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Abstract

A method to calibrate measurement instruments through the fulfillment of
physical laws is described. This method is particularly well suited to deter-
mine and/or improve magnetic spectrometer optics databases as well as to
establish the best resolution achievable with them. This method was applied
to obtain the best resolution achievable in the excitation and binding energy
spectra of several hypernuclei produced in the experiment E94-107 performed
at JLab, allowing us to obtain sub-MeV resolutions.
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1. Introduction1

Obviously, if a measurement instrument is uncalibrated the measurements2

obtained by it cannot reproduce physical laws. In section 4.1 a simple ex-3

ample is given where an uncalibrated weighing scale provides mass measure-4

ments that do not fulfill Newton’s law F = M ·a, with F the force a mass M5
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is subjected and a the mass acceleration.Moreover, if a measurement instru-6

ment is uncalibrated, physical laws show an unphysical dependence on the7

physical quantity it measures and possibly on the other physical quantities8

involved in the physical laws as well. Observing these false dependencies9

one is able to calibrate very precisely a measurement instrument, even us-10

ing a set of samples of the physical quantity it measures whose values are11

completely wrong and even inventing the connection between the response12

of the measurement instrument and the values of the physical quantity it13

measures. However, the use of the method to calibrate measurement de-14

vices through the quantitative observation of the fulfillment of physical laws15

is not widespread. The reason for that is that it is much simpler calibrate16

measurement instruments using samples of the physical quantity it measures17

whose values are known precisely. In the case of the weighing scale quoted18

above, for example, instead of observing if and how much Newton’s law19

is not fulfilled using masses whose weights are measured by it, it is much20

simpler to calibrate it with a sample of objects whose weights are known21

precisely. Nevertheless, there exist measurement instruments that cannot be22

calibrated using samples of known values. This is the case of databases of23

magnetic spectrometers employed in nuclear and high energy physics, that24

provide scattering coordinates of particles scattered off targets. Sometimes,25

when new magnetic spectrometers are employed or in case of experiments26

adopting old spectrometers but in kinematics completely different from the27

usual ones, databases are merely ”invented” from scratch. The method of cal-28

ibrating measurement instruments through the observation of the fulfillment29

of physical laws can be useful for magnetic spectrometer databases. Apart30

from physical laws, like the one that describes particle elastic scattering from31

targets, already used by experimentalists, although in a way slightly different32

from the one described in this paper, the physical law that most interests33

the experimentalists that deals with spectroscopy is the fact that energy lev-34

els, being an intrinsic feature of the nucleus under study, do not depend on35

scattering coordinates. Imposing the fulfillment of this law a very precise36

magnetic spectrometer database calibration can be obtained and maybe a37

little surprisingly one can even anticipate the right energy spectrum before38

calibrating the database. This method has been used to optimize the optics39

databases that determined scattering coordinates of particles detected by40

the two High Resolution Spectrometers used during the experiment E94-10741

performed in the experimental Hall A of JLab. In a relatively fast way, this42

method allowed us to obtain the best resolution achievable with the spectrom-43
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eters, of the order of 750 MeV. In section 2 and section 3 brief descriptions44

of experiment E94-107 and of the magnetic High Resolution Spectrometers45

employed in it are given respectively. In section 4 the mathematical approach46

will be demonstrated, describing first a case of an uncalibrated weighing scale47

whose measures do not fulfill Newton’s law. Although this example maybe48

trivial, interesting features and rules can be deduced that apply to the more49

complicated case of magnetic spectrometer databases treated in section 4.2.50

In section 5 some examples of applications of the method in the experiment51

E94-107 are provided.52

2. The experiment E94-10753

Experiment E94-107 [1] took place in Hall A at JLab (Virginia, USA). The54

experiment provided high resolution excitation and binding energy spectra55

of the hypernuclei 12
Λ B [2], 16

Λ N [3] and 9
ΛLi [4], obtained through the reaction56

e+A Z → e′+K+ +A
Λ (Z − 1) on 9Be, 12C and 16O targets respectively. The57

experiment used the JLab electron beam, whose performances are exceptional58

[5, 6], and two High Resolution (10−4) Spectrometers (HRS), one for the59

detection of the scattered electrons, the other for the detection of the kaons.60

The trajectories of the scattered particles detected by the HRS’s were focused61

on focal planes, where tracking chambers (two for each HRS) were installed.62

To allow the HRS’s to detect particles scattered at angles as small as 6◦ two63

septum magnets, one for each HRS, were added to them (see section 3).64

In the HRS that detected electrons, the pion rejection was performed65

through a gas Čerenkov detector [7] and through lead pre-shower and shower66

counters.67

In the HRS that detected kaons, the Particle Identification System (PID)68

was made up by two threshold aerogel counters with refractive indices n1 =69

1.015 and n2 = 1.055 [8, 9] and by a RICH detector [10, 11, 12, 13].70

Both HRS detector packages included two planes S1 and S2 of 0.6 × 271

m2, 2 cm thick scintillators. The detector package of the HRS that detected72

kaons included an additional scintillator counter S0 (1 cm thick and with an73

active area of ∼ 0.19 × 0.14 m2).74

In 2004 the spectroscopy of the hypernuclei 12
Λ B and 9

ΛLi was performed.75

In this case the primary electron energy was 3.775 GeV and the scattered76

electron and the produced kaon momenta were 1.56 GeV/c and 1.96 GeV/c77

respectively. In 2005 the hypernucleus 16
Λ N was produced performing electron78

scattering on a waterfall target. In this case, the primary electron energy79
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was 3.66 GeV and the scattered electron and the produced kaon momenta80

were 1.45 GeV/c and 1.96 GeV/c respectively. The presence of hydrogen81

in the target allowed us to simultaneously study the elementary reaction82

p(e, e′K+)Λ that, beside being interesting on its own, allowed us to calibrate83

very precisely the binding energy spectrum obtained as described in section84

4.2.85

3. The Hall A High Resolution Spectrometers86

JLab Hall A is equipped with two nearly identical High Resolution Spec-87

trometers (HRS) [14], that detect particles of momentum between 0.3 and 488

GeV/c and scattered at angles larger than 12.5◦. Both HRS’s bend particles89

vertically. Each HRS is made up of two quadrupoles followed by a dipole90

with a field gradient n and by a third quadrupole. Momentum, horizon-91

tal angular and vertical angular acceptances of each HRS are ±4.5%, ±3092

mrad, and ±60 mrad respectively. The momentum resolutions of both HRS’s93

are smaller than 10−4 (FWHM), while their horizontal angular and vertical94

angular resolutions are 0.5 mrad and 1. mrad respectively.95

During the experiment E94-107, two septa (small dipoles) were added to96

the HRS’s (one septum for each HRS), to make them able to detect particles97

scattered at angles smaller than 12.5◦, in order to perform measurements98

at low Q2 and compensate hence the strong inverse dependence on Q2, the99

squared virtual photon 4-momentum transfer, of the cross section of pro-100

duction of hypernuclei by electron scattering [15, 16, 17]. The septa were101

designed in such a way that the trajectories of particles scattered from a102

new target position, located 80 cm upstream, at an acceptance central angle103

φc = 6◦, would overlap, after being bent, the trajectories of particle scattered,104

inside the HRS angular acceptance, from the old target at an acceptance105

central angle φ′c = 12.5◦. Due to their small bend angle and relatively short106

length (80 cm) with respect to the optical length of both HRS’s, the septum107

magnets made only a modest perturbation on the standard HRS optics that108

was easily corrected by a small tuning of the three quadrupoles in each HRS.109

Table 1 shows the septum magnets main features.110

Eq. (1) shows the design first order transport matrix of the assembly HRS111

+ Septum in “natural units” (meters, dimensionless, and fractional δ′s).112
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Table 1
Septum magnets main features.

Length (including length of the coils outside the yoke) 88 cm
Height of the gap 25 cm

Width of gap entrance edge 10.4 cm
Width of gap exit edge 18.4 cm

Angular acceptance 4.7 msr
Magnetic length 84 cm

MHRS+Septum =


- 2.81 0.0 0.0 0.0 14.06
- 3.19 -0.36 0.0 0.0 24.69

0.0 0.0 1.01 0.04 0.13
0.0 0.0 12.81 1.50 0.52
0.0 0.0 0.0 0.0 1.0

 (1)

MHRS+Septum connects, in the standard TRANSPORT formalism [18],113

particle scattering variables with HRS focal plane variables through the equa-114

tion:115

~Xfp = MHRS · ~Xtg (2)

where ~Xfp and ~Xtg are vectors whose components are the particle coor-116

dinates at HRS focal planes and target respectively:117

~Xfp =


xfp
θfp
yfp
φfp
δ

 ; ~Xtg =


xtg
θtg
ytg
φtg
δ

 (3)

where, in both vectors, the coordinate x represents the displacement, in118

the dispersive plane, of the particle trajectory with respect to the reference119

(central) trajectory, the angle θ is the tangent of the angle the particle tra-120

jectory makes in the dispersive plane with respect to the central trajectory,121

and y and φ are equivalent to x and θ in the transverse plane. δ is the122

percentage difference between the particle momentum and the spectrometer123

central trajectory momentum. For the HRS’s x is in the vertical direction124
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and y is in the horizontal direction. The orientation of the x; y; and z-axes125

are such that ẑ = x̂× ŷ.126

4. The mathematical method127

4.1. A simple example: a weighing scale calibration through Newton’s law128

A measuring instrument is a device that measures a physical quantity Y129

pertaining a determinate object by providing a response X related to the130

physical quantity value by a mathematical expression E(X):131

Y = E(X) (4)

Let us examine a very simple case: a mechanical weighing scale that132

provides us the mass M of an object by its spring deflection X that occurs133

when the object is placed on it. If we suppose that the spring deflection134

is proportional to the mass of the object and hence E(X) = α · X, with α135

constant, from eq. (4) we will have (Y ≡M)136

M = E(X) = α ·X (5)

A measurement instrument is uncalibrated if the real mathematical ex-137

pression R(X) that connects its response to the values of the physical quan-138

tity to be measured is different from the mathematical expression E(X) we139

assume for it. For example, let us suppose that for our mechanical weighing140

scale quoted above the spring deflection is not proportional to the mass of141

the objects but follows instead the law: R(X) = α′ · X + β · X2 + γ, with142

α′, β, and γ constant. The real masses Mreal of the objects measured by our143

mechanical weighing scale would be144

Mreal = R(X) = α′ ·X + β ·X2 + γ (6)

However, because we suppose the spring deflection proportional to the145

mass of the objects, and hence the validity of eq. (5), we will be provided by146

our weighing scale with series of measured mass values different from the real147

ones ( M 6= Mreal). In other words our weighing scale will be uncalibrated.148

It is very easily shown that if we try to verify Newton’s law:149

F = M · A (7)
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with F the force applied to objects whose mass M is determined by our150

uncalibrated weighing scale through eq. (5), and A the object accelerations,151

we will be bitterly disappointed because we will observe instead the law:152

F = Mreal · A =

(
α′
α
·M +

β

α2
·M2 + γ

)
· A (8)

In deriving eq. (8) we have used the equation:153

X =
M

α
(9)

obtained by inverting eq. (5). However, the observed false mass depen-154

dence of Newton’s law allows us to immediately calibrate our weighing scale.155

In fact, because we know that Newton’s law has to be fulfilled anyway, in-156

serting in eq. (8) the expression for M given by eq. (5), that we believe to be157

the relation between our weighing scale response X and the measured mass158

M , we obtain:159

F = Mreal · A =

(
α′
α
·M +

β

α2
·M2 + γ

)
· A =(

α′ ·X + β ·X2 + γ
)
· A = R(X) · A→Mweighingscale = R(X) (10)

In other words we were able to derive the exact correspondence R(X) =160

α′ ·X + β ·X2 + γ between the spring deflection of our mechanical weighing161

scale and the masses it measured (that is to calibrate our mechanical weigh-162

ing scale) just observing if and how Newton’s law deviated from its expected163

behavior when we checked it using objects whose mass values were provided164

by our weighing scale. It can be easily shown that, similarly, if our dy-165

namometer and/or our accelerometer by which we determined the values of166

forces and accelerations to be inserted in eq. (7) had been uncalibrated, we167

would have observed dependencies on Force and Acceleration of Newton’s168

law that would have deviated from eq. (7) and that we would have been169

able to calibrate our measurement instruments correcting these unphysical170

dependencies.171

Some comments are needed:172

173

1. for the calibration method described in this section to be valid, the re-174

sponse function E(X) supposed for our measurement instrument should175
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be invertible. See the use of eq. (9) in eq. (10) for the case of our weigh-176

ing scale. This has to always be the case, because, for the definition177

of the measurement instrument, to a certain response X has to corre-178

spond, within the measurement instrument resolution, only one single179

value of the physical quantity Y to be measured.180

181

2. One very simple case occurs when the physical law by which our mea-182

surement instrument is calibrated can be expressed in the form183

L(Y1, Y2, . . . Yn) = Constant (11)

where Y1, Y2, . . . Yn are physical quantities.184

For example we can express Newton’s law as:185

L(F,M,A) = F −M · A = 0 (12)

In this case, if our weighing scale is calibrated (as well as our dy-186

namometer and our accelerometer) and we plot L(F,M,A) as function187

of M (and/or F and/or A) we will observe our measurements to be dis-188

tributed around 0 with a distribution (likely Gaussian) that depends189

on our weighing scale resolution. Vice versa, if our weighing scale is un-190

calibrated, the plot of the measurements of L(F,M,A), with M given191

by eq. (5) and Mreal given by eq. (10) will follow the law192

L(F,M,A) = F −Mreal · A− (F −Mreal · A− F +M · A) =

0 + A · (Mreal −M) =

A ·
((α′

α
− 1
)
·M +

β

α2
·M2 + γ

)
= A · P (M) (13)

where P (M) is a polynomial in M . In this case, depending on the193

values of α, α′, β and γ, the plotted values of L(F,M,A) could even be194

centered around zero (although they usually would not) but, because of195

the presence of the polynomial P (M) in eq. (13), their spread (that is196

the resolution of the measurements of the quantity L(F,M,A)) would197

be much greater than the one of the corresponding measurements ob-198

tained if our weighing scale was calibrated. In other words a calibrated199

measurement instrument is the one for which the resolution of the mea-200

surements of the quantity L(Y1, Y2, . . . Yn) is the smallest one achievable201
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experimentally (principle of minimum resolution).202

203

3. The presence of the polynomial P (M) in eq. (13) is an indication (and204

the only indication) that our weighing scale is uncalibrated. This can205

be generalized: a measurement instrument measuring a physical quan-206

tity Yn is uncalibrated if and only if the expression L(Y1, Y2, . . . Yn) =207

Constant derived by a physical law involving several physical quanti-208

ties Yi shows a false dependence on the physical quantity Yn. From209

this false dependence we are able to calibrate our measurement instru-210

ment. For example, in the case of our weighing scale, knowing that by211

definition212

P (M) ≡Mreal −M (14)

We can calibrate our measurement instrument, that is we can derive213

the expression (6) of Mreal as function of X (see eq. (5), eq. (13), and214

eq. (14)):215

Mreal = M + (Mreal −M) = M + P (M) =

M +

((α′
α
− 1
)
·M +

β

α2
·M2 + γ

)
=

α ·X +

((α′
α
− 1
)
· (α ·X) +

β

α2
· (α ·X)2 + γ

)
=

α′ ·X + β ·X2 + γ = R(X) (15)

To calibrate a measurement instrument that measures a physical quan-216

tity Yn which is involved in a physical law ”at hand”, whose analytical217

expression is given by eq. (11), it is ”sufficient” hence to plot eq. (11)218

as function of Yn and observe the dependence of L(Y1, Y2, . . . Yn) on Yn.219

The calibration of the measurement instrument is then straightforward.220

221

4. From what is described above, it is obvious that if law (11) does not222

show any false dependence on Yn, the instrument measuring Yn is cal-223

ibrated and no further attempt to improve its measurements should224

be performed. In fact, in this case, the relationship Y = E(X) that225

we suppose exists between the response X of our measurement instru-226

ment and the value Y of the physical quantity measured is coincident227
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with the real/right one Y = R(X) within the instrument precision. In228

other words, E(X) = R(X). Any attempt to modify E(X) will cause229

E(X) 6= R(X) and will consequently generate a false dependence of230

law (11) on Yn.231

4.2. Optical databases of magnetic spectrometers232

A magnetic spectrometer determines momentum, coordinates, and direc-233

tion of a particle scattered off a target through the mathematical relationship234

between these variables and the coordinates and direction of the scattered235

particle as measured at the magnetic spectrometer focal plane236

~Y = T · ~X (16)

where ~Y is the vector composed of δ, the percentage difference between237

the particle momentum and the momentum of the spectrometer central tra-238

jectory, y0 the position along the target of the particle scattering point, and239

θ0 and φ0, the tangents of the angles that identify the particle direction just240

after its scattering off the target241

~Y =


δ
y0

θ0

φ0

 (17)

and ~X is the vector made up by the particle coordinates xf and yf at the242

focal plane and by θf and φf that are the tangents of the angles that define243

the particle trajectory when it hits the focal plane244

~X =


xf
yf
θf
φf

 (18)

y0, θ0, φ0, xf , yf , θf , and φf are measured with respect to the corre-245

sponding parameters of the central trajectory inside the spectrometer and246

hence are equal to zero for a particle whose trajectory coincides with the247

spectrometer central trajectory. The same is true for δ as can be deduced248

by its definition given above. As in a spectrometer the deviations of particle249

parameters with respect to the corresponding central trajectory are usually250
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small, the angles that define particle trajectories with respect to the spec-251

trometer central trajectory are very small and nearly numerically equal to252

their tangents. For this reason, for the sake of simplicity, we refer in this253

paper to θ0, φ0, θf , and φf as angles, although they are actually the tangents254

of the angles they are identified with. It has to be noted at last that, because255

the variables that can be measured at the focal plane are four (xf , yf , θf , and256

φf ), only four of the five scattering variables (δ, x0, y0, θ0, and φ0) can be257

deduced by them. Usually, the scattering variable that is not deduced from258

the four focal plane variables is x0 which is made coincident with the (usually259

very small) dimension of the particle primary beam along the spectrometer260

dispersion direction. The impossibility to derive x0 determines the first order261

magnetic spectrometer resolution.262

T is the tensor that allows us to derive ~Y from ~X. We can express the263

single elements Yi of the vector ~Y as Taylor’s series in the elements Xi of the264

vector ~X. Eq. (16) has hence the form:265

Yi =
∑
klmn

Tiklmn · (X1)k · (X2)l · (X3)m · (X4)n (19)

where i = 1, 2, 3, 4; k, l, m, and n are integer numbers, and Tiklmn are266

real numbers.267

As in a spectrometer the deviation of particle parameters are usually268

small with respect to the corresponding central trajectory, the series of eq.269

(19) can usually be truncated at relatively small values of k, l, m, and n270

within a very good approximation. In the first order approximation, eq. (19)271

becomes the usual matrix algebra rule:272

Yi =
∑
j=1,4

Tij ·Xj (20)

T is called the ”Optical database” of the magnetic spectrometer.273

Beside dealing with vectors instead of scalars, eq. (16) is formally iden-274

tical to eq. (4) and hence all the considerations for the method described in275

section 4.1 to check if our weighing scale was uncalibrated and to calibrate it276

in that case apply as well (see items i-iv at the end of section 4.1). In partic-277

ular, we can optimize the optical database (in other words we can calibrate278

it) looking for possible unphysical dependence on the variables Yi of physical279

laws of the kind280

L(Y1, Y2, Y3, Y4) ≡ L(δ, y0, θ0, φ0) = constant (21)
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There are several of them.281

One is the elastic scattering formula:282

E ′ − E0

1 + E0

M
· (1− cos (Θ))

= 0 (22)

where E0 and E ′ are the energy of the particle before and after the scat-283

tering respectively, Θ is the particle scattering angle, and M is the mass of284

the nucleus the particle scatters off. Obviously, E ′ and Θ can be expressed285

as function of δ, and δ, θ0 and φ0 respectively (see Appendix Appendix B286

for their explicit expressions in the case of the coordinate system adopted287

with the High Resolution Spectrometers used in the experiment E94-107),288

while E0 is known as provided by the particle accelerator setup. Eq. (22)289

has hence the form:290

L (δ, θ0, φ0) = 0 (23)

Another two eq. (21)-like laws are:291

θ0 = constantθ (24)

and292

φ0 = constantφ (25)

that have to be fulfilled by the angles θ0 and φ0, that define the direction293

of scattered particles, when a sieve slit is placed in front of the magnetic294

spectrometer in order to make it detect particles scattered only at defined295

couples of angles (constantθ, constantφ).296

An additional law is:297

y0 = constanty (26)

This has to be fulfilled when particles scatter off a point-like target, po-298

sitioned at a definite position constanty along the beam line.299

A fifth law exists for experiments that detect particles in coincidence in300

order to perform nuclear and/or hypernuclear spectroscopy as the experiment301

E94-107 at JLab. This law is maybe the most interesting for this kind of302

experiments and can be enunciated as follows: nuclear and/or hypernuclear303

energy levels are an intrinsic property of the nucleus/hypernucleus under304

study and cannot depend on the direction and momenta of scattered particles.305
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In other words, defining Ebindn the binding energy of the nth energy state of306

a nucleus/hypernucleus, we have to have:307

Ebindn = constantn (27)

Checking possible unphysical dependences on scattering coordinates of308

physical laws of the kind of eq. (21) it is possible to calibrate a magnetic309

spectrometer. In this paper the general case of experiments that for each310

event detect by two magnetic spectrometers, two particles in coincidence (the311

secondary electron e′ and the produced kaon k in the case of the experiment312

E94-107), whose scattering coordinates are identified by the subscripts e′ and313

k respectively, will be considered. We assume for the sake of simplicity in the314

following that only the database relative to the spectrometer that detects the315

particle e′ is uncalibrated. By an obvious generalization, the results obtained316

can be easily applied to the case in which the spectrometer that detects the317

particle k is also uncalibrated.318

As eq. (A.10) shows, it is possible to express the numerical change ∆Ye′i ,319

which the ith scattering coordinate Ye′i of the particle e′ is subjected due320

to a change of the spectrometer optical database Te′ , as a polynomial in321

the scattering coordinates Ye′i themselves. As demonstrated in Appendix322

Appendix A this is due to the fact that eq. (16) is invertible:323

~Xe′ = T−1
e′ · ~Ye′ (28)

with T−1
e′ the inverse of the matrix/tensor Te′ . The existence of T−1

e′ is324

guaranteed by considerations similar to those in comment ”i” at the end of325

section 4.1.326

The possibility of expressing as polynomials in the scattering coordinates327

Ye′i , as determined by an old database Te′ , the numerical changes the scatter-328

ing coordinates themselves are subjected as a result of a change of the spec-329

trometer optical database Te′ , has important consequences. In fact, when Te′330

is changed, the numerical values of L(δe′ , ye′0 , θe′0 , φe′0) in eq. (21) change into:331

L(δe′ , ye′0 , θe′0 , φe′0)→ L(δe′ , ye′0 , θe′0 , φe′0) + P (δe′ , ye′0 , θe′0 , φe′0) (29)

where P (δe′ , ye′0 , θe′0 , φe′0) is a polynomial in the particle e′ scattering coor-332

dinates δe′ , ye′0 , θe′0 , and φe′0 (see eq. (A.12) and eq. (A.16), remembering that333

according to our definition Ye′1 ≡ δe′ , Ye′2 ≡ ye′0 , Ye′3 ≡ θe′0 , and Ye′4 ≡ φe′0 ,334

and that L(δe′ , ye′0 , θe′0 , φe′0) ≡ θe′0 in eq. (24), L(δe′ , ye′0 , θe′0 , φe′0) ≡ φe′0 in eq.335
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(25), L(δe′ , ye′0 , θe′0 , φe′0) ≡ ye′0 in eq. (26), and L(δe′ , ye′0 , θe′0 , φe′0) ≡ Ebindn336

in eq. (27)). All one has to do to check if a spectrometer optical database337

is calibrated is to plot, vs the other scattering variables, profile histograms338

of each of the scattering variables ye′0 , θe′0 , and φe′0 as determined by the339

database when particles e′ enter the sieve slit hole corresponding to the scat-340

tering angles (constantθ, constantφ) and are scattered off a target located at341

the point y = constanty, as well as to plot profile histograms of the nuclear342

energy level values determined in the whole experiment vs the scattering343

variables. If these histograms show no dependence on scattering variables344

(in other words if they are constant within the spectrometer resolution) eq.345

(24), eq. (25), eq. (26), and eq. (27) are fulfilled and hence the spectrometer346

database is optimized. No attempt to improve it should be performed. In347

fact, any change in it will result in an addition of polynomials in scattering348

coordinates to constantθ, constantφ, constanty and constantn in eq. (24),349

eq. (25), eq. (26), and eq. (27). These equations will hence not be ful-350

filled (see eq. (29) and comment ”iv” at the end of section 4.1). If, on the351

other hand, the spectrometer optical database is uncalibrated, the profile352

histograms quoted above will show that eq. (24), eq. (25), eq. (26), and eq.353

(27) will be not fulfilled but will have the form:354

ye′0 = constanty + Py(δe′ , ye′0 , θe′0 , φe′0)

θe′0 = constantθ + Pθ(δe′ , ye′0 , θe′0 , φe′0)

φe′0 = constantφ + Pφ(δe′ , ye′0 , θe′0 , φe′0)

Ebindn = constantn + PEbindn (δe′ , ye′0 , θe′0 , φe′0) (30)

with Py(δe′ , ye′0 , θe′0 , φe′0), Pθ(δe′ , ye′0 , θe′0 , φe′0), Pφ(δe′ , ye′0 , θe′0 , φe′0),355

and PEbindn (δe′ , ye′0 , θe′0 , φe′0) polynomials in δe′ , ye′0 , θe′0 , and φe′0 . However,356

in this case, using the method described in this paper, the spectrometer357

database calibration will be straightforward. In fact, the calibration of the358

database terms Te′2klmn , Te′3klmn , and Te′4klmn that provide the scattering vari-359

ables ye′0 , θe′0 , and φe′0 respectively through eq. (19) is obtained observing360

that the new scattering variables:361

y′e′0 = ye′0 − Py(δe′ , ye′0 , θe′0 , φe′0)

θ′e′0 = θe′0 − Pθ(δe′ , ye′0 , θe′0 , φe′0)

φ′e′0 = φe′0 − Pφ(δe′ , ye′0 , θe′0 , φe′0) (31)
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fulfill eq. (24), eq. (25), and eq. (26). Expressing in eq. (31), through362

eq. (19), δe′ , ye′0 , θe′0 , and φe′0 as a function of xe′f , ye′f , θe′f , and φe′f , we obtain363

the equation:364

y′e′0 =
∑
klmn

T ′e′2klmn ·
(
xe′f

)k
·
(
ye′f

)l
·
(
θe′f

)m
·
(
φe′f

)n
θ′e′0 =

∑
klmn

T ′e′3klmn ·
(
xe′f

)k
·
(
ye′f

)l
·
(
θe′f

)m
·
(
φe′f

)n
φ′e′0 =

∑
klmn

T ′e′4klmn ·
(
xe′f

)k
·
(
ye′f

)l
·
(
θe′f

)m
·
(
φe′f

)n
(32)

The coefficients T ′e′2klmn
, T ′e′3klmn

, and T ′e′4klmn
of eq. (32) are just the terms365

of the calibrated database we were looking for because they provide the366

calibrated scattering variables y′e′0
, θ′e′0

, and φ′e′0
of eq. (31) that fulfill eq.367

(24), eq. (25), and eq. (26).368

The calibration of the database terms Te′1klmn that provide the scatter-369

ing variable δe′ is obtained by a conceptually similar although slightly more370

complicated method.371

It is easily shown that if the terms Te′1klmn of the spectrometer optical372

database that provide the scattering variable δe′ through eq. (19) are not373

calibrated, the binding energies Ebindn do not follow eq. (27) even using for374

their calculation the calibrated scattering variables y′e′0
, θ′e′0

, and φ′e′0
of eq.375

(31) and eq. (32), but the equation:376

Ebindn(δe′ , y
′
e′0
, θ′e′0 , φ

′
e′0
, δk, yk0 , θk0 , φk0) =

constantn + P ′Ebindn (δe′ , y
′
e′0
, θ′e′0 , φ

′
e′0

) (33)

where δk, yk0 , θk0 , and φk0 are the particle k scattering coordinates deter-377

mined by the optical database Tk supposedly calibrated and378

P ′Ebindn (δe′ , y
′
e′0
, θ′e′0

, φ′e′0
) is the polynomial:379

P ′Ebindn (δe′ , y
′
e′0
, θ′e′0 , φ

′
e′0

) =
∑
klmn

Ce′1klmn · (δe′)
k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
(34)

(eq. (34) derived from eq. (A.13), eq. (A.16), and eq. (A.16) with380

∆Y 1
e′2

= ∆Y 1
e′3

= ∆Y 1
e′4

= 0 and supposing T 1
e′ a calibrated database). The381
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real coefficients Ce′1klmn can be easily determined plotting profile histograms382

of Ebindn vs δe′ , y
′
e′0

, θ′e′0
, and φ′e′0

.383

It can be demonstrated that the binding energies Ebindn follow eq. (27) if384

the variable δe′ is replaced by the variable δ′e′ defined as:385

δ′e′ = δe′ −
∑
klmn

Ue′1klmn · (δe′)
k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
(35)

with the coefficients Ue′1klmn related to the coefficients Ce′1klmn by the386

relationship:387

Ce′1klmn = Ue′1klmn ·
∂Ebindn
∂δe′

(36)

(the demonstration is derived from eq. (A.13) and eq. (A.16), with388

∆Y 1
e′2

= ∆Y 1
e′3

= ∆Y 1
e′4

= 0, supposing T 1
e′ a calibrated database and noting389

that the calibrated variable Y 1
e′1

is equal to Y 2
e′1
−∆Y 1

e′1
, with ∆Y 1

e′1
provided390

by eq. (A.10)). To determine the terms Ue′1klmn without calculating
∂Ebindn
∂δe′

,391

one can define, for each term Ce′1klmn · (δe′)
k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
of the392

polynomial P ′Ebindn of eq. (34), the variable393

Ebindn(δe′ + α · (δe′)k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
,

y′e′0 , θ
′
e′0
, φ′e′0 , δk, yk0 , θk0 , φk0) =

Ebindn(δe′ , y
′
e′0
, θ′e′0 , φ

′
e′0
, δk, yk0 , θk0 , φk0) +

K · (δe′)k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
(37)

with α an arbitrary real number and with394

K = α · ∂Ebindn
∂δe′

(38)

(eq. (37) is derived from eq. (A.13) with ∆Y 1
e′2

= ∆Y 1
e′3

= ∆Y 1
e′4

= 0 and395

∆Y 1
e′1

= α · (δe′)k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
).396

Eq. (37) can be written as:397
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Ebindn(δe′ + α · (δe′)k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
,

y′e′0 , θ
′
e′0
, φ′e′0 , δk, yk0 , θk0 , φk0)−

Ebindn(δe′ , y
′
e′0
, θ′e′0 , φ

′
e′0
, δk, yk0 , θk0 , φk0) =

K · (δe′)k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
(39)

Determining K from a profile histogram of the term on the left vs the398

term on the right side of the sign ”=” in eq. (39), from eq. (38) and eq. (36)399

we have:400

Ue′1klmn =
α

K
· Ce′1klmn (40)

Once the coefficients Ue′1klmn are determined, expressing in eq. (35),401

through eq. (19) and eq. (32)), δe′ , y
′
e′0

, θ′e′0
, and φ′e′0

as function of xe′f ,402

ye′f , θe′f , and φe′f , we obtain the equation:403

δ′e′ =
∑
klmn

T ′e′1klmn ·
(
xe′f

)k
·
(
ye′f

)l
·
(
θe′f

)m
·
(
φe′f

)n
(41)

The coefficients T ′e′1klmn
of eq. (41) are just the terms of the calibrated404

database providing the values of δ′e′ we are looking for.405

A complementary way to derive the terms T ′e′1klmn is to check the fulfillment of406

the law that connects momentum and scattering angle of an elastic scattered407

particle, that is eq. (22), that can be expressed as function of δe′ , θe′0 , and408

φe′0 as shown in Appendix Appendix B for the case of the coordinate system409

adopted for the High Resolution Spectrometers used in the experiment E94-410

107. For elastic electron scattering, in the case of a target with a mass much411

bigger than the energy of the primary beam:412

M � E0 (42)

we have (in a unit system where c = 1)413

δe′ ≈
E0

Pe′c
− 1 = constantδ (43)

with Pe′c the central trajectory momentum of the spectrometer. In this414

case, the method to determine T ′e′2klmn , T ′e′3klmn , and T ′e′4klmn described above415

17



applies to the determination of T ′e′1klmn as well and we can check for a possible416

dependence of δe′ on scattering coordinates of the kind:417

δe′ = constantδ + Pδ(δe′ , ye′0 , θe′0 , φe′0) (44)

with Pδ(δe′ , ye′0 , θe′0 , φe′0) a polynomial in the scattering coordinates. If the418

dependence, expressed by eq. (44), of δe′ on scattering coordinates exists,419

then the determination of T ′e′1klmn will be done observing that the new variable420

δ′e′ defined as:421

δ′e′ = δe′ − Pδ(δe′ , ye′0 , θe′0 , φe′0) =∑
klmn

T ′e′1klmn ·
(
xe′f

)k
·
(
ye′f

)l
·
(
θe′f

)m
·
(
φe′f

)n
(45)

fulfills eq. (43) (see eq. (31) and eq. (32)). If the approximation of eq.422

(42) is not valid, or if we want a more precise determination of T ′e′1klmn , we423

can use the same method to determine T ′e′1klmn measuring binding energies424

in the coincidence experiments described above, substituting in eq. (33), eq.425

(36), and eq. (37) Ebindn with E ′ − E0

1+
E0
M
·(1−cos(Θ))

.426

The spectrometer database optimization method described in this paper is427

based on the search of ”calibrated” scattering variables δ′e′ , y
′
e′0

, θ′e′0
, and φ′e′0

428

that fulfill eq. (22), eq. (24), eq. (25), eq. (26), and eq. (27). These cal-429

ibrated scattering variables are obtained by the addition of polynomials in430

scattering coordinates to the ”uncalibrated” scattering variables δe′ , ye′0 , θe′0 ,431

and φe′0 , derived by our original and uncalibrated spectrometer database (see432

eq. (35), eq. (45), and eq. (31)). These polynomials can be derived by pro-433

file histograms as quoted above, or, alternatively, making use of the principle434

of minimum resolution described in comment ”ii” at the end of the section435

4.1. In fact, these polynomials can be derived by histogramming ye′0 , θe′0 , φe′0 ,436

Ebindn , and δe′ , that is the variables on the left side of the sign ”=” in eq. (24),437

eq. (25), eq. (26), eq. (27), and eq. (43), that would be constant within the438

spectrometer resolution if the spectrometer database was calibrated. If one439

of these variables is uncalibrated, we will find polynomial terms of the kind:440

Ce′iklmn ·(δe′)
k ·
(
ye′0
)l ·(θe′0)m ·(φe′0)n (or Ce′1klmn ·(δe′)

k ·
(
y′e′0

)l
·
(
θ′e′0

)m
·
(
φ′e′0

)n
441

for the binding energies) that when added to it will decrease the variable his-442

togram FWHM and consequently will increase the histogram height, while443
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keeping at the same time the center of the histogram at the expected posi-444

tions. The sum of all the polynomial terms determined this way will provide445

the polynomials Py(δe′ , ye′0 , θe′0 , φe′0), Pθ(δe′ , ye′0 , θe′0 , φe′0), Pφ(δe′ , ye′0 , θe′0 , φe′0),446

P ′Ebindn (δe′ , y
′
e′0
, θ′e′0

, φ′e′0
), and Pδ(δe′ , ye′0 , θe′0 , φe′0) of eq. (31), eq. (33), and447

eq. (45) we are looking for because the histogram of the variables made up448

by the addition of these polynomials to the corresponding uncalibrated vari-449

ables ye′0 , θe′0 , φe′0 , Ebindn , and δe′ are constant (that is they have the minimum450

FWHM and maximum height achievable) within the spectrometer resolution451

and hence fulfill eq. (22), eq. (24), eq. (25), eq. (26), and eq. (27).452

We stress that, while it is surely desirable to produce the calibrated database453

T ′e′ , it is not necessary to know explicitly its terms T ′e′iklmn
to perform the454

measurements. For example, in experiments aimed at measuring the bind-455

ing energies of the ground and excited states of nuclei and/or hypernuclei,456

the binding energies can be determined replacing, in their calculation, the457

uncalibrated variables δe′ , θe′0 , and φe′0 with the new variables δe′ , θ
′
e′0
, and458

φ′e′0
, determined through eq. (35) and eq. (31) and that can hence be derived459

without determining the coefficients T ′e′iklmn
of the calibrated spectrometer460

database. The mathematical reason for that is the fact that performing cal-461

culations using as a base the coordinates at the focal planes (that is the462

components of ~X) is equivalent to performing calculations using as a base463

the coordinates at the scattering point (that is the components of ~Y ) be-464

cause of relationships (16) and (28). After calibrating the coordinates at the465

scattering point with the methods described above, we can perform calcula-466

tions using them directly and there is no need to again represent variables as467

functions of the coordinates at focal planes. Going further in this direction,468

we can say that the correct binding energies can be obtained even without469

determining the calibrated scattering variables δe′ , θ
′
e′0
, and φ′e′0

through eq.470

(35) and eq. (31). In fact, if in plotting profile histograms we realize that471

the measured binding energies Ebindn do not fulfill eq. (27) but instead the472

equation473

Ebindn(δe′ , ye′0 , θe′0 , φe′0 , δk, yk0 , θk0 , φk0) =

constantn + PEbindn (δe′ , ye′0 , θe′0 , φe′0) (46)

we already know that the correct values of the binding energies are those474

obtained subtracting the polynomial PEbindn (δe′ , ye′0 , θe′0 , φe′0) from the binding475
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energies determined with the present uncalibrated spectrometer database.476

At last we have to remember that optical databases provide scattering co-477

ordinates relative to the spectrometer central trajectory. So far we have478

supposed the central trajectory momentum Pe′c and scattering angles θe′c479

and φe′c of the spectrometer that detects the particle e′ as well as the corre-480

sponding parameters Pkc , θkc , and φkc of the spectrometer that detects the481

particle k are perfectly known in the laboratory frame. If this is not true482

binding energy spectra will be uncalibrated. The values of a spectrometer483

central trajectory momentum and scattering angles are usually derived from484

measurements that have nothing to do with the spectrometer database, as485

the measurements of the fields of the magnetic elements that make up the486

spectrometer and the measurement of the position of the spectrometer axis487

with respect to the direction of the primary beam. However, a much more488

precise measurement can be performed checking the binding energy spec-489

trum obtained. In fact, as demonstrated in Appendix B of ref. [4], the fact490

that the nominal values of the spectrometer central trajectory momenta and491

scattering angles, as well as that of the primary beam energy, differ from492

their actual and unknown values has two effects: 1) it causes a global shift of493

the positions, in the binding energy spectrum, of the peaks corresponding to494

the energy levels of the nucleus/hypernucleus under study; 2) it causes a de-495

pendence on scattering coordinates of the calculated binding energies. This496

second feature is not surprising, because the fact that a spectrometer’s actual497

central trajectory momentum and scattering angles differ from their nomi-498

nal values means that the spectrometer database, although maybe calibrated499

when deriving scattering coordinates with respect to the central trajectory,500

is not calibrated when these variables are computed in the laboratory frame,501

because of the fact that the central trajectory coordinates are uncalibrated as502

well. To lessen this problem, experiment E94-107 derived the best estimate503

of the spectrometer central trajectory momenta and scattering angles and of504

the primary beam energy positioning, in the binding energy spectrum, the505

peaks corresponding to binding energies of well known energy levels at their506

known position and simultaneously minimizing the peak FWHMs. For the507

study of the hypernucleus 16
Λ N , the peaks used for binding energy spectrum508

calibration were the peak of the reaction p(e, e′K+)Λ that had to be posi-509

tioned at 0 (see eq. (C.2) with Mresidue = 0) and the peak of the reaction510

p(e, e′K+)Σ that had to be positioned at the value corresponding to the mass511

difference between the particles Σ and Λ. For the study of the hypernucleus512

9
ΛLi, the peak used for binding energy spectrum calibration was the ground513
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state of the hypernucleus 12
Λ B, that had to be located at the well known value514

of 11.37± 0.06 MeV. See ref. [4] for more details.515

5. The method applied for the optimization of the databases of the516

Hall A High Resolution Spectrometers517

Avoiding describing in too much detail the several steps used in the op-518

timization of the optical databases of the two Hall A High Resolution Spec-519

trometers (referred in the following as the right HRS and the left HRS respec-520

tively) during experiment E94-107 analysis, just one example showing most521

of the concepts described in section 4.2 will be given. Figure 1 shows the522

two-dimensional histogram of the scattering variables θ and φ (referred as θ0523

and φ0 in section 4.2) as reconstructed by the still to be optimized database524

of the right HRS when a sieve slit was placed in front of the spectrometer525

during a calibration run performed detecting electrons scattered elastically526

off a very thin 12C target. The sieve slit was a shield with holes drilled such527

that only electrons whose direction after being scattered was defined by spe-528

cific couples of values (constantθ, constantφ) could pass the shield and be529

detected by the spectrometer. The sieve slit hole structure is evident from530

the plot that shows ”spots” corresponding to the hole positions in the sieve531

slit.532

Figure 2 shows the histogram of θ only. There are seven peaks correspond-533

ing to the seven θ values of the spot centers of Figure 1. It can be shown534

that the reconstruction of θ by the right HRS database cannot be improved.535

In fact, any plot of variables of the kind θ + Pθ(δ, y, θ, φ), with Pθ(δ, y, θ, φ)536

a polynomial in scattering coordinates, would decrease the heights of Figure537

2 peaks and increase their widths.538

The situation is different in the case of the scattering variable φ. Figure539

3a shows the histogram of φ. Six peaks are present corresponding to the six φ540

values of the spot centers of Figure 1. Figure 3b shows that when plotting the541

variable φ−Pφ, with Pφ = 0.042·δ+0.57·δ2+0.002·θ−0.8·θ2−0.18·y+15.9·542

y2−1.3 ·θ ·φ, the peaks are higher and thinner than the corresponding peaks543

of Figure 3a and then that the peak resolution in Figure 3b is better than544

in Figure 3a. This means that the law φ = constantn, with n = 1, 2, . . . 6545

and constantn being one of the six φ values of Figure 1 spot centers, is not546

fulfilled by the electrons detected by the right HRS if φ is determined by the547

original database of this spectrometer. The law φ−Pφ = constantn is fulfilled548

instead. As explained in section 4.2, this shows that the terms of the right549
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Figure 1: θ vs φ plot obtained with the right HRS database during a calibration run
performed through electron elastic scattering off a 12C target with a sieve slit placed in
front of the spectrometer.
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Figure 2: Scattering variable θ histogram as derived by Figure 1.
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(a) Scattering variable φ histogram as derived
by Figure 1.
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(b) Scattering variable φ histogram improved by the
addition to φ of the polynomial −0.042 ·δ−0.57 ·δ2−
0.002 · θ + 0.8 · θ2 + 0.18 · y − 15.9 · y2 + 1.3 · θ · φ.

Figure 3

HRS original database TrightHRS4klmn
that provide the value of the scattering550

variable φ are uncalibrated. To calibrate them we used eq. (31) and eq. (32),551

with φ′ = φ− Pφ. The database calibration was hence performed expressing552

φ− 0.042 · δ− 0.57 · δ2− 0.002 · θ+ 0.8 · θ2 + 0.18 · y− 15.9 · y2 + 1.3 · θ ·φ as a553

polynomial in the variables xf , yf , θf , and φf making use of the uncalibrated554

database TrightHRS by expressing the scattering variables δ, θ, and φ as:555

δ/θ/φ =
∑
tuvz

TrightHRS1/2/4tuvz
· (xf )t · (yf )u · (θf )v · (φf )z, with t, u, v, and z556

integer numbers. After expanding the powers in the resulting polynomial,557

the terms T ′rightHRS4klmn
of the calibrated database were obtained as the sums558

of all the coefficients of the terms proportional to (xf )
k · (yf )l · (θf )m · (φf )n559

with k, l, m, and n integer numbers. Alternatively, one can just substitute560

the variable φ with the variable φ′ = φ − Pφ in all the formulas of interest,561

like the one for the calculation of the binding energy. As quoted in section562

4.2 this is equivalent to performing calculations using as a base the scattering563

coordinates instead of the focal plane coordinates.564

Figure 4 shows the histograms of the variable 1+δ− P0

Pc
· 1

1+2·P0
M
·sin2(Θ

2 )
, with565

Pc the momentum of the central trajectory in the right HRS, P0 the electron566

beam momentum, Θ the electron scattering angle, and M the mass of 12C,567

obtained, during the elastic electron scattering calibration run, making use568

of the original right HRS database (Figure 4a) and of the database obtained569

after the calibration of the terms providing the scattering variable φ described570

above (Figure 4b). The plots in Figure 4 are disappointing, as one expects571
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· 1
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2 )
histogram

obtained after calibrating, in the right HRS original
database, the terms providing the scattering variable
φ .

Figure 4

the elastic peak in these spectra to be centered around zero (see eq. (B.4)),572

with a very small FWHM due to the spectrometer’s high resolution, and573

with possibly some smaller peaks present in these spectra at negative values574

corresponding to the energy levels of the first excited states of 12C for which575

1 + δ < P0

Pc
· 1

1+2·P0
M
·sin2(Θ

2 )
. As shown in Figure 4b the calibration of the576

scattering variable φ in equation (B.4) does not help much because the value577

1 + δ is not very sensitive to the recoil factor 1

1+2·P0
M
·sin2(Θ

2 )
.578

However, nearly miraculously, everything is settled by substituting the579

variable δ with the variable δ′ = δ−0.031 ·φ. Figure 5a shows the histogram580

of the variable 1+δ′− P0

Pc
· 1

1+2·P0
M
·sin2(Θ

2 )
−0.00027, where the costant −0.00027581

was added to position the elastic peak at zero in the spectrum. This mis-582

positioning of the elastic peak is likely due to a percentage difference of the583

order of 2.7 · 10−4 between the electron beam momentum and the right HRS584

central trajectory momentum, both nominally set at 1.85 GeV/c. Figure 5b585

is the histogram of fig 5a with the abscissa units multiplied by the factor586

1850 (the value of the right HRS central trajectory momentum expressed in587

MeV/c), and with an ordinate logarithmic scale in order to show clearly the588

values of the energy levels of the 12C excited states.589

This example shows how powerful the method described in this paper to590

calibrate magnetic spectrometer databases is. Despite the dreadful starting591

point represented by the plots of Figure 4, the terms of the database that592
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Figure 5: (a): the histogram of Figure 4b after the substitution δ → δ′ = δ − 0.031 · φ.
(b): the same histogram as (a) but the abscissa units (MeV) and the ordinate scale
(logarithmic).

provide the correct values of δ are simply obtained multiplying the terms of593

the right HRS original database that provide φ by the factor ”- 0.031” and594

summing the new terms obtained this way to the terms of the right HRS595

original database that provide δ. A calculation that takes not more than596

5-10 minutes even without the help of a computer. The false dependence597

on φ of the law 1 + δ − P0

Pc
· 1

1+2·P0
M
·sin2(Θ

2 )
= 0 that signals the fact that the598

terms of the right HRS original database that provide δ are uncalibrated is599

evident from the plots of Figure 4 that show that the elastic peak is split600

into six peaks corresponding to the six values φ = constantn of the spot601

centers of Figure 1. It has to be noted that the false dependence of the law602

1+δ− P0

Pc
· 1

1+2·P0
M
·sin2(Θ

2 )
= 0 is on φ despite the fact that the real uncalibrated603

scattering variable is δ. It has to be noted that, during experiment E94-107604

analysis, the fact that the scattering variable δ, as provided by the right HRS605

original database, was uncalibrated was discovered through a dependence of606

the binding energies of the hypernuclei on φ in the form of the addition of607

the polynomial term −4.72896 ·φ to the binding energy constant values. This608

polynomial term was eliminated with the substitution δ → δ′ = δ− 0.031 ·φ.609

See text from eq. (33) to eq. (41) for the method by which the coefficient610

”0.031” was determined from the acknowledgement of the dependence on the611

polynomial term −4.72896 · φ of the binding energies as calculated through612

the right HRS original database.613
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6. Conclusions614

A method to calibrate magnetic spectrometer databases based on the ob-615

servation of false dependencies on scattering variables of physical laws has616

been shown. The physical laws involved are the independence on scattering617

variables of the energy levels of nuclei and/or hypernucei, the relationship618

between particle momentum and scattering angle in particle elastic scattering619

and so on. These false dependencies on scattering variables of physical laws620

appear if and only if the databases under study are uncalibrated. The quanti-621

tative study of these false dependencies allows us to calibrate databases very622

precisely. It can even allow us to perform measurements without explicitly623

calibrating the databases of the magnetic spectrometers involved although624

obviously a database calibration is always desirable. If physical law false625

dependencies on scattering variables do not appear, the databases under626

study are calibrated and no attempt to improve them should be pursued627

as it would generate physical law false dependencies on scattering variables628

making the dat bases concerned uncalibrated. Other methods to calibrate629

magnetic spectrometer databases exist (see for example [19]) and they can630

be used alternatively or complementarily to the method described in this631

paper. Whatever the method used, however, the result has to be the same:632

no false dependencies on scattering variables of physical laws should appear.633

The method described in this paper was used to calibrate the two High Reso-634

lution Spectrometers employed in experiment E94-107 allowing us to obtain635

sub-Mev resolutions. However, it can be generalized in order to calibrate636

any measurement instrument. This can be very useful if it is not possible637

to calibrate measurement instruments with samples of known values of the638

physical quantities concerned because of the intrinsic nature of the measure-639

ment involved.640
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Appendix A. Changes of numerical values of scattering variables647

and binding energies due to spectrometer database648

modifications649

Let us suppose we have a spectrometer optical database T 1
e′ by which we650

determine the vector ~Y 1
e′ whose components are the scattering variables of a651

particle e′ (~Y 1
e′ ≡

(
δ1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0

)
) through the equation:652

~Y 1
e′ = T 1

e′ · ~Xe′ (A.1)

where ~Xe′ is the vector whose components are the particle e′ coordinates653

and angles at the spectrometer focal plane ( ~Xe′ ≡
(
xe′f , ye′f , θe′f , φe′f

)
) and654

the superscript ”1 ” indicates that Y 1
e′ was derived through the tensor T 1

e′ .655

The explicit form of eq. (A.1) is:656

Y 1
e′i

=
∑
klmn

T 1
e′iklmn

· (Xe′1)k · (Xe′2)l · (Xe′3)m · (Xe′4)n (A.2)

where i = 1, 2, 3, 4 and k, l, m, and n are integer numbers. Changing657

the spectrometer database means replacing the tensor T 1
e′ with a tensor T 2

e′ .658

With this change, eq. (A.1) changes into:659

~Y 2
e′ = T 2

e′ · ~Xe′ = T 1
e′ · ~Xe′ + ∆T 1

e′ · ~Xe′ = ~Y 1
e′ + ∆~Y 1

e′ (A.3)

where we defined ∆T 1
e′ as the tensor whose components are given by the660

expression:661

∆T 1
e′iklmn

= T 2
e′iklmn

− T 1
e′iklmn

(A.4)

and662

∆~Y 1
e′ = ∆T 1

e′ · ~Xe′ (A.5)

Defining I the unitary tensor and the tensor S1
e′ as the inverse tensor of663

T 1
e′ :664

S1
e′ = (T 1

e′)
−1

; S1
e′ · T 1

e′ = I (A.6)

we have:665

~Xe′ = S1
e′ · ~Y 1

e′ (A.7)
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and666

∆~Y 1
e′ = ∆T 1

e′ · ~Xe′ = ∆T 1
e′ · S1

e′ · ~Y 1
e′ = U1

e′ · ~Y 1
e′ (A.8)

where we defined the tensor U1
e′ , that operates on the scattering coordi-667

nates Y 1
e′i

, as:668

U1
e′ = ∆T 1

e′ · S1
e′ (A.9)

The explicit form of eq. (A.8) is:669

∆Y 1
e′i

=
∑
pqrs

∆T 1
e′ipqrs

·

(∑
t,u,v,z

S1
e′1tuvz ·

(
Y 1
e′1

)t · (Y 1
e′2

)u · (Y 1
e′3

)v · (Y 1
e′4

)z)p

·(∑
t,u,v,z

S1
e′2tuvz ·

(
Y 1
e′1

)t · (Y 1
e′2

)u · (Y 1
e′3

)v · (Y 1
e′4

)z)q

·(∑
t,u,v,z

S1
e′3tuvz ·

(
Y 1
e′1

)t · (Y 1
e′2

)u · (Y 1
e′3

)v · (Y 1
e′4

)z)r

·(∑
t,u,v,z

S1
e′4tuvz ·

(
Y 1
e′1

)t · (Y 1
e′2

)u · (Y 1
e′3

)v · (Y 1
e′4

)z)s

=∑
k,l,m,n

U1
e′iklmn

·
(
Y 1
e′1

)k · (Y 1
e′2

)l · (Y 1
e′3

)m · (Y 1
e′4

)n
(A.10)

where, similarly to eq. (A.2), i = 1, 2, 3, 4; k, l, m, and n are integer670

numbers as well as p, q, r, s , t, u, v, and z, and U1
e′iklmn

are the elements of671

the tensor U1
e′ equal to the sum of the coefficients of the terms proportional672

to
(
Y 1
e′1

)k · (Y 1
e′2

)l · (Y 1
e′3

)m · (Y 1
e′4

)n
in the first four rows of eq. (A.10).673

In the first order approximation eq. (A.10) reduces to:674

∆Y 1
e′i

=
∑
k=1,4

∆T 1
e′ik
·

(∑
j=1,4

S1
e′kj
· Y 1

e′j

)
=
∑
j=1,4

U1
e′ij
Y i
e′j

(A.11)

with U1
e′ij

=
∑
k=1,4

∆T 1
e′ik
· S1

e′kj
.675

In eq. (A.10) we were hence able to express the numerical change ∆Y 1
e′i

,676

which the ith scattering coordinate Y 1
e′i

of the particle e′ is subjected due677
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to the change of the spectrometer optical database from T 1
e′ to T 2

e′ , as a678

polynomial in the scattering coordinates Y 1
e′i

themselves.679

Combining eq. (A.3) with eq. (A.10) we have:680

Y 2
e′i

= Y 1
e′i

+ P (δ1
e′ , y

1
e′0 , θ

1
e′0 , φ

1
e′0) (A.12)

with P (δ1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
) a polynomial in the scattering coordinates δ1

e′ ≡681

Y 1
e′1

, y1
e′0
≡ Y 1

e′2
, θ1

e′0
≡ Y 1

e′3
, and φ1

e′0
≡ Y 1

e′4
.682

Binding energies of nucleus/hypernucleus energy levels are experimentally683

determined by measuring scattering coordinates of particles detected in coin-684

cidence. The way they were determined in the case of the coordinate system685

used in the experiment E94-107 where scattered electrons, e′, and produced686

kaons, k, were detected in coincidence is shown in Appendix Appendix C.687

Here it suffices to say that the most generic form of eq. (27) is:688

Ebindn

(
~Ye′ , ~Yk

)
= constantn

with ~Yk the vector whose components are the scattering variables of the689

particle k. It is straightforward to understand the effect, on the numerical690

calculation of the binding energies, of a change in a spectrometer optical691

database. Just limiting, for the sake of simplicity but without loss of gener-692

ality, Taylor series to zero and first order terms, we have, in fact, that when693

switching from a database T 1
e′ to a database T 2

e′ and, as a consequence, switch-694

ing from the scattering coordinates Y 1
e′i

to the coordinates Y 2
e′i

= Y 1
e′i

+∆Y 1
e′i

of695

the particle e′, while keeping unchanged the database T 1
k of the spectrometer696

that detects the particle k and hence keeping unchanged the scattering coor-697

dinates Y 1
ki

, the numerical expression for the binding energy Ebindn

(
~Y 1
e′ ,
~Y 1
k

)
698

for the generic energy level n changes into Ebindn

(
~Y 2
e′ ,
~Y 1
k

)
equal to:699
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Ebindn

(
~Y 2
e′ , ~Y

1
k

)
= Ebindn

(
~Y 1
e′ + ∆~Y 1

e′ , ~Y
1
k

)
=

Ebindn

(
~Y 1
e′ , ~Y

1
k

)
+
∑
i=1,4

∆Y 1
e′i
·
∂Ebindn

(
~Ye′ , ~Yk

)
∂Ye′i ~Ye′=

~Y 1
e′

=

Ebindn

(
~Y 1
e′ ,
~Y 1
k

)
+

∑
iklmn

U1
e′iklmn

·
(
Y 1
e′1

)k · (Y 1
e′2

)l · (Y 1
e′3

)m · (Ye′4)n ·
∂Ebindn

(
~Ye′ , ~Yk

)
∂Ye′i ~Ye′=

~Y 1
e′

700

(A.13)

where
∂Ebindn
∂Ye′i ~Ye′=

~Y 1
e′

are the values of the derivative of Ebindn

(
~Ye′ , ~Yk

)
with701

respect to Ye′i at ~Ye′ = ~Y 1
e′ ( i = 1, 2, 3, 4), and where we used eq. (A.10) for702

∆Y 1
e′i

.703

The derivatives
∂Ebindn
∂Ye′i ~Ye′=

~Y 1
e′

are in principle functions of δ1
e′ ≡ Y 1

e′1
, y1

e′0
≡704

Y 1
e′2

, θ1
e′0
≡ Y 1

e′3
, and φ1

e′0
≡ Y 1

e′4
:705

∂Ebindn
∂Ye′i ~Ye′=

~Y 1
e′

= fe′i(
~Y 1
e′) ≡ fe′i(δ

1
e′ , y

1
e′0 , θ

1
e′0 , φ

1
e′0) (A.14)

However, they are nearly constant as deduced developing them in a706

MacLaurin series. For example, for fe′1 ≡ fe′δ we have:707

∂Ebindn
∂δe′ ~Ye′=

~Y 1
e′

= fe′δ(δ
1
e′ , y

1
e′0 , θ

1
e′0 , φ

1
e′0) = fe′δ(0, 0, 0, 0) +

∆δ1
e′ ·

∂fe′δ(δ
1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
)

∂δ1
e′

~Y 1
e′

=~0

+

∆y1
e′0 ·

∂fe′δ(δ
1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
)

∂y1
e′0

~Y 1
e′

=~0

+

∆θ1
e′0 ·

∂fe′δ(δ
1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
)

∂θ1
e′0

~Y 1
e′

=~0

+

∆φ1
e′0 ·

∂fe′δ(δ
1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
)

∂φ1
e′0

~Y 1
e′

=~0

+ . . . (A.15)
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where ~0 is the vector with all its components equal to zero. From eq.708

(C.2-C.5) we can deduce that, in the kinematics adopted by the experiment709

E94-107, defining Pe′c , Mhyp, and Mtar the central trajectory momentum of710

the spectrometer that detected the particles e′, the mass of the hypernu-711

cleus produced, and the mass of the target respectively, considering that the712

momentum acceptance of the High Resolution Spectrometers employed was713

8%, the ratio between ∆δ1
e′ ·

∂fe′δ
(δ1
e′ ,y

1
e′0
,θ1
e′0
,φ1
e′0

)

∂δ1
e′ ~Y 1

e′
=~0

and fe′δ(0, 0, 0, 0) was not714

bigger than 0.04 · Pe′c · Mtar

M2
hyp

≈ 5 · 10−3 while the other terms in the Maclaurin715

series of eq. (A.15) were completely negligible.716

Defining the (nearly constant) coefficients C1
e′iklmn

as:717

C1
e′iklmn

= U1
e′iklmn

·
∂Ebindn

(
~Ye′ , ~Yk

)
∂Ye′i ~Ye′=

~Y 1
e′

eq. (A.13) can be written as:718

Ebindn

(
~Y 2
e′ ,
~Y 1
k

)
= Ebindn

(
~Y 1
e′ ,
~Y 1
k

)
+∑

iklmn

C1
e′iklmn

·
(
Y 1
e′1

)k · (Y 1
e′2

)l · (Y 1
e′3

)m · (Ye′4)n =

Ebindn

(
~Y 1
e′ ,
~Y 1
k

)
+ P 1

Ebindn
(δ1
e′ , y

1
e′0 , θ

1
e′0 , φ

1
e′0) (A.16)

with P 1
Ebindn

(δ1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
) a polynomial in scattering coordinates.719

If in eq. (A.15) ∆δ1
e′ ·

∂fe′δ
(δ1
e′ ,y

1
e′0
,θ1
e′0
,φ1
e′0

)

∂δ1
e′ ~Y 1

e′
=~0

cannot be considered negli-720

gible, the coefficients C1
e′1klmn

in eq. (A.16) have to be changed into:721

C1
e′1iklmn

= U1
e′1klmn

·
(
fe′δ(0, 0, 0, 0) + ∆δ1

e′ ·
∂fe′δ(δ

1
e′ , y

1
e′0
, θ1
e′0
, φ1

e′0
)

∂δ1
e′

~Y 1
e′

=~0

)
(A.17)

Appendix B. Analytical expression of the particle elastic scatter-722

ing variables in the coordinate system of the Hall A723

High Resolution Spectrometers724

In the experiment E94-107 two High Resolution Spectrometers (HRS)725

were used. In the coordinate system conventionally used by the software726
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analyzing each single HRS data point, the coordinate x represents the dis-727

placement, in the dispersive plane, of the particle trajectory with respect to728

the reference (central) trajectory, the angle θ is the tangent of the angle the729

particle trajectory makes in the dispersive plane with respect to the central730

trajectory, and y and φ are equivalent to x and θ in the transverse plane. δ731

is the percentage difference between the particle momentum and the spec-732

trometer central trajectory momentum. For the HRS’s x is in the vertical733

direction and y is in the horizontal direction. The orientation of the x; y;734

and z-axes are such that ẑ = x̂ × ŷ. As in a spectrometer the deviations of735

particle parameters with respect to the corresponding central trajectory are736

usually small, the angles that define particle trajectories with respect to the737

spectrometer central trajectory are very small and nearly numerically equal738

to their tangents. For this reason, for the sake of simplicity, we refer to θ and739

φ as angles, although they are actually the tangents of the angles with which740

they are identified. Inside each HRS, the particle momentum coordinates Px,741

Py, and Pz with respect to the HRS central trajectory are provided by the742

equations:743

Px = Pc · (1 + δ) · sin(θ)

Py = Pc · (1 + δ) · cos(θ) · sin(φ)

Pz = Pc · (1 + δ) · cos(θ) · cos(φ) (B.1)

At the scattering point (θ = θ0;φ = φ0) the particle momentum compo-744

nents in the laboratory frame are:745

Px = Pc · (1 + δ) · sin(θ0)

Py = Pc · (1 + δ) · cos(θ0) · sin(φ0 + φc)

Pz = Pc · (1 + δ) · cos(θ0) · cos(φ0 + φc) (B.2)

where φc is the angle between the HRS axis and the beam line (for each746

HRS θc , i.e. the angle between its axis and the horizontal plane, can be747

assumed equal to zero).748

In elastic scattering, the relationship between primary (E0) and scattered749

(E ′) particle energies is expressed by the equation:750

E ′ =
E0

1 + 2 · E0

M
· sin2

(
Θ
2

) (B.3)
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where M is the mass of the nucleus off which the particles scatter. In751

experiment E94-107, the primary beam consisted in relativistic electrons, for752

which (in units where c = 1) E ′ ≈ Pc · (1 + δ) and E0 ≈ P0, with P0 the753

primary electron momentum and hence eq. (B.3) transforms into:754

Pc · (1 + δ) =
P0

1 + 2 · P0

M
· sin2

(
Θ
2

) (B.4)

with755

Θ = arccos

(
Px · P0x + Py · P0y + Pz · P0z

Pc · (1 + δ) · P0

)
(B.5)

Appendix C. Analytical expression of the binding energies of the756

hypernuclei produced in experiment E94-107 in the757

coordinate system of the Hall A High Resolution758

Spectrometers759

The binding energies of the ground and excited states of the hypernuclei760

produced by an electron scattering off nuclei of atomic number Z and mass761

number A762

A(Z)
(
e, e′k+

)A
Λ

(Z − 1) (C.1)

are calculated as:763

Ebind = −
√

(Em)2 −
(
~Pm

)2

+Mresidue +MΛ (C.2)

where Mresidue is the mass of the residual nucleus, that is of the nucleus764

with A− 1 nucleons and Z − 1 protons, MΛ is the Λ mass, and Em and ~Pm765

respectively are the missing energy and the missing momentum, equal to:766

Em = E0 +Mtarget − Ee′ − Ek
~Pm = ~P0 − ~Pe′ − ~Pk (C.3)

with Mtarget the target mass, E0, Ee′ , and Ek the energies of the incident767

electron, of the scattered electron, and of the produced kaon respectively,768

and ~P0, ~Pe′ , and ~Pk the momenta of the incident electron, of the scattered769

electron, and of the produced kaon respectively.770
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Experiment E94-107 employed two High Resolution Spectrometers, one771

for the detection of the scattered electrons, the other for the detection of772

the kaons (see section 2). Identifying with the subscripts e′ the coordinates773

and parameters relative to the spectrometer detecting scattered electrons and774

with the subscripts k the corresponding values of the spectrometer detecting775

produced kaons, we have (see eq. (B.2) for the meaning of the variables):776

Pe′x = Pe′c · (1 + δe′) · sin(θe′0)

Pe′y = Pe′c · (1 + δe′) · cos(θe′0) · sin(φe′0 + φe′c)

Pe′z = Pe′c · (1 + δe′) · cos(θe′0) · cos(φe′0 + φe′c) (C.4)

Pkx = Pkc · (1 + δk) · sin(θk0)

Pky = Pkc · (1 + δk) · cos(θk0) · sin(φk0 + φkc)

Pkz = Pkc · (1 + δk) · cos(θk0) · cos(φk0 + φkc) (C.5)
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