions, γ̂μ, where μ ¼ 1; 2;…; d. The
d-dimensional algebra itself is a direct sum of the sub-
algebras, defined by the anticommutator

fγμ; γνg ¼ 2δμν; ðA12Þ
where the d-dimensional generalizations of the gamma
matrices and metric tensor are given by

γμ ¼ γ̃μ þ γ̂μ ðA13Þ
and

δμν ¼ δ̃μν þ δ̂μν: ðA14Þ
By definition, inner products between the two subalgebras
vanish:

γ̃μγ̂μ ¼ 0; ðA15Þ
and the metric tensors have a trace equal to the dimension
of the subspace to which they belong:

δ̃μμ ¼ 4; δ̂μμ ¼ d − 4: ðA16Þ
In the absence of γ5, this simply reduces to the natural d-
dimensional generalization of the Dirac algebra. With γ5,
however, there are some complications. In four dimensions,
γ5 is completely characterized by three properties:

fγ5; γμg ¼ 0; ðA17aÞ
Tr½AB� ¼ Tr½BA�; ðA17bÞ

Tr½γμγνγργσγ5� ¼ 4ϵμνρσ; ðA17cÞ

from which we find that, in d-dimensions,

ðd − 2Þðd − 4ÞTr½γμγνγργσγ5� ¼ 0: ðA18Þ

Since this prohibits a smooth limit for d → 4, we conclude
that one of the above properties must be sacrificed to
continue analytically to an arbitrary dimension. Our choice,
introduced by ’t Hooft and Veltman and systematized by
Breitenlohner and Maison, relaxes the first condition
(A17), so that γ5 anticommutes with the four-dimensional
subspace and commutes with the (d − 4)-dimensional
subspace. Thus

fγ5; γ̃μg ¼ ½γ5; γ̂μ� ¼ 0: ðA19Þ

Furthermore, the trace in (A17c) is taken to be fundamen-
tal, and the Levi-Civita symbol ϵμνρσ is strictly four-
dimensional, containing no evanescent components. As
such, it is best to algebraically reduce expressions con-
taining ϵμνρσ after the d → 4 limit is taken. As a form of
dimensional regularization, this scheme is manifestly
Lorentz invariant, so that the reduction of tensor integrals
is fairly straightforward. Moreover, the HVBM scheme
maintains algebraic consistency in our applications; we
have at most one instance of γ5 in any correlation function.
Finally, to maintain Hermiticity in all dimensions, we
generalize the “pseudotensor” σμνγ5 ¼ i

2
½γμ; γν�γ5 to

[71,80]

σ̃μν ¼
1

2
fσμν; γ5g: ðA20Þ

Note that the tilde here does not signify a four-dimensional
object as in the HVBM scheme; rather it is an unfortunate
artifact of the literature. This modified version is central to
the calculation of any correlation functions including the
quark chromoelectric dipole moment operator.

APPENDIX B: FEYNMAN RULES

We adopt the standard Feynman rules for QCD in d
Euclidean dimensions, listed here:

ðB1Þ

ðB2Þ

ðB3Þ
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ðB4Þ

ðB5Þ

ðB6Þ

ðB7Þ

where fermions are represented by oriented straight lines,
gluons are represented by curly lines, and Faddeev-Popov
ghosts are represented by oriented dotted lines. Below we
describe in more detail the Feynman rules for gauge bosons
and fermions at nonvanishing flow time. Some Feynman
rules for flowed fields, and similar details relevant to
perturbative calculations, have appeared already in the
literature [23–25,41,43,44,59–63]. To keep this paper
self-contained and provide a future reference, we list all
the Feynman rules for flowed fields that we have used in
these calculations, along with the relevant vertices arising
from our operators. We note that all vertices with

n-interacting fields are defined with inward-directed
momenta p1;…; pn and that, unless stated otherwise (see
Sec. B 2), there is an implicit factor of ð2πÞdδðdÞðp1þ���
þpnÞ that ensures momentum conservation.

1. Gradient flow

The nonlinearity of the flow equations produces extra
vertices, which must be included in perturbation theory. For
bosons, the vertices Xðn;0Þ appear in the solutions of the
flow equation, where n is the number of gluon fields
involved. These flow vertices must always be connected to
a kernel line. Kernels, called so for their role as the integral
kernel of the solution to the flow equation, appropriately
carry the information within a bulk field to its higher-order
corrections. Diagrammatically, a kernel line may be ini-
tiated at any vertex at positive flow time, replacing a bulk
field leg, and terminating at a flow vertex. Thus for
any interaction involving bulk fields with some functional
form ΔðtÞ, we will have corrections starting at Oðg0Þ
attached with a kernel line. Let ΓðsÞ represent the asso-
ciated flow vertex and all relevant subsidiary interactions
involving all attached bulk fields. Then, representing a
bosonic kernel as a double curly line, we define the
Feynman rule:

ðB8Þ

where
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K̃tðpÞabμν ¼ δab

p2
½ðδμνp2 − pμpνÞe−p2t − pμpνe−α0p

2t� ðB9Þ

is the bosonic kernel. Observe that it collapses to a
simple Gaussian in the “generalized Feynman gauge,”

α0 ¼ 1. For clarity, note also that the ordering of the
structures Γ and Δ above is only restricted by the
ordering of the fermionic fields contained within them.
Turning our attention to the vertices, we have 1

2
Xð2;0Þ at

first order:

ðB10Þ

The fields radiating out of this and all other flow vertices
are bulk fields at some positive flow time, which in Eq. (B8)
we denote as s, whereas the kernel is generated by a bulk
field at a flow time that, in Eq. (B8), we denote t. The
second-order vertex is 1

6
Xð3;0Þ:

ðB11Þ

The factors of 1=n! are placed within the vertex rules above
so that the kernel line has the same Feynman rule regardless
of the flow vertex to which it is attached. There are no
intrinsic higher-order vertices, but these vertices may be
nested to the desired order, ensuring that proper symmetry
factors are included. For example, in the calculation a two-
point Green’s function at positive flow time and at one-loop
order, we must account for all combinations up to Oðg20Þ.
Both vertices will contribute, along with the (at least)
second-order structure:

2 ×
Z

t

0

dsK̃t−sðpÞaa0μμ0
1

2
Xð2;0Þðp; q;−p − qÞa0bcμ0νρ B̃

b
νð−q; sÞ

×
Z

s

0

duK̃s−uðpþ qÞcc0ρρ0
1

2
Xð2;0Þ

× ðpþ q; k;−p − q − kÞc0deρ0στ B̃
d
σð−k; uÞ

× B̃e
τðpþ qþ k; uÞ; ðB12Þ

or, pictorially:

ðB13Þ

The second line in (B12) is simply the NLO contribu-
tion to either of the two fields attached to the vertex
Xð2;0Þðp; q;−p − qÞabcμνρ . The initial factor of 2 accounts for
the symmetry in choosing which of the B fields to expand.
Since both fields include the same nonlinear corrections,
either may be expanded, so long as the result is summed
over all of these redundancies.
Fermions have similar rules. The fermionic kernels,

Jðx − y; tÞ ¼
Z
p
eipðx−yÞJ̃tðpÞ; J̃tðpÞ ¼ e−p

2t;

J̄ðx − y; tÞ ¼
Z
p
eipðx−yÞ ˜̄JtðpÞ; ˜̄JtðpÞ ¼ e−p

2t; ðB14Þ

produce Feynman rules analogous to the bosonic kernel.
Letting Δ and Γ be defined as before, and representing the
fermionic kernel line by a double straight line, we have

ðB15aÞ

ðB15bÞ

where the first rule applies to the flow-time evolution of the
χ field while the second rule to the χ̄ field. The distinction
between J and J̄ is purely formal; J acts from the left on χ,
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while and J̄ acts from the right on χ̄. In the same manner as
the fermion propagator, the direction of the arrow indicates
the flow of fermion number from χ̄ to χ. Analogously to
what happens for the gauge bosons, the flow equations for
the fermion fields (12), (18) can be solved in an iterative
manner, generating higher-order vertices containing one
fermion field and n gauge fields, Yð1;nÞ. The term linear in B
in the fermion flow equation produces Yð1;1Þ:

ðB16Þ

while the analogous term in the adjoint fermion flow
equation produces Ȳð1;1Þ:

ðB17Þ

where the first diagram refers to the perturbative expansion
of the χ field and the second to the expansion of the χ̄ field.
The vertex Yð1;2Þ is thoroughly simpler:

ðB18Þ

Since this term is quadratic in B, there is no sign change
with respect to the direction of fermion flow, and Ȳð1;2Þ is
identical to Yð1;2Þ

ðB19Þ

2. Operators

In this section we list the Feynman rules for the CP-
violating operators. The Feynman rules are flow-time
independent, but the fields connected to these vertices
may be flowed. The Feynman rules arising specifically
from the perturbative expansion of the flowed fields are
described in the previous subsection; only the tree-level
fields enter our operator Feynman rules.
There is some subtlety in the implementation of these

operators in perturbative QCD. A naïve calculation of any
correlator with an odd number of CP-violating operators
will always vanish. This should actually be expected; all
correlation functions are calculated within a QCD back-
ground, so there may be no expectation values that violate
CP. We circumvent this problem by temporarily ignoring
momentum conservation; equivalently, we calculate all such
correlations functions pointwise in coordinate space, inte-
grating the point of interaction for our CP-violating oper-
ators over all spacetime only after we subtract off the desired
quantities [73,74,92]. If momentum were to be conserved
throughout these calculations, all operators would project to
zero momentum at the onset, and structures like ϵαβμνpμp0

ν

would contract to zero identically, trivializing the entire
calculation. This trick allows us to break translational
symmetry, giving the in and out states different total
momenta and subsequently different transformations under
the Lorentz group. After identifying theWilson coefficients,
we dynamically restore the conservation of momentum by
integrating over all spacetime. In so doing, we also restore
the appropriate discrete symmetries. We are simply keeping
track of the various structures that vanish perturbatively.

a. Topological charge density

Oq ¼ kqTrfGμνG̃μνg

→ −
1

4
kqϵμνρσGa

μνGa
ρσ ðB20Þ

ðB21Þ
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ðB22Þ

b. Quark chromoelectric dipole moment

OC ¼ kCψ̄Gμνσ̃μνψ ðB23Þ

ðB24Þ

ðB25Þ

c. Weinberg operator

OW ¼ kWTrf½Gμρ; Gνρ�G̃μνg

→ −
1

4
kWfabcϵμνρσGa

μνGb
μτGc

ντ

!d→4 1

64
ikWfabcTrfσμνσρσστχγ5gGa

μνGb
ρσGc

τχ ðB26Þ

ðB27Þ

ðB28Þ

APPENDIX C: SAMPLE CALCULATION:
ONE-LOOP FERMION PROPAGATOR

In this appendix we discuss in some detail the one-loop
calculation of the fermion propagator for flowed fermion
fields. Results for the one-loop calculation of the
flowed fermion propagator have appeared in the literature
[25,43,59] with varying degree of detail. We use this
calculation as an example to elucidate features of a

one-loop calculation at nonvanishing flow time and to
collect all the relevant tools for a perturbative calculation
with flowed fermion fields. For a more complete discussion
of flowed perturbative calculations, we refer to [87].
The fermion propagator

Sðx;y; t;sÞ¼ hχðy;sÞχ̄ðx; tÞi¼
Z
p
eipðx−yÞS̃ðp; t;sÞ; ðC1Þ
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can be expanded in powers of the bare coupling

S̃ðp; t; sÞ ¼
X∞
k¼0

g2k0 S̃kðp; t; sÞ; ðC2Þ

with a tree-level expression

S̃0ðp; t; sÞ ¼ e−p
2ðtþsÞ

i=pþm0

: ðC3Þ

The one-loop corrections can be calculated evaluating the
Feynman diagrams depicted in Eqs. (C5a)–(C5h). There
are eight nontrivial contributions to the flowed fermion
propagator, of which only five are topologically distinct
[25]. The diagrams involving flow kernels present some
new features compared to standard perturbative calcula-
tions in QCD. While the standard one-loop diagram in
Eq. (C5a) has the usual structure with tree-level propagators
on the external lines, the flowed diagrams cannot truncated
as easily, because they occur with one or two external

kernel lines. For this reason we write the decomposition of
the fermion propagator as follows

S̃ð2Þðp; t; sÞ ¼ S̃ð0Þðp; t; 0ÞΣð2Þ
1 ðpÞS̃ð0Þðp; 0; sÞ

þ
X4
i¼2

½Γð2Þ
i;a ðp; tÞS̃ð0Þðp; 0; sÞ

þ S̃ð0Þðp; t; 0ÞΓð2Þ
i;b ðp; sÞ� þ Γð2Þ

5 ðp; t; sÞ:
ðC4Þ

The functions Γð2Þ
i;a ðp; tÞ and Γð2Þ

i;b ðp; sÞ correspond to the
first-order expansions of the external fields χ̄ðx; tÞ and
χðy; sÞ, respectively, though they are otherwise all but
formally identical. The contribution Γ5 includes the first-
order expansion of both external fields. We list the
individual contributions from each Feynman diagram in
Eqs. (C5a)–(C5h) together with their evaluation, ignoring
external propagators for brevity:

ðC5aÞ

ðC5bÞ

ðC5cÞ

ðC5dÞ

ðC5eÞ
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ðC5fÞ

ðC5gÞ

ðC5hÞ

where Rðm2
0=p

2Þ is a remainder that vanishes for m2
0 ≪ p2. The calculation of the first diagram Σð2Þ

1 ðpÞ is identical to the
standard QCD quark self-energy with tree-level external quark propagators carrying the flow-time dependence. We regulate
the divergent integral with dimensional regularization with d ¼ 4 − 2ϵ and ϵ > 0.

The next contribution, proportional to Γð2Þ
2;aðp; tÞ, contains a flow kernel and vertex. Following the Feynman rules we

outline in Appendix B it is straightforward to write

Γð2Þ
2;aðp; tÞ ¼ −2ig20C2ðFÞ

Z
t

0

due−p
2ðt−uÞ

Z
q

e−q
2u

q2 þm2
0

e−ðpþqÞ2u

ðpþ qÞ2 ðiq
2 þm0=qÞ: ðC6Þ

In standard perturbation theory, the integrand would next be recast with Feynman parametrization, shifted, decomposed into
scalar integrals, and brought to a spherically symmetric form for integration in d dimensions. Specifically, the integrand
must be isotropic, so that the (d − 1)-dimensional surface may be integrated separately from the radial portion. This luxury
is not afforded to us, however, as in this case, the gluon propagator introduces an exponential factor, e−ð2p·qÞt, which is only
linear in the momentum q. No Feynman parametrization and corresponding shift in the integration variable will fix this; the
exponential is neither even nor odd. Our solution is to reparametrize the propagator à la Schwinger and to study the
MacLaurin series of the cross-term:

e−ðpþqÞ2u

ðpþ qÞ2 ¼
Z

∞

0

dze−ðpþqÞ2ðuþzÞ ¼
Z

∞

0

dze−ðp2þq2ÞðuþzÞ X∞
n¼0

ð−2ðuþ zÞÞn
n!

pμ1 � � �pμnqμ1 � � � qμn ; ðC7Þ

where the sum over all μn is implied. The symmetry of this structure is now manifest; that is, terms of even n are even, and
terms of odd n are odd. We now let m0 → 0, so that

Γð2Þ
2;aðp; tÞ ¼ 2g20C2ðFÞ

X∞
n¼0

4n

ð2nÞ!pI2n

Z
t

0

du
Z

∞

0

dze−p
2ðtþzÞðuþ zÞ2n

Z
q
e−q

2ð2uþzÞqI2n þOðm0Þ: ðC8Þ

Indeed, in the complete calculation of the flowed diagrams of Eqs. (C5b)–(C5h), the mass only contributes atOðtÞ. This
allows for a concise demonstration of the techniques used in this article. In general the kernel diagrams do not contribute to
all orders in the same way as the standard QCD diagrams (C5a). The full renormalization requires a coalescence of four
semi-independent resummations. For this reason we only consider the leading Og20) corrections and how they affect the
wave function renormalization of the flowed fields. The above integral employs the multi-index In ¼ ðμ1; μ2;…; μnÞ. Note
that the multi-index above is a 2n-tuple, because we neglect the mass and therefore the only term remaining outside of the
gluon propagator, iq2, is even, and we may drop all odd n through the reindexation n → 2n. We have also rearranged the
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order of integration. In order to justify this, we invoke Tonelli: if the four integrals (including the sum, an integral with
respect to the counting measure) in (C8) converge in some order, then we are free to choose any order, since the full
integrand is strictly nonnegative, and all domains of integration are clearly measure spaces with σ-finite measures. With this
in mind, we freely reorder the integrals, and impose a posteriori restrictions on the integrals as we discover them. The
momentum integral may now be calculated. Due to Lorentz invariance, the only available structure with the total indicial
symmetry of the qI2n is the appropriately normalized sum over all ð2n − 1Þ!! products of nmetric tensors, where the indices
are distributed according to all possible pairings. For example, for n ¼ 2, we find

Z
q
fðq2ÞqI2n ¼

Z
q
fðq2ÞqI4 ¼

δμ1μ2δμ3μ4 þ δμ1μ3δμ2μ4 þ δμ1μ4δμ2μ3
dðdþ 2Þ

Z
q
fðq2Þðq2Þ2; ðC9Þ

for some smooth function f. In general, we have

Z
q
fðq2ÞqI2n ¼

Z
q
fðq2ÞqI4 ¼

1

ðdÞn;2
Sð2nÞI2n

Z
q
fðq2Þðq2Þn; ðC10Þ

where ðdÞn;2 ¼ 2nΓðd=2þnÞ
Γðd=2Þ is a Pochhammer k-symbol, and the tensor

Sð2nÞI2n
¼

Xð2n−1Þ!!
i¼1

Yn
j¼1

δμσið2j−1Þμσið2jÞ ðC11Þ

is the generalization of the structure in (C9). Each σi is a permutation of the set ½2n� ⊂ N corresponding to one of the
ð2n − 1Þ!! partitions without ordering of ½2n� into n two-element subsets. For clarity, inspect the indices in (C9); each term
splits the set f1; 2; 3; 4g into two unordered pairs, but the pairings are never the same. Indeed, any permutation of the indices

simply permutes the summands. Thus the commutativity under addition of the terms in Sð2nÞI2n
reproduces exact symmetry of

the product of vectors qI2n . Further, we integrate over the (d − 1)-sphere to isolate the radial integral:

Γð2Þ
2;aðp; tÞ ¼ 4g20

C2ðFÞ
ð4πÞ2

ð4πμ2Þ2−d=2
Γðd=2Þ

X∞
n¼0

4n

ðdÞn;2ð2nÞ!
pI2nS

ð2nÞ
I2n

Z
t

0

du
Z

∞

0

dze−p
2ðtþzÞðuþ zÞ2n

×
Z

∞

0

qd−1dqe−q
2ð2uþzÞðq2Þn þOðm0Þ: ðC12Þ

The radial part is a simple gamma function, and the momenta pI2n saturate S
ð2nÞ
I2n

, so that after some simplification, we have

Γð2Þ
2;aðp; tÞ ¼ 2g20

C2ðFÞ
ð4πÞ2

�
4πμ2

p2

�
2−d=2X∞

n¼0

τ

n!

Z
1

0

dα
Z

∞

0

dζe−ðτþζÞ ðατ þ ζÞ2n
ð2ατ þ ζÞd=2þn þOðm0Þ: ðC13Þ

where τ ¼ p2t and ζ ¼ p2z. For n ≥ 1, every term is at least OðτÞ, since the numerator then dominates near d ¼ 4.
Retaining only the n ¼ 0 term,

Γð2Þ
2;aðp; tÞ ¼ 2g20

C2ðFÞ
ð4πÞ2

�
4πμ2

p2

�
2−d=2

τ

Z
1

0

dα
Z

∞

0

dζe−ðτþζÞð2ατ þ ζÞ−d=2 þOðm0; τÞ

¼ g20
C2ðFÞ
ð4πÞ2

�
4πμ2

p2

�
ϵ e−τγðϵ; 2τÞ

1 − ϵ
þOðm0; τÞ

¼ g20
C2ðFÞ
ð4πÞ2

�
1

ϵ
þ logð8πμ2tÞ þ 1� þOðm0; t; ϵÞ ðC14Þ

as in (C5b). The error of Oðm0Þ is added here as a formality; it is absorbed into the OðtÞ term in the complete calculation.
The other graphs are calculated by similar means, and we arrive at the one-loop self-energy for flowed fermions:
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Sð2Þðx; y; t; sÞ ¼
Z
p

eipðx−yÞ

i=p

�
1 − g20

C2ðFÞ
ð4πÞ2

�
3

ϵ
þ log ½ð8πμ2Þ2st� þ log

�
4πμ2

p2

�
− γE þ 1

��
þOðm0; s; t; g40Þ: ðC15Þ

To renormalize the propagator, following Ref. [25], we define the renormalized flowed fermion fields as

χRðx; tÞ ¼ Z1=2
χ χðx; tÞ; χ̄Rðx; tÞ ¼ χ̄ðx; tÞZ1=2

χ ; ðC16Þ

so that the renormalized propagator reads

SRðx; t; y; sÞ ¼ ZχSðx; t; y; sÞ: ðC17Þ

If we impose the family of conditions

SRjp2¼μ2¼1=ð8π ffiffiffi
st

p Þ ¼ Sð0Þ; ðC18Þ

we obtain

Zχ ·

�
1 − g20

C2ðFÞ
ð4πÞ2

�
3

ϵ
þ log ½ð8πμ2Þ2st� þ log

�
4πμ2

p2

�
− γE þ 1

��				
s¼t;p2¼μ2¼1=ð8π ffiffiffi

st
p Þ

¼ 1þOðg40Þ: ðC19Þ

Expanding Zχ in powers of the bare coupling

Zχ ¼ 1þ
X∞
k¼1

g2k0 ZðkÞ
χ ; ðC20Þ

we find

Zχ ¼ 1þ g20
C2ðFÞ
ð4πÞ2

�
3

ϵ
þ logð4πÞ − γE þ 1

�
þOðg40Þ: ðC21Þ

We note that if we choose the MS scheme we obtain the same result already obtained in Ref. [25], and that pole contribution
matches the results of [43,59]. The finite terms, which depend on the choice of renormalization condition, have not, to our
knowledge, appeared in the literature.
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