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Abstract

Investigations of the quasifree reaction A(γ, KY)B are presented in the distorted wave impulse
approximation (DWIA). For this purpose, we present a revised tree-level model of elementary
kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses
SU(3) values for the Born couplings and uses resonances consistent with multichannel analyses. The
potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon–
nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon
asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are
obtained for all six production channels. Under selected kinematics these observables are found
to be sensitive to the hyperon–nucleus final-state interaction. Some polarization observables are
found to be insensitive to distortion effects, making them ideal tools to search for possible medium
modifications of the elementary amplitude. 2001 Elsevier Science B.V. All rights reserved.

PACS: 25.20.Lj; 13.60.Le; 13.75.Ev; 13.88.+e

1. Introduction

With the start of experimental activities at Jefferson Lab and other continuous beam
electron accelerators with sufficient energy and intensity, explorations in hypernuclear
physics through electromagnetic probes are becoming a reality. The use of kaon
photoproduction to excite discrete hypernuclear states through the reaction A(γ,K)YB has
been investigated extensively [1–4]. This reaction involves high-momentum transfers to
the residual nucleus, resulting in a cross section that is suppressed by nuclear form factors,
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and sensitive to the details of hypernuclear transition densities. The probability of forming
such bound states is in fact rather small. It was estimated [2] that this formation probability
is around 5–10% of the total(γ,K+) strength on nuclear targets. Thus, most of the kaon
production events will come from quasifree production.

In this work, we present theoretical predictions for exclusive quasifree kaon photopro-
duction, A(γ,KY)B, in a Distorted Wave Impulse Approximation (DWIA) framework.
This reaction allows for the study of the production process in the nuclear medium as well
as final-state interaction (FSI) effects without being obscured by the details of the nuclear
transition. This is due mainly to the quasifree nature of the reaction which permits the
kinematic flexibility to have small momentum transfers. Conceptually, the initial nucleus
is a target holder which presents a bound nucleon to the incoming photon beam. The basic
reaction N(γ,KY) takes place in the nuclear medium producing a continuum kaon and
hyperon which interact with the residual nucleus as they exit the target.

The purpose of the present study is two-fold: first, we want to examine the sensitivity
of various observables to the hyperon–nucleus final-state interaction. The study of the
Y–nucleus potential permits access to the YN interaction, which is much less well-
known than theπN and NN interactions. This is mainly due to lack of hyperon beams in
accelerator experiments. Recently, effective field theories (EFTs) have been successfully
applied to the strong two-nucleon sector [5]. While the use of EFTs in theSU(2) regime is
now well-established, their range of applicability toSU(3) is much less certain due to the
much larger degree ofSU(3)-symmetry breaking. In order to assess the validity of EFTs
in SU(3) a good phenomenological understanding of the YN force is required. At present,
much of our knowledge on the YN interaction is based on studies of hypernuclei formed
in hadronic reactions such as(K−,π−) and(π+,K+) [6,7].

The second goal of this study is to establish the kinematic range within which
polarization observables are insensitive to distortion effects. This would allow a clearer
signal for possible medium modifications of the elementary operator to emerge, as
suggested in Ref. [8]. One aspect of this investigation is the puzzle of the “damped
resonances” in the second and third resonance regions as seen in inclusive photoabsorption
cross-section data on various nuclei [9]. The data show an unexpected damping behavior
of the higher resonances when compared with the same process on the proton and the
deuteron. In order to isolate the mechanism for this mysterious phenomenon the individual
exclusive channels need to be investigated. In Ref. [8], the authors — using PWIA —
demonstrate the sensitivity of polarization observables to the elementary amplitude, while
on the other hand they find these observables to be insensitive to relativistic effects or the
specific nuclear target. However, since Ref. [8] does not use distorted waves their cross-
section predictions cannot be directly compared with experiment and they had no way to
verify that the polarization observables would be insensitive to distortion effects. In this
study, we compare DWIA with PWIA calculations over a wide kinematic range and thus
establish the range of validity for the conclusions drawn in Ref. [8]. Experimentally, the
Jefferson Lab proposal Hall B [10] is already under analysis.

The key ingredients in quasifree kaon photoproduction on nuclei are:
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(a) the single-particle wave function of the initial nucleon and spectroscopic factor,
usually taken from electron scattering,

(b) the elementary kaon photoproduction amplitude, obtained from models of the free
processes,

(c) the distorted kaon wave function, and finally,
(d) the hyperon–nucleus final-state interaction.
This framework has been applied in our previous works for pion photo- and electro-

production [11] and eta photoproduction [12] from nuclei, and was found to give a good
description of the experimental data. This previous agreement with experiment partially
justifies the impulse approximation implicit in the model outlined above that we will use in
our analysis. Preliminary results in this work have been presented in a conference talk [13].

This paper is organized as follows. In Section 2 we discuss the revised elementary op-
erator and compare it to the currently available experimental data of kaon photoproduction
on the nucleon. Section 3 outlines the key ingredients in the DWIA model. Section 4 re-
ports our calculations under two different kinematic arrangements. Section 5 contains our
concluding remarks.

2. The elementary photoproduction amplitude

While dynamical models involving various approximations for the Bethe–Salpeter
equation are becoming increasingly successful in the description of pion photoproduction,
the hadronic final-state interaction in kaon photoproduction has usually been left out
[14–17]. Neglecting the final meson–baryon interaction in the full meson photoproduction,
T -matrix automatically leads to violation of unitarity since flux going into inelastic
channels has not been properly accounted for. Enforcing unitarity dynamically requires
solving a system of coupled channels with all possible final states. In the case of
K+� photoproduction, this arduous task has recently been accomplished by Feuster
and Mosel [18,19] using a K-matrix approach. However, such an amplitude is rather
cumbersome to use in reactions on nuclei. For our purpose, we therefore follow older
models [14–17] and choose an isobaric model without final-state interactions which
provides a simple tool to parameterize meson photoproduction off the nucleon. Without
rescattering contributions theT -matrix is simply approximated by the driving term alone
which is assumed to be given by a series of tree-level diagrams. The selected Feynman
diagrams for thes-, u-, and t-channel contain some unknown coupling parameters to
be adjusted in order to reproduce experimental data. Final-state interaction is effectively
absorbed in these coupling constants which then cannot easily be compared to couplings
from other reactions.

One of the most contentious issues in the phenomenological description of kaon
photoproductionon the nucleon has been the choice of baryon resonances in the production
amplitude [14–16,19,20]. Many authors have selected resonances that contribute to the
kaon production process by their relative contribution to the overallχ2 of the fit [14,15,20].
Our approach here is different: we wish to construct an amplitude with a “minimal”
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number of resonances that is easy to handle in the nuclear context. We use the results of
recent multichannel analyses [18,19,21,22] as a guide to inform us of the most important
resonances that decay into K� and K
 final states with a significant branching ratio. Thus,
in contrast to Refs. [14,20], we do not include spin-5/2 states in our amplitude since neither
coupled-channel results nor older partial-wave analyses[23,24] find their contributions
to be important. Ultimately, only a multipole analysis will be able to clearly identify
the resonances participating in kaon photoproduction. Using input from the multichannel
calculations by Refs. [18,19,21,22] we include the three resonances that have been found
to decay noticeably into the K� channel: S11(1650), P11(1710), and P13(1720). For K

production we also allow contributions from the S31(1900) and P31(1910) resonances.
Furthermore, we include not only the usual 1− vector meson K∗(892), but also the 1+
pseudovector meson K1(1270) in the t-channel since a number of studies [14,15,25] have
found this resonance to give a significant contribution.

2.1. Isospin symmetry and resonance terms

Following Refs. [26–28], we write the transition matrix of the reaction

γ(pγ)+N(pN)−→K(pK)+ Y (pY), (1)

which stands for the following six reaction channels:

γ + p → K+ +�, (2)

γ + p → K+ +
0, (3)

γ + p → K0 +
+, (4)

γ + n → K0 +�, (5)

γ + n → K+ +
−, (6)

γ + n → K0 +
0, (7)

in the form of

Mfi = ū(pY, sY)

4∑
i=1

Ai Mi u(pN, sN), (8)

where the Lorentz invariant matricesMi are given by

M1 = γ5 /ε/pγ, (9)

M2 = 2γ5(pK · εpN · pγ − pK · pγpN · ε), (10)

M3 = γ5(pK · pγ/ε − pK · ε/pγ), (11)

M4 = iεµνρσγµpν
Kε

ρpσ
γ. (12)

The amplitudesAi are obtained from the Feynman diagrams of Fig. 1 by using the vertex
factors and the propagators given in Refs. [29,30]. Casting the elementary operator in the
above form is convenient since it assures gauge invariance even in the case of bound nu-
cleons that the amplitude operates on inside the nucleus in the framework of the impulse
approximation.
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Fig. 1. Feynman diagram for kaon photoproduction on the nucleon. Contributions from the� are
only possible in
 production. Electromagnetic vertices are denoted by (a), (b) and (c), hadronic
vertices by (1), (2) and (3). The contact diagram (4) is required in both PS and PV couplings in order
to restore gauge invariance after introducing hadronic form factors. The Born terms contain the N, Y,
K intermediate states and the contact term.

To relate the hadronic coupling constants among the various isospin channels we use
isospin symmetry:

gK+�p = gK0�n, (13)

gK+
0p = −gK0
0n = gK0
+p
/√

2 = gK+
−n
/√

2, (14)

gK+
0�+ = gK0
0�0 = −√
2gK0
+�+ = √

2gK+
−�0. (15)

The electromagnetic couplings of the resonances to the proton and the neutron can be
related by means of helicity amplitudes. Following Ref. [19] we can write the helicity
amplitude of spin-1/2 resonances in terms of their coupling constants as

A
(±)
1/2 = ∓ 1

2mN

(
m2

N∗ −m2
N

2mN

)1/2

egN∗Nγ, (16)

where the sign refers to the resonance parity of the resonance. Therefore, the relation
between spin-1/2 coupling constants for the production on the proton and on the neutron
is given by

gN∗0nγ

gN∗+pγ

= An
1/2

A
p
1/2

. (17)

The Lagrangian for spin-3/2 resonances is, however, not unique. Using vertex functions
as given in Ref. [29] we obtain the following relationships:

A
(±)
1/2 = 1

2

[
mN∗ ∓mN

3mN(mN∗ ±mN)

]1/2[
mN

mN∗
eg

(1)
N∗Nγ ± 1

2

(
mN∗ ∓mN

mN∗ ±mN

)
eg

(2)
N∗Nγ

]
, (18)

A
(±)
3/2 = 1

2

[
mN∗ ∓mN

mN(mN∗ ±mN)

]1/2[
eg

(1)
N∗Nγ − 1

2

(
mN∗ ∓mN

mN∗ ±mN

)
eg

(2)
N∗Nγ

]
(19)

and

g
(1)
N∗0nγ

g
(1)
N∗+pγ

=
√

3An
1/2 ±An

3/2√
3Ap

1/2 ±A
p
3/2

, (20)
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Table 1
Helicity amplitudes for N∗ → N+γ [52] and the ratio of the neutral and charged coupling strengths;
in the latter, error-bars are not shown

Resonance S11(1650) P11(1710) P13(1720)

Jπ 1
2
− 1

2
+ 3

2
+

A
p
1/2 (10−3 GeV−1/2) 53± 16 9±22 −18± 30

An
1/2 (10−3 GeV−1/2) −15± 21 −2± 14 1±15

A
p
3/2 (10−3 GeV−1/2) − − −19± 20

An
3/2 (10−3 GeV−1/2) − − −29± 61

gN∗0nγ/gN∗+pγ −0.28 −0.22 −
g
(1)
N∗0nγ

/
g
(1)
N∗+pγ

− − −2.24

g
(2)
N∗0nγ

/
g
(2)
N∗+pγ

− − +0.42

g
(2)
N∗0nγ

g
(2)
N∗+pγ

=
√

3An
1/2 − (mN/mN∗)An

3/2√
3Ap

1/2 − (mN/mN∗)Ap
3/2

. (21)

The numerical values for the S11(1650), P11(1710), and P13(1720) resonances are given
in Table 1.

In K0 photoproduction the transition momentgK∗+K+γ, used in K+ photoproduction,
must be replaced by the neutral transition momentgK∗0K0γ. For both vector mesons, the
K∗ and the K1, the transition moment is related to the decay width by [27]

ΓK∗→Kγ = 1

24

|gK∗Kγ|2
4πM2

[
mK∗

(
1− m2

K

m2
K∗

)]3

, (22)

where K∗ refers to K∗(892) or K1(1270), and M = 1 GeV is used to makegK∗Kγ

dimensionless.
The decay widths for K∗(892) are well-known, i.e.

ΓK∗+→K+γ = 50± 5 keV, (23)

ΓK∗0→K0γ = 117± 10 keV. (24)

Thus, the transition moments are related by

gK∗0K0γ = −1.53gK∗+K+γ, (25)

where we have used the quark model prediction of Singer and Miller [31] in order to
constrain the relative sign.

The decay widths of K1(1270) are, however, not well known. Nevertheless, the ratio of
the charged and neutral moment of K1(1270) can be taken as a free parameter that is fixed
by the available data in the p(γ,K0)
+ channel.
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Table 2
Relative branching ratios(xi) for S11(1650), P11(1710), and P13(1720) [19]

Resonance πN ππN ηN K�

S11(1650) 0.73 0.22 0.00 0.05
P11(1710) 0.00 0.51 0.32 0.17
P13(1720) 0.21 0.75 0.04 0.01

In order to approximately account for unitarity corrections at tree-level we include
energy-dependent widths in the resonance propagators

Γ (q) = ΓN∗
√
s

mN∗

∑
i

xi

( |qi |∣∣qN∗
i

∣∣
)2l+1

Dl(|qi |)
Dl

(∣∣qN∗
i

∣∣) , (26)

where the sum runs over the possible decay channels into a meson and a baryon with
massmi andmb, respectively, and relative orbital angular momentuml. In Eq. (26),ΓN∗
represents the total decay width andxi is the relative branching ratio of the resonance into
theith channel. The final-state momenta are given by

∣∣qN∗
i

∣∣ =
[
(m2

N∗ −m2
b +m2

i )
2

4m2
N∗

−m2
i

]1/2

, and (27)

|qi | =
[
(s −m2

b +m2
i )

2

4s
−m2

i

]1/2

, (28)

while for the fission barrier factorDl(q) we use the quark model result of Ref. [32]

Dl(q) = exp

(
− q2

3α2

)
, (29)

with α = 410 MeV. The branching ratios, listed in Table 2, are quite uncertain for some of
the partial decays. For this calculation we have used the ones from Ref. [18]. In general,
we found our results to be fairly insensitive to this input.

2.2. Hadronic form factors and gauge invariance

It is a well-known fact that the sum of the first three photoproduction diagrams — i.e.,
the sum of thes-, u-, and t-channel diagrams — in Fig. 1 is gauge-invariant only for
bare hadronic vertices with pure pseudoscalar coupling. Thus, in this most basic case, the
addition of a fourth contact-type graph in Fig. 1 is not necessary for preserving gauge
invariance. In all other instances, however, one needs additional currents to ensure gauge
invariance and thus current conservation. For bare hadronic vertices with pseudovector
coupling, this extra current is the well-known Kroll–Ruderman contact term [33].

Irrespective of the coupling type, however, most isobaric models with bare vertices
show a divergence at higher energies, which clearly points to the need for introducing
hadronic form factors to cut off this undesirable behavior. Recent calculations [14,16]
demonstrated that many models which are able to describe(γ,K+) experimental data tend
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to unrealistically overpredict the(γ,K0) channel. The use of point-like particles disregards
the composite nature of nucleons and mesons, thus losing the full complexity of a strongly
interacting hadronic system.

To provide the desired higher-energy fall-off and still preserve the gauge invariance of
the bare tree graphs, the model of Ref. [17] introduced a cut-off function by multiplying
the entire photoproduction amplitude [see Eq. (8)] with an overall function of monopole
form,

F(Λ, t) = Λ2 −m2
K

Λ2 − t
, (30)

where the cut-off massΛ was treated as a free parameter. In spite of successfully
minimizing theχ2 while maintaining gauge invariance, there is no microscopic basis for
this approach since one cannot derive such an overall factor from a field theory.

Field theory clearly mandates that a correct description of vertex dressing effects must be
done in terms of individual hadronic form factors for each of the three kinematic situations
given by thes-, u-, and t-channel diagrams of Fig. 1. In a complete implementation of
a field theory, the gauge invariance of the total amplitude is ensured by the self-consistency
of these dressing effects, by additional interaction currents and by the effects of hadronic
scattering processes in the final state [34]. Schematically, the interaction currents and the
final-state contributions can always be written in the form of the fourth diagram of Fig. 1.
In other words, the diagrammatic description of the photoproduction process given by this
figure is meaningful whether the vertices are bare or fully dressed; only the interpretation
of the individual diagrams changes: For bare particles, the diagrams correspond to the tree-
level bare Born terms only, whereas for fully dressed particles, the diagrams represent the
topological structure of thefull amplitude, with the first three graphs depicting the fully
dressed Born terms.

If one now seeks to describe the dressing of vertices on a more accessible, somewhat less
rigorous, level, one introducesphenomenological form factors for the individuals-, u-, and
t-channel vertices. Then, to ensure gauge invariance and to remain close to the topological
structure of the full underlying field theory, the simplest option is to add contact-type
currents which mock up the effects of the interaction currents and final-state scattering
processes otherwise subsumed within the fourth diagram of Fig. 1.

One method to handle the inclusion of such phenomenological form factors has been
proposed by Ohta [35]. By making use of minimal substitution Ohta has derived an
additional current corresponding to the contact term of Fig. 1. However, while Ohta’s
method does indeed restore gauge invariance, its effect on the amplitude is the removal
of any vertex dressing from the dominant electric contributions which — at least partially
— undoes some of the desirable effects of why dressed vertices needed to be introduced in
the first place [36].

Haberzettl has shown [34,36] that Ohta’s method is too restrictive and that one may
retain the dressing effects suppressed by Ohta’s approach by making use of the fact that
the longitudinal pieces of the gauge-invariance-preserving additional currents are only
determined up to an arbitrary functioñF . (Of course, transverse currents are completely
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undetermined and arbitrary pieces can always be added with impunity.) For practical
purposes, one of the simplest choices [34,36] for this arbitrary functionF̃ seems to be
a linear combination of the form factors for the three kinematic situations in which the
dressed vertices appear, i.e.,

F̃ = asF (Λ, s)+ auF (Λ,u)+ atF (Λ, t) with as + au + at = 1, (31)

which introduces two more free parameters to be determined by fits to the experimental
data. This choice has proven to be flexible and adequate for a good phenomenological
description of experimental data, and it is the choice adopted in the present work. In
general, the results available so far indicate that Haberzettl’s method produces superior
results compared to Ohta’s approach and has been used in all modern studies on kaon
photoproduction [19,20,36] in an effective Lagrangian framework.

The inclusion of phenomenological form factors in the hadronic vertices of the Born
terms in Fig. 1 then leads to a modification of the four Born contributionsABorn

i that enter
the respective coefficientsAi of the photoproduction amplitude of Eq. (8). The additional
contributions for each resonance are separately gauge invariant, by construction. Following
Refs. [34,36], the Born amplitudes for kaon photoproduction are given by

ABorn
1 = − egKYN

s −m2
N

(
QN + κN

mN −mY

2mN

)
F(Λ, s)

− egKYN

u−m2
Y

(
QY + κY

mY −mN

2mY

)
F(Λ,u)

− (
1− |QY |) eGKY ′N

u−m2
Y′

mY′ −mN

mY′ +mY
F(Λ,u), (32)

ABorn
2 = 2egKYN

t −m2
K

(
QN

s −m2
N

+ QY

u−m2
Y

)
F̃ , (33)

ABorn
3 = egKYN

s −m2
N

κNF(Λ, s)

2mN
− egKYN

u−m2
Y

κYF(Λ,u)

2mY

− (
1− |QY |) eGKY ′N

u−m2
Y′

F(Λ,u)

mY′ +mY
, (34)

ABorn
4 = egKYN

s −m2
N

κNF(Λ, s)

2mN
+ egKYN

u−m2
Y

κYF(Λ,u)

2mY

+ (
1− |QY |) eGKY ′N

u−m2
Y′

F(Λ,u)

mY′ +mY
, (35)

whereQN andQY denote the charge of the nucleon and the hyperon in+e unit, while
κN, κY, andκT indicate the anomalous magnetic moments of the nucleon, hyperon, and
the transition of
0�. It is understood that Y′ = 
0 [�] for K� [K
0] production. As
can be seen here, the functioñF governs the fall-off behavior of theABorn

2 term which
describes the dominant electric contributions of the Born terms. (Note here that Ohta’s
choice corresponds tõF = 1 [36] and thus provides no cut-off for higher energies for this
term.)
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Finally, we mention that for practical purposes we have introduced a slightly different
notation for the linear combination in Eq. (31), namely:

F̃ = sin2Θhdcos2ΦhdF(Λ, s)+ sin2Θhdsin2ΦhdF(Λ,u)+ cos2ΘhdF(Λ, t), (36)

where the combination of trigonometric functions ensures the correct normalization ofF̃ .
Both Θhd andΦhd are obtained from the fit and quoted in Table 3. For the functional
dependence of the form factor we use a covariant vertex parameterization without

Table 3
Extracted coupling constants in our models

Coupling constants Set I Set II

gK�N/
√

4π −3.09± 0.08 −3.80

gK
N/
√

4π 1.23± 0.06 1.20

Θhd (
◦) − 108± 4

Φhd (
◦) − 90± 6

Λ1 (GeV) 0.85± 0.02 0.80± 0.01

Λ2 (GeV) − 1.88± 0.11

K� coupling

gK∗Kγ gVK∗�N/4π −0.19± 0.01 −0.51± 0.01

gK∗Kγ gT
K∗�N/4π −0.12± 0.02 0.67± 0.07

gK1Kγ gV
K1�N/4π − 0.06± 0.07

gK1Kγ gT
K1�N/4π − 0.37± 0.21

gN∗(1650)Nγ gK�N∗(1650)/
√

4π −0.06± 0.01 −0.13± 0.00

gN∗(1710)Nγ gK�N∗(1710)/
√

4π −0.07± 0.02 −0.09± 0.01

g
(1)
N∗(1720)Nγ

gK�N∗(1720)/
√

4π − 0.06± 0.00

g
(2)
N∗(1720)Nγ

gK�N∗(1720)/
√

4π − 0.94± 0.02

K
 coupling

gK∗Kγ gV
K∗
N/4π −0.08± 0.01 −0.31± 0.01

gK∗Kγ gT
K∗
N/4π −0.08± 0.02 −0.60± 0.02

gK1Kγ gV
K1
N/4π − −0.40± 0.04

gK1Kγg
T
K1
N/4π − −1.71± 0.22

gN∗(1650)Nγ gK
N∗(1650)/
√

4π −0.01± 0.02 −0.04± 0.00

gN∗(1710)Nγ gK
N∗(1710)/
√

4π 2.10± 0.10 0.08± 0.02

g�(1900)Nγ gK
�(1900)/
√

4π 0.23± 0.02 0.10± 0.00

g�(1910)Nγ gK
�(1910)/
√

4π −0.99± 0.09 0.36± 0.02

gK0
1K0γ

/ gK+
1 K+γ

− 0.26± 0.21

χ2/N 5.99 3.45

Set I comes from our previous model which fits old photo- and electroproduction data [17], Set II
shows the result of our present calculation. Except for the Born terms only the product of coupling
constants can be extracted from the fit.
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singularities on the real axis:

F
(
Λ,q2) = Λ4

Λ4 + (q2 −m2)2
, (37)

with q2 = s, t , or u, andm being the mass of the intermediate particle of the respective
diagram.

2.3. Comparison to photoproduction data on the nucleon

We have performed a combined fit to all differential cross section and recoil polarization
data of p(γ,K+)� and p(γ,K+)
0. The present data base includes the newSAPHIR

data set up toW = 2.1 GeV [37], but excludes the olderSAPHIR data, published in
Ref. [38], which have significantly larger error-bars. Both statistical and systematic errors
are included; for the small number of old data that did not report systematic errors, we
added a 10% uncertainty to their error-bars. With the upcoming high-precision Jefferson
Lab results the data base is about to experience further significant improvements. The
p(γ,K0)
+ channel is included later, since data for this channel have large error bars,
and therefore do not strongly influence the fit.

The results of our fits are summarized in Table 2. We compare our present study to
an older model [17] which employed an overall hadronic form factor and did not contain
the P13(1720) and the K1(1270) states. The significant improvement inχ2 comes mostly
from including the P13(1720) in the K� channel. A further reduction inχ2 results from
allowing the nonresonant background terms to have a different form factor cut-off than the
s-channel resonances. For the former, the fit produced a soft value of about 800 MeV,
leading to a strong suppression of the background terms while the resonance cut-off
is determined to be 1.89 GeV. This combination leads to a reaction mechanism which
is resonance dominated in all isospin channels. Table 2 reveals that the coupling ratio
K0

1K0γ/K+
1 K+γ is obtained with large uncertainty. This comes as no surprise since the

data in the p(γ,K0)
+ channel have large error-bars; we predict the ratio of the decay
widths to be

ΓK0
1→K0γ

ΓK+
1 →K+γ

= 0.068± 0.110. (38)

Fig. 2 compares total cross-section data for the three different K+ photoproduction
reactions on the proton. For p(γ,K+)� one can see a possible signal for a cusp effect
aroundW = 1710 MeV, indicating the opening of the K
 channel. The steep rise of the
K+� data at threshold is indicative of a strongs-wave. The K+� data reveal an interesting
structure aroundW = 1900 MeV. Our model fits currently do not reproduce this feature
since there is no well-established (3- and 4-star)I = 1/2 state at this energy. However,
Ref. [39] predicts a missing D13 at 1960 MeV that has a large branching ratio both into
the γN and the K� channel. In order to study this structure more closely, Ref. [40] has
included a D13 resonance but allowed the mass and the width of the state to vary as free
parameters. A significant reduction inχ2/N for a mass of 1895 MeV and a total width of
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Fig. 2. Total cross sections for the six isospin channels of kaon photoproduction on the nucleon
calculated at tree level. The solid curve shows Set II of Table 3 while the dotted line shows the older
model, Set I of Table 3. The newSAPHIRdata [37] are denoted by the solid squares, old data [53] are
shown by the open circles. Solid circles are the data for K0
+ production from Ref. [54].

372 MeV was achieved. Because of its uncertain nature, this state is not included in the
present calculation.

The K+
0 data rise more slowly at threshold, suggestingp- andd-wave, rather than
s-wave, dominance. Furthermore, there is a clear evidence for a resonance structure
aroundW = 1900 MeV. There is indeed a cluster of six or seven� resonances with
spin quantum numbers 1/2, 3/2, 5/2 and 7/2; it is at this energy that the total K
 cross
section reaches its maximum. Disentangling these overlapping resonance contributions
will require a multipole analysis. The K0
+ data have large error bars, thus few
conclusions can be drawn at this time. Nevertheless, they appear to have a similar resonance
structure around 1900 MeV. No data are available for production on the neutron, this
situation will be remedied by the ongoing analysis of the g2 data at Jefferson Lab.
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Fig. 3. Contribution of the Born terms (dashed lines), Born+ K∗ + K1 terms (dotted lines), and full
operator (solid lines) to the total cross section of the p(γ,K+)� and p(γ,K+)
0 channels. The
notation of the data is as in Fig. 2.

Fig. 3 displays the dominance of the resonances in the production process. Due to
the presence of hadronic form factors the Born terms contribute about 10–20% to the
total cross sections and do not exhibit the divergent behavior well known from earlier
studies [3,14–16,29,30]. At higher energies, the vector mesont-channel terms become
large, indicating that in this energy regime corrections of the form found in Regge
descriptions [41] may have to be applied. This also suggests that the range of applicability
of isobar models based on effective Lagrangians may be limited to an energy up to
W = 2.2–2.5 GeV; beyond this energy descriptions based on Regge trajectories may
become more appropriate. This transition between thes-channel resonance regime and the
t-channel Regge region involves the concept of duality and is currently subject of intense
study [42].
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Fig. 4 shows the differential cross section of the p(γ,K+)� channel for the two models
listed in Table 2. At threshold, the process is dominated bys-wave, due mostly to Born
terms but also to the S11(1650). Around 1700 MeV we find the onset of a forward-
backward asymmetry due top-waves coming from the P11(1710) and P13(1720) states. At
higher energies we find strong forward peaking similar to the p(π−,K0)� case that can be
attributed to the K∗ contribution [18]. While the total cross-section data were equally well
reproduced by both models, Set II is superior in describing the differential cross sections,
especially at threshold. It demonstrates that amplitudes using an overall form factor of the
form of Eq. (30) do not have enough kinematic flexibility to accommodate the entire energy
region under consideration. Similar results have been found for the gauge prescription
according to Ohta [20,43].

The comparison of the two models with the p(γ,K+)
0 data is shown in Fig. 5 from
threshold up to 2.2 GeV. In contrast to K+� photoproduction, this channel contains
significantp- andd-wave contributions already at threshold. This points to the P11(1710)
state as an important resonance in low-energy K
 production; here the S11(1650) lies
below threshold. This finding is consistent with a recent study [44] of K
 production in NN
scattering, NN→ NK
, where the P11(1710) state was identified as a major contribution.
Furthermore, recent coupled-channel analyses by Waluyo et al. [45] identify the P11(1710)
state as the dominant resonance in low-energyπN → K
 reactions with a branching ratio
of P11(1710)→ K
 of 32 MeV. In contrast to K� photoproduction the forward peaking is
less pronounced, due in part to smallergK∗N
 coupling constants. AroundW = 1900 MeV,
the cross section is dominated by two isospin-3/2 states, the S31(1900) and the P31(1910).

Fig. 6 compares the two models for the p(γ,K0)
+ channel. The dramatically different
behavior between the two models is due mostly to the different gauge prescriptions used
since this influences the relative contribution of the background terms. As mentioned
above, Set I used an overall hadronic form factor that multiplied the entire amplitude,
while Set II employs the mechanism by Haberzettl, which is preferred by the data.

The recoil polarization for the three reaction channels on the proton is shown in Fig. 7.
For the K+� data we find good agreement using Set II of Table 2, while the older
model (Set I) gives almost zero polarization throughout this energy range. We point out
that theSAPHIR data are binned in large angular and energy intervals. The main reason
for this dramatic difference is the more prominent role that the resonances play in the
present model, defined by Set II. In the case of K+
0 photoproduction the models fails
to reproduce the polarization data. Since the recoil polarization observable is sensitive
especially to the imaginary parts of the amplitudes this discrepancy suggests that we do
not have the correct resonance input for the K
 channel.

In Fig. 8 we show the target asymmetry for the same three production processes at
selected kinematics. Only three data points are available for K+� production, which we did
not include in the fit. At threshold the target asymmetry calculated with Set II is predicted
to be sizable for K+� production but small for the two K
 production channels. Similar to
the� recoil polarization in Fig. 7, Set I predicts a zero asymmetry for K+� production for
the first 200 MeV above threshold. At higher energies significant asymmetries are obtained
for the K
 production reactions. However, the differences between Sets I and II are not
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Fig. 4. Differential cross section for p(γ,K+)� channel. The notation of the curves is as in Fig. 2.
The total c.m. energyW is shown in every panel.
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Fig. 5. Differential cross section for p(γ,K+)
0 channel. The notation of the curves is as in Fig. 2.
The total c.m. energyW is shown in every panel.

Fig. 6. Differential cross section for p(γ,K0)
+ channel. Data are from Ref. [54]. Notation is as in
Fig. 2. The total c.m. energyW is shown in every panel.
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Fig. 7.� and
 recoil polarization for p(γ,K+) �Y. Notation is as in Fig. 2. The total c.m. energyW
is shown in every panel.

Fig. 8. Target asymmetry for the reaction�p(γ,K+)Y. Notation is as in Fig. 2. The total c.m. energy
W is shown in every panel.
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Fig. 9. Photon asymmetry of p(�γ,K+)Y. Notation is as in Fig. 2. The total c.m. energyW is shown
in every panel.

too large, suggesting that this may not be the most appropriate observable to discriminate
between the two models.

The last figure in this section involves polarized photons. The beam asymmetry
 can
be measured with linearly polarized photons, which will become available at Jefferson Lab
within a year. As shown in Fig. 9 this asymmetry is almost zero near threshold for all
three channels but becomes sizable at higher energies. We find large differences between
the two models, suggesting that this is an ideal observable to distinguish between different
dynamical inputs. This observation was also made in Ref. [40] where it was found that the
polarized photon asymmetry is well suited to shed light on the nature of the “missing” D13

resonance aroundW = 1900 MeV in K+� production.
Concluding this section, we reemphasize the potential of polarization observables to

discriminate between models that use different dynamical inputs. The primary dynamical
ingredients in all effective Lagrangian descriptions of kaon photoproduction are the
nonresonant background terms and thes-channel resonances. As the need for hadronic
form factors at these energies has become widely recognized a choice must be made with
regard to the restoration of gauge invariance. While the method by Haberzettl has a clear
field-theoretical foundation it is desirable to establish its preference phenomenologically
as well. As demonstrated in the above figures, polarization observables play a crucial
role. Once a proper description of the Born terms is accomplished the resonances
can be investigated in detail. We point out that the use of polarized electron beams
produces circularly polarized photons, which in combination with the hyperon recoil
polarization allows for the measurement [46] of the beam-recoil double-polarization
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observablesCx and Cz. Such data have already been taken and are currently being
analyzed [46]. Furthermore, the availability of linearly polarized photons at JLab will
allow the measurement [47] of the beam-recoil observablesOx , Oz andOy (which is
identical to -T , the polarized target asymmetry). Such a set of observables constitutes
an almost complete experiment and should allow a multipole analysis that can aid in the
determination of the resonances and the extraction of resonance parameters.

3. The DWIA framework

Now we consider the kaon photoproduction process on a nuclear target in the DWIA
model.

3.1. Differential cross section

Working in the laboratory frame where the target is at rest, we define the coordinate
system such that thez-axis is along the photon directionpγ, and they-axis is along
pγ × pK with the azimuthal angle of the kaon chosen asφK = 0. The kinematics of the
reaction are determined by

pγ = pK + pY + pm, (39)

Eγ +Mi = EK +EY +Mf + Tm. (40)

Herepm is the missing momentum in the reaction andTm = p2
m/2Mf is the recoil kinetic

energy. The excitation energy of the residual nucleus is included inMf . The missing energy
Em in the reaction is defined byEm = Mf −Mi +mN =Eγ −EK −EY −Tm +mN where
mN is the mass of the nucleon. For real photons,|pγ| =Eγ. In the impulse approximation,
the reaction is assumed to take place on a single bound nucleon whose momentum and
energy are given bypi = −pm andEi = EK + EY − Eγ. This seems the most sensible
choice for the bound nucleon, since all other particles are observed in the laboratory. With
such constraints onEi andpi , the struck nucleon is in general off its mass shell, except
right on top of the quasifree peak (pm = 0). Since we are mostly interested in the quasifree
region, the off-shell effects are expected to be small.

The reaction isquasifree, meaning that the magnitude ofpm can have a wide range,
including zero. Since the reaction amplitude is proportional to the Fourier transform of the
bound-state single-particle wavefunction, it falls off quickly as the momentum transferpm
increases. Thus we will restrict ourselves to the low-pm region (< 500 MeV) where the
nuclear recoil energy (Tm) can be safely neglected for nuclei ofA> 6.

The differential cross section can be written as

d3σ

dEK dΩK dΩY
= C

2(2Ji + 1)

∑
α,λ,ms

Sα

2(2j + 1)
|T (α,λ,ms)|2. (41)

The kinematic factor is given by

C = MfmY |pK| |pY|
4(2π)5

∣∣EY +Mf + Tm −EY pY · (pγ − pm)/p
2
Y

∣∣ . (42)
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The single-particle matrix element is given by

T (α,λ,ms) =
∫

d3r Ψ (+)
ms

(r,−pY)φ
(+)
K (r,−pK)tγK(λ,pγ,pi,pK,pY)Ψα(r)

× exp(ipγ · r). (43)

In the above equations,Ji is the target spin,α = {nljm} represents the single-particle
states,Sα is called the spectroscopic factor,λ is the photon polarization,ms is the spin
projection of the outgoing nucleon,Ψ (+)

ms andφ(+)
K are the distorted wavefunctions with

outgoing boundary conditions,Ψα is the bound nucleon wavefunction, andtγK is the kaon
photoproduction operator, discussed in the previous section.

In addition to cross sections, we also compute polarization observables. One is the
photon asymmetry defined by

Aγ = d3σ⊥ − d3σ ‖
d3σ⊥ + d3σ ‖

, (44)

where ⊥ and ‖ denote the perpendicular and parallel photon polarizations relative to
the production plane (x–z plane). Another is the hyperon recoil polarization (also called
analyzing power) defined by

AY = d3σ↑ − d3σ ↓
d3σ↑ + d3σ ↓

, (45)

where↑ and↓ denote the polarizations of the outgoing hyperon relative to they-axis. We
have used the short-hand notation d3σ ≡ d3σ/dEK dΩK dΩY with appropriate sums over
spin labels implied. Note thatAY is obtained for free experimentally since the produced
hyperon is self-analyzing, while the measurement ofAγ requires polarized photon beams.

3.2. Nuclear structure input

The dependence of the reaction on nuclear structure is minimal. It enters through the
spectroscopic factorSα and the single-particle bound wavefunction. The former is an
overall normalization factor whose value can be taken from electron scattering. It cancels
out in polarization observables. For the latter we use harmonic oscillator wavefunctions.
For the sake of consistency one should use bound-state wave functions originating from
a similar potential well as the outgoing hyperons. However, for the quasifree region we are
interested in the difference is negligible.

3.3. Kaon–nucleus interaction

Unlike theπN interaction, the K+N interaction is rather weak on the hadronic scale.
Because of strangeness conservation, there are no hyperon resonances in the K+N system,
nor any inelastic channels with the obvious exception of(K+,K0) charge exchange on the
neutron. The large medium effects due toπNN → NN annihilation and and� propagation
in the π–nucleus system are absent from the K+–nucleus scattering. Consequently, the
low-energy K+N interaction can be understood by a simple background scattering with
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a smooth energy dependence. To generate the distorted waves, we solved the Klein–
Gordon equation with a first-order optical potential constructed from the elementary K+N
amplitudes by a simpletρ approximation [1]. For K0, we used the same potential as for K+
as a starting point, since little is known about the K0 nucleus interaction. In principle, such
information can be obtained by measuring kaon charge exchange on nuclei. Better optical
potentials, such as the one developed in Ref. [48], should be incorporated in future studies;
however, for the present purpose of an exploratory study these potentials are sufficient.

3.4. Hyperon–nucleus interaction

Very few optical potentials have been constructed to describe hyperon–nucleus scatter-
ing, mostly due to lack of data. Here, we employ the global optical model by Cooper et
al. [49]. It was built upon a global nucleon–nucleus Dirac optical potential [50] that suc-
cessfully describes the nucleon data over a wide range of nuclei and energies. It provides
the strengths and shapes for the real and imaginary parts of the nucleon–nucleus scalar
and vector potentials. Then, a number of assumptions were made to deduce the hyperon–
nucleus optical potentials. First, it was assumed that the real parts of the hyperon scalar
and vector potentials scale down by factorsαs andαv motivated by the constituent quark
model, and that the imaginary parts scale down like the square of the same factors. Second,
a tensor coupling term was included in the potential. The coupling was again motivated
by the constituent quark model:f = −g for the� andf = +g for the
. Heref is the
strength of the tensor coupling of the hyperon to theω meson andg is the correspond-
ing vector coupling. The tensor coupling term was neglected for the nucleon since the
ωN coupling constant is small. The inclusion of the tensor terms makes the�N inter-
action approximately spin-independent as suggested by the� hypernuclear data, and the

N interaction maximally spin-dependent. Third, for
, an additional contribution due to

N →�N conversion is known to affect the imaginary part of the potential, and it was pa-
rameterized by adding a certain amount,�Vs , to the imaginary part of the scalar potential.
The soundness of these assumptions may deserve further study, they nonetheless provide
a basis for this qualitative study of the hyperon–nucleus interaction.

This model was applied to bound hypernuclear systems and was found to give
a reasonable description of the experimental data [51]. The parameters were then adjusted
slightly to reproduce the data more quantitatively. In the case of the
, the model was also
constrained by the existing information from
− atoms and from
N scattering. In this
study, we will use the following parameters for�:

αs = 0.621, αv = 0.667, f/g = −1, �Vs = 0, (46)

and for
:

αs = 0.616, αv = 0.667, f/g = +1, �Vs = 20 MeV. (47)

We will study sensitivities of the reaction to deviations from these parameters.
We generated hyperon distorted wavefunctions using the Schrödinger equivalent

potentials which have a central and a spin–orbit part:U(r) = Ucen(r) + Uso(r)s · l. Note
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Fig. 10. Hyperon optical potentials for12C at 300 MeV. The upper panels show the Dirac vector and
scalar potentials, while the lower panels show the corresponding Schrödinger equivalent central and
spin–orbit potentials. The three curves correspond to the� (dashed),
0 (dotted), and proton (solid)
potentials.
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that the total spin–orbit part depends on the partial wave under consideration. To get some
idea about the hyperon potentials as compared to that of the nucleon, we show in Fig. 10
a plot of the original vector and scalar potentials, and the corresponding Schrödinger
equivalent central and spin–orbit potentials on12C at 300 MeV, for�, 
0 and the proton.
As expected, the hyperon potentials are weaker than that of the proton, and the� potential

Fig. 11. Same as Fig. 10, showing the energy dependence at a fixed distance ofr = 1 fm.
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is weaker than that of the
, especially for the spin–orbit part. Fig. 11 shows a similar
plot for the energy dependence of the potentials at fixed distancer = 1 fm. The energy
dependence is smooth. The central potentials slowly increase with energy, while the spin–
orbit ones are relatively energy-independent. The dependence is essentially the same for
both � and
. Note that the central and spin–orbit potentials develop different energy
dependence from that in the vector and scalar potentials. This can be traced to the energy-
dependent factors in the nonrelativistic reduction procedure.

4. Results and discussion

As noted above, there is a great deal of kinematic flexibility in the reaction A(γ,KY)B.
We decided to present our calculations under two kinematic arrangements: quasifree
kinematics (small and fixed momentum transfer magnitude,pm) and open kinematics
(large variation of the momentum transfer). We will limit ourselves to coplanar setups
with the hyperon on the opposite side of the kaon (φY = 180◦). Such setups generally
result in larger cross sections than out-of-plane setups. We will use12C as an example, but
our framework can easily be extended to other nuclei. Since all possible channels can be
explored if the reaction is measured exclusively on nuclei, we try to provide as thorough
an overview as possible by presenting results for all six channels.

4.1. Quasifree kinematics

This setup is achieved by solving Eqs. (39) and (40) at fixedEγ, |pm| and θK. The
quasifree kinematics closely resembles the two-body kinematics in free space, except here
the reaction occurs on a bound nucleon with momentumpm. The hyperon angle will be
shifted from its free space value by a certain amount depending on the value ofpm. This
kinematic arrangement has the feature that the energies of the outgoing particles vary in
the whole angular range, making it maximally dependent on the the final-state interactions
and minimally sensitive to the details of the nuclear wavefunction. The invariant mass of
the outgoing pair, denoted byW , stays within a narrow range.

In the following, we will present kaon angular distributions of the observables for the
reactions12C(γ,KY)11Bg.s. (the final nucleus is left in its ground state) atEγ = 1.4 GeV
andpm = 120 MeV. This value ofpm yields maximal counting rates forp-shell nuclei. For
values ofθK = 0◦, 30◦, 60◦, 90◦, the corresponding solutions are approximately,TK = 680,
474, 179, 42 MeV,TY = 49, 255, 550, 687 MeV,θY = 21◦, 40◦, 24◦, 13◦, andW = 1885,
1921, 1902, 1886 MeV for the K+� channel; andTK = 565, 375, 107, 4 MeV,TY = 87,
277, 546, 648 MeV,θY = 15◦, 33◦, 19◦, 8◦, andW = 1881, 1912, 1894, 1877 MeV for the
K+
0 channel. These energy ranges are well covered by the optical potentials.

Fig. 12 shows the effects of final-state interactions. Four different levels of approxi-
mations are shown for the coincidence cross section (d3σ ), the photon asymmetry (Aγ),
and the hyperon recoil polarization (AY): in Plane Wave Impulse Approximation (PWIA)
where plane waves were used for the outgoing kaon and hyperon, in DWIA with hyperon
FSI turned off, in DWIA with kaon FSI turned off, and in full DWIA. Clearly, the angular
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Fig. 12. Effects of final-state interactions under quasifree kinematics for the reaction
12C(γ,KY)11Bg.s. at Eγ = 1.4 GeV andpm = 120 MeV. The four curves correspond to calcula-
tions in PWIA (dashed), in DWIA with only kaon FSI (dotted), with only hyperon FSI (dash-dotted),
and the full DWIA(solid).
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distributions are peaked in the forward directions. The magnitudes of the asymmetriesAγ

andAY are sizeable and should be measurable in experiments. Our PWIA results agree
qualitatively with the results of Ref. [8], the differences are be attributed to their use of
an older elementary amplitude. As pointed out in that study, the polarization observables
especially can change widely with different elementary operators.

The kaon FSI alone causes small reductions in the cross sections (about 10%), and
has little influence on the polarization observables. The hyperon FSI alone causes larger
reductions in the cross sections for the K
 channels (up to 40%) than for the K� channels
(up to 20%). Such behavior in the cross sections is consistent with our expectation since the

 potentials are stronger than the� ones by construction. What is interesting to observe
is the interference of the two FSIs when both are turned on simultaneously. In the K�

channels the kaon and hyperon distortions appear to combine with a small amount of
destructive interference. However, in the K
 channels, the two final-state interactions
constructively interfere in a way producing a DWIA cross section that is enhanced
compared to the one with only the hyperon FSI present. Thus, the kaon and hyperon
distortions interfere with each other in a complicated pattern, making the extraction of the
hyperon–nucleus potential more difficult. This influence of the kaon FSI is also observed
in the polarization observables. As a result, the net effects of the FSIs on the cross sections
are comparable in all six channels. We also point out thatAγ is more strongly affected
by the FSIs in the K
 channels, especially K+
−, while it has little effect in the K�
channels. However, the effects may be too small to be detected experimentally since the
cross sections in the regions of large effects are rather small.

Fig. 13 shows the individual contributions 0from the Born and resonance terms in
the elementary production operator. The calculations were performed in full DWIA.
As discussed in the previous section, the elementary production process is resonance
dominated. This fact is reflected in the angular distributions for quasifree production,
which are almost totally given by the resonant terms. The photon asymmetry, on the
other hand, displays some significant interference patterns between Born and resonance
contributions. The hyperon polarization is solely caused by resonances since it samples
only the imaginary part of the elementary amplitude. As expected, we find the relative
contributions of Born and resonance terms to depend only onW , rather than the momenta
of the exiting particles.

It is clear that the three ingredients in the reaction (see Eq. (43)), the elementary pro-
duction process, the kaon FSI, and the hyperon FSI, interfere coherently in a complicated
fashion. It is reasonable to expect the interference to depend on the kinematics selected.
To study this possibility in the interest of searching for larger hyperon FSI effects, next we
consider a different kinematic setup where the kaon energy is kept fixed.

4.2. Open kinematics

This setup is achieved by solving Eqs. (39) and (40) forEY andpm at fixed angles,
EK andEγ. The word ‘open’ refers to the fact that the missing momentumpm is free to
vary. We will present observables as a function of the photon energy for the same reactions
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Fig. 13. Total and individual contributions from the Born and resonance terms under the quasifree
kinematics of Fig. 12. The three curves correspond to the full (solid), Born only (dotted), and
resonance only (dashed) contributions of the elementary amplitude. The calculations were done in
DWIA.
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12C(γ,KY)11Bg.s. atθK = 30◦, θY = 35◦, andTK = 450 MeV. This is equivalent to having
a hyperon energy distribution according to Eq. (40). At the same time, it maps out the
momentum distribution of the struck nucleon, and sweeps through the resonance region
as indicated by the invariant massW . For values ofEγ = 1.3, 1.4, 1.5, 1.6 GeV, the
corresponding solutions are, approximately,TY = 164, 264, 364, 464 MeV,pm = 101, 74,
155, 239 MeV, andW = 1865, 1882, 1903, 1926 MeV for the K+� channel; andTY = 87,
187, 289, 387 MeV,pm = 263, 136, 132, 200 MeV, andW = 1941, 1949, 1965, 1986 MeV
for the K+
0 channel.

Fig. 14 shows the effects of final-state interactions under this set of kinematics. Inclusion
of the kaon and hyperon FSI leads to reductions of the cross sections up to a factor of two.
In most cases, FSI significantly affects the shape of the polarization observables. This
clearly indicates that our finding of Fig. 12, namely that most polarization observables are
independent of FSI, only holds true for selected kinematic situations. Thus, plane-wave
results as those presented in Ref. [8] have to be treated with caution. The conclusions
obtained from Fig. 12 about the relative contributions of the FSIs to the cross sections
remain true. But the role of the kaon FSI is now different as compared to quasifree
kinematics; it interferes constructively with the hyperon FSI in almost in all cases. The
double peaks in the cross section of the two� channels are of kinematic origin; they come
from the range of values ofpm, which crosses the maximum of thep-shell single-particle
wavefunctions twice.

Having identified kinematic regions where large hyperon FSI effects are present, we now
proceed to study the sensitivity of the observables to the hyperon potential parameters,
as given in Eqs. (46) and (47). In particular, we investigate which part of the hyperon–
nucleus optical potential can be studied best with quasifree kaon photoproduction on
nuclei.

We varied the potential parametersαv andαs in order to modify the overall strength
of the optical potentials. Calculations were performed for two extreme cases, namely,
reducing them by half in one case and setting them equal to one in the other. This
corresponds to weakening and strengthening of the potentials, respectively. The results
are shown in Fig. 15. As expected, varying the strength of the hyperon potentials changes
the cross sections by roughly scaling it up or down. The polarization observables in the K�

channels are strongly modified, however, the biggest effects are found are higher energies
where the cross sections are small and more difficult to measure. The asymmetries in the
K
 channels also display moderate sensitivities at higher energies but are generally less
affected.

Next, we varied the parameter�Vs which accounts for the
N → �N conversion
in the
–nucleus potential. This conversion is known to be very important in few-body
hypernuclei, i.e., it leads to the binding of the hyper-triton and the correct energy spectrum
in the A = 4 systems. Fig. 16 shows that the effects of either turning the conversion
potential off or doubling its magnitude on the observables for the K
 channels are
essentially the same as the ones found from varying the overall strengths of the potentials.
This suggests that the two effects cannot be separated. In this context, we also examined
the sensitivity to the central and spin–orbit parts of the hyperon–nucleus potentials. It
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Fig. 14. Same as Fig. 12, but under open kinematics, withθK = 30◦, θY = 35◦, andTK = 450 MeV.
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Fig. 15. Effects of varying the scaling factors in the hyperon potentials under open kinematics. The
solid line is in full DWIA (αv � αs � 0.67), the dotted line is withαv = 0.333 andαs = 0.345, and
the dashed line is withαv = αs = 1.
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Fig. 16. Effects of varying the
N → �N conversion factors in the hyperon potentials under open
kinematics. The solid line displays the full DWIA calculation, the dotted line shows the result with
the conversion potential turned off, and the dashed line is obtained by doubling the strength of the
conversion potential.
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Fig. 17. Effects of turning on and off the real and imaginary parts of the hyperon potentials under
open kinematics. The solid line is in full DWIA, the dotted line is with the imaginary part turned off,
and the dashed line is with the real part turned off.
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turns out that, even for the polarization observables, the hyperon FSI effects are almost
entirely due to the central potentials. We furthermore investigated the sensitivity to the
tensor coupling terms that were added to the hyperon potentials (not shown). We found
again that in kinematic regions of appreciable cross section none of our observables are
sensitive to the tensor coupling in any of the channels.

Finally, Fig. 17 displays the sensitivity of the different observables to the real and
imaginary parts of the optical potentials. The reduction in the cross section is caused solely
by the imaginary parts, the real parts have almost no influence on the angular distributions.
This should not come as a surprise since the imaginary part of the potential removes
flux from the matrix element and therefore leads to a reduction in the cross sections.
In the model for the hyperon–nucleus potentials adopted here, the parameters for the
real and imaginary parts of the potential are related, this, however, need not be true for
more sophisticated potentials developed in the future. The situation is different for the
polarization observables, for the K� channels both asymmetries show significant effects
from the real part of the potential at higher energies, while for the K
 channels such effects
can be found near threshold. However, as before these are regions with very small cross
sections, making a detailed study difficult.

5. Conclusion

We have investigated the potential of the quasifree reactions A(γ,KY)B to extract
information on the hyperon–nucleus interaction through final-state interactions. Large
differences were found between PWIA and DWIA results, indicating the importance
of both kaon and hyperon final-state interactions. We find that the hyperon FSI lowers
differential cross sections of order 20–40% while polarization observables can change by
more than a factor of two. The cross sections are mostly affected by the imaginary part of
the hyperon–nucleus optical potentials, while some of the asymmetries are sensitive to the
real part as well. All of these sensitivities come from the central part of the potentials, there
is no discernable influence from the spin–orbit parts. The situation here is to be contrasted
with the experimentally very difficult, direct process of elastic scattering of hyperons
off nuclear targets, whose observables have been shown to display more substantial
sensitivities to the hyperon potential in the calculations of Ref. [49]. Precise measurements
of the quasifree kaon production process, complemented with direct scattering wherever
possible, should enhance our understanding of the Y–nucleus interaction in the future.

Several ingredients for this reaction have to be known more precisely before any
quantitative conclusions about the hyperon–nucleus potential could be drawn. The most
important is clearly the elementary operator; while much progress has been made in the
last couple of years, both experimentally and theoretically, more work must be done to gain
a more precise understanding of the underlying dynamics. This is especially true for the
different K
 channels. The K+–nucleus interaction has been studied in great detail in the
last decade; sophisticated descriptions are available that can reproduce K+–nucleus elastic
scattering data. The kaon FSI, despite being relatively weak in strength, plays a nontrivial
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role: it can interfere with the hyperon FSI to reduce or enhance the combined FSI effects.
Future studies of this reaction should therefore include improved kaon wave functions.

There exists a narrow kinematic window where FSI does not affect selected polarization
observables. To access this range requires keeping close to quasifree kinematics with
moderate missing momentum (pm < 150 MeV) and photon energies belowEγ < 1.4 GeV.
Within this kinematic regime, the polarized photon asymmetry turns out to be insensitive
to final-state distortion for the K� channels while for the K
 channels it is the hyperon
recoil polarization. As suggested by Ref. [8] these observables may now be used to search
for medium modifications of the elementary amplitude. Ref. [8] did not perform DWIA
calculations, however. Our PWIA results for the K� observables (K
 photoproduction
was not addressed in Ref. [8]) agree qualitatively with theirs, the differences are attributed
to their use of an older elementary amplitude. It is especially in the formation, propagation
and decay of higher-lying N∗ resonances where modifications to the elementary amplitude
may occur in the nuclear medium. Polarization observables free of distortion would
constitute an ideal tool to uncover such effects in exclusive channels.
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