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We extract the pion valence quark distribution qπvðxÞ from lattice QCD (LQCD) calculated matrix
elements of spacelike correlations of one vector and one axial vector current analyzed in terms of QCD
collinear factorization, using a new short-distance matching coefficient calculated to one-loop accuracy. We
derive the Ioffe time distribution of the two-current correlations in the physical limit by investigating the
finite lattice spacing, volume, quark mass, and higher-twist dependencies in a simultaneous fit of matrix
elements computed on four gauge ensembles. We find remarkable consistency between our extracted qπvðxÞ
and that obtained from experimental data across the entire x range. Further, we demonstrate that the one-
loop matching coefficient relating the LQCD matrix computed in position space to the qπvðxÞ in momentum
space has well-controlled behavior with Ioffe time. This justifies that LQCD-calculated current-current
correlations are good observables for extracting partonic structures by using QCD factorization, which
complements to the global effort to extract partonic structure from experimental data.
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I. INTRODUCTION

The pion, being both a Nambu-Goldstone boson and the
lightest bound state in quantum chromodynamics (QCD),
highlights the challenges in creating consistent theoretical
and phenomenological frameworks to describe its partonic
structure. The shape of the pion valence parton distribution
functions (PDFs) extracted from experimental data [1–5]
in different analyses [6–12] are in sharp contrast among
themselves and with perturbative QCD (pQCD)-based
frameworks [13,14] at large longitudinal momentum frac-
tions x. Central to the disparity is whether the pion PDF
has a softer (harder) ð1 − xÞ2 [(1 − x)] falloff as x → 1—
various model calculations [15–21] exemplify this contrast.
The limited available phase space for partonic inter-

actions at large x localizes quantum fluctuations such
that large-x dynamics is constrained by confinement, in
effect increasing parton correlations as x → 1. As the quark

distribution at large x is sensitive to nonperturbative
quark-gluon dressing, a description of its behavior will
also elucidate our understanding of the generation of mass
in QCD through dynamical chiral symmetry breaking.
Unraveling the complexities of the valence and sea
quark contents of the pion is spearheaded by several
upcoming experiments—Jefferson Lab tagged deep-
inelastic scattering experiments [22], Drell-Yan measure-
ments at the COMPASS experiment [23] and, also the
future Electron-Ion Collider facility [24]. A first-principles
lattice QCD (LQCD) determination of the pion valence
PDF qπvðxÞ with controlled statistical and systematic
uncertainties is particularly well timed and solicits a
synergy of increasing importance between experimental
and theoretical efforts.
PDFs are not direct physical observables, such as cross

sections, due to the QCD color confinement. Experimental
extraction of x-dependent parton physics relies on the
QCD factorization theorem [25] and considerable advance-
ments in global analyses [26–30] of experimental data.
LQCD cannot calculate PDFs directly due to its Euclidean
space formulation. QCD factorization can, however,
connect x-dependent parton physics to a class of hadron
matrix elements—“lattice cross sections” (LCSs)—that are
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calculable in LQCD and factorizable with perturbative
matching. Several LQCD methods [31–37] have been
proposed and developed to probe the light-cone structure
of hadrons. These approaches have led to significant
achievements in recent years, especially in determinations
of flavor non-singlet distributions [38–47]. A proper
quantification and mitigation of systematic errors and
numerical artifacts present in these calculations and related
theoretical challenges still require further insight and
development (for a recent review, see [48]).
In this paper, we present an extraction of the qπvðxÞ from

LCSs-LQCD-calculated pion matrix elements of two local,
spacelike-separated and gauge-invariant currents [35,37].
These Lorentz covariant matrix elements of two currents
spatially separated by a quark propagator are computable
on a Euclidean lattice and have a well-defined continuum
limit as the lattice spacing a → 0. Calculations on four
distinct lattice ensembles allows for estimation of system-
atic errors from finite lattice spacing, volume, and
unphysical pion mass extrapolations. From parity and
time-reversal invariance, this vector-axial (VA) current
combination is antisymmetric and directly proportional
to the qπvðxÞ with a perturbatively calculable coefficient
function that matches this position space LCS to the qπvðxÞ
in momentum space [43]. With both leading order (LO) and
next-to-leading order (NLO) matching coefficients, we
extract qπvðxÞ from the LQCD-calculated pion matrix
elements and find that it is remarkably consistent with
the same distribution extracted from experimental data over
the entire range of x. We also find that our calculated NLO
coefficient function, matching what is calculated in LQCD
in position space to PDFs in momentum space, is very
stable without the large logarithms that are often seen in
the perturbatively calculated hard coefficients in momen-
tum space.
The rest of this paper is organized as follows. In Sec. II,

we first define the pion matrix elements that we calculate in
LQCD, and introduce the factorization formalism to match
the matrix elements in position space to the PDFs in
momentum space. We then present our perturbative calcu-
lation, and provide results for the NLO matching coef-
ficients. We demonstrate the effect of NLO matching
coefficient and its perturbative stability in the factorized
contribution to the pion matrix elements in position space
in Sec. III. In Sec. IV, we explore the stability of the
continuum limit of the LQCD-calculated pion matrix
elements, and present the numerical extraction of qπvðxÞ.
We then present a discussion of our results in Sec. V, and
finally, give our conclusions and outlook in Sec. VI.

II. CALCULATION OF NEXT-TO-LEADING
ORDER PERTURBATIVE KERNEL

Following our previous work [43], we consider the
following antisymmetrized matrix element in a hadron h:

σ½h�;μνVA ðξ; pÞ ¼ ξ4ZVZA hhðpÞjTf½ψ̄γμψ �ðξÞ
× ½ψ̄γνγ5ψ �ð0ÞgjhðpÞi þ V ↔ A; ð1Þ

where σ½h�;μνVA depends covariantly on the hadron momentum
p and spatial separation ξ between the currents; ZV;A are
the renormalization constants of the local currents deter-
mined in [49] for the ensembles used in this calculation. A
Lorentz decomposition of Eq. (1) yields two scalar func-

tions T ½h�
i¼1;2ðω; ξ2; p2Þwhere ω ¼ −p · ξ is the Ioffe time of

the process [50], T ½h�
i ðω; ξ2; p2Þ ¼ −T ½h�

i ð−ω; ξ2; p2Þ from
parity and time-reversal invariance, and T ½h�

2 is power

suppressed. For sufficiently small separations, T ½h�
1 , which

can be isolated by choosing μ ¼ 1 and ν ¼ 2, can be
factorized [37]

T ½h�
1 ðω; ξ2; p2Þ ¼

X
q

Z
1

0

dxKðxω; ξ2; x2p2; μ2Þ

× fqv=hðx; μ2Þ þOðξ2Λ2
QCDÞ; ð2Þ

where fqv=hðx; μ2Þ≡ fq=hðx; μ2Þ − fq̄=hðx; μ2Þ are valence

PDFs, μ2 is the factorization scale, and the K is perturba-
tive matching coefficient with Kðxω; ξ2; x2p2; μ2Þ ¼
−Kð−xω; ξ2; x2p2; μ2Þ. Since K depends on ξ, conven-
tional techniques used to calculate matching coefficients
in momentum space cannot be applied directly [51]. To
perturbatively calculate Kðxω; ξ2; 0; μ2Þ with an on-shell
struck parton, k2 ¼ x2p2 ¼ 0, we could either calculate
the matching coefficient directly in position space or
introduce a “momentum space” matching coefficient with
a “D-dimensional” Fourier transform

T̃ ½h�
1 ðω̃; q2Þ≡

Z
dDξ
ξ4

eiq·ξT ½h�
1 ðω; ξ2; 0Þ

¼
Z

1

0

dxK̃ðxω̃; q2; μ2Þfqv=hðx; μ2Þ

þOðΛ2
QCD=q

2Þ; ð3Þ

whereD ¼ 4 − 2ϵ and ω̃ ¼ 2p·q
−q2−i0þ. With the perturbatively

calculated K̃, we can obtain K as

Kðxω; ξ2; 0; μ2Þ ¼ ξ4
Z

dDq
ð2πÞD e−iq·ξK̃ðxω̃; q2; μ2Þ: ð4Þ

To calculate K̃, we consider the matrix element of an
on-shell quark state q in Eq. (3), expand both sides in
powers of the strong coupling αs, and keep up to NLO,

T̃ ½q�ð0Þ
1 ðω̃; q2Þ ¼

Z
1

0

dxK̃ð0Þðxω̃; q2; μ2Þfð0Þqv=q
ðx; μ2Þ; ð5aÞ
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T̃ ½q�ð1Þ
1 ðω̃; q2Þ ¼

Z
1

0

dxK̃ð1Þðxω̃; q2; μ2Þfð0Þqv=q
ðx; μ2Þ

þ
Z

1

0

dxK̃ð0Þðxω̃; q2; μ2Þfð1Þqv=q
ðx; μ2Þ:

ð5bÞ
With the well-known MS perturbative PDFs,

fð0Þqv=q
ðx; μ2Þ ¼ δð1 − xÞ; ð6aÞ

fð1Þqv=q
ðx; μ2Þ ¼ −

1

ϵ

ð4πÞϵ
Γð1 − ϵÞ

αs
2π

CF

�
1þ x2

1 − x

�
þ
; ð6bÞ

K̃ð0Þ and K̃ð1Þ are determined by T̃ ½q�ð0Þ
1 and T̃ ½q�ð1Þ

1 using

Eqs. (5) and (6). The T̃ ½q�ð0Þ
1 and T̃ ½q�ð1Þ

1 are obtained by
calculating the two-current (VA) correlator up to OðαsÞ in
D dimension. Due to Ward-Takahashi identities for vector
and axial-vector currents, UV divergences cancel out
within one-loop diagrams and we do not need perturbative
renormalization, which means ZV ¼ ZA ¼ 1 in the pertur-
bative calculation. One can also verify that perturbative

collinear divergences from T̃ ½q�ð1Þ
1 cancel exactly with fð1Þqv=q

in Eq. (5), resulting in finite K̃ð0Þ and K̃ð1Þ, and thus up to
OðαsÞ

K̃ðω̃; q2; μ2Þ

¼
�

1

1þ ω̃
þ αsCF

4π

��
2þ 2ω̃2

ω̃þ ω̃2
lnð1þ ω̃Þ þ 3ω̃

1 − ω̃2

�

× ln

�
μ2

−q2 − i0þ

�
þ 5ω̃

1 − ω̃2
þ 2 − 2ω̃ − ω̃2

ω̃þ ω̃2
lnð1þ ω̃Þ

−
1þ ω̃2

ω̃þ ω̃2
ln2ð1þ ω̃Þ

��
− ðω̃ → −ω̃Þ: ð7Þ

By performing a Fourier transform, we obtain

Kðω; ξ2; μ2Þ ¼ 1

π2ω

�
Kð0ÞðωÞ þ αsCF

2π
fKð1;0ÞðωÞ

þ Kð1;1ÞðωÞ lnð−ξ2μ2e2γE=4Þg
�
; ð8Þ

with

Kð0ÞðωÞ ¼ ω cosω; ð9Þ

Kð1;0ÞðωÞ ¼ ω

Z
1

0

dy cosðyωÞ
�
1

2
δð1 − yÞ

−
�
2 lnð1 − yÞ

1 − y
−
y2 − 3yþ 1

1 − y

�
þ

�

Kð1;1ÞðωÞ ¼ −ω
Z

1

0

dy cosðyωÞ
�
1þ y2

1 − y

�
þ
; ð10Þ

where the leading order kernel Kð0ÞðωÞ in Eq. (9) is the
same as the result in [43]. After the integration over y,
the NLO matching coefficient Kðω; ξ2; μ2Þ is very stable
and without large logarithms in ω in the region where the
lattice QCD data points are available. Like the typical
perturbatively calculated matching coefficients in momen-
tum space, the NLO matching kernels Kð1;0ÞðωÞ and
Kð1;1ÞðωÞ, before the Fourier transform of y into position
space, have terms with the standard “þ” prescription in
Eq. (10). The existence of these þ prescription terms is a
natural result of perturbative cancelation of infrared (IR)
divergences between the real and virtual contributions (or
Feynman diagrams), and these terms have large logarithmic
corrections at the point of the IR cancellation [52,53].
When these terms are directly convoluted with PDFs in
momentum space to derive cross sections, a resummation
of such large logarithmic perturbative corrections from the
area of IR cancellation is needed to improve the perturba-
tive stability of factorized cross sections so as to be better
compared with experimental data near the kinematic
threshold [11,54]. On the other hand, the QCD factorization
proved for the LCSs [37] matches directly the hadron
matrix elements calculated in position space to the PDFs
in the momentum space, and is valid when the spatial
separation ξ of two currents is sufficiently small ξ2 ≪
1=Λ2

QCD. It is this matching of matrix elements in position
space to the PDFs in momentum space that helps reduce the
perturbative sensitivity to the IR cancellation that takes
place at a single point in phase space. As demonstrated
in Ref. [37], the position space matching coefficient
Kðω; ξ2; μ2Þ is perturbatively analytic for all values of ω
except ω → ∞. Technically, the Fourier transform over y
in Eq. (10) gives no logðωÞ terms to the Kðω; ξ2; μ2Þ
kernel when ω is in a perturbatively relevant region,
and thus reduces the logarithmic perturbative sensitivity
from the terms with theþ prescription. With a small spatial
separation between two currents required by the QCD
factorization and the limited values of hadron momentum,
the relevant ω is never too large in a practical lattice QCD
calculation.
A convergence test of this NLO kernel is demonstrated in

Sec. III. We highlight that a large hadron momentum p
alone does not automatically guarantee QCD factorization
of the hadron matrix element in Eq. (1) into the PDFs—and
the perturbative kernel, and contributions from the large ξ
region could invalidate the perturbative factorization
[37,43]. It is the smallness of the spatial separation that
defines the short-distance probe to see the particle nature of
the partons inside a hadron and provides a required hard
scale for the QCD factorization. Although not directly
related to this calculation, the need to prove QCD factori-
zation in momentum space is not new and is well known for
the transverse momentum kT part of the transverse momen-
tum dependent (TMD) factorization. The factorization
formalism was proved in its conjugated position bT space,

PION VALENCE QUARK DISTRIBUTION FROM … PHYS. REV. D 102, 054508 (2020)

054508-3



not in the momentum kT space [55], and the perturbative
matching coefficients, as well as the evolution kernels, are
calculated in position space and valid only for small bT .
The perturbative calculation method introduced in this
paper can be used not only for the current-current operators,
but also for operators defining quasi-PDFs [34] and
reduced pseudo-ITDs [36] whose factorization to the
PDFs are also valid for the region where the spatial
separation between two active parton fields is small and
much less than 1=Λ2

QCD. More importantly, our method is
not restricted to NLO, but can be applied to any perturba-
tive order [56]. The main subtlety of the method lies in
the Fourier transformation, which must be done in D
dimensions as indicated in Eq. (4).

III. EFFECT OF THE NEXT-TO-LEADING ORDER
KERNEL ON THE IOFFE-TIME DISTRIBUTION

To demonstrate the effect of the NLO kernel on the Ioffe-
time distribution (ITD), we select αs ¼ 0.303 at μ ¼ 2 GeV
and −ξ2μ2 ¼ 1 and compare in Fig. 1 the Kð0ÞðωÞ=ω and
Kð1ÞðωÞ=ω effects for ω ≠ 0. The NLO corrections are tiny
at small ω and increase very slowly towards large ω; this
can be partially understood from the ratio between Kð0Þ and
Kð1Þ around ω ¼ 0:

Kð1Þ

Kð0Þ ¼
αs
3π

þOðω2Þ ≈ 0.03þOðω2Þ: ð11Þ

It is important to note that as an asymptotic series, the
relative size of Kð1Þ=Kð0Þ as a function of ω actually
diverges as ω → ∞, but, only a small range of ω is relevant
for the convolution with PDFs in Eq. (1). What is important
is the size of their convolutions with the PDFs in the
relevant Ioffe-time window of the lattice QCD data while
keeping ξ small. Therefore, it is also useful to demonstrate

the effect the NLO kernels could have with various model
PDFs in the Ioffe-time space. The convolutions

Kð1;iÞ ⊗ qðωÞ ¼
Z

dx
1

xω
Kð1;iÞðxωÞqðxÞ ð12Þ

with i ¼ 0, 1 for a few PDFs are shown in Figs. 2 and 3,
respectively. Each of the convolutions have similar features.
These convolutions represent the difference between the
LCS and the ITD, applying the appropriate factors propor-
tional to αs and lnð−ξ2μ2e2γE=4Þ. The convolutions all rise
to a peak around ω ∼ 4.0 and begin to decay to 0. The NLO
effects are most significant at the highest Ioffe-time range
available to our calculations but the corrections will be
smaller for large Ioffe times. These convolutions demon-
strate a reassuring feature of the position space matching.
These convolutions are at the largest Oð1Þ which means
the NLO term will be OðαsÞ for the entire region of Ioffe
time. These convolutions can be compared with those for
matching the reduced pseudo-ITD to the PDF in [47].

FIG. 1. A comparison between Kð0ÞðωÞ=ω and Kð1ÞðωÞ=ω for
αsðμ ¼ 2 GeVÞ ¼ 0.303 and −ξ2μ2 ¼ 1. The uncertainty in
Kð1ÞðωÞ=ω is obtained by a 10% variation in αs.

FIG. 2. The convolution of the Kð1;0Þ kernel with model PDFs.

FIG. 3. The convolution of the Kð1;1Þ kernel with model PDFs.
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IV. NUMERICAL RESULTS & EXTRACTION
OF THE qπv(x)

The LQCD calculation of the pion matrix element in
Eq. (1) is carried out on four different 2þ 1 flavor QCD
ensembles (listed in Table I) using the isotropic-clover
fermion action generated by the JLab/W&M Collaboration
[57]. We refer to [43] for details about the implementation
of a modified sequential source technique, and a combi-
nation of Jacobi and momentum smearing to obtain matrix
elements for a given momentum p and spatial separation ξ
between the currents. In this calculation of the forward
matrix elements, the pion source-sink separation T is
systematically increased, while holding fixed the current
insertion time t ¼ T=2, ensuring identical excited-state
contamination from both source and sink sides. To extract
the desired matrix elements, we assume the following
forms of two- and four-point correlation functions:

C2ptðTÞ ¼ Ae−m0T

C4ptðTÞ ¼ e−m0TðBþDe−ΔmTÞ; ð13Þ

and perform simultaneous correlated fits to the two- and
four-point functions. We verify that the value of the ground-
state energy m0 obtained from this simultaneous fit is
consistent with that obtained from C2ptðTÞ alone and also
agrees with the energy-momentum dispersion relation.
In Fig. 4, we present fit results of the ratioC4ptðTÞ=e−m0T

on the ensembles a94m278 and a94m358 for momenta in
the range p ∈ f0.41 − 1.65g GeV and current separation
ξ ¼ 3a, both p and ξ in along the z direction, to demon-
strate how reliably we can extract the asymptotic value of
B, and hence the ITD from B=A. The numerical challenges
manifest in this formalism are reflected in the signal-to-
noise ratio (S=N) of the largest momentum p ¼ 1.65 GeV
relative to that of the smallest p ¼ 0.41 GeV; the former is
nearly 3 times smaller. Despite this, we can fit these data up
to at least T ¼ 14ð∼1.32 fmÞ even for the largest momen-
tum p ¼ 1.65 GeV on the lightest pion mass mπ ¼
278 MeV ensemble. In all the fits, we use the time window
such that S=N ≥ 1. The Wilson clover fermion action
explicitly connects adjacent lattice sites, introducing spu-
rious contact terms in the ξ ¼ a matrix element signals.
These data are consequently neglected from our analysis.

The matrix elements computed across the four gauge
ensembles are shown in Fig. 5. We only include jξj ≤
0.56 fm in our analysis so that ξ is sufficiently smaller than
Λ−1
QCD, thereby ensuring the validity of the short-distance

factorization and minimizing higher-twist contributions
from large ξ. Exploiting the analyticity of the LCS
Tπ
1ðω; ξ2Þ ¼ σ12VAðω; ξ2Þ in ω and denoting σ12VAðω; ξ2Þ≡

σVAðω; ξ2Þ in the rest of the article and figures, we obtain
the functionally unknown ITD using a flexible z-expansion
fit [58,59] supplemented with chiral, continuum, finite
volume [60] and higher-twist corrections:

σVAðω; ξ2Þ ¼
Xkmax¼4

k¼0

λkτ
k þ b1ðmπ −mπ;physicalÞ þ b2a

þ b3ξ2 þ b4a2p2 þ b5e−mπðL−ξÞ; ð14Þ

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcut þ ω

p
− ffiffiffiffiffiffiffiffi

ωcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωcut þ ω

p þ ffiffiffiffiffiffiffiffi
ωcut

p ð15Þ

FIG. 4. Removal of the leading ground-state time dependence
exposes the desired matrix elements in the large T limit, shown
here for ensembles a94m278 (above) and a94m358 (below) for
current separations ξ ¼ 3a. High momenta data rescaled for S=N
comparison.

TABLE I. Parameters for each gauge ensemble used in this
work: lattice spacing, pion mass, spatial and temporal sizes, and
number of configurations used.

ID a (fm) mπ (MeV) L3 × Nt Ncfg

a127m413 0.127(2) 413(4) 243 × 64 2124
a127m413L 0.127(2) 413(5) 323 × 96 490
a94m358 0.094(1) 358(3) 323 × 64 417
a94m278 0.094(1) 278(4) 323 × 64 503
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and mπ;physical ≃ 0.14 GeV is the physical pion mass.
Higher-order terms ðkmax > 4Þ have no statistical signifi-
cance and are not considered.
The correction terms of Eq. (14) are selected based on

each being the dominant contribution of its type. We
consider now different possible correction terms in the
fit to Eq. (14), such as a2, m2

π , Le−mπðL−ξÞ,
ffiffiffiffi
L

p
e−mπðL−ξÞ.

These corrections are presented in Table II. The second
column indicates the value of the fitted coefficient of the
correction terms and the λk columns indicate the effect of
these corrections on the z-expansion fit parameters used
to obtain the physical limit σVAðωÞ distribution. We note
that for all additionally considered corrections, the effect is
indeed observed to be less than the original corrections
of Eq. (14) and the determination of qπvðxÞ remains
unaffected.
In addition, as seen in Fig. 5 the effects of other possible

correction terms such as m2
π , a2, Le−mπðL−ξÞ,

ffiffiffiffi
L

p
e−mπðL−ξÞ

are observed to be very mild. We choose ωcut ¼ 1.0 as used
in [61]; other choices of ωcut were observed to have no
effect on the final band in the physical limit and vanishing
higher-twist Oðξ2Þ contributions. The blue band in Fig. 5
shows such σVAðωÞ distribution after bi corrections in
Eq. (14) are subtracted, and where the error band is
determined from the λk covariances. The fit yields

λ0 ¼ 0.104ð3Þ; λ1 ¼ −0.006ð3Þ; λ2 ¼ −0.029ð9Þ;
λ3 ¼ −0.907ð404Þ; λ4 ¼ 0.124ð136Þ;
b1 ¼ 0.174ð96Þ; b2 ¼ −0.083ð43Þ; b3 ¼ −0.0004ð7Þ;
b4 ¼ 0.007ð8Þ; b5 ¼ 0.102ð51Þ ð16Þ

with χ2=d:o:f ¼ 1.20. As can be seen in Fig. 5, there
appears to be completely negligible ξ effects either higher
twist or Dokshitzer-Gribov-Lipatov-Altarelli-Parisi,
DGLAP [62–64]. Therefore, we will assign the
ξ ¼ 2 × 0.094 fm, the shortest ξ used in this study in the
factorization formula (8) while matching the position space
LCS to qπvðxÞ distribution. With the physical σVAðωÞ
distribution in hand, we can immediately extract the
physical qπvðxÞ with no further extrapolations.
The extraction of qπvðxÞ is achieved by numerically

evaluating the convolution of the NLO kernel equation (8)
and the following phenomenologically motivated func-
tional forms of the PDF:

qπvðxÞ ¼
xαð1 − xÞβð1þ γxÞ

Bðαþ 1; β þ 1Þ þ γBðαþ 2; β þ 1Þ ð17Þ

using the library ROOT [65]. The high correlation of the
sampled σVAðωÞ data guarantees that increasing the sam-
pling density or varying the number of derived pseudodata
samples will have no impact on the qπvðxÞ fit parameters.
The parameters in the PDF parametrization equation (17)

are determined by fitting the convolution of the model PDF
and the NLO perturbative kernel to σVAðωÞ in a manner
similar to Ref. [61], where the Ioffe-time zero point is fixed
in this calculation by the LOþ NLO perturbative kernel.
The isolation of σVAðωÞ is a multistep process, and begins
by performing a correlated fit of lattice data from all four
ensembles according to Eq. (14). This yields σVAðω; ξ2Þ
plus corrections. Removing the bi corrections from the
obtained σVAðω; ξ2Þ distribution, we obtain the blue band
indicated by σVAðωÞ—now in the physical limit. The
covariance matrix of the λk coefficients from the correlated
z-expansion fit provides an error estimate of the σVAðωÞ
physical distribution. We choose 30 correlated data points
from the continuum band of σVAðωÞ, equally spaced in the
Ioffe-time interval ω ∈ ½0 − 4.71�; a number in accordance
with the 20 data points available from the a94m278
and a94m358 lattice ensembles. Using the mean and

FIG. 5. Simultaneous fit to the antisymmetric VA current matrix
elements on four different ensembles. The blue band indicates the
ITD in the physical limit. The outer cyan band shows the
combined statistical and systematic uncertainties of fit (14) added
in quadrature.

TABLE II. Fit parameters of different correction terms in fit Eq. (14) for the investigation of systematic uncertainties in σVAðωÞ.
Correction term Fit coefficient λ0 λ1 λ2 λ3 λ4 χ2=d:o:f.

a2 −0.049ð34Þ 0.0104(3) −0.006ð3Þ −0.028ð9Þ −0.901ð391Þ 0.124(135) 1.26
ðm2

π −m2
π;physicalÞ 0.15(12) 0.0104(3) −0.006ð3Þ −0.029ð10Þ −0.926ð388Þ 0.118(132) 1.18

Le−mπðL−ξÞ 0.007(3) 0.0104(3) −0.006ð3Þ −0.028ð10Þ −0.915ð402Þ 0.121(136) 1.22ffiffiffiffi
L

p
e−mπðL−ξÞ 0.026(14) 0.0104(3) −0.006ð3Þ −0.029ð10Þ −0.914ð403Þ 0.121(136) 1.21
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covariance matrix of these data points, we create 200
Gaussian distributed pseudodata samples with appropriate
correlations and perform the following numerical fit:

σVAðωÞ ¼
Z

1

0

dxKLOþNLOðx;ωÞqπvðxÞ ð18Þ

to obtain qπvðxÞ. As these discrete values resulting from the
fit in Eq. (14) are highly correlated, the addition of more
discrete data points from the fitted σVAðωÞ distribution does
not improve the outcome of the qπvðxÞ fit parameters. We
confirmed this by increasing the number of σVAðωÞ
sampling points to 100. A similar result is obtained if
one chooses 20 sampling points or less, as was done in our
previous work (Ref. [43]). One can also see that increasing
or decreasing the number of pseudodata samples from 200
will not have any impact on the qπvðxÞ fit parameters, again
due to the σVAðωÞ data correlations. What is required to
improve the qπvðxÞ fit parameters is a larger range of Ioffe
time. In the above fit, we have used the constraints α ≤ 0
and β ≤ 4.
For the above fit, we use αs ¼ 0.303 at the initial scale

μ0 ¼ 2 GeV [66]. Systematic uncertainties in each PDF
parameter set are estimated by a 10% variation in αs as in
[61]. The 2-parameter fit, by fixing γ ¼ 0 in Eq. (17), yields

α ¼ −0.17ð7Þstatð2Þsys; β ¼ 1.24ð22Þstatð7Þsys ð19Þ
with χ2=d:o:f ¼ 1.41. Stated uncertainties are statistical
(systematic) first (second). In a 3-parameter fit, with an
unconstrained γ, we obtain

α ¼ −0.22ð11Þstatð3Þsys; β ¼ 2.12ð56Þstatð14Þsys;
γ ¼ 4.28ð1.73Þstatð25Þsys ð20Þ

with χ2=d:o:f ≈ 1.29. The present calculation has achieved
a better statistical precision in the β value compared to the

previous LCS determination [43] where it was found in a
3-parameter fit β ¼ 1.93ð68Þ. Inclusion of an additional
ρ

ffiffiffi
x

p
-term in (17) was found to be consistent with zero.

Commensurate χ2=d:o:f between fits (19) and (20) limits
the selection of one fit over another based solely on the
goodness of the fit. These fits are shown in Fig. 6. We
elected not to extrapolate our ITD obtained from our z-
expansion fit beyond the largest Ioffe time ω ¼ 4.71 when
determining the PDF. It has been shown [67] when using
sophisticated inversion methods that the large-x behavior is
well reproduced even with the limited range in Ioffe time.

V. DISCUSSION

As shown in Fig. 7, extrapolating the central value of the
σVAðωÞ distribution from the z-expansion fit (blue) and the
associated 2- (red) and 3-parameter (cyan) fits reveals that
precise LQCD data at large ω are required to distinguish
between different large-x behaviors of qπvðxÞ. We validate
our PDF fitting procedure by reconstructing the σVAðωÞ
distribution by convolving the NLO kernel with the PDFs
obtained from the pseudodata samples. The σVAðωÞ dis-
tribution reconstructed from the 2-parameter fit under-
estimates the uncertainty of the distribution in the
physical limit by about 8%–12% for ω > 4, and starts to
deviate from the blue band as ω increases. For a fixed α,
one can show that the ITD falls off faster for a smaller β as a
function of ω compared to that for a larger β in a 2 or 3 or
more parameter PDF functional form. Therefore, precise
data at higher Ioffe time ðω ∼ 8–10Þ will provide a better
discrimination between different β values in a future LCS
calculation.
While PDFs can minimally be described by the

xαð1 − xÞβ functional form, encompassing the Regge
theory [68] and pQCD based power counting rules [69],
modern global analyses [26–28] inform our decision to

FIG. 6. The pion valence quark distribution obtained from
fitting the convolution of qπvðxÞ and the NLO perturbative kernel
(8) to the determined σVAðωÞ distribution in the fit Eq. (14). Fits 1
and 2 label the 2- and 3-parameter functional forms in Eq. (17).

FIG. 7. A comparison of the reconstructed σVAðωÞ distribution
using Eq. (18) for 4.0 < ω < 5.0 from the PDF fits and that
obtained from (14). Fits 1 and 2 label the 2- and 3-parameter
functional forms in Eq. (17).
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allow for an interpolating function between these small-x
and large-x regions and thus a better and less biased
description of PDFs. In particular, the fit (20) includes
the possibility of γ ¼ 0 and is more flexible.
For a comparison with global fits of qπvðxÞ, we evolve our

extracted PDF sets to a scale of μ2 ¼ 27 GeV2, from an
initial scale μ0 ¼ 2 GeV shown in Fig. 6, large enough for
the validity of factorization. Figure 8 shows a comparison
with the PDF extraction using LO factorization of the E615
data [3], which shows a (1 − x) large-x behavior, and the
analysis [11] where the next-to-leading-logarithmic thresh-
old soft-gluon resummation effects [52,53] are included in
the calculation of the Drell-Yan cross section, which shows
a softer ð1 − xÞ2 falloff. A comparison between the pion
PDFs obtained from previous lattice calculations using the
LCS [43], quasi-PDFs [45,70], and pseudo-PDFs [61]
methods can be found in [61].
We need QCD factorization and perturbatively calcu-

lated matching coefficients to enable us to extract the PDFs
since they are neither direct physical observables, nor
directly calculable in lattice QCD. However, QCD factori-
zation is an approximation, and power corrections to the
factorization formalism are likely more important when
the observable, such as the Drell-Yan cross section, or the
LQCD-calculated hadron matrix element, is pushed to the
edge of phase space where x → 1. On the other hand, we
can get some information on the x → 1 behavior of PDFs
from the convolution of the factorized formalism, by
measuring the physical cross sections or calculating the
hadron matrix elements in LQCD not too close to the edge
of phase space. However, the garnered information on x ∼ 1
will be mild since the contribution from this region is much
smaller than that from the smaller x regions. This is exactly
the reason why PDFs extracted from world data in QCD

global analyses have a large uncertainty as x → 1.
Although it might be difficult to pin down the exact “power
of (1 − x)” of the pion PDFs, the extraction of PDFs from
future improved LQCD calculations of good hadron matrix
elements, the LCSs that are calculable in LQCD and
factorizable to PDFs, might help improve the accuracy
of determining this “power,” since the matching coeffi-
cients for LCSs in position space are more perturbatively
stable at larger x than the momentum-space matching
coefficients for experimentally measured cross sections.

VI. CONCLUSION AND OUTLOOK

In this paper we have presented the first LCS calculation
of qπvðxÞ that incorporates results on four gauge ensembles,
among these the lightest pion mass used in any lattice QCD
calculation to access qπvðxÞ, as well as the first derivation of
NLO matching coefficients from position space directly to
momentum space. The qπvðxÞ extracted from our LQCD
calculation is remarkably consistent with that extracted
from experimental data. Given that the NLO matching
coefficient K is very stable and without large threshold
logarithms that are often seen in momentum space match-
ing coefficients, our approach, plus future gauge ensembles
with smaller lattice spacings, has the unique potential to
provide a better determination of the “power of (1 − x)” of
the qπvðxÞ distribution as x → 1.
vCentral to this endeavor are calculations in the near

future with finer lattice spacings. With a simpler non-
perturbative UV renormalization, different choices of cur-
rent combinations, and the nontrivial hadron-independent
and stable NLO matching coefficients, the LCS formalism
with two-current correlators is well equipped to unravel the
enigmatic structure of the pion and other hadrons, espe-
cially those that are difficult, if not impossible, to study
experimentally, complementary to other approaches, such
as the quasi- and pseudo-PDFs approaches.
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