Nucleon g_2 Structure Function and Quark-Gluon Correlations

Zein-Eddine Meziani
Temple University
May 30, 2009

CIPANP-2009
Outline

- Quark-gluon correlations: Average Color Lorentz force, Color polarizabilities
 - Nucleon g_2 and g_1 spin structure functions
 - Twist-3 d_2 and twist-4 f_2 matrix elements
 - d_2^n (E06-114 in Hall A) and SANE (E07-003 in Hall C) experiments at Jefferson Lab
 - Future prospects
Spin Structure Functions

- **Unpolarized structure functions** $F_1(x, Q^2)$ and $F_2(x, Q^2)$

 \[
 \frac{d^2 \sigma}{dE'd\Omega}(\downarrow \uparrow + \uparrow \uparrow) = \frac{8\alpha^2 \cos^2(\theta/2)}{Q^4} \left[\frac{F_2(x, Q^2)}{\nu} + \frac{2F_1(x, Q^2)}{M} \tan^2(\theta/2) \right]
 \]

- **Polarized structure functions** $g_1(x, Q^2)$ and $g_2(x, Q^2)$

 \[
 \frac{d^2 \sigma}{dE'd\Omega}(\downarrow \uparrow - \uparrow \uparrow) = \frac{4\alpha^2}{MQ^2 \nu E} \left[(E + E' \cos \theta)g_1(x, Q^2) - \frac{Q^2}{\nu}g_2(x, Q^2) \right]
 \]

 \[
 \frac{d^2 \sigma}{dE'd\Omega}(\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^2 \sin \theta}{MQ^2 \nu^2 E} \left[\nu g_1(x, Q^2) + 2E g_2(x, Q^2) \right]
 \]

- **Variables:**
 - Q^2: Four-momentum transfer
 - x: Bjorken variable
 - ν: Energy transfer
 - M: Nucleon mass
 - W: Final state hadrons mass
Example of a standard setup in Hall A

- **Polarized beam**
 - **Energy**: 0.86-5.1 GeV
 - **Polarization**: > 70%
 - **Average Current**: 5 to 15 µA

- **Hall A polarized 3He target**
 - **Pressure**: ~ 10 atm
 - **Polarization average**: 35%
 - **Length**: 40 cm with 100 µm thickness

- **Highest polarized luminosity**: $\sim 10^{36} \text{cm}^{-2}\text{s}^{-1}$

Electron beam

- Measurement of helicity dependent 3He cross sections
- Extract g_1 and g_2 spin structure functions of 3He
- Extract moments of spin structure functions of 3He and Neutron

May-30, 2009

CIPANP09 La Jolla, CA
$g_2(x, Q^2) = g_{2WW}(x, Q^2) + \bar{g}_2(x, Q^2)$

- a twist-2 term (Wandzura & Wilczek, 1977):

$$g_{2WW}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 g_1(x, Q^2) \frac{dy}{y}$$

- a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 1992):

$$\bar{g}_2(x, Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left[\frac{m_q}{M} h_T(y, Q^2) + \xi(y, Q^2) \right] \frac{dy}{y}$$

Transversity

$q-g$ correlations
Quark-Gluon Correlations

How did we investigate them?
- By direct comparison of g_2 to g_2^{WW} to observe deviations
- As for any other nucleon structure function it is hard to have ab-initio calculation of g_2
- Quark models are can be useful to gain insight

Second moment of g_2 offers another avenue of investigation
- Moments of \overline{g}_2 can be calculated using lattice QCD since they correspond to specific matrix elements of quark and gluon field operators
- These matrix elements have a physical interpretation
 - Average Color Lorentz Force (M. Burkhardt)
 - “Color polarizabilities” (X. Ji, Stein et al.)
Nucleon world results of g_2

- SLAC E155x (proton and deuteron)
- JLab E99-117 (helium-3), A_1^n in DIS
- Jlab E97-103 (helium 3) DIS, Q^2 dependence mainly below 1.4 GeV2

May-30, 2009

CIPANP09 La Jolla, CA
Q^2 dependence below 1 GeV^2

JLab E97-103 (helium 3) DIS, Q^2 dependence mainly below 1.4 GeV^2

Spokespersons: T. Averett and W. Korsch
Student: K. Kramer

$x^2 g_2^3$He at constant Q^2

JLab Experiment E01-012

Spokespersons: J.P Chen, Seonho Choi and N. Liyanage

Thesis student: P. Solvignon
Moments of Structure Functions

\[d_2(Q^2) = 3 \int_0^1 x^2 \left(g_2(x, Q^2) - g_2^{WW}(x, Q^2) \right) dx \]

\[d_2 S_{[\mu P {\nu]} P} P^\lambda = \frac{1}{8} \sum_q \langle P, S | \overline{\psi}_q \ g F_{\{\mu \nu \gamma}^{\lambda\}} \psi_q | P, S \rangle \]

\[d_2 (Q^2) \rightarrow \text{dynamical twist-3 matrix element} \]

\[d_2(Q^2) = \int_0^1 dx \ x^2 \left[2g_1(x, Q^2) + 3g_2(x, Q^2) \right] \]
“Color Polarizabilities”

X. Ji 95, E. Stein et al. 95

How does the gluon field respond when a nucleon is polarized?

Define color magnetic and electric polarizabilities (in nucleon rest frame):

\[\chi_{B,E} 2M^2 \vec{S} = \langle PS | \vec{O}_{B,E} | PS \rangle \]

where

\[\vec{O}_B = \psi^\dagger g \vec{B} \psi \]

\[\vec{O}_E = \psi^\dagger \vec{\alpha} \times g \vec{E} \psi \]

\[d_2 = (\chi_E + 2\chi_B)/8 \]

\[f_2 = (\chi_E - \chi_B)/2 \]

\[d_2 \text{ and } f_2 \text{ represent the response of the color } \vec{B} \text{ & } \vec{E} \text{ fields to the nucleon polarization} \]
Average Color Lorentz Force (M. Burkardt)

\[\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6 M P^2 S^x} \langle P, S | \bar{q}(0) g G^{+y}(0) \gamma^+ q(0) | P, S \rangle \]

\[\rightarrow \quad d_2 \text{ a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon} \]

\[\langle F^y(0) \rangle = -M^2 d_2 \quad \text{(rest frame; } S^x = 1) \]
Interpretation of d_2 with the transverse FSI force in DIS also consistent with $\langle k_{\perp}^y \rangle \equiv \int_0^1 dx \int d^2k_\perp \ k_\perp^2 f_{1T}^1(x, k_\perp^2)$ in SIDIS (Qiu, Sterman)

$$\langle k_{\perp}^y \rangle = -\frac{1}{2p^+} \left\langle P, S \left| \bar{q}(0) \int_0^\infty dx^- gG^{+y}(x^-) \gamma^+ q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average k_\perp in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity
Models and Lattice evaluations of d_2

Quark Bag Models

Chiral Soliton Model
H.Weigel and L.Gamberg,

Lattice QCD
M.Gockeler et al.,
Q^2 evolution of the neutron d_2
Moments of Structure Functions (continued)

\[\tau = 2 \]

single quark scattering

\[\Gamma_1(Q^2) = \int_0^1 dx \ g_1(x, Q^2) \]

\[= \Gamma_1^{\text{twist-2}}(Q^2) + \frac{M_N^2}{9 Q^2} \left[a_2(Q^2) + 4 d_2(Q^2) + 4 f_2(Q^2) \right] + O \left(\frac{M_N^4}{Q^4} \right) \]

\[\tau > 2 \]

qq and qg correlations
Moments of Structure Functions (continued)

\[a_2(Q^2) \equiv 2 \int_0^1 dx \, x^2 \, g_1^{\text{twist}-2}(x, Q^2) \] \text{target mass correction term}

\[d_2(Q^2) \rightarrow \text{dynamical twist-3 matrix element} \]

\[d_2(Q^2) = \int_0^1 dx \, x^2 \left[2g_1(x, Q^2) + 3g_2(x, Q^2) \right] \]

\[f_2(Q^2) \rightarrow \text{dynamical twist-4 matrix element} \]

\[f_2(Q^2) = \frac{1}{2} \int_0^1 dx \, x^2 \left[7g_1(x, Q^2) + 12g_2(x, Q^2) - 9g_3(x, Q^2) \right] \]

\[f_2 M^2 S^\mu = \frac{1}{2} \sum_q e_q^2 < N | \bar{\psi}_q g \tilde{F}_{\mu\nu}^\ast \gamma^\nu \psi_q | N > \]
Adding $1/Q^6$ term gives the same f_2 and μ_6 with $\mu_8 = (0.00 \pm 0.03)M^2$
Determination of \(f_2 \) for the proton

World data + EG1a data: R. Fatemi et al., PRL, 91 22200 (2003)

\[
\frac{f_2}{\mu_6/M^4} = 0.039^{+0.037}_{-0.043}
\]

May-30, 2009
CIPANP09 La Jolla, CA
Hall A d_2^n and Hall C SANE experiments
Neutron and Proton

Spokespeople:
B. Sawatzky, S. Choi, X. Jiang and Z.-E.M

Students:
D. Flay, D. Parno, M. Posik

and the Hall A collaboration

Spokespeople:
O. Rondon, S. Choi, M. Jones, Z.-E. M

Students:
W. Armstrong, H. Kang, A. Liyanage, J. Maxwell, J. Mulholland

and the Hall C collaboration
Two beam energies 4.6 and 5.7 GeV (4 pass, 5 pass)
BigBite fixed at single scattering angle (\(\theta = 45^\circ\))
(data divided into 10 bins during analysis)

Experiment ran Jan.-Mar. 09
May-30, 2009
CIPANP09 La Jolla, CA
At large Q^2, d_2 coincides with the reduced twist-3 matrix element of gluon and quark operators.

At low Q^2, d_2 is related to the spin polarizabilities.
SANE experiment in Hall C

Two beam energies:
- 6.0 GeV (black)
- 4.8 GeV (green)

Target
- UVa NH3 target
- 5 T field

Beamline
- Chicanes
- SEM
- He Bag

Electron Arm
- BETA

Background Studies
- HMS

CEBAF polarized beam
- 85 nA
- 75% beam polarization

Experiment Ran January-March 09
Three subsystems:
- Lead glass calorimeter BigCal: Energy Measurement
- Gas Cherenkov: e- identification
- Lucite hodoscope: tracking
- Front tracker: tracking

Target field sweeps low E background

Characteristics
- Effective solid angle (with cuts) = 0.194 sr
- Energy resolution $5%/\sqrt{E(\text{GeV})}$
- Angular resolution = 2°
- 1000:1 pion rejection
SANE experiment g_2, g_1 projected errors
d_2^p RSS and SANE d_2^p projection in Hall C

RSS spokesperons: M. Jones, O. Rondon
SANE spokespersons: S. Choi, M. Jones, O. Rondon, Z.-E. M

![Graph](image-url)

Lattice QCD - Goeckeler et al.
SANE d_2 expected statistical errors
RSS d_2
Elastic contribution
SLAC
$d_2 = d_2(RSS) \sqrt{Q^2_{RSS}/Q^2}$
SANE combined Q^2 3.5 to 6.5 GeV2
d_2 pQCD (NP B201:141)

Preliminary RSS inelastic d_2
g_2 at JLab with 11 GeV

CLAS 12

Hall C HMS/SHMS

$\chi^2 g_{2p}$

$\chi^2 g_n$

May-30, 2009

CIPANP09 La Jolla, CA
Past experiments on the neutron and proton suggest that the twist-3 and twist-4 are small but finite.

Precision measurements of g_1 and g_2 in the range $1 < Q^2 < 4 \text{ GeV}^2$ are crucial for an improved extraction of the

- Average color Lorentz force
- “Color polarizabilities”

In the next year or two we will have results from two recently ran experiments at Jefferson Lab, SANE in Hall C (proton) and E06-14 in Hall A (neutron).

The non-singlet combination $(d_2^p - d_2^n)$ should provide a benchmark test for present lattice QCD calculations since no disconnected diagrams are needed.

This program will be pursued at JLab 11 GeV for higher precision and greater Q^2 and x coverage.
QCDSF Collaboration Lattice Calculations

hep-lat/0506017

M. Gockeler, R. Horsley, D. Pleiter, P.E.L. Rakow, A. Schafer, G. Schierholz, H. Stueben, J.M. Zanotti

May-30, 2009
E94-010 B-C sum rule; results

Neutron

\[\Gamma_2 \]

\[Q^2 (\text{GeV}^2) \]

\[M. \text{Amarian et al., Phys. Rev. Lett. 92, 022301 (2004)} \]

\[\text{3He} \]

\[\Gamma_2 \]

\[Q^2 (\text{GeV}^2) \]

\[\text{Preliminary} \]

\[M. \text{Amarian et al., in preparation} \]
75-80% polarized beam at 15µA

35-40% polarized target in beam
Proton g_2 and A_1

- DIS data up to $x = 0.6$; Resonances measured down to $W = 1.38$ GeV
- g_2 measured in region of most sensitivity for d_2